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Introduction to physics-informed
neural networks



Physics-informed machine learning

There are two main strategies to derive and deduce models

• theory-based first principles or

• data-driven approaches.

My overall research aim is to create new tools for using these two modeling strategies in
conjunction.

Why do we want to do this?
• Leverage performance of data-driven ML models

• Make ML models more interpretable
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Integrating prior knowledge into machine learning models

The combination of machine learning with prior knowledge from physics results in
the field of physics-informed machine learning.

•
• integrated in the model architecture

• additional inputs to the ML model
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Solving PDEs with machine learning

Damped harmonic oscillator

m
d2

dt2
u + µ

d

dt
u + k = 0 ...

...

t û(t; θ)

Naive approach: Supervised learning

min
θ

1
N

N∑
i=1

(
û(ti ; θ)− ui

)2

Main problems:

• No guarantee that the model obeys the conservation laws
• May require a lot of training data, not always feasible

Physics-informed neural network: Add the PDE residual to the loss

min
θ

1
N

N∑
i=1

(
û(ti , θ)− ui )

)2
+

1
Nc

Nc∑
j=1

([
m

d2

dt2
+ µ

d

dt
+ k

]
û(tj , θ)

)2

Rassi et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations Journal of Computational physics (2019)
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Physics-informed neural network

L(θ) =

supervised loss︷ ︸︸ ︷
1
N

N∑
i=1

(
û(ti , θ)− ui )

)2

+
1
Nc

Nc∑
j=1

([
m

d2

dt2
+ µ

d

dt
+ k

]
û(tj , θ)

)2

︸ ︷︷ ︸
physics loss

From a ML perspective:

• Physics loss is an unsupervised regularizer, which adds prior knowledge

From a mathematical perspective:

• PINNs provide a way to solve PDEs
• Neural network is a mesh-free functional approximation of PDE solution
• Physics loss is used to assess if the solution is consistent with PDE
• Supervised loss is used to include boundary/initial conditions and potential

observations
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Physics-informed neural networks

PINNs constitute an alternative to classical solvers of PDEs.

t

x

PINN
( )

t
x

..
.u pde + IC, BC + data = tot

IC, BC data

LPDE =
1
Nc

Nc∑
j=1

(F û(xj , tj ; θ))2 LBC =
1

NBC

NBC∑
i=1

(û(xi , ti ; θ)− f (xi , ti ))
2

Ldata =
1
Nd

Nd∑
k=1

(û(xk , tk ; θ)− uk)
2
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PINN training loop

L(θ) =

supervised loss︷ ︸︸ ︷
1
N

N∑
i=1

(
û(ti , θ)− ui )

)2

+
1
Nc

Nc∑
j=1

([
m

d2

dt2
+ µ

d

dt
+ k

]
û(tj , θ)

)2

︸ ︷︷ ︸
physics lossTraining loop

1. Sample boundary/collocation points {ti}Ni=1 and {tj}Nc
j=1

2. Compute network outputs
3. Compute gradients of network with respect to network input d

dt û,
d2

dt2
û

4. Compute loss
5. Compute gradient of loss function with respect to network parameters d

dθL

6. Take gradient descent step

We can apply autodifferentiation to compute both d
dt û and d

dθL 8/19



Forward problem vs inverse problem

PINNs are flexible in their use.

t

x

forward problem

IC & BC

collocation points

( )

t

x

inverse problem

measurements

collocation points

Ltot = LBC + LPDE Ltot = Ldata + LPDE

9/19



PINNs for forward simulation

LPDE =
1
Nc

Nc∑
j=1

([
∇2 − 1

c(xj)2
∂2

∂t2

]
û(xj , tj)

)2

LIC =
1

NIC

NIC∑
i=1

(û(xi , ti )− uFD(xi , ti ))
2

Solving the wave equation with
physics-informed deep learning –
Moseley et al, ArXiv (2020)

...
...

x1

x2

t

û(x , t; θ)
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PINNs for forward simulation

Solving the wave equation with
physics-informed deep learning –
Moseley et al, ArXiv (2020)

• Mini-batch size
Nc = NIC = 500

• Fully connected NN, 10
layers, 1024 hidden units

• Softplus activation

• Adam optimizer

Training time: 1 hour
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PINNs for forward simulation

LPDE =
1
Nc

Nc∑
j=1

([
∇2 − 1

c(xj)2
∂2

∂t2

]
û(xj , tj , sj)

)2

LIC =
1
N

N∑
i=1

(û(xi , ti , si )− uFD(xi , ti , si ))
2

Conditioned PINNs
Idea: Add IC/BCs as additional network input parameters.
Network does not need to be retrained for each simulation
⇒ much faster!

Solving the wave equation with
physics-informed deep learning –
Moseley et al, ArXiv (2020)

...
...

x1

x2

t

s1
s2

û(x , t, s; θ)
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PINNs for inverse problems

LPDE(θ, φ) =
1
Nc

Nc∑
j=1

([
∇2 − 1

c(xj ;φ)2
∂2

∂t2

]
û(xj , tj ; θ)

)2

Ldata =
1
Nd

Nd∑
i=1

(û(xi , ti ; θ)− f (xi , ti ))
2

Treat velocity as another neural
network and simultaneously learn it

...
...

x1

x2

t

û(x , t; θ)
...

...

x1

x2 c(x ;φ)

Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of
Nondestructive Evaluation (2020)
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PINNs for inverse problems
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Limitations and extensions



Advantages and limitations of PINNs

Advantages

• Mesh-free

• Can perform well for high-dimensional PDEs

• Can be extended to inverse problems
• Perform best on messy/mixed problems

• Noisy data
• Physics not perfectly known

• Analytical gradients (e.g. sensitivity analysis)

Disadvantages

• Computational cost is high

• No guarantee to converge,
convergence properties less well
understood

• Challenging to scale to more complex
problems (larger domains, multi-scale,
multi-physics)
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Hard initial/boundary conditions

Problem: How to pick the weight(s)?
Ltot = LBC + ωLPDE

ω too small ⇒ only learns boundary
conditions ω too large⇒ no unique solution

Example: Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− v

∂2u

∂x2 = 0 u(x , 0) = − sin(πx)

u(−1, t) = u(1, t) = 0

Let the solution be approximated by

û(x , t; θ) = (x − 1)(x + 1)(t − 0)NN(x , t; θ)− sin(πx)

Only one loss term to optimize

LPDE(θ) =
1
Nc

Nc∑
j=1

([
∂u

∂t
+ u

∂u

∂x
− v

∂2u

∂x2

]
û(xj , tj ; θ)

)2

Can be challenging to use this approach for complex boundary conditions.

There also exist adaptive schemes for updating the weights. 13/19



Adaptive collocation points

Idea Place additional collocation points where the PDE residuals are large.

Algorithm 1 Residual-based adaptive refinement (RAR)

Sample the initial collocation points T ;
Train the PINN for a certain number of iterations;
while Training do

Sample a set of points S0;
Compute the PDE residuals for the points in S0;
S ← m points with largest residuals in S0;
T ← T ∪ S ;
Train the PINN for a certain number of iterations;

end while
Many variations exist, e.g. use PDE residuals to construct a distribution from which
new collocation points can be sampled.

Wu et al. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer

Methods in Applied Mechanics and Engineering (2023)

14/19



Advantages and limitations of PINNs

Advantages

• Mesh-free

• Can perform well for high-dimensional PDEs

• Can be extended to inverse problems
• Perform best on messy/mixed problems

• Noisy data
• Physics not perfectly known

• Analytical gradients (e.g. sensitivity analysis)

Disadvantages
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• No guarantee to converge,
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Physics-informed neural networks
with unknown measurement noise



Physics-informed neural networks with
unknown measurement noise

We aim to train PINNs in case of unknown measurement noise.

• Energy-based model (EBM) to model unknown noise distribution
• LEBM

data ... NLL of measurement-residuals given the learned PDF

Ltot = LEBM
data ({yd − û(ti )}Nd

i=1) + ωLPDE(F , û, {tj}Nc
j=1)

PINN

EBM
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Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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Example – exponential differential equation

• The solution u is governed by an ODE with unknown λ.

• The measurements y are contaminated by homogeneous measurement noise ε
of unknown form.

u̇(t) = λu(t)

y(t) = u(t) + ε

PINN
PINN-EBM
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Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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Example – Navier-Stokes equations

The PINN-EBM also improved the results when considering the Navier-Stokes
equations in the presence of non-Gaussian noise.

f = ut + λ1(uux + vuy) + px − λ2(uxx + uyy)
!
= 0,

g = vt + λ1(uvx + vvy) + py − λ2(vxx + vyy)
!
= 0,

Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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Summary

PINNs constitute an alternative to classical solvers of PDEs.

• Flexible method, both forwards and inverse problems.

• Particularly useful on messy/mixed problems
• Unknown measurement noise can be taken into account in PINNs.

Some pointers if you want to learn more:

• An expert’s guide to training physics-informed neural networks, Wang et al.,
arXiv (2023)

• Scientific Machine Learning Through Physics–Informed Neural Networks:
Where we are and What’s Next, Journal of Scientific Computing (2022)

• Course: ETH Zürich Deep Learning in Scientific Computing (2023) Lectures
available on Youtube (some slides heavily inspired from that sources)
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Advantages and limitations of PINNs
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Random Fourier features

Problem: PINNs are biased towards learning low-frequency solutions → spectral bias

Idea: transform inputs to higher-frequency functions → Random Fourier features

γ(x) =

[
cos(Bx)
sin(Bx)

]

where B ∈ Rmxd with Bij ∼ N (0, σ2) and σ is a hyperparameter.

• The coordinate embedding γ(x) serves as input to the PINN.

• Enables more effective learning of high frequencies.

• The value of the parameter σ is an important design choice.

• In practice, often σ ∈ [1, 10].
Tancik et al. Fourier features let networks learn high frequency functions in low dimensional domains, NeurIPS (2020)
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