Statistical Machine Learning

Lecture 9 – Deep Learning and Neural Networks

Niklas Wahlström
Division of Systems and Control
Department of Information Technology
Uppsala University.

Email: niklas.wahlstrom@it.uu.se,
www.it.uu.se/katalog/nikwa778
Summary of lecture 8 (I/II)

Flexible models often gives best performance.

We introduced the non-parametric probabilistic Gaussian process (GP) model.

Def. (Gaussian Process) A Gaussian process is a (potentially infinite) collection of random variables such that any finite subset of it is jointly distributed according to a multivariate Gaussian.

We assumed

\[
\begin{pmatrix}
 f(x) \\
 f(x')
\end{pmatrix} = \mathcal{N}
 \begin{pmatrix}
 m(x) \\
 m(x')
 \end{pmatrix},
\begin{pmatrix}
 k(x, x) & k(x, x') \\
 k(x', x) & k(x', x')
\end{pmatrix}
\]

More compact we write

\[f \sim \mathcal{GP}(m, k) \]

\[
\begin{pmatrix}
 f \\
 f(x_*)
\end{pmatrix} \sim \mathcal{N}
\begin{pmatrix}
 \begin{pmatrix}
 m(x) \\
 m(x_*)
 \end{pmatrix},
 \begin{pmatrix}
 k(x, x) & k(x, x_*) \\
 k(x_*, x) & k(x_*, x_*)
 \end{pmatrix}
\end{pmatrix},
\]

GP regression: Given training data \(\mathcal{T} = \{x_i, y_i\}_{i=1}^N \) and our GP prior on \(f \), \(f \sim \mathcal{GP}(m, k) \), we computed (using the theorem for conditioned Gaussians)

\[p(f_* | y), \]

for an arbitrary test point \(\{x_*, y_*\} \).
Deep Learning Example:
Automatic caption generation

Generate caption automatically from images

Constructing NN for regression

A neural network (NN) is a nonlinear function \(Y = f_\theta(X) \) from an input \(X \) to an output \(Y \) parameterized by parameters \(\theta \).

Linear regression models the relationship between a continuous output \(Y \) and a continuous input \(X \),

\[
Y = \beta_0 + \sum_{j=1}^{p} X_j \beta_j = \beta^T X + \varepsilon,
\]

where \(\beta \) is the parameters composed by the “weights” \(\beta_j \) and the offset (“bias”/“intercept”) term \(\beta_j \),

\[
\beta = (\beta_0 \ \beta_1 \ \beta_2 \ \cdots \ \beta_p)^T,
\]

\[
X = (1 \ X_1 \ X_2 \ \cdots \ X_p)^T.
\]
Generalized linear regression

We can generalize this by introducing nonlinear transformations of the predictor $\beta^T X$,

$$Y = \sigma(\beta^T X) + \varepsilon.$$
Generalized linear regression

We can generalize this by introducing nonlinear transformations of the predictor $\beta^T X$,

\[Y = \sigma(\beta^T X) + \varepsilon. \]

We call $\sigma(x)$ the activation function. Two common choices are:
Generalized linear regression

We can generalize this by introducing nonlinear transformations of the predictor $\beta^T X$,

$$ Y = \sigma(\beta^T X) + \varepsilon. $$

We call $\sigma(x)$ the activation function. Two common choices are:

- **Sigmoid:**
 $$ \sigma(x) = \frac{1}{1+e^{-x}} $$

- **ReLU:**
 $$ \sigma(x) = \max(0, x) $$
Generalized linear regression

We can generalize this by introducing nonlinear transformations of the predictor $\beta^T X$,

$$Y = \sigma(\beta^T X) + \varepsilon.$$

We call $\sigma(x)$ the activation function. Two common choices are:

Sigmoid: $\sigma(x) = \frac{1}{1 + e^{-x}}$

ReLU: $\sigma(x) = \max(0, x)$

Let us consider an example of a feed-forward NN, indicating that the information flows from the input to the output layer.
Generalized linear regression

We can generalize this by introducing nonlinear transformations of the predictor \(\beta^T X \),

\[
Y = \sigma(\beta^T X) + \varepsilon.
\]

We call \(\sigma(x) \) the activation function. Two common choices are:

Sigmoid: \(\sigma(x) = \frac{1}{1 + e^{-x}} \)

ReLU: \(\sigma(x) = \max(0, x) \)

Let us consider an example of a feed-forward NN, indicating that the information flows from the input to the output layer.
Neural network - construction

A NN is a sequential construction of several linear regression models.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Hidden units</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neural network - construction

A NN is a sequential construction of several linear regression models.

\[Z_1 = \sigma \left(\beta_{01}^{(1)} + \sum_{j=1}^{p} \beta_{j1}^{(1)} X_j \right) \]

\[Y = \beta_{1}^{(2)} Z_1 \]
Neural network - construction

A NN is a sequential construction of several linear regression models.

\[
\begin{align*}
Z_1 &= \sigma \left(\beta_{01}^{(1)} + \sum_{j=1}^{p} \beta_{j1}^{(1)} X_j \right) \\
Z_2 &= \sigma \left(\beta_{02}^{(1)} + \sum_{j=1}^{p} \beta_{j2}^{(1)} X_j \right) \\
Y &= \sum_{m=1}^{2} \beta_{m}^{(2)} Z_m
\end{align*}
\]
Neural network - construction

A NN is a sequential construction of several linear regression models.

\[Z_1 = \sigma \left(\beta_{01}^{(1)} + \sum_{j=1}^{p} \beta_{j1}^{(1)} X_j \right) \]
\[Z_2 = \sigma \left(\beta_{02}^{(1)} + \sum_{j=1}^{p} \beta_{j2}^{(1)} X_j \right) \]
\[\vdots \]
\[Z_M = \sigma \left(\beta_{0M}^{(1)} + \sum_{j=1}^{p} \beta_{jM}^{(1)} X_j \right) \]

\[Y = \sum_{m=1}^{M} \beta_m^{(2)} Z_m \]
Neural network - construction

A NN is a sequential construction of several linear regression models.

\[
\begin{align*}
Z_1 &= \sigma \left(\beta_{01}^{(1)} + \sum_{j=1}^{p} \beta_{j1}^{(1)} X_j \right) \\
Z_2 &= \sigma \left(\beta_{02}^{(1)} + \sum_{j=1}^{p} \beta_{j2}^{(1)} X_j \right) \\
& \vdots \\
Z_M &= \sigma \left(\beta_{0M}^{(1)} + \sum_{j=1}^{p} \beta_{jM}^{(1)} X_j \right) \\
Y &= \beta_0^{(2)} + \sum_{m=1}^{M} \beta_m^{(2)} Z_m
\end{align*}
\]
Neural network - construction

A NN is a sequential construction of several linear regression models.

\[
\begin{align*}
Z &= \sigma(W_1^T X + b_1^T) \\
Y &= \sigma(W_2^T Z + b_2^T) \\
b_1 &= \begin{bmatrix} \beta_{01}^{(1)} & \cdots & \beta_{0M}^{(1)} \end{bmatrix} \\
W_1 &= \begin{bmatrix} \\
\beta_{01}^{(1)} & \cdots & \beta_{0M}^{(1)} \\
\vdots & \ddots & \vdots \\
\beta_{p1}^{(1)} & \cdots & \beta_{pM}^{(1)} \\
\end{bmatrix} \\
b_2 &= \begin{bmatrix} \beta_{0}^{(1)} \end{bmatrix} \\
W_2 &= \begin{bmatrix} \\
\vdots \\
\beta_{0}^{(2)} \\
\end{bmatrix} \\
\end{align*}
\]
A NN is a sequential construction of several linear regression models.

\[
Z = \sigma(W_1^T X + b_1^T)
\]

\[
Y = W_2^T Z + b_2^T
\]
A NN is a sequential construction of several linear regression models.

The model learns better using a deep network (several layers) instead of a wide and shallow network. See why after the break!

\[Z^{(1)} = \sigma(W_1^T X + b_1^T) \]
\[Z^{(2)} = \sigma(W_2^T Z^{(1)} + b_2^T) \]
\[Y = W_3^T Z^{(2)} + b_3^T \]
Multi-layer neural networks

We can think of the neural network as a sequential/recursive construction of several generalized linear regressions.

Each layer in a multi-layer NN is modelled as

\[Z^{(l+1)} = \sigma \left(W^{T}_{(l+1)} Z^{(l)} + b^{T}_{(l+1)} \right), \]

starting with the input \(z^{(0)} = X \). (The non-linearity operates element-wise.)
Multi-layer neural networks

We can think of the neural network as a sequential/recursive construction of several generalized linear regressions.

Each layer in a multi-layer NN is modelled as

$$Z^{(l+1)} = \sigma \left(W^{T}_{(l+1)} Z^{(l)} + b^{T}_{(l+1)} \right),$$

starting with the input $z^{(0)} = X$. (The non-linearity operates element-wise.)

Key aspect: The layers are not designed by human engineers, they are generated from (typically lots of) data using a learning procedure and lots of computations.
2-layer Neural Network in matrix notation

Now, consider N training data points $\mathcal{T} = \{x_i, y_i\}_{i=1}^N$. We stack each data point i in a row (as we did in linear regression)

$$
\begin{bmatrix}
 z_1^T \\
 z_2^T \\
 \vdots \\
 z_N^T
\end{bmatrix}
=
\begin{bmatrix}
 \sigma(x_1^T W_1 + b_1) \\
 \sigma(x_2^T W_1 + b_1) \\
 \vdots \\
 \sigma(x_N^T W_1 + b_1)
\end{bmatrix}
\begin{bmatrix}
 y_1^T \\
 y_2^T \\
 \vdots \\
 y_N^T
\end{bmatrix}
=
\begin{bmatrix}
 z_1^T W_2 + b_2 \\
 z_2^T W_2 + b_2 \\
 \vdots \\
 z_N^T W_2 + b_2
\end{bmatrix}
$$

This is how it is written in matrix form. $+b_1$, $+b_2$ and σ applied on every row.

$$
Z = \sigma(X W_1 + b_1) \quad \hat{y} = Z W_2 + b_2
$$

... and in Tensorflow (software package used in the lab)

```
# The model
Z <- tf$sigmoid(tf$matmul(X, W1) + b1)
Yhat = tf$matmul(Z, W2) + b2
```
NN for classification \((K = 2 \text{ classes})\)

We can also use neural networks for classification. We use the logistic function as we did in logistic regression to map \(T \in \mathbb{R}\) onto \(Y \in [0, 1]\)

\[
\Pr(Y = 1|X) = f(T), \quad f(T) = \frac{e^T}{1 + e^T}
\]

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Hidden units</th>
<th>Logit</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\sigma)</td>
<td>(T)</td>
<td>(g)</td>
</tr>
<tr>
<td>(X_1)</td>
<td>(\sigma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\sigma)</td>
<td>(T)</td>
<td>(g)</td>
</tr>
<tr>
<td>(X_p)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NN for classification ($K > 2$ classes)

In the lab we will consider a classification problem with $K = 10$ classes.

We will not go into detail. Look at the preparatory exercises in the lab-pm!
One recent result on the use of deep learning in medicine -
Detecting skin cancer (February 2017)
Skin cancer – background

One recent result on the use of deep learning in medicine - Detecting skin cancer (February 2017)

Some background figures (from the US) on skin cancer:

- Melanomas represents less than 5% of all skin cancers, but accounts for 75% of all skin-cancer-related deaths.
- Early detection absolutely critical. Estimated 5-year survival rate for melanoma: Over 99% if detected in its earlier stages and 14% is detected in its later stages.
Skin cancer – task

Image copyright Nature (doi:10.1038/nature21056)
Skin cancer – taxonomy used
Skin cancer – solution (ultrabrief)

Start from a neural network trained on 1.28 million images (transfer learning).

Make minor modifications to this model, specializing to present situation.
Skin cancer – solution (ultrabrief)

Start from a neural network trained on 1.28 million images (transfer learning).

Make minor modifications to this model, specializing to present situation.

Learn new model parameters using 129,450 clinical images (~ 100 times more images than any previous study).
Skin cancer – solution (ultrabrief)

Start from a neural network trained on 1.28 million images (transfer learning).

Make minor modifications to this model, specializing to present situation.

Learn new model parameters using 129,450 clinical images (~100 times more images than any previous study).
Skin cancer – indication of the results

sensitivity = \frac{\text{true positive}}{\text{positive}} \quad \text{specificity} = \frac{\text{true negative}}{\text{negative}}
Skin cancer – indication of the results

\[
\text{sensitivity} = \frac{\text{true positive}}{\text{positive}} \quad \text{specificity} = \frac{\text{true negative}}{\text{negative}}
\]

Image copyright Nature (doi:10.1038/nature21056)
Why do deep neural networks work so well?

Example: Image classification

Input: pixels of an image

Output: object identity

- 1 megapixel (black/white) \(\Rightarrow 2^{1'000'000}\) possible images!
- A deep neural network can solve this with a few million parameters!

How can deep neural networks work so well?
Why neural networks?

Continuous multiplication gate
A neural network with only four hidden units can model multiplication of two numbers arbitrarily well.

\[Y \approx X_1 \times X_2 \]

If we choose \(\mu = \frac{1}{4\lambda^2 f''(0)} \) then \(Y \to X_1 \times X_2 \) when \(\lambda \to 0 \).

A regression example

Input: $X \in \mathbb{R}^{1000}$
Output: $Y \in \mathbb{R}$
Task: Model a quadratic relationship between Y and X
A regression example

Input: $X \in \mathbb{R}^{1000}$
Output: $Y \in \mathbb{R}$
Task: Model a quadratic relationship between Y and X

Linear regression

$$Y = X_1X_1\beta_{1,1} + X_1X_2\beta_{1,2} + \cdots + X_{1000}X_{1000}\beta_{1000,1000} = \bar{X}^T\beta$$

where

$$\bar{X} = \begin{bmatrix} X_1X_1 & X_1X_2 & \cdots & X_{1000}X_{1000} \end{bmatrix}^T$$

$$\beta = \begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \cdots & \beta_{1000,1000} \end{bmatrix}^T$$

Requires $\approx \frac{1'000 \times 1'000}{2} = 500'000$ parameters!
A regression example

Input: $X \in \mathbb{R}^{1000}$
Output: $Y \in \mathbb{R}$
Task: Model a quadratic relationship between Y and X

Neural network
To model all products with a neural network we would need $4 \times 500'000 = 2 \times 10^6$ hidden units and hence 2 billion parameters...

\[
1000 \times (2 \times 10^6) + 2 \times 10^6 \approx 2 \times 10^9 \text{ param.}
\]
A regression example (cont.)

Input: \(X \in \mathbb{R}^{1000} \)

Output: \(Y \in \mathbb{R} \)

Task: Model a quadratic relationship between \(X \) and \(Y \)

Assume that only 10 of the regressors \(X_i X_j \) are of importance

Linear regression

\[
Y = X_1 X_1 \beta_{1,1} + X_1 X_2 \beta_{1,2} + \cdots + X_{1000} X_{1000} \beta_{1000,1000} = \bar{X}^T \beta
\]

where

\[
\bar{X} = \begin{bmatrix} X_1 X_1 & X_1 X_2 & \cdots & X_{1000} X_{1000} \end{bmatrix}^T
\]

\[
\beta = \begin{bmatrix} \beta_{1,1} & \beta_{1,2} & \cdots & \beta_{1000,1000} \end{bmatrix}^T
\]

You probably want to regularize, but 500’000 parameters are still required!
A regression example (cont.)

Input: \(X \in \mathbb{R}^{1000} \)
Output: \(Y \in \mathbb{R} \)

Task: Model a quadratic relationship between \(X \) and \(Y \)
Assume that only 10 of the regressors \(X_i X_j \) are of importance

Neural network
To model 10 products with a neural network we would need 4*10 hidden units, i.e. leading to only \(\approx 40,000 \) parameters!
Why deep? - A regression example

- Consider the same example. Now we want a model with complexity corresponding to polynomials of degree 1’000.
- Keep 250 products in each layer ⇒ 250*4=1’000 hidden units.

Linear regression would require \(\approx \frac{1000 \cdot 1000}{1000!} \) parameters to model such a relationship...
Why deep? - Image classification

Example: Image classification

Input: pixels of an image
Output: object identity
Each hidden layer extracts increasingly abstract features.

Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks
Computer Vision - ECCV (2014).
Some comments - Why now?

Neural networks have been around for more than fifty years. Why have they become so popular now (again)?

To solve really interesting problems you need:

1. Efficient learning algorithms
2. Efficient computational hardware
3. A lot of labeled data!

These three factors have not been fulfilled to a satisfactory level until the last 5-10 years.
Some pointers

A book has recently been published

I. Goodfellow, Y. Bengio and A. Courville Deep learning

http://www.deeplearningbook.org/
Some pointers

A book has recently been published
I. Goodfellow, Y. Bengio and A. Courville Deep learning

http://www.deeplearningbook.org/

A well written and timely introduction:
Some pointers

A book has recently been published

I. Goodfellow, Y. Bengio and A. Courville Deep learning

http://www.deeplearningbook.org/

A well written and timely introduction:

You will also find more material than you can possibly want here

http://deeplearning.net/
The lab

Topic: Image classification with neural networks

Task 1
Classification of hand-written digits

Task 2
Real world image classification

• The lab-pm is available from the course homepage.
• Read Section 2 and do the preparatory exercises in Section 3 before the lab
A **neural network (NN)** is a nonlinear function $Y = f_\theta(X)$ from an input X to a predicted output Y parameterized by parameters θ.

We can think of an NN as a sequential/recursive construction of several generalized linear regressions.

Deep learning refers to learning NNs with several hidden layers. Allows for data-driven models that automatically learns rep. of data (features) with multiple layers of abstraction.

A deep NN is very **parameter efficient** when modelling high-dimensional, complex data.