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ABSTRACT

Owing to the inherent sparsity of the target scene, compressed

sensing (CS) has been successfully employed in radar appli-

cations. It is known that the performance of target scene re-

covery in CS scenarios depends highly on the coherence of

the sensing matrix (CSM), which is determined by the radar

transmit waveform. In this paper, we present a cyclic opti-

mization algorithm to effectively reduce the CSM via a judi-

cious design of the radar waveform. The proposed method

provides a reduction in the size of the Gram matrix associ-

ated with the sensing matrix, and moreover, relies on the fast

Fourier transform (FFT) operations to improve the computa-

tion speed. The effectiveness of the proposed algorithm is

illustrated through numerical examples.

Index Terms— compressed sensing, mutual coherence,

radar, sensing matrix, sparsity, waveform synthesis

1. INTRODUCTION AND SYSTEM MODELING

A primary interest in radar is the inverse problem of recov-

ering the target scene from the noisy measurements. For a

radar working under the conventional Nyquist-Shannon sam-

pling framework, the sampling rate is constrained to be at

least twice the highest frequency component in the received

signal, in order to reconstruct the target scene accurately. In

many cases, particularly for ultra wide band (UWB) radar,

such a requirement is hardly achieved using the currently em-

ployed analog to digital converters (ADCs); not to mention

the large computational burden caused by the processing of

the data with high sampling rates.

The new framework of compressed sensing (CS) may

promise a solution to such difficulties [1, 2]. To observe how,

note that in practical radar applications, the target scene is

typically sparse— i.e. there is usually a small number of tar-

gets that we are concerned with. In order to recover the data

with lower sampling rates, CS relies on two criteria: (i) spar-

sity, which is related to the signal of interest (i.e. the target

scene), and (ii) incoherence, which is related to the sensing

modality to be designed. Note that CS-based formulations
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have been successfully developed for MIMO radar [4, 5],

synthetic aperture radar (SAR) [6], as well as the inverse

synthetic aperture radar (ISAR) [7].

In radar applications, the sensing modality is determined

by the transmit sequence s. The design problem can be for-

mulated as follows. Suppose the target scene (in the range-

Doppler plane) is discretized via a Nr × Nd grid, and define

the time delay and Doppler shift matrices as

T r =




0r×N

IN×N

0(Nr−r−1)×N


 , r = 0, 1, · · · , Nr − 1, (1)

F d =




ω0
M 0 · · · 0
0 ω1

M · · · 0
...

...
. . .

...

0 0 · · · ωN−1
M




d

, d = 0, 1, · · · , Nd − 1,

where N is the length of transmit sequence s, ωM = ej
2π
M is

the M th root-of-unity. Thus, the discrete received signal can

be formulated as (see [8–10] for details)

x =

Nd−1∑

d=0

Nr−1∑

r=0

αr,d T rF ds︸ ︷︷ ︸
,ϕr,d

+e (2)

where αr,d denotes the complex scattering coefficient corre-

sponding to the (r, d)th element of the grid, and e accounts

for noise and all other unwanted interferences. Note that (2)

can be recast in matrix form as

x = Φα+ e (3)

where Φ = (ϕ0,0,ϕ0,1, . . . ,ϕNr−1,Nd−1) and α = (α0,0,

α0,1, . . . , αNr−1,Nd−1)
T . The goal of a radar system is to es-

timate the location, speed, and the radar cross-section (RCS)

of the targets; in other words, to find the vector α in the above

equation. As discussed earlier, α in (3) is usually sparse.

Therefore, different methods from the CS literature can be

used for designing s (equivalently an optimized sening ma-

trix Φ), as well as to seek for the sparse α in (3).

Notation: We use bold lowercase letters for vectors and

bold uppercase letters for matrices. (.)T and (.)H denote the



vector/matrix transpose and the Hermitian transpose, respec-

tively. 0 is the all-zero vector/matrix. vec(X) is a vector

obtained by stacking the columns of X successively. ‖x‖n
or the ln-norm of the vector x is defined as (

∑
k |x(k)|n)

1

n

where {x(k)} are the entries of x. The Frobenius norm of

a matrix X (denoted by ‖X‖F ) is equal to ‖vec(X)‖2. Fi-

nally, C represents the set of complex numbers.

2. MUTUAL COHERENCE

The mutual coherence, also known as the coherence of the

sensing matrix (CSM) [12], is a useful metric to measure the

incoherence required by CS, which can be defined as

µ(Φ) , max
(r,d) 6=(r′,d′)

|ϕH
r,dϕr′,d′ |

‖ϕr,d‖2‖ϕr′,d′‖2
. (4)

Suppose that the number of non-zero entries associated with

the target scene α̃ satisfies the following inequality

‖α̃‖0 <
1

2

(
1 +

1

µ(Φ)

)
. (5)

Then α̃ is necessarily the sparsest solution of the linear equa-

tion x = Φα. Moreover, fast greedy algorithms such as the

basis pursuit (BP) or the orthogonal matching pursuit (OMP)

are guaranteed to find the correct solution α [2, 10]. A suit-

able approach to describe µ(Φ) is via the Gram matrix G ,

Φ̃
H
Φ̃, where Φ̃ is the column-normalized version of Φ. Con-

sequently, µ(Φ) can be stated as

µ(Φ) = max
k 6=l

|G(k, l)| (6)

where {|G(k, l)|}k 6=l are the coherence coefficients associ-

ated with the sensing matrix Φ.1

Note that a matrix Φ with low coherence corresponds to a

Gram matrix G which is close to identity I . As a result, one

can reduce the incoherence conveniently via the optimization

problem:

min
Φ

‖G− I‖2F . (7)

Due to its quartic objective, (7) is deemed to be easier to

tackle compared to (6); however, a large number of variables

can make the problem prohibitive. In the next section, we will

discuss a more effective approach that formulates a quadratic

alternative of (7), and particularly facilitates using the fast

Fourier transform (FFT) operations to tackle the problem.

3. WAVEFORM SYNTHESIS

Due to practical constraints, unimodular sequences are very

desirable for transmission purposes [13]. As a result, we con-

sider the design of a unimodular transmit sequence s (with

|s(k)| = 1, ∀ k) in the following.

1We note that, according to the formulation in (2), the coherence coeffi-

cients can also be associated with the transmit sequence s.

We begin the design formulation noting that the coher-

ence between any two arbitrary columns of the matrix Φ̃ (and

equivalently the corresponding element in the Gram matrix

G) can be written as

ϕ̃H
r,dϕ̃r′,d′ =

(
1√
N

T rF ds

)H (
1√
N

T r′F d′

s

)

=
1

N

(
sHF dHT r H

)(
T r′F d′

s
)

=
1

N
sHF dH T̃∆rF

d′

s (8)

where T̃∆r = T rHT r′ , and ∆r = r′ − r. Based on the

above equation, it is easy to verify that the terms formulated

in (8) are identical for all (r, r′) with the same ∆r. There-

fore, the Gram matrix G has a specific structure that can be

exploited. Namely, using (8) the objective function in (7) can

be rewritten as

‖G− I‖2F

=

∥∥∥∥∥∥∥∥∥




G̃0 G̃1 · · · G̃Nr−1

G̃−1 G̃0 · · · G̃Nr−2

...
...

. . .
...

G̃1−Nr
G̃2−Nr

· · · G̃0


− I

∥∥∥∥∥∥∥∥∥

2

F

=

N−1∑

r=−(N−1)

γ2
r ‖G̃r − Iδr‖2F (9)

where

G̃r = XH T̃ rX, (10)

X = (x0,x1, . . . ,xNd−1), (11)

xd =
1√
N

F ds , d = 0, 1, . . . , Nd − 1, (12)

γ2
r =

{
Nr − |r|, |r| < Nr,

0, otherwise,
(13)

and δr denotes the Kronecker delta function:

δr =

{
1, r = 0,

0, r 6= 0.
(14)

It is worth observing that (9) contributes a significant reduc-

tion in the size of the matrix variables.

Next note that T̃ r is a shifting matrix, and hence G̃r can

be viewed as the covariance matrix of the vectors {xd} cor-

responding to the time lag r. Based on this observation, the



following Parseval-type equality holds [14]:

‖G− I‖2F =

N−1∑

r=−(N−1)

γ2
r‖G̃r − Iδr‖2F

=
1

2N

2N∑

p=1

∥∥∥∥Ψ
(
2πp

2N

)
− γ0I

∥∥∥∥
2

F

(15)

in which

Ψ(ω) =

N−1∑

r=−(N−1)

γrX
H T̃ rX e−jωr. (16)

Interestingly, the frequency domain criterion in (15) has

the same form as (28) in [14]. Therefore, we employ a similar

approach to tackle the problem herein. In particular, the Ψ(ω)
defined in (16) can also be written in the form

Ψ(ω) = ZH(ω)ΓZ(ω) (17)

with

Z(ω) = (z(1)e−jω, . . . , z(N)e−jωN )T , (18)

z(n) = (x0(n), . . . ,xNd−1(n))
T (19)

for 1 ≤ n ≤ N , and

Γ =




γ0 γ1 · · · γN−1

γ−1 γ0 · · ·
...

...
...

. . . γ1
γ−N+1 . . . γ−1 γ0




. (20)

As a result, we have that

‖G− I‖2F =
1

2N

2N∑

p=1

‖ZH
p ΓZp − γ0I‖2F (21)

where Zp , Z(2πp/(2N)). Now note that ‖G̃0 − I‖2F is a

constant, and thus, a diagonal loading of Γ does not change

the solution to (7). Let Γ̃ = Γ + λI , with λ being a non-

negative scalar that can ensure Γ̃ ≥ 0. Consequently, one can

reduce the incoherence of Φ conveniently using the following

quadratic alternative of (21):

min
s,Up

2N∑

p=1

‖CZp −
√
γ0Up‖2F

s.t. |sn| = 1, n = 1, . . . , N,

UH
p Up = I, p = 1, . . . , 2N, (22)

where C is the Hermitian square root of Γ̃, i.e. CHC = Γ̃.

To tackle the minimization problem in (22), we adopt a

cyclic method as follows. For given {Zp}2Np=1 (equivalently

a given transmit sequence s), let ZH
p CH = U1ΣUH

2 rep-

resent the economy-size singular value decomposition (SVD)

of ZH
p CH , with U1 being an Nd ×Nd unitary matrix, Σ be-

ing an Nd × Nd diagonal matrix and U2 being an N × Nd

semi-unitary matrix. Then the minimizer Up of (22) is given

by [14]

Up = U2U
H
1 . (23)

Similar to the WeCAN algorithm in [14], the computa-

tion of CZp can be performed using the FFT operation. To

observe how, let

X̃m = CT ⊙ (xm,xm, . . . ,xm)N×N (24)

for 0 ≤ m ≤ Nd − 1, and

F =
√
2NAH F̃ , F̃ =

(
X̃0 . . . X̃Nd−1

0N×N . . . 0N×N

)
(25)

where A denotes the 2N × 2N (inverse) DFT matrix, whose

(l, p)-element is given by

[A]l,p =
1√
2N

ej2πlp/(2N), l, p = 1, . . . , 2N. (26)

Using the above formulations, one can observe that the N ×
Nd matrix CZp may be obtained by reshaping the NNd × 1

vector fp into each column of CZp, where fT
p represents the

pth row of F .

Next we discuss the minimization of (22) with respect to

s for given {Up}2Np=1. Let

V 2N×NNd
= (v1,v2, . . . ,v2N )T (27)

where vp =
√
γ0 vec(Up), 1 ≤ p ≤ 2N . Then the criterion

in (22) can be written as

2N∑

p=1

‖CZp −
√
γ0Up‖2F =

∥∥∥
√
2NAH F̃ − V

∥∥∥
2

F

= 2N

∥∥∥∥F̃ − 1√
2N

AV

∥∥∥∥
2

F

. (28)

Note that (28) can be minimized with respect to each element

of s in a separate manner. Particularly, we can consider min-

imizing the following criterion with respect to s (a generic

element of s):

NNd∑

k=1

|µks− νk|2 = const − 2ℜ
[(

NNd∑

k=1

µ∗
kνk

)
s∗

]
(29)

where {µk} are given by the elements of F̃ that contain s, and

νk is given by the element of 1√
2N

AV whose position is the

same as that of µk in F̃ . Hence, the unimodular s minimizing

(29) is

s = ejϕ, ϕ = arg

(
NNd∑

k=1

µ∗
kνk

)
. (30)

Finally, the steps of the proposed algorithm for designing

the transmit sequence s are summarized in Table 1.
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Fig. 1. Distribution of the coherence coefficients associated with (a) Alltop sequence, and (b-c) the optimized sequences obtained

by the proposed method and the coherence reduction approach in [10], respectively, using the Alltop sequence as initialization.

Table 1. The Proposed Algorithm for Sparsity-Aided Trans-

mit Sequence Design

Step 0: Initialize the transmit sequence s with a random unimodular se-

quence (or by a good existing sequence). Calculate the Hermitian square

root C of Γ̃.

Step 1: Fix s (equivalently {Zp}2Np=1) and compute {Up}2Np=1 using

(23).

Step 2: Fix {Up}2Np=1 and compute s using (30).

Step 3: Repeat steps 1 and 2 until a stop criterion is satisfied, e.g.

‖s(t+1) − s(t)‖F < ε for some given ε > 0, where t denotes the

total iteration number.

4. NUMERICAL EXAMPLLES

4.1. Incoherence

We consider employing the proposed method to design a

transmit sequence s of length N = 127, using the Alltop

sequence as initialization, for a target scene with Nr = 20
range and Nd = 15 Doppler bins. The Alltop sequence is

known to yield a desirable incoherence property of the sens-

ing matrix Φ [9], and is defined for prime lengths N > 5
as

s(n) = ej
2π
N

n3

, n = 1, 2, . . . , N. (31)

In a type of example inspired by [10], we compare the

coherence coefficients associated with the Alltop sequence,

and those of the optimized sequence obtained by the proposed

method. Furthermore, we include the results obtained by us-

ing the coherence reduction approach in [10] initialized by the

Alltop sequence. The results are shown in Fig. 1. It can be

observed from Fig. 1 that the proposed method in this work

and the approach in [10] can lead to a similar coherence dis-

tribution. On the other hand, both methods outperform the

Alltop sequence in terms of incoherence.

4.2. Target Scene Recovery

In order to verify the effectiveness of the optimized se-

quences, we examine the root mean-square errors (RMSEs)

of the target scene recovery for different sparsity orders

K = ‖α‖0. We construct the sparse vectors α by choosing

K non-zero locations in the vector, with identical chance for

all
(
NdNr

K

)
assignments of the non-zero locations, and con-

sider random positive RCS values for the non-zero locations.

We let N = 127, Nr = 20, Nd = 15, and set the signal-

to-noise ratio to 20dB. Based on these settings, we use the

OMP algorithm for the recovery of α. The results leading to

Fig. 2 are obtained by averaging the computation times for

500 Monte Carlo experiments (with different random initial-

izations). Once again, the proposed method and the approach

in [10] present a very similar performance. However, ac-

cording to Fig. 2, the optimized sequences obtained by both

methods can yield a smaller RMSE compared to that of All-

top sequence; particularly when the sparsity order K grows

large. We note that for larger values of K, a low incoherence

of the sensing matrix Φ becomes more crucial to an accurate

reconstruction of the target scene; see (5).

4.3. Computation Time

Finally, we compare the computation times required by the

proposed method and the coherence reduction approach de-

vised in [10], when performing the sequence design for vari-

ous lengths N of the transmit sequence. Herein, we set M =
10, Nd = 8, and Nr = N . It can be observed from Fig. 3 that

the computation time of the design algorithm in [10] is grow-

ing rapidly as N grows large. In contrary, the proposed algo-

rithm can be used for comparably large lengths of the transmit

sequence, e.g. N & 100. The results leading to Fig. 3 were

obtained by averaging the computation times over 100 exper-

iments (with different random initializations) using a PC with



0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sparsity K

R
M

S
E

 

 

Alltop sequence

The proposed method

Coherence reduction approach [10]

Fig. 2. Comparison of the recovery error for sensing matri-

ces built based on the Alltop sequence and the optimized se-

quences obtained by the proposed method and the approach

in [10], for different sparsity orders K of the target scene α.

Intel Core i5 CPU 750 @2.67GHz, and 8GB memory.

REFERENCES

[1] D. Donoho, “Compressed sensing,” IEEE Transactions

on Information Theory, vol. 52, no. 4, pp. 1289–1306,

April 2006.

[2] E. Candès and M. Wakin, “An introduction to com-

pressive sampling,” IEEE Signal Processing Magazine,

vol. 25, no. 2, pp. 21–30, March 2008.

[3] Y. He, X. Zhu, S. Zhuang, H. Li, and H. Hu, “Waveform

optimization for compressive sensing radar imaging,” in

IEEE CIE International Conference on Radar, vol. 2.

Chengdu, China: IEEE, 2011, pp. 1263–1266.

[4] Y. Yu, A. P. Petropulu, and H. V. Poor, “MIMO radar

using compressive sampling,” IEEE Journal of Selected

Topics in Signal Processing, vol. 4, no. 1, pp. 146–163,

2010.

[5] W. Roberts, P. Stoica, J. Li, T. Yardibi, and F. A.

Sadjadi, “Iterative adaptive approaches to MIMO radar

imaging,” IEEE Journal of Selected Topics in Signal

Processing, vol. 4, no. 1, pp. 5–20, 2010.

[6] V. M. Patel, G. R. Easley, D. M. Healy Jr, and R. Chel-

lappa, “Compressed synthetic aperture radar,” IEEE

Journal of Selected Topics in Signal Processing, vol. 4,

no. 2, pp. 244–254, 2010.

[7] L. Zhang, M. Xing, C.-W. Qiu, J. Li, J. Sheng, Y. Li,

and Z. Bao, “Resolution enhancement for inversed syn-

thetic aperture radar imaging under low SNR via im-

proved compressive sensing,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 48, no. 10, pp.

3824–3838, October 2010.

0 20 40 60 80 100
0

100

200

300

400

500

Sequence length N

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
)

 

 

Coherence reduction approach [10]

The proposed method

Fig. 3. Comparison of the computation times corresponding

to the proposed method and the design algorithm devised in

[10], for different lengths N of the transmit sequence.

[8] P. Stoica, J. Li, and M. Xue, “Transmit codes and re-

ceive filters for radar,” IEEE Signal Processing Maga-

zine, vol. 25, no. 6, pp. 94–109, 2008.

[9] M. Herman and T. Strohmer, “High-resolution radar

via compressed sensing,” IEEE Transactions on Signal

Processing, vol. 57, no. 6, pp. 2275–2284, June 2009.

[10] J. Zhang, D. Zhu, and G. Zhang, “Adaptive compressed

sensing radar oriented toward cognitive detection in dy-

namic sparse target scene,” IEEE Transactions on Sig-

nal Processing, vol. 60, no. 4, pp. 1718–1729, 2012.

[11] M. Soltanalian, M. M. Naghsh, and P. Stoica, “On meet-

ing the peak correlation bounds,” IEEE Transactions

on Signal Processing, vol. 62, no. 5, pp. 1210–1220,

March 2014.

[12] M. Elad, Sparse and redundant representations: from

theory to applications in signal and image processing.

New York, NY: Springer, 2010.

[13] H. He, J. Li, and P. Stoica, Waveform design for active

sensing systems: a computational approach. Cam-

bridge University Press, 2012.

[14] H. He, P. Stoica, and J. Li, “Designing unimodular se-

quence sets with good correlations—including an appli-

cation to MIMO radar,” IEEE Transactions on Signal

Processing, vol. 57, no. 11, pp. 4391–4405, 2009.

[15] M. Soltanalian, M. M. Naghsh, and P. Stoica, “A

fast algorithm for designing complementary sets of se-

quences,” Signal Processing, vol. 93, no. 7, pp. 2096–

2102, 2013.

[16] M. Rossi, A. M. Haimovich, and Y. C. Eldar, “Spatial

compressive sensing for MIMO radar,” IEEE Transac-

tions on Signal Processing, vol. 62, no. 2, pp. 419–430,

January 2014.


