

Physics-informed neural network with unknown measurement noise

Niklas Wahlström, Joint work with Philipp Pilar

Division of Systems and Control Department of Information Technology Uppsala University

April 17, 2024.

Outline

Introduction to physics-informed neural networks

Limitations and extensions

Physics-informed neural networks with unknown measurement noise

Introduction to physics-informed

neural networks

Physics-informed machine learning

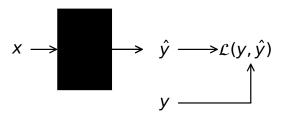
There are two main strategies to derive and deduce models

- theory-based first principles or
- data-driven approaches.

My overall research aim is to create new tools for using these two modeling strategies in conjunction.

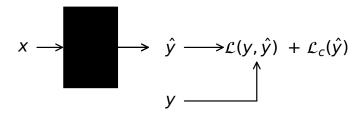
Why do we want to do this?

- Leverage performance of data-driven ML models
- Make ML models more interpretable

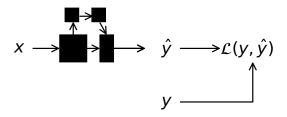


The combination of machine learning with prior knowledge from physics results in the field of physics-informed machine learning.

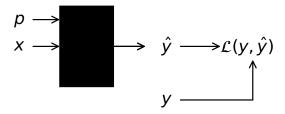
• additional term in the loss function



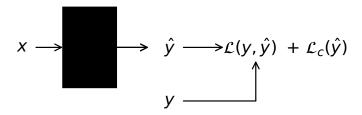
- additional term in the loss function
- integrated in the model architecture



- additional term in the loss function
- integrated in the model architecture
- additional inputs to the ML model



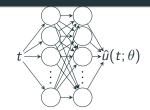
- additional term in the loss function
- integrated in the model architecture
- additional inputs to the ML model



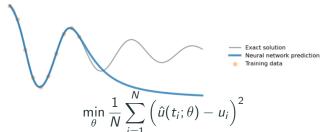
Solving PDEs with machine learning

Damped harmonic oscillator

$$m\frac{d^2}{dt^2}u + \mu \frac{d}{dt}u + k = 0$$



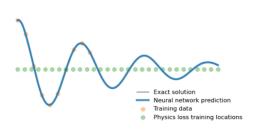
Naive approach: Supervised learning



Main problems:

- No guarantee that the model obeys the conservation laws
- May require a lot of training data, not always feasible

Physics-informed neural network



$$L(\theta) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}(t_i, \theta) - u_i \right)^2}_{\text{Since the problem}} + \underbrace{\frac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_j, \theta) \right)^2}_{\text{physics loss}}$$

From a ML perspective:

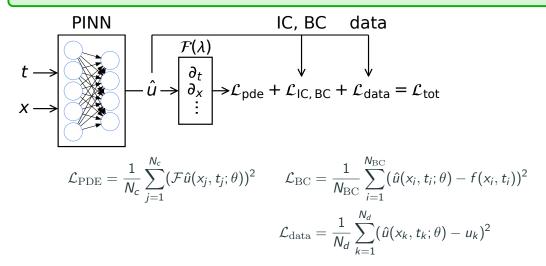
Physics loss is an unsupervised regularizer, which adds prior knowledge

From a mathematical perspective:

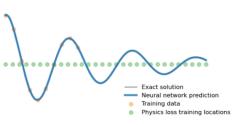
- PINNs provide a way to solve PDEs
 - Neural network is a mesh-free functional approximation of PDE solution
 - Physics loss is used to assess if the solution is consistent with PDE
 - Supervised loss is used to include boundary/initial conditions and potential observations

Physics-informed neural networks

PINNs constitute an alternative to classical solvers of PDEs.



PINN training loop



$$L(\theta) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}(t_i, \theta) - u_i) \right)^2}_{\text{physics loss}} + \underbrace{\frac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[m \frac{d^2}{dt^2} + \mu \frac{d}{dt} + k \right] \hat{u}(t_j, \theta) \right)^2}_{\text{physics loss}}$$

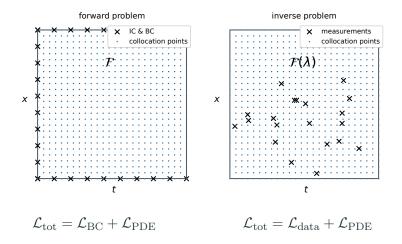
Training loop

- 1. Sample boundary/collocation points $\{t_i\}_{i=1}^N$ and $\{t_j\}_{j=1}^{N_c}$
- 2. Compute network outputs
- 3. Compute gradients of network with respect to network input $\frac{d}{dt}\hat{u}$, $\frac{d^2}{dt^2}\hat{u}$
- 4. Compute loss
- 5. Compute gradient of loss function with respect to network parameters $\frac{d}{d\theta}L$
- 6. Take gradient descent step

We can apply **autodifferentiation** to compute both $\frac{d}{dt}\hat{u}$ and $\frac{d}{d\theta}L$

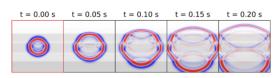
Forward problem vs inverse problem

PINNs are flexible in their use.

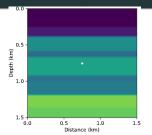


PINNs for forward simulation

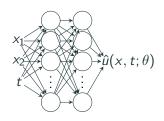
Ground truth FD



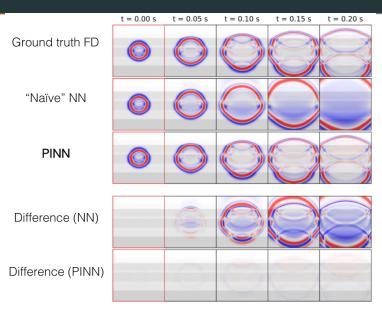
$$\mathcal{L}_{ ext{PDE}} = rac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[
abla^2 - rac{1}{c(x_j)^2} rac{\partial^2}{\partial t^2}
ight] \hat{u}(x_j, t_j)
ight)^2$$
 $\mathcal{L}_{ ext{IC}} = rac{1}{N_{ ext{IC}}} \sum_{i=1}^{N_{ ext{IC}}} (\hat{u}(x_i, t_i) - u_{ ext{FD}}(x_i, t_i))^2$

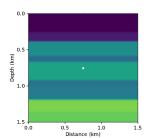


Solving the wave equation with physics-informed deep learning – Moseley et al, ArXiv (2020)



PINNs for forward simulation





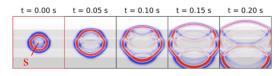
Solving the wave equation with physics-informed deep learning – Moseley et al, ArXiv (2020)

- Mini-batch size $N_C = N_{IC} = 500$
- Fully connected NN, 10 layers, 1024 hidden units
- Softplus activation
- Adam optimizer

Training time: 1 hour

PINNs for forward simulation

Ground truth FD



$$\mathcal{L}_{\text{PDE}} = \frac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[\nabla^2 - \frac{1}{c(x_j)^2} \frac{\partial^2}{\partial t^2} \right] \hat{u}(x_j, t_j, \underline{s_j}) \right)^2$$

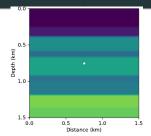
$$\mathcal{L}_{\mathrm{IC}} = \frac{1}{N} \sum_{i=1}^{N} (\hat{u}(x_i, t_i, \mathbf{s}_i) - u_{\mathrm{FD}}(x_i, t_i, \mathbf{s}_i))^2$$

Conditioned PINNs

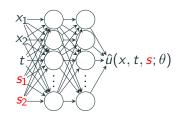
Idea: Add IC/BCs as additional network input parameters.

Network does not need to be retrained for each simulation

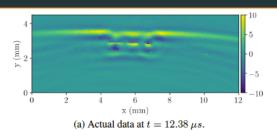
⇒ much faster!



Solving the wave equation with physics-informed deep learning – Moseley et al, ArXiv (2020)



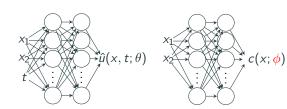
PINNs for inverse problems



$$(b) Data recovered from PINN simulation at $t=12.38~\mu s$.$$

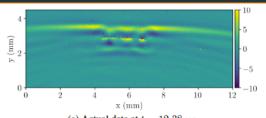
$$egin{aligned} \mathcal{L}_{ ext{PDE}}(heta, oldsymbol{\phi}) &= rac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[
abla^2 - rac{1}{c(x_j; oldsymbol{\phi})^2} rac{\partial^2}{\partial t^2}
ight] \hat{u}(x_j, t_j; heta)
ight)^2 \ \mathcal{L}_{ ext{data}} &= rac{1}{N_{ ext{d}}} \sum_{i=1}^{N_{ ext{d}}} (\hat{u}(x_i, t_i; heta) - f(x_i, t_i))^2 \end{aligned}$$

Treat velocity as another neural network and simultaneously learn it



Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of Nondestructive Evaluation (2020)

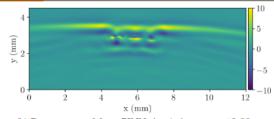
PINNs for inverse problems



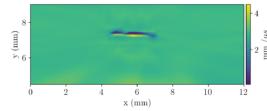
(a) Actual data at
$$t=12.38~\mu s$$
.
$$\mathcal{L}_{\text{PDE}}(\theta, \phi) = \frac{1}{N_c} \sum_{j=1}^{N_c} \left(\left[\nabla^2 - \frac{1}{c(x_j; \phi)^2} \frac{\partial^2}{\partial t^2} \right] \hat{u}(x_j, t_j; \theta) \right)^2$$

$$\mathcal{L}_{\text{data}} = \frac{1}{N_d} \sum_{i=1}^{N_d} (\hat{u}(x_i, t_i; \theta) - f(x_i, t_i))^2$$

Treat velocity as another neural network and simultaneously learn it



(b) Data recovered from PINN simulation at $t=12.38~\mu s$.



(d) Speed v(x, y) recovered from PINN simulation.

Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of Nondestructive Evaluation (2020)

Limitations and extensions

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

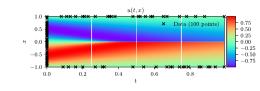
Hard initial/boundary conditions

Problem: How to pick the weight(s)? $\mathcal{L}_{tot} = \mathcal{L}_{RC} + \omega \mathcal{L}_{PDE}$

 ω too small \Rightarrow only learns boundary conditions ω too large \Rightarrow no unique solution

Example: Burgers' equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} = 0 \qquad u(x,0) = -\sin(\pi x)$$
$$u(-1,t) = u(1,t) = 0$$



Let the solution be approximated by

$$\hat{u}(x, t; \theta) = (x - 1)(x + 1)(t - 0)NN(x, t; \theta) - \sin(\pi x)$$

Only one loss term to optimize

$$\mathcal{L}_{\text{PDE}}(\theta) = \frac{1}{N_c} \sum_{i=1}^{N_c} \left(\left[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - v \frac{\partial^2 u}{\partial x^2} \right] \hat{u}(x_j, t_j; \theta) \right)^2$$

Can be challenging to use this approach for complex boundary conditions.

There also exist adaptive schemes for updating the weights.

Adaptive collocation points

Idea Place additional collocation points where the PDE residuals are large.

Algorithm 1 Residual-based adaptive refinement (RAR)

Sample the initial collocation points \mathcal{T} ;

Train the PINN for a certain number of iterations;

while Training do

Sample a set of points S_0 ;

Compute the PDE residuals for the points in S_0 ;

 $S \leftarrow m$ points with largest residuals in S_0 ;

$$\mathcal{T} \leftarrow \mathcal{T} \cup S$$
;

Train the PINN for a certain number of iterations;

end while

Many variations exist, e.g. use PDE residuals to construct a distribution from which new collocation points can be sampled.

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

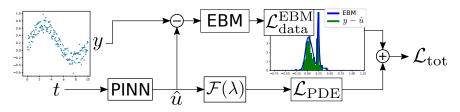
Physics-informed neural networks with unknown measurement noise

Physics-informed neural networks with unknown measurement noise

We aim to train PINNs in case of unknown measurement noise.

- Energy-based model (EBM) to model unknown noise distribution
- ullet $\mathcal{L}_{\mathrm{data}}^{\mathrm{EBM}}$... NLL of measurement-residuals given the learned PDF

$$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\text{data}}^{\text{EBM}}(\{y_d - \hat{u}(t_i)\}_{i=1}^{N_d}) + \omega \mathcal{L}_{\text{PDE}}(\mathcal{F}, \hat{u}, \{t_j\}_{j=1}^{N_c})$$

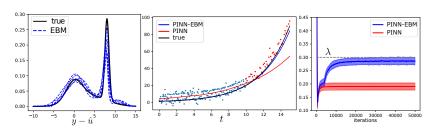


Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)

Example – exponential differential equation

- The solution u is **governed** by an **ODE** with unknown λ .
- The measurements y are contaminated by **homogeneous measurement noise** ϵ of unknown form.

$$\dot{u}(t) = \lambda u(t)$$
$$y(t) = u(t) + \epsilon$$



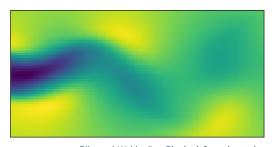
Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)

Example – Navier-Stokes equations

The PINN-EBM also improved the results when considering the Navier-Stokes equations in the presence of non-Gaussian noise.

$$f = u_{t} + \lambda_{1}(uu_{x} + vu_{y}) + p_{x} - \lambda_{2}(u_{xx} + u_{yy}) \stackrel{!}{=} 0,$$

$$g = v_{t} + \lambda_{1}(uv_{x} + vv_{y}) + p_{y} - \lambda_{2}(v_{xx} + v_{yy}) \stackrel{!}{=} 0,$$



noise		PINN-EBM	PINN-off	PINN
3G 10	$00 \Delta\lambda_1 $	1.19 ± 0.67	$2.92{\pm}0.47$	23.10 ± 0.11
10	$ 0 \Delta\lambda_2 $	0.04 ± 0.03	$0.09 {\pm} 0.05$	$0.08 {\pm} 0.06$
R	MSE	0.06 ± 0.01	$0.11 {\pm} 0.01$	$0.20 {\pm} 0.02$
N.	LL	-0.03 ± 0.08	$0.15 {\pm} 0.07$	$0.40 {\pm} 0.30$
10	$00f^{2}$	0.04 ± 0.00	$0.10 {\pm} 0.01$	$0.18 {\pm} 0.01$

Pilar and Wahlström, Physics-informed neural networks with unknown measurement noise, L4DC (2024)

Summary

PINNs constitute an alternative to classical solvers of PDEs.

- Flexible method, both forwards and inverse problems.
- Particularly useful on messy/mixed problems
- Unknown measurement noise can be taken into account in PINNs.

Some pointers if you want to learn more:

- An expert's guide to training physics-informed neural networks, Wang et al., arXiv (2023)
- Scientific Machine Learning Through Physics-Informed Neural Networks:
 Where we are and What's Next, Journal of Scientific Computing (2022)
- Course: ETH Zürich Deep Learning in Scientific Computing (2023) Lectures available on Youtube (some slides heavily inspired from that sources)

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

Advantages and limitations of PINNs

Advantages

- Mesh-free
- Can perform well for high-dimensional PDEs
- Can be extended to inverse problems
- Perform best on messy/mixed problems
 - Noisy data
 - Physics not perfectly known
- Analytical gradients (e.g. sensitivity analysis)

Disadvantages

- Computational cost is high
- No guarantee to converge, convergence properties less well understood
- Challenging to scale to more complex problems (larger domains, multi-scale, multi-physics)

Random Fourier features

Problem: PINNs are biased towards learning low-frequency solutions \rightarrow spectral bias **Idea:** transform inputs to higher-frequency functions \rightarrow Random Fourier features

$$\gamma(\mathbf{x}) = \begin{bmatrix} \cos(\mathbf{B}\mathbf{x}) \\ \sin(\mathbf{B}\mathbf{x}) \end{bmatrix}$$

where $\mathbf{B} \in \mathbb{R}^{m \times d}$ with $\mathbf{B}_{ij} \sim \mathcal{N}(0, \sigma^2)$ and σ is a hyperparameter.

- ullet The coordinate embedding $\gamma(\mathbf{x})$ serves as input to the PINN.
- Enables more effective learning of high frequencies.
- ullet The value of the parameter σ is an important design choice.
- In practice, often $\sigma \in [1, 10]$.

Tancik et al. Fourier features let networks learn high frequency functions in low dimensional domains, NeurIPS (2020)