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• 2007-2008: Exchange student, ETH Zürich, Swizerland
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My PhD thesis

Three areas:

• Magnetic tracking and mapping

• Extended target tracking

• Deep dynamical models for control
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My VR starting grant (2022-2026)

Title: Physics-informed machine learning

Purpose Develop new machine learning models which

1. are leveraged with theory-based first principles and

2. enable new knowledge discoveries within physics.

Three subprojects

1. Nonlinear constraints in probabilistic

non-parametric models

2. Physics-informed neural networks for

dynamical and probabilistic models

3. Combining data-driven and

physics-informed modules
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Motivation - Application 1:

Magnetic mapping - Indoor localization

Goal: Model magnetic field with a Gaussian process and infer

measurements of this field

Question: Can we use any Maxwell’s equations to constrain this model?
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Motivation - Application 2:

Strain field reconstruction

y = Lxε(x) + ε =
1

L

∫ L

0

n̂Tε(x0 + sn̂)n̂ ds + ε

Goal: Model ε(x) with a Gaussian process and infer the value of ε(x∗)

Question: Can we use any physical knowledge to constrain this model?
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Outline

Aim: Introduce constrained Gaussian process regression and

demonstrate it on a few examples.

1. GP basics

2. Linear constraints

3. Strain field reconstruction

4. Nonlinear constraints
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GP basics

Distribution over functions

 f (x1)
...

f (xN)

 ∼ N

µ(x1)

...

µ(xN)

 ,
k(x1,x1) · · · k(x1,xN)

...
...

k(xN ,x1) · · · k(xN ,xN)


︸ ︷︷ ︸



Uniquely specified by mean and covariance function

µ(xi ) = E [f (xi )]

k(xi ,xj) = Cov [f (xi ), f (xj)]

Formally

f (x) ∼ GP (µ(x), k(x,x′))
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GP basics – prediction

Let

yi = f (xi ) + ε, ε ∼ N
(
0, σ2

)
y = [y1, y2 . . . , yN ]T

Then [
y

f (x∗)

]
∼ N

([
0

0

]
,

[
K + σ2I k

kT k(x∗,x∗)

])
Kij = k(xi ,xj)

ki = k(xi ,x∗)

and

E [f (x∗)|y] = kT(K + σ2I )−1y

V [f (x∗)|y] = k(x∗,x∗)− kT(K + σ2I )−1k
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GP basics – linear operator measurements

Linear operator measurements

y = Lxf (x) + ε

Then

E [f (x∗)|y] = qT(Q + σ2I )−1y

V [f (x∗)|y] = k(x∗,x∗)− qT(Q + σ2I )−1q

where

Qi j = LxiLxjk(xi ,xj)

qi = Lxi k(xi ,x∗)

Example:

yi =

∫ bi

ai

f (x)dx ⇒


Qi j =

∫ bi
ai

∫ bj
aj
k(x , x ′) dx ′ dx

qi =
∫ bi
ai
k(x , x∗) dx
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GP basics – linear operator measurements
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Outline

1. GP basics

2. Linear constraints

3. Strain field reconstruction

4. Nonlinear constraints
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Multivariate GP – constraint incorporation

Toy Example

Consider a Gaussian process

f(x) ∼ GP (µ(x), K(x,x′))

with two-dimensional input and two-dimensional output

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]

Assume that we know from the physics that the all samples from the GP

prior should obey the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]
︸ ︷︷ ︸

Fx

f(x) = 0

How can we model the covariance function K(x,x′) such that this

constraint is guaranteed to be obeyed?
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Multivariate GP – constraint incorporation

Assume linear constraints

Fxf(x) = 0

Let f(x) = Gxg(x), where g(x) ∼ GP (µg(x), Kg(x,x′))

f(x) = Gxg(x) ∼ GP
(
Gx µg(x), GxKg(x,x′)GT

x′

)
Then

FxGxg(x) = 0

Arbitrary g(x)

⇒FxGx = 0

Find Gx

Carl Jidling, Niklas Wahlstöm, Adrian Wills, Thomas B. Schön. Linearly constrained Gaussian processes. Advances in Neural

Information Processing Systems (NIPS),Long Beach, CA, USA, December, 2017.
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Multivariate GP – constraint incorporation

Toy Example (cont.)

We consider the function

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]
and the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]
︸ ︷︷ ︸

Fx

f(x) = 0

Need Gx such that FxGx = 0. One option is

Gx =

− ∂
∂y

∂
∂x


since

FxGx =
[

∂
∂x

∂
∂y

]− ∂
∂y

∂
∂x

 = − ∂2

∂x∂y
+

∂2

∂y∂x
= 0.
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Simulation experiment - toy example

Choose kg(x,x′) = σ2
f e
− ‖x−x′‖2

2l2 . Then we get

K(x,x′) = GxG
T
x′kg(x,x′) =

− ∂
∂y

∂
∂x

[− ∂
∂y

∂
∂x

]
kg(x,x′)

= σ2
f e
− ‖x−x′‖2

2l2

((
x− x′

l

)(
x− x′

l

)T

−
(

1− ‖x− x′‖2

l2

)
I2

)

Below we have simulated a field which we know fulfills the constraint
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Outline

1. GP basics

2. Linear constraints

3. Strain field reconstruction

4. Nonlinear constraints
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Tomography intuition

5

1

12

49

4

72

11

18

21

16

16201728

22

3

13

21

11

?

?

?

??

?

??

?

19

10

25

22181521

16

11

16

8

3

17/24



Strain field reconstruction

Deformed object

Reconstruct the strain tensor

ε(x) =

εxx(x) εxy (x)

εxy (x) εyy (x)


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Strain field reconstruction

y =
1

L

∫ L

0

n̂Tε(x0 + sn̂)n̂ ds + ε

n̂ =

[
nx
ny

]
, ε ∼ N (0, σ2)
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Strain field reconstruction

Vectorised form

y =
1

L

∫ L

0

~nTf(x0 + sn̂) ds + ε = Lxf(x0) + ε

f(x) =


fxx(x)

fxy (x)

fyy (x)

 =


εxx(x)

εxy (x)

εyy (x)

 , ~n =


n2
x

2nxny

n2
y


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Strain field reconstruction – constraint incorporation

A physical strain field must satisfy the equilibrium constraints

0 = ν
∂fxx(x)

∂x
+ (1− ν)

∂fxy (x)

∂y
+ ν

∂fyy (x)

∂x

0 = ν
∂fxx(x)

∂y
+ (1− ν)

∂fxy (x)

∂x
+ ν

∂fyy (x)

∂y

These can be written as

0 =

 ∂
∂x (1− ν) ∂

∂y ν ∂
∂x

ν ∂
∂y (1− ν) ∂

∂x
∂
∂y


︸ ︷︷ ︸

Fx

f(x)
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Strain field reconstruction – constraint incorporation

We get

Gx =


∂2

∂y2 − ν ∂2

∂x2

−(1 + ν) ∂2

∂x∂y

∂2

∂x2 − ν ∂2

∂y2


Hence

f(x) = Gxg(x)

Now let

g(x) ∼ GP (0, kg (x,x′))

Then

f(x) ∼ GP
(
0, GxG

T
x′kg (x,x′)

)
Note

y = Lx[Gxg(x)] + ε
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Strain field reconstruction – experimental results

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, Thomas B. Schön, Chris Wensrich, Adrian Wills.

Probabilistic modelling and reconstruction of strain, Nuclear instruments and methods in physics research section B,

436:141-155, 2018.
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Conclusions and references

I Linear constraints can be incorporated in Gaussian processes

I Promising results on simulated and real data experiments

I Comming up: The idea can also be extended to a nonlinear

constraints
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Algorithm idea – toy example

Step 1: Assume that Gx contains the same operators as Fx

Gx =

[
γ11 γ12

γ21 γ22

] ∂
∂x

∂
∂y


Step 2: Expand

FxGx =
[

∂
∂x

∂
∂y

] [γ11 γ12

γ21 γ22

] ∂
∂x

∂
∂y


= γ11

∂2

∂x2
+ (γ12 + γ21)

∂2

∂x∂y
+ γ22

∂2

∂y2



Algorithm idea – toy example

Step 3: We need 
γ11 = 0

γ12 = −γ21

γ22 = 0

Step 4: Choosing γ21 = 1, we get

Gx =

[
0 −1

1 0

] ∂
∂x

∂
∂y

 =

− ∂
∂y

∂
∂x


No solution? Retry with higher order operators!

Even more formal treatment based on polynomial rings and Gröbner basis

theory is published in

Markus Lange-Hegermann. Algorithmic Linearly Constrained Gaussian Processes, Advances in Neural Information Processing

Systems (NeurIPS), Montreal, 2018.
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