2014 43rd International Conference on Parallel Processing

A Case for Resource Efficient Prefetching in
Multicores

Muneeb Khan, Andreas Sandberg and Erik Hagersten
Department of Information Technology, Uppsala University
Email: {muneeb.khan, andreas.sandberg, eh} @it.uu.se

Abstract—Modern processors typically employ sophisticated
prefetching techniques for hiding memory latency. Hardware
prefetching has proven very effective and can speed up some
SPEC CPU 2006 benchmarks by more than 40% when running
in isolation. However, this speedup often comes at the cost of
prefetching a significant volume of useless data (sometimes more
than twice the data required) which wastes shared last level cache
space and off-chip bandwidth.

This paper explores how an accurate resource-efficient
prefetching scheme can benefit performance by conserving shared
resources in multicores. We present a framework that uses low-
overhead runtime sampling and fast cache modeling to accurately
identify memory instructions that frequently miss in the cache.
We then use this information to automatically insert software
prefetches in the application. Our prefetching scheme has good
accuracy and employs cache bypassing whenever possible. These
properties help reduce off-chip bandwidth consumption and last-
level cache pollution. While single-thread performance remains
comparable to hardware prefetching, the full advantage of the
scheme is realized when several cores are used and demand for
shared resources grows.

We evaluate our method on two modern commodity multi-
cores. Across 180 mixed workloads that fully utilize a multicore,
the proposed software prefetching mechanism achieves up to 24%
better throughput than hardware prefetching, and performs 10%
better on average.

I. INTRODUCTION

As the gap between DRAM and processor speeds remains
considerably large, memory latency remains a major bottleneck
for system performance. The compute power of multicores
is expected to keep growing faster than the off-chip band-
width in future [16], which means that techniques used to
hide memory latency should not waste memory bandwidth
and shared cache space in order to be effective. Modern
processors typically employ aggressive hardware prefetching
to hide memory latency. Such prefetchers can sometimes
improve single-threaded performance by more than 40% on
modern commodity multicores. However, aggressive hardware
prefetching often increases off-chip traffic significantly, some-
times more than twice the amount needed (Figure 5b). Such
speculative prefetching helps maximize single thread perfor-
mance, but can severely strain shared resources by i) polluting
the shared last-level cache (SLLC), and ii) increasing off-chip
bandwidth usage. Modern processors throttle down prefetching
to avoid shared-resource wastage during contention. However
our experiments show significant useless off-chip traffic even
during full system utilization (Figure 7d).

Shared-resource conservation: Wasting shared resources
directly impacts the performance of applications co-executing

0190-3918/14 $31.00 © 2014 IEEE
DOI 10.1109/ICPP.2014.19

101

on neighboring cores. This suggests that prefetching ap-
proaches for multicores need to be especially focused on being
accurate and resource-conserving. In this work we present
such a resource-conserving software-only method aimed at im-
proving multicore throughput performance in shared-resource
constrained situations by i) improving single-thread perfor-
mance with accurate prefetching, and ii) minimizing off-chip
traffic and off-chip bandwidth consumption.We compare our
method with state-of-the-art hardware prefetching in modern
commodity multicores and show that multicore performance
in highly-utilized systems improves significantly (up to 24%)
when shared resources are conserved.

Low-Overhead mechanism: Prior work [1], [10], [15],
[21] has investigated the use of software prefetching for
improving single thread performance, which does not take in
to account shared resources of multicore systems. In addition,
most previous profile guided optimization (PGO) methods
incur large profiling overheads. To make our approach more
applicable, we propose the use of low-overhead runtime
sampling and fast cache modeling. This enables us to
identify memory instructions that frequently miss in the cache
(referred as delinquent loads), and insert software prefetches
for such delinquent loads that exhibit regular strides. Our
approach is accurate and consumes significantly less off-
chip bandwidth than hardware prefetching. The proposed
technique is designed to work at the binary level, and could
enable runtime optimization methods such as dynamic binary
rewriting, so that optimizations are applicable even when the
source is unavailable.

We make the following main contributions:

e We demonstrate a low-overhead method to identify delin-
quent loads, and do accurate prefetching for them in soft-
ware. Our method uses low-overhead runtime sampling
of a target application to gather runtime information. The
runtime information is used as input to fast statistical
cache modeling to accurately identify delinquent loads
that can benefit from prefetching.

e We combine a cache-bypassing technique with our soft-
ware prefetching method to lower off-chip traffic and
cache useful data longer.

e We evaluate our method and compare with hardware
prefetching on two high-performance processors. Our
resource-efficient method achieves single-thread perfor-
mance comparable to hardware prefetching, while reduc-
ing off-chip traffic by 44% on average. In a fully utilized
multicore our method consistently achieves significantly
higher throughput than hardware prefetching.

cpss

Conference Publishing Services

Online
Sample Data Reuse (1) & Stride (2) sampling
Model per-instruction cache
performance (3)
Identify delinquent loads (4)
Get next delinquent load
Stride Analysis (5)
Fast Offline
Analysis

Regular
Stride?

Compute Prefetch Distance (6) |

—| Insert Prefetch for Delinquent load (6) |

Figure 1: Optimization Framework Overview

II. OVERVIEW

We start by describing our framework that enables an
effective resource-efficient prefetching method. The framework
goes through several passes as shown in Figure 1. This section
briefly describes these different passes. We discuss each step in
detail in later sections. The first two steps are part of a single
integrated sampling pass. The rest are steps in a fast offline
analysis pass.

1) Data reuse sampling: Memory instructions are sampled
randomly and sparsely. Data cache blocks accessed by
sampled instructions are monitored for reuse. A reuse
sample is recorded whenever a monitored cache block
is re-accessed.

Stride sampling: The sampled memory instructions are
monitored. Whenever re-executed, a stride sample is
recorded as the difference of the current and previous
memory address accessed by this instruction.

Fast Cache modeling: Data reuse samples recorded over
the entire execution (step 1) are fed to a statistical cache
model [4] which models per-instruction cache perfor-
mance for given cache sizes. Figure 3 shows the modeled
cache behavior for a sampled instruction in mcf.
Delinquent load identification: A cost-benefit analysis
uses the modeled per-instruction cache performance (step
3) to determine if a load can benefit from software
prefetching. Such loads are analyzed further.

Stride analysis: Stride samples (step 2) for each delin-
quent load (step 4) are analyzed to identify regular
stride patterns. If a dominant stride pattern is observed,
the identified delinquent load becomes a candidate for
prefetching.

Prefetching analysis: Appropriate prefetch distance is
computed and a prefetch instruction is scheduled for the
delinquent load.

2)

3)

4)

5)

6)

102

reuse = 8

CLA CLA

recurrence = 3

LDx

LDx LDy
Figure 2: Data Reuse and Stride sampling - Recurrence is
the number of memory references between successive execu-
tions of load LD,. Reuse distance is the number of memory
references between two accesses to sampled cache line (A).

III. DATA REUSE & STRIDE SAMPLING

Our method starts by sampling the application at random
execution points to record: 1) data reuse samples (repeated
access to same cache line), and 2) stride pattern of sampled
memory instructions. Figure 2 illustrates the sampling effect
at a sampled execution point. To keep the sampling overhead
small, the application is sampled very sparsely - with only 1
in every 100000 memory references sampled.

Data reuse samples are used as input to the StatStack fast
cache model [4] to model cache behavior for different cache
sizes. Data reuse sampling captures reuse distance samples
across the entire execution. Reuse distance is the number of
memory accesses (not necessarily to different cache lines)
between two consecutive accesses to the same cache line.
Low overhead data reuse sampling frameworks developed by
Sembrant et al.[19] show that data reuse samples can be
captured over the entire execution of an application with
an overhead of less than 20% over native execution. Their
technique can briefly be described as follows:

1) The next memory reference to sample is randomly se-
lected. Hardware counters are programmed to overflow
and halt the execution at that instruction.

A watchpoint is set for the data cache line accessed by
the instruction, after which the execution is resumed.

A trap occurs when the monitored cache line is accessed
again. Hardware counters are used to measure the num-
ber of intervening memory references between the two
accesses to the cache line (i.e. the reuse distance).

2)

3)

We extended the sampling framework to sample per-
instruction stride and recurrence information (Figure 2),
which is recorded by monitoring sampled instructions for re-
execution. When execution stops for sampling, a breakpoint is
set for the sampled instruction, and the execution is continued.
When the instruction is executed again, the breakpoint fires and
stops the execution. At this point the breakpoint is removed
and 1) a stride sample is recorded as the difference of current
and previously accessed data addresses, and 2) Recurrence
is recorded as the number of intervening memory references
between successive executions of the sampled instruction. The
execution is then continued. Figure 2 illustrates the collective
data reuse and stride sampling for a randomly selected load
in the instruction stream. This additional functionality of
monitoring strides can be added to the existing reuse samplers
keeping the overall overhead below 30%.

—— per-instruction —»— average

’\o\ 50 T T L1$ T T Lu2$ T T |LLC
= 40 | .
-(% ol M
c 20 -
8 10]
=

0 1 1 1 1 1 1 1 T
%% % Y% H LY

Cache Size

Figure 3: Miss Ratio Modeling - average miss ratio of mcf and
miss ratio of a frequently executed load - both modeled by
StatStack. The LI, L2 and LLC cache sizes for AMD Phenom
II are marked.

IV. FAST CACHE MODELING

StatStack is a fast cache model that estimates miss ratios
- The fraction of memory accesses that miss in the cache
of any size. StatStack uses the sampled reuse distribution as
input. Using a statistical approach it converts the reuse distance
distribution to an estimated stack distance! distribution. The
estimated stack distance distribution is then used to accurately
model the overall application and per-instruction miss ratios.
Figure 3 shows the average miss ratios for the entire run of mcf
benchmark and a single load instruction in the benchmark, both
modeled using StatStack?. Per-instruction miss ratio curves
(Figure 3) are used by our analysis to determine the (delin-
quent) loads that frequently miss in the cache and can benefit
from prefetching.

Since our method relies on statistical cache modeling
to identify delinquent loads, it is extremely important that
the model gives good coverage of memory instructions that
frequently miss in the cache. To evaluate the coverage of
StatStack (with 1 in 100,000 sampling rate), we compared it
to a Pin based [8] functional cache simulator. The simulator
provided a baseline miss ratio for every memory instruction.
The data cache was configured as 64 kB, 2-way associative
with cache line size of 64 B (AMD Phenom II configuration).
When comparing with simulation, StatStack identified 88% of
all misses on average across the SPEC CPU 2006 benchmarks.
We also evaluated the model against a 512kB L2 cache and
found 94% misses covered on average. We can safely say that
the most important delinquent loads are identified by the cache
model. StatStack is extremely fast compared to simulations,
and typically takes less than a minute to model average and
per-instruction miss ratios for several cache sizes.

V. DELINQUENT LOAD IDENTIFICATION

This section describes a method for identifying delinquent
loads that benefit from prefetching. The cache model provides
per-instruction miss ratios for the specified L1, L2 and LLC
sizes, as shown in Figure 3. We use the miss-ratios to quan-
titatively determine if inserting software prefetch for a load
will improve performance or not. For example, if a load hits

I'Stack distance is the number of unique cache lines accessed in-between a
cache line reuse

2Interested readers can read more about the modeling details in [4]

103

in the L1 cache 90% of the time and 10% of the time in
L2. A software prefetch for this instruction will be usefully
executed 1 in 10 times to remove the L1 misses. Assume
that it takes 1 cycle to execute a software prefetch instruction
and the latency to the L2 cache is 5 cycles. Then we will
end up executing 10 prefetch instructions costing us 10 cycles
and in return saving only 5 cycles (saving a single L1 miss).
Such software prefetching becomes an overhead and hurts
performance instead of improving it. We employ a cost-benefit
analysis that helps us avoid inserting software prefetches that
may hurt performance.

A cost-benefit analysis filters out delinquent loads that do
not benefit from software prefetching. Assuming that a prefetch
instruction costs « cycles, M R 4 (pg) is the miss ratio of load
A at the first level cache, and latency is the average latency
experienced by each L1 cache miss — the decision to insert a
prefetch for delinquent load A is defined by the relation

MEaps) > latency

Per-instruction miss ratios for all cache levels are provided
by the cache model, and average latency per cache miss can
be measured using performance counters. Using ineffective
prefetches we found that a prefetch instruction takes 1 cycle.
A load is considered favorable for prefetching only if it passes
this test. Otherwise, it is not considered for prefetching.

We call our method model driven delinquent load iden-
tification (MDDLI). The delinquent load identification pass
performs the cost-benefit analysis and selects only those delin-
quent loads for which software prefetching is expected to
benefit performance.

VI. PREFETCHING ANALYSIS

This section describes how prefetches are inserted for
delinquent loads identified in the MDDLI pass. Of all the
identified loads, only those with regular strides are considered
in the prefetching analysis. Our method uses per-instruction
stride samples to identify delinquent loads with regular strides.
The stride analysis groups all strides of similar size that are
likely to fall in the same cache line. After grouping similar
strides, the analysis categorizes a load as having a regular
stride if more than 70% of its stride samples fall in one stride-
group. The analysis then selects the most frequent stride in the
dominant stride-group to compute a suitable prefetch distance.

A. Prefetch Distance

To effectively hide memory latency, prefetches should be
issued a suitable number of iterations earlier than the demand
load. The prefetch distance (P) in bytes (number of bytes to
prefetch ahead) can be computed with the selected stride as
P = [é] x stride [12], where [is the average memory latency?
and d 1s the number of cycles it takes to execute one iteration
of the loop. We approximate d using recurrence (r) and the
average cycles per memory-operation (A), as d = (r - A).
We can measure A for each benchmark using performance
counters or simply use a constant, such as the average cycles

3 Average memory latency is required by the cost-benefit analysis (Sec-
tion V) and is known at this point in analysis

per memory operation across all benchmarks. For our analysis
we measured the average cycles per memory operation for each
benchmark.

When the stride is smaller than the cache line size (C), the
cache line is reused by the factor i = = on average. So we
shorten the prefetch distance proportionally. In this case the
prefetch distance is computed as:

-‘ x C

|

For total number of references R in a loop, the first P will
be misses. To avoid too many misses, our prefetch distance
analysis ensures the relation P < [£].

latency
d-i

B. Cache Bypassing

Modern processors support a special data prefetching
mechanism called non-temporal prefetch. The non-temporal
prefetch instruction (PREFETCHNTA) can be used to prefetch
data into the L1 cache without polluting the higher level
caches. When this cache line is evicted, it goes directly to
the DRAM instead of working its way up the cache hierarchy.
This instruction is extremely useful when data is known to
not be reused temporally from higher level caches, as it helps
retain other (possibly) useful data in the higher level caches
longer.

To improve our prefetching algorithm with cache-
bypassing, we included an analysis (originally proposed by
Sandberg et al. [17]) to discover opportunities of cache by-
passing. After a load is identified as prefetchable, the analysis
identifies the loads that access the same cache line directly
after, called the data-reusing loads. Data reuse samples reveal
the data flow between the sampled loads. The analysis then
uses per-instruction miss ratio curve (Figure 3) of the data-
reusing loads in the graph to determine if they reuse data
from higher level caches. If a load does not reuse data from
the L2 and LLC cache, the miss ratio curve will not drop
between the points L1$ and LLC (Figure 3). If none of the
data-reusing loads reuse data from higher level caches, the
prefetchable load can be safely marked as a non-temporal
memory access, and we use the PREFETCHNTA instead of
an ordinary prefetch instruction. This cache bypassing method
is most beneficial when several applications execute in parallel
on different cores and share LLC and off-chip bandwidth. It
avoids polluting the LLC and lowers off-chip bandwidth use
as temporally useful data is retained longer in higher level
caches and reused from there. This relief in shared resource
demand results in multicore throughput performance benefits.
We evaluate software prefetching with and without cache
bypassing, for performance in Section VIIL.

C. Prefetch Insertion

The prefetching analysis pass identifies the load instruc-
tions where a software prefetch should be inserted, the type
of prefetch (normal or non-temporal) and the ideal prefetch
distance. x86 architectures support the base+offset addressing
mode and inserting a single prefetch instruction of the format
“prefetch offset(base)” suffices. For a load at address A using
base register base to access memory, the prefetch is inserted
right after it in the source as follows

104

MDDLI filtered | Stride-centric |

Benchmark l

| Miss Cov. [OH | Miss Cov. [OH |
gee 65.7% 6.1 63.1% 6.8
libquantum 99.9% 4.9 99.9% 4.9
Ibm 98.5% 2.1 98.5% 23
mcf 36.4% 1.5 31.2% 2.0
omnetpp 9.0% 5.4 4.1% 13.5
soplex 53.2% 5.1 24.9% 8.4
astar 26.0% 9.6 19.8% 6.9
xalan 3.0% | 73.2 1.7% | 125.4
leslie3d 93.9% 10.1 97.5% 12.1
GemsFDTD 84.1% 7.7 85.6% 10.1
milc 95.9% 7.2 52.8% 13.0
cigar 28.2% 34 28.2% 34
Average 58% 11.3 51.1% 17.4

Table I: Prefetch Coverage & Minimization - Our approach
executes 35% lesser prefetch instructions than stride-centric

A: load (base), dst
prefetch[nta] prefetch-distance(base)

The offset here is the computed prefetch distance. The base
register is taken directly from the target load. Such optimiza-
tions can be applied directly at the binary level via dynamic
binary rewriting. Our method is aimed towards compiler and
source independence, such that optimizations may be applied
even when the source is not available. For simplicity, our
framework automatically inserts the optimizations at the as-
sembler level.

D. Prefetch Coverage

In this section we evaluate the how effectively cache misses
are covered by our method. Prior works such as [10] and
[21] investigated stride profiling to insert software prefetches
(Section VIII). These approaches used simple heuristics to
determine prefetch insertion. To compare with them, we im-
plemented a profile-guided prefetching method using Pin that
inserts prefetches for all loads with regular strides, similar to
the methods described. We call this method stride-centric and
evaluate it alongside ours. From SPEC CPU 2006 we found
11 benchmarks with non-negligible off-chip traffic to evaluate
multicore performance during shared resource contention. Here
we also study the open source genetic algorithm cigar [6]. We
applied both our MDDLI filtered stride analysis as well as
the stride-centric method to these benchmarks. Table I shows
the coverage of both these methods for the 12 benchmarks
when compared to functional simulation (Section IV). The
average L1 miss coverage across all benchmarks is 58%. Miss
coverage is lowest for omnetpp and xalan. For omnetpp, the
delinquent loads identified by MDDLI cover 89% misses.
However, there is very little opportunity for stride prefetching
(due to irregular pointer chasing), resulting in only 9% miss
coverage after applying our stride prefetching algorithm. xalan
suffers from lower miss coverage from MDDLI (63%), as
well as limited opportunity for stride prefetching. The column
titled OH (overhead) shows the number of prefetch instructions
executed per one miss removed. Compared to our method,
the stride-centric method executes 36% more prefetches on
average. Our method’s cost-benefit analysis minimizes the
prefetch instructions inserted. We evaluate the performance
of stride-centric method in the next section alongside our
software prefetching method.

VII. EVALUATION

In this section we evaluate the performance of the two soft-
ware prefetching techniques, with and without cache bypass-
ing, on two high performance x86 multicore processors listed
in Table II. We optimized for both target architectures using
a single input profile. Here we also compare the performance
of the hardware prefetcher on both processors when running
the original benchmarks.

[CPU [L1 [L2§ [LLC [Freq. |
[AMD Phenom IT | 64kB [512kB | 6MB [2.8GHz |
[Tntel i7-2600K | 32kB | 256kB | 8MB | 34GHz |

Table II: Processor details

The 12 benchmarks evaluated for performance are listed
in Table I. As discussed earlier, our framework works at
the assembler level and is not dependent on any particular
compiler. For our experiments we used GCC 4.7 and compiled
the original benchmarks with O2 optimization. The assembler
output for the same programs was used by our framework
to automatically schedule prefetch instructions. For all our
evaluations the baseline is the performance of the original
benchmarks, with hardware prefetching turned off. This ar-
rangement is important to isolate the speedup and off-chip
traffic performance of our method.

A. Speedup

Figure 4 compares the speedup from our prefetching
methods (with cache bypassing “Soft. Pref.+NT” and without
cache bypassing "Software Pref.”), stride-centric method, and
from hardware prefetching, when the benchmarks are run in
isolation. Significant speedups are observed for our software
prefetching method on both processors for several benchmarks
such as libquantum (up to 62%), Ibm (up to 41%), mcf (up to
28%), cigar (up to 13%), leslie3d (up to 42%) and GemsFDTD
(up to 40%). Cache bypassing ("Soft.Pref.+NT”) further im-
proves performance considerably for gcc, libquantum, lbm,
soplex and leslie3d on AMD Phenom II with the addition of
GemsFDTD on the Intel processor. Our prefetching strategy
outperforms hardware prefetching on AMD for libquantum,
lbm, mcf, astar and cigar and on Intel for mcf and cigar.
Hardware prefetching on AMD slows down cigar by more
than 11% as it’s short lasting strided accesses trick the stride
prefetcher in to prefetching useless data, which removes use-
ful data from the cache and hurts performance. Hardware
prefetching on Intel benefits cigar performance because of
prefetching adjacent cache lines on a miss. Compared to
hardware prefetching, our method posts smallest relative im-
provement for soplex on both processors (its miss coverage is
only 53% - Table I). While experimenting with our prefetching
methods, we observed that prefetches from L2 alone improved
libquantum by 4%, Ibm by 3% and soplex by 1.3% on AMD.
Stride-centric performs worse than our software prefetching on
both processors, while fetching considerably more data from
the DRAM on several benchmarks (Figure 5).

Overall, our software prefetching (with cache bypassing)
comes out ahead of plain software prefetching (without cache
bypassing) and far ahead of the stride-centric prefetching.
On average, it performs considerably better than hardware

105

prefetching on AMD. On Intel it performs within 5% of
hardware prefetching with significantly lesser off-chip traffic
(Section VII-B).

mmmm Soft. Pref.+NT
=2 Stride-centric

mm Hardware Pref.
Software Pref.

60%
50% !
o 40% f -
2 30% g | g i i
3 20% g i ﬂ l 1 [I
S 10% -] I—h j g 7
@ 0% | Bl M e] o mh) 7 ¢
-10%
-20% P \/ P PR T . \/ . .
O % 6 2 S R, % T, G By 2, 9,
@ 69$ o /)’/; i +&§, . %, Dy Tas € "o
%, O8O %
(a) AMD Phenom II o
mmmm Hardware Pref. mmmmm Soft. Pref +NT
Software Pref. o Stride-centric
60%
50%
o 40% i H
3 30% 0 ClG T
S | | - i
@ 0°/: Be, =i | ba o o, il ‘[Al]
-10%
-20% T S N I L I

‘ ‘
O@G’s

90 469 % 0. /;; s, %, %,
,) o)d‘ @0 ’9\9
%, O)b 4 ©

(b) Intel Sandybridge

Figure 4: Speedup of selected benchmarks with different
prefetching policies

B. Off-chip Traffic

Figure 5 compares the increase in volume of data fetched
(compared to baseline) from the DRAM during the entire exe-
cution of the benchmarks*. An increase in off-chip traffic indi-
cates waste of shared LLC space and off-chip bandwidth. This
is critical for the performance of threads that co-execute on
neighboring cores and share these resources. Our prefetching
strategy proves to be strictly better than hardware prefetching
on both AMD and Intel. Hardware prefetching is noticeably
more aggressive and fetches considerably more data than
our proposed software prefetching method. Intel’s hardware
prefetcher performs especially bad on cigar increasing the off-
chip traffic by 630% compared to the baseline. Cache bypass-
ing significantly reduces the off-chip traffic over the baseline
on both processors (up to 22%) for libquantum, Ibm, and
leslie3d. This is because useful data is retained and reused from
higher level caches for a longer period instead of being evicted
and re-fetched from the DRAM. On average, our prefetching
method (with cache bypassing) lowers off-chip traffic by 44%
on AMD and 64% on Intel compared to hardware prefetching,
while maintaining comparable performance. Reduced off-chip
traffic lowers off-chip bandwidth demand and reduces LLC
pollution. This benefits throughput performance when several
cores become active (Section VII-C).

4Measuremer1ts were made USil’lg performance counters

mmmmm Soft Pref.+NT
=] Stride-centric

mmm Hardware Pref.
Software Pref.

mmmmm Soft Pref.+NT
=2 Stride-centric

mmmm Hardware Pref.
Software Pref.

g 120% ~Ao1%., g 120% —483%, 6289%122%
§ 100% § 100%
S 80% 2 80%
s 60% © 60%
5 40% i 11 . 1 T 40%
o 20% B - g o 20% ﬂ A
e Z [e Lok i . Lo g 2 W
> 209 T £ T r Iy
£ 20% i 5 -20% ‘ —
% % b % . . U 1o, X B, Py <, D % By 2 O S R, O ty, O By, P, %,
0. 2 o 0 Yy U, G, %y O Y B, o Y, > o T, 2%, o o %o, O Y % A
(2) AMD Phenom 1T~ © (b) Intel Sandybridge
Figure 5: Increase in Data Volume fetched from the DRAM over the lifetime of benchmarks
1 Baseline mmmmm Soft. Pref.+NT 1 Baseline mmmmm Soft. Pref.+NT
= Hardware Pref. == Stride-centric E=== Hardware Pref. === Stride-centric
’UT —
2 45 : 2 10
[a0]
c 4 I g 9
= 35 = 8
S 3 = (73 f
s 25 =
© > % 5 !
= S 2 el n
m 15 8| g 3 11 Il
2 1 . 1 a 2 n i 4
£ os Ll N] £ TEL]
2 ; g9 il ol il .
o % %, b % %, 2, O . < o 4 4 ; %. 5,
@ 6%@ » % e, 2%, o G By, &’/é;% o % %, % % %, 090/5,%@;}%,4'%,)%@ @%% %,
2, Dy T N % % £ RN %
% ¢ %

(a) AMD Phenom II

(b) Intel Sandybridge

Figure 6: Average Memory Bandwidth (Gigabytes per second) for benchmarks

Figure 6 shows the average off-chip bandwidth consumed
by the benchmarks. Our software prefetching consumes sig-
nificantly less bandwidth on both platforms, with the ex-
ception of libquantum on AMD Phenom II (where it also
significantly outperforms hardware prefetcher’s performance).
On average, our prefetching approach (with cache bypassing)
lowers bandwidth consumption by 19% on AMD and 38% on
Intel, compared to hardware prefetching. The reduction in the
off-chip bandwidth consumption is proportional to the reduced
off-chip traffic. We don’t report bandwidth usage for our
simple software prefetching (without cache-bypassing) since
it is similar to the one with cache bypassing.

C. Mixed Workloads

Hardware prefetching significantly increases off-chip traf-
fic, thereby frequently polluting the shared last level cache, and
consuming more off-chip bandwidth. This directly impacts the
performance of threads co-executing on neighboring cores. To
assess the impact of our method’s resource conservation in
multicores, we ran 180 randomly generated workload mixes
on both processors. Each mix contains four randomly selected
workloads that are run in parallel on four cores>. We compare
the impact on throughput performance (weighted speedup)
and shared-resource pollution (increased off-chip traffic) when

using our software prefetching method and hardware prefetch-
ing alone in Figure 7. The baseline is the original mix with
hardware prefetching turned off. The graphs (Figure 7) show
the distribution function of throughput performance and off-
chip traffic increase across the 180 mixes®. For example, Fig-
ure 7a shows that in 60% of the mixes, our method improves
throughput by at least 14%, whereas hardware prefetching
improves throughput by 5% or more. Similarly, Figure 7c
shows that 60% of the time our method increases off-chip
traffic by at most 20%, while hardware prefetching increases
by up to 28%.

On Intel our software prefetching method performs about
5% better than hardware prefetching on average. Hardware
prefetching slows down 9% of the mixes over the baseline.
Our prefetching mechanism gets minimum speedup of 5%
and achieves higher throughput than hardware prefetching in
143 (79%) of the 180 mixes. Software prefetching performs
strictly better in terms of off-chip traffic increase in all cases
(Figure 7d). 73% of the mixes have lower off-chip traffic than
the baseline due to effective cache bypassing. On average,
off-chip traffic is reduced by 3% over the baseline and 28%
over hardware prefetching. The significant increase in off-chip
traffic for hardware prefetching reveals the high likelihood of
cache pollution when running low on shared LLC space.

Sbenchmarks that run longer than others, experience lesser shared resource
contention

106

SThe graphs are sorted for both, the hardware prefetching and our prefetch-
ing approach.

— Soft Pref.+NT —— Hardware Pref.
30% T T T T T T T T T
25% \\
o 20%
p=}
S 15% ™\
O 5%
0% TT—
_50/0 L L L 1 1 1 1 1 |\
% oy S0 Oy 00 Wy s 0 Vo Dy 7,
o C Cl G C C o C C f
Runs
(a) Speedup on AMD (higher is better)
° — Soft Pref.+NT — Hardware Pref.
% 100°/° T T T T T T T T T
L 80%
[&]
£ 60%
Q
=§ 40% ///
5 20% — i
-5 0% =
S _200/° 1 1 1 1 1 1 1 1 1
% Y00 0y s 00 Vs Wy 0 Vo V. 0,
Runs °

(c) Off-chip Traffic Increase on AMD (lower is better)

— Soft Pref.+NT —— Hardware Pref.
30% T T T T T T T T T
25%
o 20%
§ 15% —
——}
0% \
_50/0 L L L L 1 1 1 1 1
% Yoy 0 Oy 00 Wy s 0 Vo Dy 7,
G C Cl G C C Gl C C f
Runs
(b) Speedup on Intel (higher is better)
° — Soft Pref.+NT —— Hardware Pref.
g 100% T T T T T T T T T
L 80%
[S]
£ 60%
Q
3@ 40% /
“5_ 20% / I
s 0% —
6‘ _200/0 Z 1 1 1 1 1 1 1 1 1
% 00 0y s 00 Vo Vo 0 Ve Dy 7,
Runs °

(d) Off-chip Traffic Increase on Intel (lower is better)

Figure 7: Distribution function of performance across 180 mixed workloads on AMD and Intel processors (averages on right)

Figure 8 explores a single workload mix in detail. It shows
the speedup of the individual benchmarks (over their baselines)
in the mix on Intel. The mix contains the benchmarks cigar,
gee, Ibm and libquantum. Figure 4b shows that in single
threaded runs, all four benchmarks perform better with hard-
ware prefetching compared to our prefetching method. How-
ever, they also consume significantly more off-chip bandwidth
with hardware prefetching. Based on their single-threaded off-
chip bandwidth requirements with hardware prefetching (Fig-
ure 6b), the mix would require a maximum bandwidth of 25.3
GB/s. However, due to aggressive hardware prefetcher requests
the mix only achieves a maximum off-chip bandwidth of 13.6
GB/s (Figure 8), saturating bandwidth resources much earlier
and slowing down the mix. Our software prefetching method
on the other hand ideally requires (12.8 GB/s) and consumes
significantly lesser off-chip bandwidth (10 GB/s), which results
in 20% higher throughput than hardware prefetching.

On AMD Phenom II our software prefetch approach
achieves higher throughput than hardware prefetcher’s best
performance in 41% of the cases. Our software prefetching
method performs strictly better than hardware prefetching for
all 180 cases, increasing throughput by 16% on average.
We observe a maximum throughput improvement of 24%
over hardware prefetching. Hardware prefetching improves
throughput by only 6% on average, and degrades performance
for 9% of the mixes over the baseline. Whereas our software
prefetching method never hurts performance and improves
throughput by at least 5%. Compared to hardware prefetching,
this approach reduces off-chip traffic by up to 25%, and 10%
on average (Figure 7c).

We conclude that hardware prefetching can be too ag-
gressive when off-chip bandwidth is limited, and it does not

107

benefit overall performance as much as a resource efficient
prefetching method can. Our method’s increased throughput
as a result of shared-resource conservation (reduced off-chip
traffic) highlights the importance of accurate use of shared
resources.

mmmmm Soft Pref.+NT mm Hardware Pref.

40%

30%
20% 10.1.GB/s
a 10%
3 0%
S -10%
& 20w 13.6 GB/s
-30%
-40%
-50% . ; \/ \/ .
%Q % % K5 %,
r 90 ?9
Q/)Q/ %)

Figure 8: Speedup of the workload mix where software
prefetching has the largest benefit over hardware prefetching in
Intel. The maximum off-chip bandwidth for the mix is written
next to the averages.

D. Varying Inputs

To determine the sensitivity of our prefetching method to
varying input sets, we ran the mixed workloads with input
sets other than those used during sampling. Benchmarks with
several alternate input sets (for example gcc) were run with a
randomly selected input for each mix. We varied the inputs
across all mixes. Figure 9 shows the speedup for the 180
workload mixes over the baseline for both our prefetching
method and hardware prefetching. Our approach performs 6%

— Soft Pref.+NT — Hardware Pref.

40% T T T T T T T T T
30%
2 20% [
3 \\
o 10%
S 09, T L
n N
-10%
_200/0 1 1 1 1 1 1 1 1 1
% 0y 0 Vo D0 Vo Do O Do Vo %,
C C o C C Cl G C Cl f
Runs

(a) AMD Phenom II

— Soft Pref.+NT

— Hardware Pref.
40%
30%

S 20%

10%
0%

-10%

-20% 1 Il

% ‘0, <O
<

0
C
e

~

1

Vs
(27

(2
I3

Speed

YO}

1 1 1 1 1 1
5 Do Do Vo Vo Do
G Cl Gl Cl

0
I3

o\©

Gl
Runs
(b) Intel Sandybridge

Figure 9: Distribution function of Speedup across 180 Mixed workloads using different inputs (higher is better)

mmmmm Soft Pref.+NT mmm Hardware Pref.

1.25
1.2
ERRRE
(9]
S 1.1 1
D)
1.05 |- 1
1 %4
R/ L/ 2 <
% I’b,/, /é/\Q I’*o;.
%, 2 % A

Figure 10: Fair-Speedup (normalized to baseline) - average for
180 Mixed workloads on AMD and Intel. Averages for the runs
using the original and different inputs is shown.

better on average than hardware prefetching on AMD Phenom
II (Figure 9a) while fetching 12% less data. The average
speedup over hardware prefetching is 4% on Intel (Figure 9b)
with 75% lower off-chip traffic. 95% of the mixes speed up by
at least 10% over the baseline. We observe that our method’s
performance is more stable (irrespective of input) compared to
hardware prefetching. Our method mostly improves throughput
between 10% to 30%, whereas hardware prefetcher’s perfor-
mance varies significantly and degrades throughput for 10% of
the mixes. We conclude that our resource-efficient method is
stable across different inputs and as a result of shared resource
conservation it significantly outperforms hardware prefetching.

We report additional mixed workload performance metrics
(similar to those used in [20]) to further elaborate our prefetch-
ing method’s efficiency

o Fair-Speedup (FS) - It balances both fairness and speedup
and is computed as the Harmonic mean of the per-
application speedup in the mixes:

4

FS:N/Z

Figure 10 shows the average FS across the 180 mixes.
The performance benefit reported by FS for our software
prefetching is similar to weighted speedup (shown in
Figure 7 and Figure 9). Our resource efficient prefetching
performs significantly better than hardware prefetching.

Ezec—szeappi (prefetching)

Exec-Timegpp, (base)

108

mmmmm Soft Pref.+NT mmm Hardware Pref.

5%
0%
5% |
-10% |
-15%
-20%
-25% . .

P
O,é/‘
L

o,
o 7

‘O«
K %

S ;

©
Figure 11: QoS degradation - average for 180 Mixed workloads
on AMD and Intel. Closer to zero indicates lesser cumulative
slowdown in the mixes. Averages for the runs using the original
and different inputs is shown.

o Quality of Service (QoS) - Cumulative application slow-
down per workload mix, computed as
_ 1>

Figure 11 shows how QoS is negatively impacted on
average across the 180 mixes. Ideally it should be zero
implying that no application in any mix ever slowed
down. Our software prefetching method ensures signif-
icantly less QoS degradation than hardware prefetching.
It is interesting to see that the impact on QoS for our
software prefetching method lowers (i.e. QoS improves)
when going from the original to different inputs. This is
because prefetching in general causes an imbalance in
resource sharing (compared to the baseline) as a result
of which some applications in the mix may slowdown
(Figure 8) resulting in the reported QoS degradation.
When the input set is changed, the software prefetching
is not optimal, resulting in smaller performance benefits
compared to original inputs (Figure 10). However, on
a positive note the non-optimal prefetching also causes
lesser imbalance in resource sharing between the appli-
cations, which results in smaller QoS degradation.

Exec-Timegpp, (base)

4
S = in |0
Qo ; e < " Ezec-Time

app; (prefetching)

mmmmm Soft Pref+NT mmm Hardware Pref.

8

7

6

o5 14 GB/s

3 5.6 GB/s

@ 4

23

2

1

0
124 124 124 124 124
8 [% % @
K /)%0 ° ©

Figure 12: Speedup of four parallel workloads for 1, 2 and
4 threads on Intel. swim and cg have the highest off-chip
bandwidth (shown) in the SpecOMP and NAS suites. swim
uses only half of the total available bandwidth.

E. Multi-threaded Workloads

We also investigated performance across the NAS and
Spec OpenMP parallel benchmarks. Most of the benchmarks
are computationally bound and do not saturate the off-chip
bandwidth, therefore the hardware prefetcher does a perfect
job at prefetching the required data. For the Intel processor,
streams benchmark reported maximum off-chip bandwidth of
15.6 GB/s, which was not fully achieved by any parallel
benchmark even with 4 threads. Due to this our software
prefetching approach mostly has performance comparable to
the hardware prefetcher. Figure 12 compares the performance
of four parallel benchmarks, two with the highest off-chip
bandwidth (marked *) and two ordinary cases. Our prefetching
approach shows performance benefit over hardware prefetch-
ing when demand for offchip-bandwidth is higher, and has
comparable performance in the ordinary cases, and on average
across all NAS and Spec OpenMP benchmarks. We observed
similar performance behavior on AMD. Since shared resources
are more readily contended when running mixed workloads,
resource-efficient prefetching is less interesting for streaming
parallel workloads.

VIII. RELATED WORK

This paper makes contributions to the areas of i) low-
overhead delinquent load identification, and ii) Software
prefetching. We describe the relevant related work for both
parts separately.

A. Delinquent Load Identification

Nearly all software prefetching techniques use some kind
of delinquent load identification method to guide software
prefetch insertion. Barnes et al. [14] and Rabbah et al. [15]
used cache simulations to identify delinquent loads. Simu-
lations are prohibitively slow, so we proposed the use of
low-overhead cache modeling to identify delinquent loads.
Panit et al. [13] combined analytical models with profiling
to improve the accuracy of delinquent load identification,
avoiding simulation. The overhead for profiling even with
training data can be several times slower than native execution.

Zhao et al. [23] proposed an online prefetching method
that uses mini-simulations of short memory address traces

109

to identify delinquent loads responsible for up to 69% of
misses (in a 512kB L2 cache) on average. Our method reports
94% miss coverage for the same sized cache. They report
an online overhead of 14%. This technique requires separate
thread contexts and spare shared resources for enabling online
simulations. Such a method is not optimal for increasing
throughput of highly utilized processors.

Some frameworks such as [1], [7], [9] use extensive
performance counters and architectural registers support in
Intel Itanium processors to sample long latency memory access
events to identify delinquent loads. Although most of the used
events are available in PEBS on all modern Intel processors,
such frameworks are generally not portable to other platforms.
Other approaches such as [2], [3], [22] propose hardware
extensions to quickly identify delinquent loads for guiding
software prefetching. Our method does not require any special
hardware features and works on real hardware.

B. Software Prefetching

Existing work on software prefetching can be categorized
into i) Static analysis based, ii) Profile Guided, and iii) Online
Profile Guided. We describe the relevant related work for them
separately.

1) Static Compile Time Analysis: Moore et al. [12] and
Santhanam et al. [18] discuss the implementation of compiler
based software prefetching algorithms and show their effec-
tiveness for scientific workloads. Implementation of similar
software prefetching algorithms are available in production
compilers such as GCC and Open64. However, software
prefetching guided by static compiler analysis is shown to
degrade single-thread performance [11]. Lee et al. [5] observed
negligible speedups with GCC profile guided optimization
(PGO), the improvements mainly attributed to optimizations
other than software prefetching. They also observed that In-
tel’s icc compiler (with PGO) does not insert any software
prefetches. We observed the same with the icc 12.4 compiler.
The scope of static analysis based prefetching is limited by that
the stride needs to be known at compile time, limiting other
prefetching opportunities, such as pointer chasing in regular
data structures.

2) Profile Guided: Wu et al. [21] complemented edge-
profiling with a stride profiling method to discover loads with
frequently recurring strides. The stride profiles are used to
guide software prefetch insertion into the source code. Luk
et al. [10] developed a profiling method to identify loads
exhibiting regular strides during execution. However, both
these approaches use simple heuristics to identify what loads to
prefetch for. We have compared a stride-centric approach with
our proposal. Our method schedules lesser prefetch instructions
and clearly performs better. Moreover, the profiling overhead
for both these approaches is very high compared to our
method. Luk et al. [10] reports average overheads between
Tx-15x.

Lee et al. [5] studied the combined affect of software
prefetching and hardware prefetching on performance. Our
experiments combining hardware and software prefetching
confirmed their observation that combining the two can hurt
performance in several cases and should be avoided.

3) Online Profile Guided: Dynamic optimization frame-
works such as [1], [7] use extensive (Itanium-specific) archi-
tectural register support for sampling relevant memory events
and performance counters to detect delinquent loads to prefetch
data for them. Beyler et al. [1] monitor stride behavior of
regularly occurring loads at runtime using a separate thread
context. Once the monitoring thread notices a regular stride,
it inserts software prefetch for that load on the fly. However,
this approach degrades performance for several benchmarks
when the prefetching can not amortize the cost of the runtime
system’s overhead. Such techniques are also not portable
to other platforms. In contrast, our architecture-independent
approach can target several cache configurations for different
processors in a single analysis pass and does not require spare
resources for separate thread contexts.

To the best of our knowledge, this is the first work
to demonstrate the advantage of using a shared resource-
conserving software prefetching method over aggressive hard-
ware prefetching in commodity multicores.

IX. CONCLUSIONS

This work investigates how a resource-efficient prefetching
method can help improve throughput performance in multi-
cores when shared resources are constrained. We proposed an
efficient method that 1) accurately prefetches the required data,
2) avoids (useless) speculative prefetching, and 3) employs
cache bypassing to retain useful data in the higher level
caches. In contrast to hardware prefetchers (in commodity
multicores), this resource-efficient prefetching method is de-
signed to maintain minimal off-chip traffic, and as a result
avoids LLC pollution and lowers off-chip bandwidth demand.
This helps throughput performance in multicores when several
applications co-execute and share resources. We thoroughly
demonstrated this benefit on two modern multicores with 180
mixed workloads that fully utilized the processors. Our results
showed that both multicores mostly achieved higher through-
put (and lesser off-chip bandwidth) when using resource-
efficient prefetching compared to hardware prefetching. Com-
pared to state-of-the-art hardware prefetching on two proces-
sors, our resource efficient prefetching method performed 10%
and 5% better on average. Our work highlights the importance
of shared-resource friendly prefetching for optimizing perfor-
mance in multicores.

REFERENCES

J. C. Beyler and P. Clauss. Performance Driven Data Cache Prefetching
in a Dynamic Software Optimization System. In ICS, 2007.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen. Speculative Precomputation: Long-range Prefetching of
Delinquent Loads. In ISCA, 2001.

R. Cooksey, S. Jourdan, and D. Grunwald. A Stateless, Content-
Directed Data Prefetching Mechanism. In ASPLOS, 2002.

D. Eklov and E. Hagersten. StatStack: Efficient Modeling of LRU
caches. In ISPASS, 2010.

J. Lee, H. Kim, and R. Vuduc. When Prefetching Works, When It
Doesn’t, and Why. ACM TACO, 9(1), Mar. 2012.

[6] S. J. Louis. CIGAR - Case Injected Genetic Algortihm.
http://www.cse.unr.edu/ sushil/class/gas/code/cigar/.

J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-
Y. Chen. The Performance of Runtime Data Cache Prefetching in a
Dynamic Optimization System. In MICRO, 2003.

(2]

(3]

110

(81

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In PLDI, 2005.
C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney. Ispike: A
Post-link Optimizer for the Intel Itanium Architecture. In CGO, 2004.
C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G. Lowney, and R. Cohn.
Profile-Guided Post-Link Stride Prefetching. In ICS, 2002.

J. Mars and R. Hundt. Scenario Based Optimization: A Framework for
Statically Enabling Online Optimizations. In CGO, pages 169-179,
2009.

T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In ASPLOS, 1992.

V.-M. Panait, A. Sasturkar, and W.-F. Wong. Static Identification of
Delinquent Loads. In CGO, 2004.

R. C. R. Barnes and D. Gillies. Feedback-Directed Data Cache
Optimizations for the x86. In Proc. ACM Workshop on Feedback-
Directed Optimizations, 1999.

R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-F. Wong.
Compiler Orchestrated Prefetching via Speculation and Predication. In
ASPLOS, 2004.

B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin.
Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
Scaling. In ISCA, 2009.

A. Sandberg, D. Eklov, and E. Hagersten. Reducing Cache Pollution
Through Detection and Elimination of Non-Temporal Memory Ac-
cesses. In SC, 2010.

V. Santhanam, E. H. Gornish, and W.-C. Hsu. Data Prefetching on the
HP PA-8000. In ISCA, 1997.

A. Sembrant, D. Black-Schaffer, and E. Hagersten.
Profiling for Fast Cache Modeling. In CGO, 2012.
S. Srikantaiah, R. Das, A. K. Mishra, C. R. Das, and M. Kandemir. A
case for integrated processor-cache partitioning in chip multiprocessors.
In SC, 2009.

Y. Wu. Efficient Discovery of Regular Stride Patterns in Irregular
Programs and Its Use in Compiler Prefetching. In PLDI, 2002.

W. Zhang, B. Calder, and D. M. Tullsen. A Self-Repairing Prefetcher
in an Event-Driven Dynamic Optimization Framework. In CGO, 2006.
Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong.
Ubiquitous Memory Introspection. In CGO, 2007.

Phase Guided

