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Introduction to physics-informed
neural networks



Physics-informed machine learning

There are two main strategies to derive and deduce models

e theory-based first principles or

e data-driven approaches.

My overall research aim is to create new tools for using these two modeling strategies in

conjunction.

Why do we want to do this?

e Leverage performance of data-driven ML models

e Make ML models more interpretable
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Integrating prior knowledge into machine learning models

The combination of machine learning with prior knowledge from physics results in
the field of physics-informed machine learning.
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Solving PDEs with machine learning

Damped harmonic oscillator ‘

nL rilurkeo T 0w
dt dt e
::

Naive approach: Supervised learning

—— Exact solution
=== Neural network prediction
Training data

Main problems:

e No guarantee that the model obeys the conservation laws

e May require a lot of training data, not always feasible 5/19



Physics-informed neural network

supervised loss

N Z( £ 0) = ”")>2

d 2

Exact solution + :u‘ + k ﬁ( t; 9)

e N | network dicti )

- TN Z ( [ de2 Mt
Physics loss training locations

physics loss

From a ML perspective:
e Physics loss is an unsupervised regularizer, which adds prior knowledge

From a mathematical perspective:

e PINNSs provide a way to solve PDEs
e Neural network is a mesh-free functional approximation of PDE solution
e Physics loss is used to assess if the solution is consistent with PDE
e Supervised loss is used to include boundary/initial conditions and potential 6/19
observations



Physics-informed neural networks

[ PINNSs constitute an alternative to classical solvers of PDEs. ]
PINN IC, BC data
t—( | F ) . Ot
(4 - — U —> dx —>Lpde + Lic,BC T Ldata = Ltot
X—> 7 :
/r/i*
1 NC 1 NBC
Lppg = N le(}'u(xp tj; 0)) Lpc = Noc 1:1(0(Xi, ti;0) — f(xi, t;))?
1 Y
Edata - Nd kz_:l(ﬁ(xka Lye; 9) - Uk)2
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PINN training loop

supervised loss

N Z( £ 0) = ”")>2

1 Qe 2 d 2
Exact solution ‘ § k 0] t: 9
m=Neural network prediction + NC — < |: dt2 + lu‘ dt + :| U( 0 )>

Training data o
Physics loss training locations J=

Training loop physics loss

1. Sample boundary/collocation points {t;}"_; and {tj}

Compute network outputs

Compute gradients of network with respect to network input %ﬁ, j—;ﬁ
Compute loss

Compute gradient of loss function with respect to network parameters %L

o~ W

Take gradient descent step

We can apply autodifferentiation to compute both %0 and %L d/19




Forward problem vs inverse problem

PINNSs are flexible in their use.

forward problem inverse problem

IC&BC [ X measurements
collocation points . - collocation points

Lot = Lac + LpDE Liot = Ldata + LPDE
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PINNs for forward simulation

o
o

t=0.15s t=020s

t=0.10s

t=0.05s

t=000s

Depth (kem)

=
°

Ground truth FD

0.0 0.5 1.0
Distance (km)

Solving the wave equation with
physics-informed deep learning —
Moseley et al, ArXiv (2020)

-3 (7 ] )

Lppg =
N, =
| e a(x, t;0)
Lic = Nic ;(ﬁ(x;, t;) — upp(xi, 7))

10/19



PINNs for forward simulation

t=0.00s t=0.05s t=0.10s t=0.15s t=020s

Ground truth FD

T
“Naive” NN 8
15+ T
0.0 0.5 1.0 15
Pl NN Distance (km)

Solving the wave equation with
physics-informed deep learning —
Moseley et al, ArXiv (2020)

Difference (NN)

e Mini-batch size
Ne = Njc = 500

e Fully connected NN, 10
layers, 1024 hidden units

Difference (P'NN) e Softplus activation

o Adam optimizer

Training time: 1 hour
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PINNs for forward simulation

t=0.00s t=0.05s t=0.15s t=0.20s
Ground truth FD @ E
. &
Nc 2 2
£ _ i V2 _ 1 8 ﬁ(X t: 5') 1'50.0 05 1.0 15
PDE = N ( V) 78 t2 Gy Ly Sj Distance (km)
Cc i—1 c X_j) Solving the wave equation with
J= physics-informed deep learning —
N Moseley et al, ArXiv (2020)
1
~ 2
Lic =4 (4(xi, tiy si) — urp(xi, ti, 5i))
i=1

Conditioned PINNs
Idea: Add IC/BCs as additional network input parameters.
Network does not need to be retrained for each simulation

= much faster!
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PINNs for inverse problems

¥ (mm)

v (mm)

0
X (mm)

(a) Actual data at ¢t = 12.38 ps.

1 Ne 5 1 82 R 2
eront0.0) = 3 3 ([9° = gy | o800
c = s
Ng

1 o
Liata = N7d Z(U(Xh ti; 0) - f(Xiv tf))z
i=1

10

1] 2 1 6 L] 10 12
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(b) Data recovered from PINN simulation at { = 12.38 us.

Treat velocity as another neural

network and simultaneously learn it

Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of
Nondestructive Evaluation (2020)
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PINNs for inverse problems

0 2

4 6 8 10 12
X (mm)

(a) Actual data at ¢t = 12.38 ps.

0 y i (1] 8 10 12
X (mm)

(b) Data recovered from PINN simulation at t = 12.38 pus.

1 & 1 & 2
Lppe(0,¢) = m ([Vz - Wﬁ] a(xj, fj;a))

j=t

v (mm)
mm /pus

Na
1 .
Laata = N—d§ (0, £5;0) — (%, 1))
i=1

0 2 4 6 8 10 12
Treat velocity as another neural X (mm)
(d) Speed v(z, y) recovered from PINN simulation.

network and simultaneously learn it

Shukla K et al, Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks, Journal of
Nondestructive Evaluation (2020)
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Limitations and extensions




Advantages and limitations of PINNs

Advantages Disadvantages
e Mesh-free e Computational cost is high

e Can perform well for high-dimensional PDEs e No guarantee to converge,

e Can be extended to inverse problems convergence properties less well
e Perform best on messy/mixed problems understood
e Noisy data e Challenging to scale to more complex
e Physics not perfectly known problems (larger domains, multi-scale,
e Analytical gradients (e.g. sensitivity analysis) multi-physics)
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Hard initial /boundary conditions

Problem: How to pick the weight(s)? w too small = only learns boundary
Liot = Lc + wLpDE conditions w too large = no unique solution

ult, @
==-Dta —
0.0 0.2 0.6

u(—1,t) = u(1,t) .

Example: Burgers' equation

1.0

ou  Ou  D%u
a—i—ua—x—vwzo u(x,0) = —sin(mx

Let the solution be approximated by
i(x,t;0) = (x — 1)(x + 1)(t — 0)NN(x, t; 8) — sin(mx)

Only one loss term to optimize

N 2
1 du du o%ul
Lppr(0) = N Z ({& + g ™ vaxz] a(x;, tj; 6)>
j=1

Can be challenging to use this approach for complex boundary conditions.

There also exist adaptive schemes for updating the weights. 13/19



Adaptive collocation points

Idea Place additional collocation points where the PDE residuals are large.

Algorithm 1 Residual-based adaptive refinement (RAR)

Sample the initial collocation points T ;
Train the PINN for a certain number of iterations;
while Training do
Sample a set of points So;
Compute the PDE residuals for the points in Sp;
S < m points with largest residuals in Sg;
T+ TUS;
Train the PINN for a certain number of iterations;
end while

Many variations exist, e.g. use PDE residuals to construct a distribution from which
new collocation points can be sampled.

14/19
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Physics-informed neural networks with

unknown measurement noise

[ We aim to train PINNSs in case of unknown measurement noise.

e Energy-based model (EBM) to model unknown noise distribution

° EEBM

dota --- NLL of measurement-residuals given the learned PDF

Liot = LEN ({yg — 0(t:)} 1) + wLppp(F, 4, {tj}¥))

Pilar and Wahlstrém, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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Example — exponential differential equation

e The solution u is governed by an ODE with unknown A.

e The measurements y are contaminated by homogeneous measurement noise ¢
of unknown form.

u(t) = Au(t)

y(t) =u(t) +e
—— PINN-EBM 5 o — PINN-EBM
— PINN oo — PINN

— true

0 2 4 6 8 0 12 14 0 10000 20000 30000 40000 50000

t iterations

Pilar and Wahlstrém, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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Example — Navier-Stokes equations

The PINN-EBM also improved the results when considering the Navier-Stokes
equations in the presence of non-Gaussian noise.

f = u + M(uug + vuy) + pe — Ao(uxx + tyy) L 0,

g = v + A(uvi + wy) + py — Xo(Vax + vyy) L 0,

noise PINN-EBM  PINN-off PINN

3G 100]AX| 1.194+0.67 2.92+0.47 23.10£0.11
100]AXz| 0.04+0.03 0.09£0.05 0.08%0.06
RMSE 0.06+0.01 0.11£0.01  0.20%0.02
NLL -0.03+0.08 0.1540.07  0.4040.30
10042 0.04+0.00 0.10£0.01 0.18£0.01

Pilar and Wahlstrém, Physics-informed neural networks with unknown measurement noise, L4DC (2024)
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[ PINNSs constitute an alternative to classical solvers of PDEs. ]

e Flexible method, both forwards and inverse problems.
e Particularly useful on messy/mixed problems

e Unknown measurement noise can be taken into account in PINNs.

Some pointers if you want to learn more:

e An expert’s guide to training physics-informed neural networks, Wang et al.,
arXiv (2023)

e Scientific Machine Learning Through Physics—Informed Neural Networks:
Where we are and What's Next, Journal of Scientific Computing (2022)

e Course: ETH Ziirich Deep Learning in Scientific Computing (2023) Lectures
available on Youtube (some slides heavily inspired from that sources)
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Advantages and limitations of PINNs
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Random Fourier features

Problem: PINNs are biased towards learning low-frequency solutions — spectral bias
Idea: transform inputs to higher-frequency functions —+ Random Fourier features

cos(Bx)

V(%) = sin(Bx)

where B € R™9 with Bj; ~ N(0,02) and o is a hyperparameter.

e The coordinate embedding ~y(x) serves as input to the PINN.
e Enables more effective learning of high frequencies.

e The value of the parameter o is an important design choice.
e In practice, often o € [1, 10].

Tancik et al. Fourier features let networks learn high frequency functions in low dimensional domains, NeurlPS (2020)
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