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Outline

Aim: Introduce constrained Gaussian process regression and

demonstrate it on a few examples.

1. GP basics

2. Linear constraints

3. Strain field reconstruction

4. Nonlinear constraints
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GP basics

Distribution over functions

 f (x1)
...

f (xN)

 ∼ N

µ(x1)

...

µ(xN)

 ,
k(x1,x1) · · · k(x1,xN)

...
...

k(xN ,x1) · · · k(xN ,xN)


︸ ︷︷ ︸



Uniquely specified by mean and covariance function

µ(xi ) = E [f (xi )]

k(xi ,xj) = Cov [f (xi ), f (xj)]

Formally

f (x) ∼ GP (µ(x), k(x,x′))
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GP basics – prediction

Let

yi = f (xi ) + ε, ε ∼ N
(
0, σ2

)
y = [y1, y2 . . . , yN ]T

Then [
y

f (x∗)

]
∼ N

([
0

0

]
,

[
K + σ2I k

kT k(x∗,x∗)

])
Kij = k(xi ,xj)

ki = k(xi ,x∗)

and

E [f (x∗)|y] = kT(K + σ2I )−1y

V [f (x∗)|y] = k(x∗,x∗)− kT(K + σ2I )−1k
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GP basics – linear operator measurements

Linear operator measurements

y = Lxf (x) + ε

Then

E [f (x∗)|y] = qT(Q + σ2I )−1y

V [f (x∗)|y] = k(x∗,x∗)− qT(Q + σ2I )−1q

where

Qi j = LxiLxjk(xi ,xj)

qi = Lxi k(xi ,x∗)

Example:

yi =

∫ bi

ai

f (x)dx ⇒


Qi j =

∫ bi
ai

∫ bj
aj
k(x , x ′) dx ′ dx

qi =
∫ bi
ai
k(x , x∗) dx
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GP basics – linear operator measurements
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Multivariate GP – constraint incorporation

Toy Example

Consider a Gaussian process

f(x) ∼ GP (µ(x), K(x,x′))

with two-dimensional input and two-dimensional output

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]

Assume that we know from the physics that the all samples from the GP

prior should obey the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]
︸ ︷︷ ︸

Fx

f(x) = 0

How can we model the covariance function K(x,x′) such that this

constraint is guaranteed to be obeyed?
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Multivariate GP – constraint incorporation

Assume linear constraints

Fxf(x) = 0

Let f(x) = Gxg(x), where g(x) ∼ GP (µg(x), Kg(x,x′))

f(x) = Gxg(x) ∼ GP
(
Gx µg(x), GxKg(x,x′)GT

x′

)
Then

FxGxg(x) = 0

Arbitrary g(x)

⇒FxGx = 0

Find Gx

Carl Jidling, Niklas Wahlstöm, Adrian Wills, Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural

Information Processing Systems (NIPS),Long Beach, CA, USA, December, 2017.
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Multivariate GP – constraint incorporation

Toy Example (cont.)

We consider the function

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]
and the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]
︸ ︷︷ ︸

Fx

f(x) = 0

Need Gx such that FxGx = 0. One option is

Gx =

− ∂
∂y

∂
∂x


since

FxGx =
[

∂
∂x

∂
∂y

]− ∂
∂y

∂
∂x

 = − ∂2

∂x∂y
+

∂2

∂y∂x
= 0.
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Algorithm idea – toy example

Step 1: Assume that Gx contains the same operators as Fx

Gx =

[
γ11 γ12
γ21 γ22

] ∂
∂x

∂
∂y


Step 2: Expand

FxGx =
[

∂
∂x

∂
∂y

] [γ11 γ12
γ21 γ22

] ∂
∂x

∂
∂y


= γ11

∂2

∂x2
+ (γ12 + γ21)

∂2

∂x∂y
+ γ22

∂2

∂y2
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Algorithm idea – toy example

Step 3: We need 
γ11 = 0

γ12 = −γ21
γ22 = 0

Step 4: Choosing γ21 = 1, we get

Gx =

[
0 −1

1 0

] ∂
∂x

∂
∂y

 =

− ∂
∂y

∂
∂x


No solution? Retry with higher order operators!

Even more formal treatment based on polynomial rings and Gröbner basis

theory is published in

Markus Lange-Hegermann. Algorithmic Linearly Constrained Gaussian Processes, Advances in Neural Information Processing

Systems (NeurIPS), Montreal, 2018.
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Simulation experiment - toy example

If we choose kg(x,x′) = σ2
f e
− ‖x−x′‖2

2l2 we get

K(x,x′) = GxG
T
x′kg(x,x′) =

− ∂
∂y

∂
∂x

[− ∂
∂y

∂
∂x

]
kg(x,x′)

= σ2
f e
− ‖x−x′‖2

2l2

((
x− x′

l

)(
x− x′

l

)T

−
(

1− ‖x− x′‖2

l2

)
I2

)

Below we have simulated a field which we know fulfills the constraint
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Tomography intuition
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Strain field reconstruction

Deformed object

Reconstruct the strain tensor

ε(x) =

εxx(x) εxy (x)

εxy (x) εyy (x)


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Strain field reconstruction

y =
1

L

∫ L

0

n̂Tε(x0 + sn̂)n̂ ds + ε

n̂ =

[
nx
ny

]
, ε ∼ N (0, σ2)
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Strain field reconstruction

Vectorised form

y =
1

L

∫ L

0

~nTf(x0 + sn̂) ds + ε

f(x) =


fxx(x)

fxy (x)

fyy (x)

 =


εxx(x)

εxy (x)

εyy (x)

 , ~n =


n2x

2nxny

n2y


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Strain field reconstruction – prediction

Put a GP on f(x)

f(x) ∼ GP (0, K(x,x′))

As before

E [f(x∗)|y] = QT
∗ (Q + σ2I)−1y

Cov [f(x∗)|y] = K(x∗,x∗)− QT
∗ (Q + σ2I)−1Q∗

Qi j =
1

LiLj

∫ Li

0

∫ Lj

0

~nT
i K(x0

i + sn̂i ,x
0
j + tn̂j)~nj dt ds

(Q∗)i =
1

Li

∫ Li

0

~nT
i K(x0

i + sn̂i ,x∗) ds
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Strain field reconstruction – covariance model

Since f(x) is multivariate, the covariance function is a matrix

K(x,x′) =

k11(x,x′) k12(x,x′) k13(x,x′)

k21(x,x′) k22(x,x′) k23(x,x′)

k31(x,x′) k32(x,x′) k33(x,x′)



How should we select K(x,x′)?
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Strain field reconstruction – constraint incorporation

A physical strain field must satisfy the equilibrium constraints

0 = ν
∂fxx(x)

∂x
+ (1− ν)

∂fxy (x)

∂y
+ ν

∂fyy (x)

∂x

0 = ν
∂fxx(x)

∂y
+ (1− ν)

∂fxy (x)

∂x
+ ν

∂fyy (x)

∂y

These can be written as

0 =

 ∂
∂x (1− ν) ∂

∂y ν ∂
∂x

ν ∂
∂y (1− ν) ∂

∂x
∂
∂y


︸ ︷︷ ︸

Fx

f(x) =

c1T

c2T

 f(x)
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Strain field reconstruction – constraint incorporation

We get

Gx = c1 × c2 =


∂2

∂y2 − ν ∂2

∂x2

−(1 + ν) ∂2

∂x∂y

∂2

∂x2 − ν ∂2

∂y2


Hence

f(x) = Gxϕ(x)

The scalar ϕ(x) is the Airy stress function. Now let

ϕ(x) ∼ GP (0, kϕ(x,x′))

Then

f(x) ∼ GP
(
0, GxG

T
x′kϕ(x,x′)

)
Note

y = Lx[Gxϕ(x)] + ε
21/29



Strain field reconstruction – experimental results

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, Thomas B. Schön, Chris Wensrich, Adrian Wills.

Probabilistic modelling and reconstruction of strain, Nuclear instruments and methods in physics research section B,

436:141-155, 2018.
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Nonlinearly constrained Gaussian processes- idea

Question: What can we do if we have nonlinear constraints?

We focus on sum-constrained Gaussian processes

F [f(x)] =
∑
i

aihi (fi (x)) = C ,

where i indexes the outputs of the GP and where hi (·) is a non-linear

function.

Idea: Transform the outputs f ′i = hi (fi ). The constraint will then be

linear

F [f ′(x)] =
∑

ai f
′
i (x) = C (x),

Let f ′i be the output of the GP and train it on transform data y ′i = hi (yi ).
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Nonlinearly constrained Gaussian processes- toy example

Toy Example (harmonic oscillator)

Consider the harmonic oscillator

E = Epot(t) + Ekin(t) = kz(t)2/2 + mv(t)2/2,

Epot and Ekin denote potential and kinetic energy, respectively.

We assume that the displacement from the rest position z and the

velocity v are the outputs of a multitask GP, whereas the time t is the

input.

f(t) =

[
z(t)

v(t)

]

There we have a1 = k/2, a2 = m/2, h1(z) = z2, h2(v) = v2 and C = E .
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Nonlinearly constrained Gaussian processes - toy example
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Left: Results for unconstrained GP

Middle: Results for transformed output learned by the constrained GP

Right: The back transformed output. The results for the unconstrained

GP are used to recover the signs.
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Nonlinearly constrained Gaussian processes

- Double pendulum (real data)

Real data example (double pendulum)

We model both positions zx , zy and velocities vx , vy of the two masses,

(i.e. 8 outputs), while at the same time respecting the law of energy

conservation

E = mbgzby + mggzgy +
mb

2

(
v2
bx + v2

by

)
+

mg

2

(
v2
gx + v2

gy

)
,

Indices b and g refer to blue and green pendulum, respectively.
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Nonlinearly constrained Gaussian processes

- Double pendulum (real data) - Results
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Left: Results for unconstrained GP Right: Results for constrained GP

Philipp Pilar, Carl Jidling, Thomas B. Schön, Niklas Wahlström. Incorporating sum constraints into multitask Gaussian

processes, To be submitted, 2022.
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Conclusions

I Linear transformations are easily incorporated

I Physical laws can be built into the model

I Promising results on real data experiments

I The idea can also be extended to a nonlinear constraints

The combination of model driven physical knowledge and data

driven flexibility is promising
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