Extended target tracking using Gaussian processes

Niklas Wahlström, Emre Özkan

Division of Automatic Control
Linköping University
Linköping, Sweden

May 28, 2015
Extended target tracking

Many sensors generates more than one measurement per target

Extended target (definition)

Targets that potentially give rise to multiple measurements at each time step

Goal: We want to estimate target position, target orientation and target extent jointly.
Related work

- Elliptical targets using inverse Wishart prior
 - Multiple ellipses per target (Lan and Li, Fusion 2012).
 - Encoding orientation (Granström and Orguner, Trans. A erospace 2014)

- Parametrized objects, rectangles, ellipses etc. (Granström, Fusion 2011)

- Random hyper-surface model (Baum and Hanebeck, Fusion 2011)

Modeling using polar coordinates

- x-coordinate
- y-coordinate
- Radial distance r
- Angle θ

$r = f(\theta)$
We model $f(\theta)$ using a Gaussian process.

$$f(\theta) \sim \mathcal{GP}(0, k(\theta, \theta')),$$

$$\mathbb{E}[f(\theta)f(\theta')] = k(\theta, \theta')$$
We use a periodic covariance function to model the periodicity.

We use an additional constant covariance to model a constant (but unknown) mean, corresponding to the mean radius of the target.

\[k(\theta, \theta') = \sigma_f^2 e^{-\frac{2 \sin^2 \left(\frac{|\theta - \theta'|}{2} \right)}{l^2}} + \sigma_r^2 \]
Recursive GP regression

Idea: Consider function values $f^1, f^2, \ldots, f^{N_f}$ to be the state components

$$x^f = \begin{bmatrix} f^1 \\ f^2 \\ \vdots \\ f^{N_f} \end{bmatrix}$$

This can be cast into a state space model

$$x^f_{k+1} = x^f_k$$
$$y_k = H x^f_k + e_k$$
$$x^f_0 \sim \mathcal{N}(0, P^f_0)$$
Idea: Consider function values \(f^1, f^2, \ldots, f^{N_f} \) to be the state components.

\[
\mathbf{x}_f^k = \begin{bmatrix} f^1 \\ f^2 \\ \vdots \\ f^{N_f} \end{bmatrix}
\]

This can be cast into a state space model

\[
\mathbf{x}_f^{k+1} = \mathbf{x}_f^k \\
y_k = H\mathbf{x}_f^k + e_k \\
\mathbf{x}_0^f \sim \mathcal{N}(0, P_{0f})
\]

Advantages

- Recursive update with KF
Recursive GP regression

Idea: Consider function values $f^1, f^2, \ldots, f^{N_f}$ to be the state components

$$x^f = \begin{bmatrix} f^1 \\ f^2 \\ \vdots \\ f^{N_f} \end{bmatrix}$$

This can be cast into a state space model

$$x^f_{k+1} = F x^f_k + w_k$$
$$y_k = H x^f_k + e_k$$
$$x^f_0 \sim \mathcal{N}(0, P^f_0)$$

Advantages
- Recursive update with KF
- Add process noise
Recursive GP regression

Idea: Consider function values \(f_1, f_2, \ldots, f^f_N \) to be the state components.

\[
x^f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f^f_N \end{bmatrix}
\]

This can be cast into a state space model:

\[
x^f_{k+1} = F x^f_k + w_k \\
y_k = H x^f_k + e_k \\
x^f_0 \sim \mathcal{N}(0, P^f_0)
\]

Advantages

- Recursive update with KF
- Add process noise
- \(x^f_k \) can be augmented with target position \(x^c_k \) and orientation \(\psi_k \).
Measurement is the sum of target position and offset due to target extent

\[y_{k,l} = x^c_k + \begin{bmatrix} \cos(\theta^G_{k,l}) \\ \sin(\theta^G_{k,l}) \end{bmatrix} f(\theta^L_{k,l}) + e_{k,l}, \quad \theta^G_{k,l} = \theta^G_{k,l}(x^c_k) \]

\[\theta^L_{k,l} = \theta^L_{k,l}(x^c_k, \psi_k) \]
Measurement is the sum of target position and offset due to target extent

\[\mathbf{y}_{k,l} = \mathbf{x}_k^c + \begin{bmatrix} \cos(\theta_{k,l}^G) \\ \sin(\theta_{k,l}^G) \end{bmatrix} \mathbf{H}(\theta_{k,l}^L) \mathbf{x}_k^f + \mathbf{e}_{k,l}, \quad \theta_{k,l}^G = \theta_{k,l}^G(\mathbf{x}_k^c) \]

\[\theta_{k,l}^L = \theta_{k,l}^L(\mathbf{x}_k^c, \psi_k) \]
This can be summarized into a non-linear sensor model

\[y_{k,l} = x^c_k + H(x^c_k, \psi_k)x^f_k + e_{k,l} \]
Real data experiment

- Laser range data
- Multi-target scenario (cars, bicycles, humans)
- Almost no clutter

We used a simple logic-based multi-target tracker:
- Gating based likelihood
- Associate a measurement with the most likely target
- Cluster all ungated measurements and form new targets
Real data experiment - result

531

[Graph showing data points with axes labeled from -20 to 20 on the x-axis and from 0 to 30 on the y-axis.]
Real data experiment - comparison

Green: RHM (Baum and Hanebeck). Black: Elliptical target (Koch...), Blue: proposed model
If we assume that \(f(\theta) \) has a period of \(\pi \) instead of \(2\pi \), we can encode symmetry assumptions.
If the measurements originate from the target interior, we can add a random scalar to compensate for that

\[y_{k,l} = x^c_k + s_{k,l} H(x^c_k, \psi_k) x^f_k + e_{k,l}, \quad s_{k,l} \in [0, 1] \]
Conclusions and Future work

Conclusions

- Model the target extent with a Gaussian process
- Estimate target extent and kinematic state jointly
- Fully recursive update provided

Future work

- Use Rao-Blackwellized PF - target extent state can be marginalized
- Exploit target symmetry properties even further
- A more sophisticated multi-target tracker