Pose tracking of magnetic objects

Niklas Wahlström

Department of Information Technology, Uppsala University, Sweden

February 2, 2018
Magnetometer measurement models

1. **Common use:** Magnetometer provides orientation information.

 Assume that the magnetometer (almost) only measures the local (earth) magnetic field.
Magnetometer measurement models

1. **Common use**: Magnetometer provides **orientation** information.

 Assume that the magnetometer (almost) only measures the local (earth) magnetic field.

2. **My use**: Magnetometer(s) to provide **position and orientation** information.
Magnetometer measurement models

1. **Common use:** Magnetometer provides **orientation** information.

 Assume that the magnetometer (almost) only measures the local (earth) magnetic field.

2. **My use:** Magnetometer(s) to provide **position and orientation** information.

 ▶ **Magnetic mapping:** Build a map of the (indoor) magnetic field.
Magnetic mapping

Build a map of the indoor magnetic field. This map can be used for localization.

We have used Bayesian models (Gaussian processes) to model such fields with good results.
Magnetometer measurement models

1. **Common use:** Magnetometer provides **orientation** information.

 Assume that the magnetometer (almost) only measures the local (earth) magnetic field.

2. **My use:** Magnetometer(s) to provide **position and orientation** information.

 ▶ **Magnetic mapping:** Build a map of the (indoor) magnetic field.

 ▶ **Magnetic tracking:** Measure the position and orientation of a known magnetic source.
Sensor setup

We use a sensor network with four three-axis magnetometers to determine the position and orientation of a magnet.
Magnetic tracking

Advantages

▶ Cheap sensors
Magnetic tracking

Advantages

▶ Cheap sensors
▶ Small sensors
Magnetic tracking

Advantages

▶ Cheap sensors
▶ Small sensors
▶ Low energy consumption
Magnetic tracking

Advantages

▶ Cheap sensors
▶ Small sensors
▶ Low energy consumption
▶ No weather dependency
Magnetic tracking

Advantages

- Cheap sensors
- Small sensors
- Low energy consumption
- No weather dependency
- Passive unit, requires no batteries
Mathematical model - dipole field

The magnetic field can be described with a dipole field.

\[
B(r) = \frac{\mu_0}{4\pi \|r\|^{5}} \left(3r \cdot r^T - \|r\|^2 I_3 \right) m
\]

\[
= C(r)
\]

\[
m \triangleq \frac{1}{2} \int r' \times J(r') d^3r'
\]
Sensor model - single dipole

The measurements can be described with a state-space model

\[x_{k+1} = F_k x_k + G_k w_k, \quad w_k \sim \mathcal{N}(0, Q), \]
\[y_{k,j} = h_j(x_k) + e_k, \quad e_k \sim \mathcal{N}(0, R) \]

Point target sensor model (one dipole)

\[h_j(x_k) = C(r_k - \theta_j)m_k, \quad x_k = \begin{bmatrix} r_k^T & v_k^T & m_k^T & \omega_k^T \end{bmatrix}^T \]

\[C(r) = \frac{\mu_0}{4\pi\|r\|^5} (3rr^T - \|r\|^2 I_3), \]

Measurement from a sensor network of magnetometers positioned at \(\{\theta_j\}_{j=1}^J \).

Degrees of freedom

- 3D position
- 2D orientation
Experiment 1
Experiment 2 - setup
Experiment 2 - results - position

Experiment - results - orientation

Black: Ground truth orientation. Color: Estimated orientation
Application 1: 3D painting book
Application 2: Digital water colors
Application 3: Digital table hockey
Application 4: Digital pathology
In February 2017 a company was started around this technology.

In total seven people are involved in the company on part-time.

Collaborations with both gaming companies and industrial partners.
Thank you!