Learning probabilistic finite automata

Tuan-Phong NGO

Reusing slides from Colin de la Higuera
Outline

- Frequency finite automata and probabilistic finite automata
- Types of probabilistic finite automata
- Learning probabilistic finite automata
Recall

- Probability
- Frequency
- Relative frequency

Example: probability to select a specific face of a coin is 1/2. If we do 100 times and get the face 49 times, then frequency is 49, and relative frequency is 49/100
FFA & PFA

Frequency finite automata: FFA

![Diagram of FFA]

\[
P(q) = \frac{F(q)}{F_{q' \in Q, a \in \Sigma}(q', a, q)}
\]

Probability of states

Probabilistic finite automata: PFA

![Diagram of PFA]

\[
\partial(q, a, q') = \frac{F(q, a, q')}{F_{q'' \in Q, b \in \Sigma}(q'', b, q)}
\]

Probability of edges
Types of PFA

DPFA: Deterministic Probabilistic Finite Automaton

NPFA: Nondeterministic Probabilistic Finite Automaton

ε-DPFA: Deterministic Probabilistic Finite Automaton with ε

Probability of strings

- $P(a) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
- $P(ab) = \frac{1}{2} \times \frac{1}{2} \times 0 = 0$
- $P(aba) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times 0 = 0$
- $P(abab) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{24}$
How useful are these automata

- They can define a distribution over Σ^*
 - $a, ab, abab...$
 - **Consistent:** $0 \leq P(w) \leq 1, \sum_{w \in \Sigma^*} P(w) = 1$
 - or $\forall q \in Q : P(q) + \sum_{q' \in Q, a \in \Sigma} \partial(q, a, q') = 1$
- They do **not** tell us if a string belongs to a language
\[P(aba) = 0.7 \times 0.4 \times 0.1 \times 1 + 0.7 \times 0.4 \times 0.35 \times 0.2 = 0.0476 \]
PFA are strictly more powerful than DPFA (Folk theorem)

NPFA over a^* ≠ DPFA over a^*
Learning PDA

- Give a sample and a target PDA, how to construct the PDA that compared with target PDA with a threshold α

λ	490	abb	4	abab	2	aaaaa	1
a	128	baa	9	abba	2	aaab	1
b	170	bab	4	abbb	1	aaaba	1
aa	31	bba	3	baaa	2	aabaa	1
ab	42	bbb	6	baab	2	aabab	1
ba	38	aaaa	2	baba	1	aabba	1
bb	14	aaab	2	babb	1	abbaa	1
aaa	8	aaba	3	bbba	1	abbab	1
aab	10	aabb	2	bbab	1	abab	1
Learning PDA

- Distance between 2 PDA (skip)
- Frequency prefix tree acceptor
- Algeriga algorithm
- Merging and folding
Frequency prefix tree acceptor (FPTA)
Alergia algorithm

• Start with a FPTA

• Try to merge and fold states together until get an acceptable PFA
Merging and folding

- Merge and fold q_{aa} with q_λ
Merging

• Disconnect and reconnect
Folding

folding q_{aaa}

folding q_{aab}
Merging and folding?
Merging and folding?