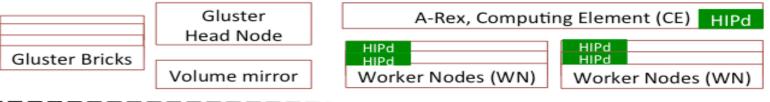
The DII-HEP OpenStack based CMS Data Analysis for **Secure Cloud Resources**

L. Osmani¹, S. Toor², M. Komu³, M. Kortelainen², T. Lindén², J. White², R. Khan⁴, P. Eerola²,S. Tarkoma¹

¹University of Helsinki, ²Helsinki Institute of Physics, ³Ericsson Research, ⁴University of Alabama


Goals

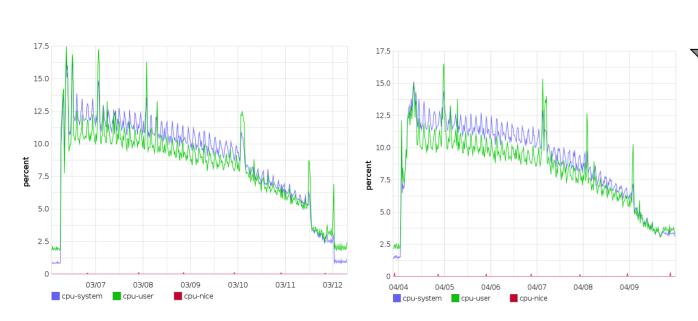
Harness Grid and Cloud technologies to ensure a steady and seamless transition towards new ways of operating.

Motivation

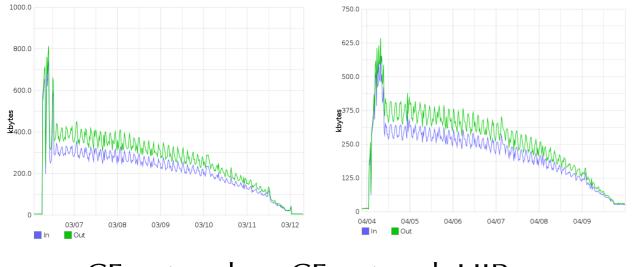
- The High Energy Physics community is interested in performing simulations and data analysis on public or private cloud facilities.
- Currently the simulations and analysis are being performed mostly on computing and data Grids. • The software and experience of operating on a Grid needs to be adapted for running on cloud facilities.

VMs Based Services 1 CE, 50 WN and 6 Gluster-bricks

Contribution: Deploy a Cloud-based and **Grid-enabled** cluster


- We combine the elements of Cloud and Grid software components.
- We manage the VMs dynamically in an elastic fashion.
- We use the EMI authorization service (Argus) and the Execution environment Service (Argus-EES).
- Plugin developed for Argus-EES that can communicate with multiple OpenStack deployments to expand and shrink resources on-demand.
- Leverage HIP protocol for traffic management and security.

Evaluating our implementation


- The constructed virtual cluster is Cloud-based and Grid-enabled.
- OpenStack used for the Cloud and the Advance Resource Connector (ARC) for the Grid.
- Analysis software and libraries provided through CERNVMFS.
- Cloudbursting towards other community Clouds.
- CPU intensive CMS jobs CRAB jobs were run with and without the HIP

Glust	ter Head Node	rick, total storage 2TB, 1 Gluster I Volume mirror	Bricks	Bricks
Physical	Storage 4 LUNs for struc 2 LUNs for syste	-	id system storage and	
-		Network Storage (NAS)		
	1 2		10	
Fi	gure 1. Arcl	nitecture of DI	I-HEP Clo	oud
End Us				
Life O		Cloud interface		
OpenS	tack Cloud Componen	ts 🗸		
		Cloud Controller		
VMc B	ased Services	·····>	<u> </u>	
V IVIS D				
	HIPd	Worker Node	HIPd	orker Node
	<	1		r Node 🗖
Δ	A-Rex, Computing 🗲	→ Worker Node	HIPd	Î
	Element (CE)	1		r Node 📑
	<i>e</i>			1
	é	> Worker Node		r Node 🔳
· '	\sim			erNode
End Us	ser	\rightarrow		
		Grid Interface		
_	HIP based Commu	nication	→ Non HIP based	Communication

protocol to study the difference in CE and workernode CPU and network usage. The jobs were run for about 170 min and each test was running for about a week on 200 concurrent jobs.

CPU CE vs CPU CE HIP

CE network vs CE network HIP

CPU workernodes vs CPU workernodes HIP

a fa duale a la da ale da da

Network workernodes vs network workernodes HIP

Future work

- The virtual cluster has been migrated from the test setup at the • University of Helsinki to the cPouta laaS at the CSC Kajaani Datacenter.
- The new setup is being taken into test usage. ullet
- The largest Finnish CMS/ALICE physical cluster is planned to be ullet

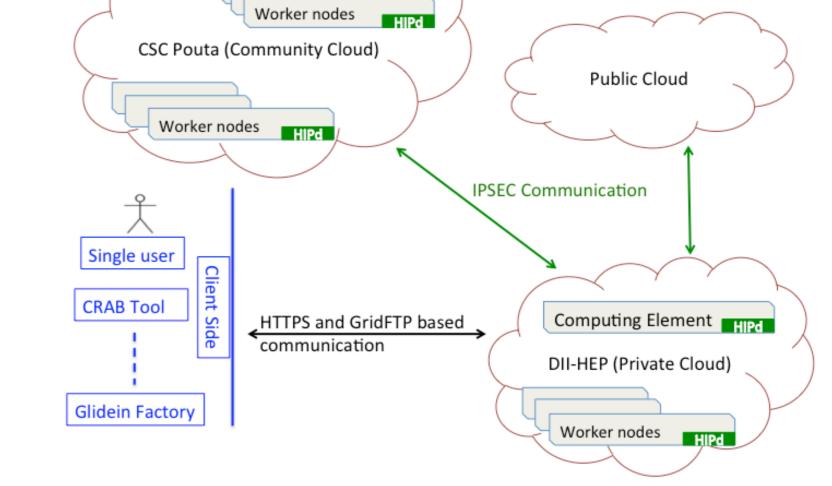


Figure 3. Cloudbursting

The Host Identity Protocol (HIP) has been designed for mobile networks and it provides a secure method for IP mobility and multi-homing. HIP separates the end-point identifier and locator role for IP address which improves network agility of applications and the underlying virtual machines.

REFERENCES:

S.Toor, L.Osmani, P.Eerola, O.Kraemer, T.Lindén, S.Tarkoma, J.White, A scalable infratructure for CMS analysis based on OpenStack Cloud and Gluster file system, J. Phys.: Conf . Ser. 513 062047

J.White, S.Toor, P.Eerola, T.Lindén, O.Kraemer, L.Osmani, S.Tarkoma, Dynamic Provisioning of Resources in a Hybrid Infrastructure, PoS(ISGC2014)019, International Symposium on Grids and Cloud (ISGC) 2014, Taiwan

L.Osmani, S.Tarkoma, P.Eerola, M.Komu, M.J.Kortelainen, O.Kraemer, T.Lindén, S.Toor, J.White, An overview of the DII-HEP OpenStack based CMS data analysis, Submitted to J.Phys.:Conf.Ser.ACAT 2014.

replaced by this cloud setup.		