
Disjointness Domains for Fine-Grained Aliasing ∗

Stephan Brandauer Dave Clarke Tobias Wrigstad
Uppsala University

firstname.lastname@it.uu.se

Abstract
Aliasing is crucial for supporting useful implementation pat-
terns, but it makes reasoning about programs difficult. To
deal with this problem, numerous type-based aliasing con-
trol mechanisms have been proposed, expressing properties
such as uniqueness. Uniqueness, however, is black-and-white:
either a reference is unique or it can be arbitrarily aliased; and
too global: excluding aliases throughout the entire system,
making code brittle to changing requirements. Disjointness
domains, a new approach to alias control, address this prob-
lem by enabling more graduations between uniqueness and
arbitrary reference sharing. They allow expressing aliasing
constraints local to a certain set of variables (either stack vari-
ables or fields) for instance that no aliasing occurs between
variables within some set of variables but between such sets
or the opposite, that aliasing occurs within that set but not
between different sets. A hierarchy of disjointness domains
controls the flow of references through a program, helping
the programmer reason about disjointness and enforce local
alias invariants. The resulting system supports fine-grained
control of aliasing between both variables and objects, mak-
ing aliasing explicit to programmers, compilers, and tooling.
This paper presents a formal account of disjointness domains
along with examples. Disjointness domains provide novel
means of expressing may-alias kinds of constraints, which
may prove useful in compiler optimisation and verification.

∗ This work was partially funded by the Swedish Research Council project
Structured Aliasing, the EU project FP7-612985 Upscale: From Inherent
Concurrency to Massive Parallelism through Type-based Optimisations, and
the Uppsala Programming for Multicore Architectures Research Centre
(UPMARC).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

OOPSLA ’15, October 25th-30th, 2015, Pittsburgh, PA, USA.
Copyright c© 2015 ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
Aliasing, two variables containing the same reference, is both
a blessing and a curse. It is a blessing because it allows
programmers to write efficient imperative code (any data
structure that is not tree-shaped needs aliasing). It is a curse
because aliasing together with mutable state makes compile-
time and run-time optimisations difficult; it complicates
manual and automated reasoning; and, with the advent of
multi-core computers, it necessitates concurrency control and
all of its complications.

Compiler optimisations depend on aliasing knowledge.
For instance, the following C program may only be automat-
ically parallelised by a compiler if all the pointers in the array
are known to refer to disjoint memory locations1 – otherwise,
the compiler would risk data races:

int* array[N]; // N pointers to int
init(array,N);
// increment all the integers:
for (int i=0; i<N; ++i) {

*array[i] += 1;
}

Reasoning about program correctness is also difficult
in the presence of aliasing. The two method calls op-
erating on two file objects, f1.close(); f2.read(), can
only be correct if f1 and f2 are not aliases. If f1 and f2
are aliases, the file is read from after closing. In general,
Hoare-style reasoning needs to consider all possible aliasing:
in val1.set(1); val2.set(2); assert(val1.get() == 1),
the assertion provably holds only if val1 and val2 do not
alias and the two objects don’t share any state.

Experiments suggest that the vast majority of objects in
object-oriented programs are in fact not aliased [32], yet
compilers and verifiers alike need to err on the safe side.

A large number of type-based alias management proposals
have been put forward in the last 20 years (e.g.,[8, 9, 12, 14,
20, 22, 26, 27, 30]). Several make use of unique references,
references guaranteed to be alias-free. Uniqueness can be
maintained either using destructive reads [25, 27] (reads that

1 To explicitly allow such optimisations, the C language defines the
restrict type qualifier that states that all state reachable from two such
annotated pointers is disjoint. C++11 uses rvalue references that, intuit-
ively, represent the return value of an expression before it has been stored
into a variable. Although they unlock many optimisations, they also lack
type safety.

also set the variable being read to null,), a swap operation
[23] or static analysis [8, 22]. In such systems, a reference is
either unique or shared, though generally language constructs
exist for converting unique references to shared ones and vice
versa [9, 12] Recently, programming languages supporting
alias control have gained some traction [4, 15, 33].

This paper argues that the dichotomy of unique vs. shared
is unnecessarily black-and-white, and, as a consequence,
makes it impossible to use uniqueness to express local in-
variants without global consequences. For example, relying
on uniqueness to statically enforce the property that two vari-
ables val1 and val2 may not alias is not possible without also
prohibiting the existence of aliases elsewhere in the system. If
such aliases are necessary, statically enforcing val1 != val2
through uniqueness is no longer possible. This inhibits reas-
oning both about the functional correctness of code as well as
the correctness of employing compiler optimisations which
require reasoning about aliasing. A property as powerful as
global uniqueness may often make sense, but only having
shared variables as an alternative leads to loss of valuable
information.

Consider, for example, using uniqueness to enforce that
a list of employees contains no duplicates. This property
might allow modifying the elements in parallel. Later, adding
an employee-of-the month variable (which may be an alias
of any of the list elements) requires a shift from unique
to shared references in the list, destroying local knowledge
about the alias-freedom of the list. Although parallel iteration
over the employee list is still data-race free (as long as the
employee-of-the-month variable is not used at the same time),
this information is now lost to compiler, programmer and
verification tool.

In this paper, we argue that many important aliasing invari-
ants are local, and therefore should be enforceable without
global consequences. Local alias invariants are expressed in
terms of disjointness domains, which correspond to sets of
variables and fields. Disjointness domains can express global
uniqueness (in fact, it’s the default) but allow fine grained
middle ground between globally unique and globally shared
where aliasing is introduced in piecemeal way, in a syntactic-
ally tractable fashion.

Disjointness domains provide novel machinery for express-
ing different kinds of may-alias constraints, and for adapting
them as the program proceeds. Such constraints may prove
useful in compiler optimisation and verification.

The paper makes the following contributions:

1. It proposes disjointness domains as a means to establish
and locally reason about fine grained alias invariants
(Section 2).

2. It shows how using disjointness domain parameters on
classes leads to flexible local reasoning about disjointness
of objects (whether or not there may be state shared by two
objects), an ability that systems with just globally unique
and globally shared variables don’t have (Section 3).

3. It presents a selection of recipes for local aliasing invari-
ants and how these can be encoded with disjointness do-
mains (Section 4).

4. It shows that disjointness domains are strong enough to
establish useful invariants. In particular, we explore dis-
jointness domains to establish non-interference of expres-
sions run in parallel. Disjointness domains deal with ex-
amples that other alias management systems fail to handle:
a doubly-linked list with external iteration and an internal,
parallel, imperative foreach implementation (Section 5).

5. It formalises disjointness domains in the context of a
simple experimental language design (Sections 6, 7),
along with their proofs (Section 8). It also shows how
traditional uniqueness is a special case of local uniqueness
(Section 8).

2. Overview
This section gives an overview of disjointness domains and
shows how they are used to enforce various aliasing invari-
ants. To illustrate the explanations, we are using a running
example (Section 2.1). The core concepts such as disjointness
domains and aliasing within or between them are introduced
(Section 2.2), followed by a description of the invariants that
disjointness domains enforce (Section 2.3), and the operations
on variables that preserve the invariants (Section 2.4).

2.1 Running Example
As a running example, we use disjointness domains to model
a company and the aliasing properties reflected in the com-
pany’s structure. The company offers different jobs, rep-
resented as variables: ceo, cto, programmer1, programmer2,
teamLeader1, teamLeader2, and recruiter. There also is an
employeeOfMonth – but that does not count as a job.

The (aliasing) properties of the company are:

Prop. 1: No one except the CTO can have more than one job.

Prop. 2: The CTO can additionally lead at most one team.

Prop. 3: The CEO can not be employee of the month.

2.2 Core Concepts
We define the core concepts of the proposal, starting with
disjointness domains (Section 2.2.1). Disjointness domains
are arranged in a hierarchy (Section 2.2.2) and may be
linked (Section 2.2.3). The hierarchy and linking together
will determine which aliases are allowed.

2.2.1 Domains and Aliasing
A disjointness domain represents a set of variables satisfying
some aliasing invariants. Every variable (we will use the term
“variable” to refer to both stack variables and fields in the
rest of the paper) is annotated with the domain to which it
belongs. A type of a variable is its class and the domain, e.g.,
Person#unique is a variable type that stores a globally unique
reference to a Person object. Domains have a name and come

in three kinds: strong, weak, and shared. If the domain name
is “D”, these are written D, Wk D or Sh D, respectively.

The aliasing property of interest is whether two variables
may alias, namely whether they can possibly contain a refer-
ence to the same object. We say that two domains may alias
if two variables in the domain may alias.

Strong domains allow little aliasing, weak domains allow
more and shared domains allow the most. In fact when
changing the domain kind of a variable, aliasing grows
monotonically: if a strong domain A and another domain
may alias, it implies that the weak or shared domains Wk A
or Sh A and the other domain may also alias. Similarly, if a
weak domain Wk A and another domain may alias, it implies
that Sh A and the other domain may also alias.

Domains are declared by the programmer, the only initial
domain is a strong domain called unique which permits
no aliasing at all. This domain thus captures the notion of
global uniqueness. New domains can be created by extending
existing ones, which organises domains into a hierarchy.
Domains may also be linked, stating that they may alias.

The kind of a domains, their position in the hierarchy, and
whether they are linked, all influence whether variables in
different domains may alias. These aspects will be discussed
in the remainder of this section.

2.2.2 Domain Hierarchy
New disjointness domains are introduced by extending2 an
existing one. Domains are introduced to include either just
the strong kind (by introducing just a new domain name) or
all three kinds (by annotating the new domain name with
Sh). Domain extension induces a hierarchy of domains and
domains with the same name are considered to be in the
same location in this hierarchy3; diagrams like Figure 2(a)-
Figure 2(c) depict this by putting these three domains (D, Wk D,
Sh D) in the same box. As the only initially accessible domain
is unique, any domain hierarchy is rooted in unique. New
domains can be used to express more fine-grained aliasing
patterns. The extensions of a domain are called its children
and domains being extended are called parents. All domains
preceding a domain in the extends relation are called its
ancestors.

The code in Figure 1 initially introduces domain A whose
parent is unique, and then domains B, Wk B and Sh B, whose
parent is A. C and D will be discussed in Section 2.2.3.

Each disjointness domain exists for a given (lexical) scope,
as indicated in the code above using curly braces. When
a domain goes out of scope, it ceases to exist. This allows
temporary aliasing to be expressed, and even the unaliased
data to be recovered after it has been aliased for a while.

2 Not related to extending Java classes.
3 As the domain kind is not relevant for the location in the domain-hierarchy,
syntactically we always extend from a domain name alone.

domain A extend unique in {
-- domain A introduced for this scope
domain Sh B extends A in {

-- B, Wk B and Sh B introduced for this scope
domain (C, Sh D) extend unique in {

-- C and D are linked
-- C and Wk D are linked
-- C and Sh D are linked
-- Wk C and Sh C are not available

}
}

}

Figure 1. Creating domains from existing domains.

2.2.3 Linked Domains
Domains can be linked together. Any two linked domains may
alias. Linked domains are expressed in code by declaring
them together in the same expression (domains C and Sh D in
the code above). A domain is never linked with itself or the
other two domains with the same name but different kinds.
In addition, if two domains of any kind A and B are linked,
then A’s children and B are also linked. In diagrams, such
as Figure 2(a), domains created together are indicated using
an arc between the arrows from their parents. In this figure,
any domain in the left-most subhierarchy is linked with any
domain in the center subhierarchy (due to the connecting
arc). The domains in the right-most subhierarchy are not
linked with any domain. No domains in different, unlinked
subhierarchies may alias.

2.3 Disjointness Domains and their Invariants
This subsection describes the may-alias invariants imposed
by disjointness domains. Whether or not two domains may
alias depends on the kind of domains and on their locations
in the hierarchy. We cover invariants for each domain kind:
strong (Section 2.3.1), shared (Section 2.3.3) and weak (Sec-
tion 2.3.2).

2.3.1 Strong Disjointness Domains
A strong disjointness domain (or simply strong domain) is
a set of variables that may not alias – we call them locally
unique. The invariants for strong domains are:

Inv-St-Int: Strong domains are internally unaliased – no two
variables in the same strong domain may alias.

Inv-St-Btw: Two strong domains may alias if and only if
they are linked.

Figure 2(a) illustrates the may-alias invariants for the
strong domain D, indicated with the coloured shading. D may
alias with the domains circled in the figure. No circle around
D indicates no aliasing within D (Inv-St-Int). All domains in
the linked left subhierarchy may alias D whereas domains in
the right subhierarchy may not (Inv-St-Btw).

Inv-St-BtwInv-St-Btw

D

unique

.. ..

..

.. ..

..

Sh DWk D

(a) The strong domain D may alias any of the
domains circled. Arcs denote domains created
together – they are linked, and so are their children.
Labels next to circled domains denote the relevant
invariants.

Inv-Wk-IntInv-Wk-IntInv-Wk-Btw1Inv-Wk-Btw1

Sh DWk D

unique

D ..

..

..

.. ..
Inv-Wk-Btw2Inv-Wk-Btw2

..

(b) Weak domain Wk D may alias domains that
are circled. Wk D may alias every domain that the
domain D may alias and additionally may alias
Sh D.

Inv-Sh-IntInv-Sh-Int

Sh D

unique

D ..

.. ..

..

.. ..

Wk D

.. ..

Inv-Sh-Btw1Inv-Sh-Btw1

Inv-Sh-Btw2Inv-Sh-Btw2

(c) Shared domain Sh D may alias domains
that are circled. Sh D may alias every domain
that Wk D may alias and additionally may alias
Wk D and all ancestor domains. Sh D may alias
itself, two variables in that domain may alias.

Figure 2. Changing the domain kind of a variable from strong to weak to shared adds to the set of variables it may alias with.

Traditional uniqueness (e.g.,[10, 20, 27, 30]) is achieved
using the strong domain unique which has no linked domains
and therefore can not alias any other domain.

Running Example: The declarations below set up two
linked domains CTO and Leaders and declare variables for
each job (but not the employee of the month yet). We assume
a Person class to be defined elsewhere. Figure 3 shows the
domain hierarchy of these variables.

1 domain (CTO, Leaders) extend unique {
2 let
3 ceo : Person#unique = new Person,
4 recruiter : Person#unique = new Person,
5 programmer1 : Person#unique = new Person,
6 programmer2 : Person#unique = new Person,
7 cto : Person#CTO = new Person,
8 teamLeader1 : Person#Leaders = new Person,
9 teamLeader2 : Person#Leaders = new Person

10 in ...
11 }

We wanted to express certain properties in Section 2.1 and
now take a look at the first two:

Prop. 1, that no one except the CTO can have more than
one job is present: for a person to have two jobs, two job
variables would need to be referring to that person, making
them aliases. Some variables are unique (their types are
annotated with #unique), and a unique variable can not have
any aliases. The other variables (except cto, which we treat
in the next paragraph) are in the Leaders domain (annotated
with #Leaders) – the Leaders and unique domains are not
linked, so they can not contain aliases (Inv-St-Btw). Also
the Leaders domain is strong – strong domains are unaliased
(Inv-St-Int), so the two team leaders may not alias.

Prop. 2, that the CTO can lead at most one team is present.
It requires aliasing to be possible between the cto variable
and the teamLeader1/2 variables. Since the domains of the
cto variable (CTO) and the team leader variables (Leaders)
are linked, aliasing is indeed possible (Inv-St-Btw). The CTO

can only lead at most one team: for the CTO to lead more
than one team, the two team leaders would need to be aliases.
They can’t be aliases due to the fact that the leaders domain
is aliased (Inv-St-Int).

2.3.2 Weak Disjointness Domains
Weak disjointness domains (simply, weak domains) invariants
are very similar to those of strong domains. The difference
is that weak domains may additionally alias equally-named
shared domains, whereas strong domains cannot.

Inv-Wk-Int: Weak domains are internally unaliased – no
two variables in the same weak domain may alias.

Inv-Wk-Btw1: If a weak domain and any other domain are
linked, they may alias.

Inv-Wk-Btw2: A weak domain Wk D and an equally-named
shared domain Sh D may alias.

Figure 2(b) illustrates these rules. Observe that the circled
domains for weak domains are a superset of those for strong
domains, aliasing grows monotonically.

It is possible to have a single alias in a weak domain
and many aliases in the corresponding shared domain. The
reference in the weak domain is privileged, in that it is
unaliased within the weak domain. This is similar to e.g.,
C++’s difference between stack values (two stack values are
always in different locations) and references (there can be
many references to the same stack value).

2.3.3 Shared Disjointness Domains
A shared disjointness domain (or simply shared domain) is a
set of variables that may alias – we call them locally shared.
Local sharing is, in a sense, the opposite of local uniqueness
(a set of variables that may not alias).

Inv-Sh-Int: Shared domains are internally aliased – any two
variables in the same shared domain may alias.

Inv-Sh-Btw1: If a shared domain is an ancestor of another
domain, they may alias.

Inv-Sh-Btw2: If a shared domain and any other domain are
linked, they may alias.

Figure 2(c) depicts the constraints imposed by these rules.
Note that the set of circled domains in Figure 2(c) is a superset
of the circled domains in Figure 2(a) and Figure 2(b), aliasing
grows monotonically.

Global sharing is possible by putting all variables in the
same shared domain.

Running Example: In Section 2.3.1, we treated the first
two properties of the company, leaving the third.

Prop. 3 of the company example requires that the em-
ployee of the month variable may alias programmers, recruit-
ers, team leaders, CTO – all jobs except the CEO.

Recalling Inv-Sh-Btw1 (if a shared domain is an ancestor
of a domain, they may alias, seeFigure 2(c); we will add
a new shared domain Sh Employees that is an ancestor of
the domains of all variables that the employee of the month
must be able to alias. We put, in Figure 4 and Figure 5, the
employeeOfMonth variable inside the Sh Employees domain
and we will move the other job variables – except ceo – into
domains that are children of Sh Employees.

The domain declaration Sh Employees in source code line
1 indicates that all three domain kinds can be used with that
name (Employees, Wk Employees, Sh Employees). In lines 2
and 3, we extend from Employees.

2.4 Moving and Copying References within and
between Domains

There are four operations on references in domains: moving
a reference from one variable to another; copying a reference
from one variable to another; linked assignment; and recovery.
This subsection describes the semantics of these operations
and the constraints on them to preserve the invariants of
disjointness domains.

unique

CTO Leaders

programmer1
programmer2

cto teamLeader1
teamLeader2

ceo
recruiter

Figure 3. A domain hierarchy for Props. 1 and 2. Circles
depict variables within their domain, they are labelled with
the variable name.

1 domain Sh Employees extend unique {
2 domain Rest extend Employees {
3 domain (CTO, Leaders) extend Employees {
4 let
5 employeeOfMonth : Person#Sh Employees = null,
6 ceo : Person#unique = ..,
7 recruiter : Person#Rest = ..,
8 programmer1 : Person#Rest = ..,
9 programmer2 : Person#Rest = ..,

10 cto : Person#CTO = ..,
11 teamLeader1 : Person#Leaders = ..,
12 teamLeader2 : Person#Leaders = ..
13 in
14 -- we can now choose to make programmer1
15 -- the employee of the month:
16 employeeOfMonth = programmer1
17 }}}

Figure 4. Code implementing the domain hierarchy for
Props. 1-3.

LeadersCTORest

unique

programmer1
programmer2

cto
teamLeader1
teamLeader2

recruiter

Empl. Wk.. Sh.. employeeOfMonthceo

Figure 5. The final domain hierarchy for Props. 1–3. The
employeeOfMonth variable may alias all variables in ancestor
domains (all except ceo).

2.4.1 Moving Assignment
A moving assignment, y = move x, also known as destructive
read, is an assignment from one variable to another that results
in the original variable being destroyed. A moving assignment
is permitted:

• within a strong or a weak domain, preserving alias-
freedom of the domain (Inv-St-Int, Inv-Wk-Int);
• from a strong domain to the equally-named weak domain

(Figure 6(a)), also preserving alias-freedom; or
• from a strong or weak domain to a strong or weak domain

down the hierarchy (Figure 6(b)). The domain kinds do
not need to match.

A Wk A Sh A

(a) Moving a reference,
wka = move a, from
a strong domain to an
equally named weak do-
main.

A Wk A Sh A

B Wk B Sh B

(b) Moving a reference from a
strong domain down the hierarchy
(b = move a).

A Wk A Sh A

(c) Copying a reference,
sha = copy wka,
from a weak domain to
a shared domain.

A Wk A Sh A

B Wk B Sh B C Wk C Sh C

(d) Linked assignment (b, c) = move a from
a parent domain to linked child domains, making b
and c aliases.

Figure 6. Examples of legal assignments. – Variable; – Destroyed variable.

2.4.2 Copying Assignment
A copying assignment, y = x, is the standard assignment
operator, which copies the reference in x and stores it in y.
As copying assignment introduces aliases, only the following
cases are permitted:

• within the same shared domain.
• from a weak domain to an equally-named shared domain

(Figure 6(c)). This allows a weak domain to alias a shared
domain.
• from a domain to a shared ancestor domain.

The rules above allow weak domains to alias equally
named shared domains. In contrast, strong domains may not
alias equally named shared domains as a moving assignment
from the strong domain is necessary to assign to the weak
domain (Section 2.4.1).

2.4.3 Linked Assignment
A linked assignment, (y1, .., yn) = move x, is the only
way to create aliases in linked domains. It is a moving
assignment that has multiple target variables on the left
hand side. It copies the reference into each target variable,
destroying the original variable. For instance, the expression
above stores the reference from x in the variables y1, .., yn
(making them aliases) and destroys x in the same step. Linked
assignments can create aliases between linked strong domains.
The original variable is destroyed to prevent the reference
ending up in unlinked child domains through subsequent
operations.

A linked assignment (y1, .., yn) = move x is permit-
ted only if variables x, y1, .., yn are all in strong or weak
domains; and the target variables y1, .., yn are in linked
domains; and x is in a parent domain of those linked domains
(Figure 6(d)).

2.4.4 Getting Uniqueness Back
Domain extension, as described above, introduces new do-
mains that can be used to describe aliasing. The lifetime of
the newly-introduced domains is governed by a lexical scope.
At the end of that scope, all aliases in the new domains vanish
– they are not well-typed any more. This allows programmers
to express temporary aliasing. The final operation, recovery,
allows programmers to pull some of the references in do-
mains that go out of scope and place them into an ancestor
domain.

For example, in Figure 3 we can recover variables in either
the CTO or the Leaders domain to be assigned to variables
in unique when both CTO and Leaders go out of scope. This
does not break unique’s invariants as any two variables in the
same child domain may not alias each other and may also not
alias any variable in unique.

In the following example,
let f : Person#B =

domain A extend B in { new Person#A }

the expression within the domain block has type Person#A.
As A goes out of scope at the end of the block, this value
is returned, but its type is changed to Person#B. The whole
domain expression is well-typed if this resulting type is valid.
For instance,

let f : Person#Sh B =
domain Sh A extend B in { new Person#Sh A }

only works if Sh B is a legal domain.
The value returned from a domain extension expression

can also be a tuple or any class type with domain parameters
(Section 3.1), allowing more than one value of the domain
going out of scope to be placed back up the hierarchy.

In the code example below, linked domains A and B are
declared and used for aliasing (line †). At the end of the
domain expression’s body, the variables x and z are recovered
to unique by returning a tuple from the domain expression,
and all occurrences of A in the return type are cast to unique.

Person#unique p = new Person;
-- the return value will be recovered from
-- type (Person#A, Person#A) to
-- type (Person#unique, Person#unique):
(a,b) : (Person#unique, Person#unique) =

domain (A, B) extend unique in {
let x : Person#A = null,

y : Person#B = null,
z : Person#A = new Person in {

(x, y) = move p; †
x.setName(’Alice’);
(move x, move z) -- return two Persons,

-- they will be recovered
}

}

Recovering allows to express in code that an object is
aliased during one phase of its lifetime, but not later.

Recovering here is similar to recovering uniqueness after
borrowing in external uniqueness [12], though recovery is
more fine-grained.

3. From May-Not-Alias to Object
Disjointness

The disjointness domains invariants that we presented in
Section 2 are about shallow aliasing – they say nothing about
state reachable from two references. But knowing that two
objects x and y are disjoint (meaning there is no pair of access
paths x.f1..fi and y.g1..gj that alias) is useful: for example
in order to know whether two method calls can be parallelised
and in order to conclude that one object’s invariants can not
be broken by accesses to the other object.

Classes and methods are parameterised by domains (Sec-
tion 3.1) and can only use domains they get as parameters.
Passing domains as parameters enables static, local reasoning
about the disjointness of objects (Section 3.2).

3.1 Declaring Class Aliasing using Domain Parameters
In order to modularly reason about whether two objects may
contain shared state we need to know what domains the fields
of the objects (and of reachable objects) are in. Domain
parameters on classes tell us exactly that: classes can only
use domains that they have been parameterised with.

Disjointness domains can be passed through a program
using parameters on classes and methods. The formal para-
meters are always phrased in terms of domain relations, e.g.,
(Leader, Members) extend U as in the code below. This do-
main relation allows methods to assign (Section 2.4) into
the Leader and Member domains. If the parameters are at the
class level, the class can put its fields in domains Leader and
Members.

class Team[(Leader,Members) extend U] {
-- can only use unique, Leader, Members domains
teamName : String#unique;
teamLeader : Person#Leader;
programmer1 : Person#Members;
programmer2 : Person#Members;

}

Similar to domain expressions, if a parameter is strong,
only the strong domain is legal, if a parameter is shared, the
strong and weak domains of the same name are also legal.
In addition, it is possible to bind weak domains to strong
domain parameters, e.g., type Team[(Wk A, B)] makes sense.
In this case, the class will treat references stored in its fields
as if they were in strong domains and hence cannot have
fields in the Sh A domain. Code that uses such an object
will however see the fields as being in a weak domain and
therefore has the ability to create aliases that the class itself
couldn’t. Section 3.2 applies this knowledge in practice.

In this system, a class that has no parameters at all main-
tains that all of its objects are encapsulated: as the class in-
ternally can only use the unique domain, no aliasing from
the outside is possible.

As a design tradeoff, this system does not currently allow
the binding of shared domains to strong parameters since
allowing shared domains to bind to strong parameters would
make parallelism more complex and perhaps surprising: be-
cause this.programmer1 and this.programmer2 may in fact
alias when a shared domain is bound to Members, additional
features like silently converting parallel calls on the two fields
to sequential calls would be required.

The advantage of allowing shared domains to strong
parameters would be increased reuse: e.g., a Team with a
shared domain bound to its Members domain parameter could
then also have the same person working both the programmer1
and programmer2 jobs – while the Team guarantees, by only
requiring strong parameters, that the Team will not introduce
such aliasing itself. Similarly, the list presented later in this
paper could then bind a shared domain to its Data parameter
to be able to contain the same element several times.

3.1.1 Domain Extension in Classes
Class declarations may introduce internal domains for their
fields by extending any domain visible to them. This is
straightforward and enables a simple form of ownership
types [13], as domain names introduced internal to a class are
not visible externally. Values created in external domains can
be moved into internal domains, but recovering such values
requires tracking when the object becomes garbage. While
this is possible, this extension is left for a separate paper.
Furthermore, we omit the discussion of domain extensions
internal to a class, as these can in part be modelled using class
parameters (see Section 5.1).

3.2 Disjointness of Objects
Propagating domains through classes as parameters (Sec-
tion 3.1) seamlessly allows modular reasoning about the
worst-case aliasing of an object (a conservative approxim-
ation), independent of its implementation:

If no domain that an object uses may alias a domain the
other object uses, the objects are guaranteed to be disjoint.

The invariants from Section 2 are still the same, but they
now seamlessly apply to object disjointness.

List[CTO] List[CTO] List[Leaders]

Employees

LeadersCTO

Figure 7. The two objects of type List[CTO] are always
disjoint, but a List[CTO] and a List[Leaders] may share
reachable state, as CTO and Leaders are linked and thus may
alias.

Consider a hypothetical list implementation that has a
strong domain parameter called Data that the nodes’ fields
that contain references to the elements are put in. In Figure 7,
let two lists bind CTO to their Data parameter (putting all their
element fields in the CTO domain) and the third list binds
Leaders to its Data parameter. Just locally analysing the
parameters allows concluding that the first two lists must
be disjoint, but the third list may share elements with any or
both of the first two lists.

4. Recipes for Local Aliasing Invariants
Disjointness domains allow aliasing properties to be ex-
pressed in a tractable way, lending itself to powerful may-alias
reasoning (Section 2) and disjointness reasoning (Section 3).
The table in this short section gives an intuition about how
common idioms of aliasing are expressed statically using
disjointness domains. The code in Section 5.1 applies some
of these recipes.

Local invariant Recipe
All the elements in a list are
mutually unique

Put element fields in same
strong domain E

All the elements in list are glob-
ally unique

Put element fields in the
unique domain

All next-fields refer to differ-
ent links

Put fields in same strong do-
main D

In addition to above, add
pointer to last list element

Put last-field in domain
linked with D

In addition to above, add an
iterator

Make D above a weak domain

Share elements across two lists Use types List[D1] and
List[D2] with linked D1, D2

Reference in variable x in do-
main D is aliased for a scope S

Extend D to linked D’, D’’ for
S and move x there. When S
exits, recover x.

Send a temporary alias as argu-
ment to method m

Use a domain parameter D to
m which will go out scope as
the method exits

In addition to above, keep value
in-place

Make D shared

5. Disjointness for Parallelism
Disjointness domains give weaker invariants than global
uniqueness. These weaker invariants are still strong enough
to give useful guarantees about aliasing. To demonstrate a

practical use case of disjointness domains, we show how
to exploit its invariants to give safe (data-race free and
deterministic) parallelism.

If two expressions only access disjoint data, they are
safe to run in parallel. The expression letpar x=e1‖y=e2
in e3 runs e1 and e2 in parallel and runs e3 when both have
finished. Analysing whether e1 and e2 can run in parallel is a
local check that the variables4 used in e1 are unaliased with
the variables used in e2 and that all objects reachable from
variables in e1 are disjoint from all objects reachable from
variables in e2.

Applying the may-alias reasoning from Section 2 and
the disjointness reasoning from Section 3.2, this check is
straightforward; Figure 8 shows an expression we might use
in the running example.

letpar
score1 = programmer1.performanceScore() ‖
score2 = programmer2.performanceScore()

in if (score1 > score2) {
employeeOfMonth = programmer1

} else {
employeeOfMonth = programmer2

}

Figure 8. Scoring programmers in parallel.

Even though programmer1 and programmer2 may both
be aliased with the previously declared employeeOfMonth
variable, they may not be aliased with each other as they
are both in the same weak domain Wk Rest (see Inv-Wk-Int).
Also, state reachable from the Person object referenced by
programmer1 can not overlap with state reachable from the
Person object referenced by programmer2 as the person class
is encapsulated (Section 3.1) and the .performanceScore()
method calls may therefore be parallelised. For parallelism
of the two calls, the employeeOfMonth variable is innocuous
and the type system recognises this.

5.1 Example: Doubly Linked List
We now use disjointness domains to express the necessary
aliasing properties for a doubly-linked list that supports both
external iterators and a deterministic parallel internal iterator
(a foreach method that takes a function as an argument,
which is then applied to all elements). Figure 9 shows an
instance of a doubly linked list and an external iterator whose
cursor field stores a reference to one of the list’s nodes.

A doubly-linked list is an interesting use case as its
forward- and backward-links alias. The iterator further needs
to alias the forward links in order to iterate over the list and
to alias the elements variables (a destructive read in each case

4 The semantics requires that no access paths of the form x.f1...fn are
in either e1 or e2 (for paths, temporary variables can be used). Allowing
such paths in the expressions would require reasoning about race freedom to
become more complex, as we’d also need to make sure that no prefix of any
path is reachable from the other expression.

last
first next next

prev prev
element elementelement

ref. in Wk Fwd

ref. in Bwdref. in Wk Data

 cursor

ref. in Sh Fwd

em
plo

ye
es

iter

Figure 9. Object graph from the code in Figures 10 and 11
with an iterator. Decorations on the arrows denote domain
membership.

would destroy the list structure). These two cases of aliasing
cover aliasing within a data structure, and external aliasing
into a data structure plus the storing of borrowed variables on
the heap, namely the cursor field of the iterator.

5.1.1 The List Class
A doubly-linked list class (Figure 10) uses the linked domains
Fwd and Bwd for the nxt and prv fields, respectively. As a
node in a doubly linked list always has exactly two variables
referring to it (one in forward- and one in backward-direction),
linking the Fwd and Bwd domains allows creating these aliases.

class List[(Fwd,Bwd) extend U, Data extend U] {
fst : DLink[(Fwd,Bwd),Data]#Fwd; -- †
lst : DLink[(Fwd,Bwd),Data]#Bwd;

def @U add(elt : Person#Data) {
let

newL = new DLink[(Fwd,Bwd),Data]
in {

if null == this.fst then {
-- create aliases in Fwd and Bwd domain:
(this.fst, this.lst) = move newL; -- ‡
this.fst.elt = move elt

} else {
...

}
}

}

Figure 10. Excerpt of a doubly-linked list class.

The add method in Figure 10 creates a new link and stores
it in a temporary variable in the unique domain. Linked
assignment to two variables introduces the aliases for the
forward links and backward links. The add method declares,
using the @U annotation, the type of this to be in the U domain
which is bound to the parent domain of the domains Fwd
and Bwd are bound to. This must hold at the call-site and
guarantees, internal to the method, that this and (for instance)
this.nxt are not aliases, and hence that the list is not cyclic

when the method is running. When not explicitly given, the
annotation will default to unique as the domain of this.

The this variable is immutable and therefore the reference
cannot be moved (moving the reference would reassign this
to null). Consequently, syntactic sugar can reinstate the
variable a method was called on after the method call returns,
as if the method would have returned the this variable.

class DLink[(Fwd,Bwd) extend U, Data extend U] {
nxt : DLink[(Fwd,Bwd),Data]#Fwd;
prv : DLink[(Fwd,Bwd),Data]#Bwd;
elt : Person#Data;
def @Fwd foreach(f: [D](Person#D)->Person#D) {

-- move from fields to stack vars, s.t. the
-- type checker can prove disjointness
let elt = move this.elt,

nxt = move this.nxt
in {

letpar
-- call the function with the element:
newPerson = f(move elt) ‖
-- in parallel, map over rest of list:
y = if null == nxt

then null
else nxt.foreach(f)

in {
-- put back the element:
this.elt = move newPerson;
this.nxt = move nxt;

}
}

}
Figure 11. Excerpt of a link class for the doubly-linked list.
The type of the f parameter, [D](Person#D) -> Person#D
describes a lambda function that receives an Person#D argu-
ment in some polymorphic D domain, and returns the same
type.

5.1.2 The Link Class
Figure 11 shows the Link class. Similarly to the list, link
objects require linked Fwd, Bwd and Data parameters. Whereas
the list only contained fields in the first two domains, the link
also directly uses the Data parameter by putting its element
elt field into that domain.

For the parallel foreach method, the letpar expression
applies the lambda function to the element and calls foreach
on the rest of the list in parallel.

For letpar to be safe (Section 5), a) all of the variables in
the left expression must be unaliased with all of the variables
in the right expression and b) all objects reachable from
the variables in the left expression must be disjoint from
all objects reachable from the right expression. If this was
not the case, data races would be possible. Lambda functions
can not capture any context so they may, as an exemption5,
occur in both the left-hand and right-hand side expressions

5 Immutable data and primitive values could be similarly exempt, but we
don’t treat them in this paper

class Iterator[(Sh Fwd, Bwd) extend U,
Sh Data extend U] {

cursor : DLink[(Wk Fwd,Bwd), Wk Data]#Sh Fwd;
def init(fst :

DLink[(Wk Fwd,Bwd), Wk Data]#Sh Fwd) {
this.cursor = fst

}

def get() : Person#Sh Data {
-- the elt field is in a weak domain,
-- so we can copy the element:
this.cursor.elt

}

def step() : bool {
if this.hasNext() then {

this.cursor = this.cursor.nxt;
true

} else {
false

}
}
...

Figure 12. The iterator code for the doubly-linked list.

(as the variable f does). This leaves the variable elt in the
left expression and nxt in the right expression (with types
Person#Data and DLink[(Fwd, Bwd)]#Fwd).

The variables nxt and elt are a) unaliased as the domains
Data and Fwd are not linked, as required by the class (the
class requires Fwd, Bwd and Data to have the same parent
and domains bound to these parameters must satisfy this
constraint); nxt and elt are also b) disjoint, as the class type
Person does not have any domain parameters and is therefore
encapsulated.

5.1.3 The Iterator Class
Neither the list nor the link classes need shared fields for their
implementation. However, the iterator in Figure 12 needs to
be able to copy, non-destructively, the nxt field of links.

By making the Fwd and Bwd parameters strong, the list class
in Section 5.1.1 denoted the strongest aliasing semantics that
the list’s methods can work with, while other code may reuse
the class with weak domains bound to those strong parameters.
The iterator in Section 5.1.3 reuses the list in such a way.

In order to iterate non-destructively, the iterator explicitly
only accepts lists whose Fwd and Data domain parameters
are bound to weak domains. That allows the iterator to copy
the references to the list’s nodes into its cursor field and
returning elements without destroying the elt field without
the list changing its interface to a more permissive one using
shared parameters. A programmer can therefore first write
a list implementation that only requires strong domains –
without having to anticipate how the list will later be used
– but then still reuse the same implementation with weak
domains bound to the domain parameters to also get iterators.

Now we can use the list and iterators in our running
example. Using the domains we have set up in Section 2.3.3,
and using syntactic desugaring of the expression (e1 ‖ e2) to
letpar x = e1 ‖ y = e2 in null:

...
domain (Sh Fwd, Bwd) extend unique in {

let
programmers = new List[(Wk Fwd, Bwd), Wk Rest];
iter = new Iterator[(Sh Fwd, Bwd), Sh Rest];

in {
employees.add(new Person);
-- can copy fst, because it’s in Wk Fwd:
iter.init(employees.fst);
-- employee1 has inferred type Person#Sh Empl:
let employee1 = iter.get() in {

-- parallel access is racy:
(employee1.modify() ‖

employees.map(...)); -- ERROR †
-- sequential access is safe:
(employee1.modify();

employees.map(...)) -- COMPILES
}

}
}

The example uses straightforward type inference in the
let expressions (we do not annotate the types of the variable
bindings). We create the necessary domains from unique,
making sure to link Fwd and Bwd but not Data as the list’s
parameters require. The race in line † and below rightfully
fails to compile because that employee1 is disjoint from
employees cannot be derived.

6. Semantics of Disjointness Domains
The core idea of disjointness domains is simple. Variables
(and fields) are grouped into sets which have aliasing invari-
ants attached to them. The sets are propagated through the
program to maintain these invariants, and allow local reas-
oning about aliasing. Relations between domains capture
how variables in one may be assigned from variables in an-
other allowing cheap reasoning about the possible aliasing of
variables in a source location.

Shared, weak and strong domains allow proving increas-
ingly strong properties about the aliasing in a program, and
also capture patterns of aliasing. Strong domains express a
form of ownership: a variable owns a certain share of the
object it refers to. A variable in unique is the sole owner of
the object it refers to. Weak domains are a weaker form of
ownership: variables also own a share of the object they refer
to, but they explicitly allow borrowing. Variables in shared
domains are borrowed references that do not encode any own-
ership (after all, there can be an unlimited number of shared
aliases) and are useful, for example, to keep track of positions
in larger data structures like in the iterator.

In this section, we give a formal account of our design in
the context of the Java-like language Gift. In particular, we
show how domain information is propagated, used to reason
about domain-relations and aliasing; we finally show how

this information can be used to reason about non-interference
of expressions to enable static checking of their safe parallel-
isation.

Apart from destructive reads, there is nothing special in
Gift that is required for disjointness domains to be soundly
implemented. For clarity, we use explicit move and copy
keywords for assignment with and without movement se-
mantics.

A full table of the judgements is in Appendix B.

6.1 Core Syntax
Table 1 contains the syntax of the core language that we will
use in this section.

∆ ::= ε | ∆, R Relation environment
R ::= DT extend d Domain relation
DT ::= (D1 ,D2) Domain tuple of linked domains
D ::= K d Domain
K ::= St | Wk | Sh Dom. kind: strong/weak/shared
d ::= dn | unique Domain: user def. or unique
T ::= Tv | . . . Type: view or func (omitted)
Tv ::= To#D View type
To ::= c[DT i

i
] Object type

V ::= x : T Variable binding
e ::= Expression

| ea Access expression
| (V1 ,V2) = e1 in e2 Linked assignment
| letparV1 = e1 ‖ V2 = e2 in e3 Parallel let
| domain (D1 ,D2) extend d in e Dom. extension

ea ::= move p | copy p | p Access expression
p ::= x | this | p.f | v Access path

Table 1. Core syntax. Meta variables: x , y , f , g for variable-
and field-names, c for class names, dn for user-defined do-
main names.

A relation environment ∆ contains domain relations. A
domain relation introduces a domain tuple (two linked sibling
domains) with two domains that extend a parent domain name.
The parent is a domain name, as the parent’s domain kind
does not matter. The formalism handles only 2-tuples of
new domains WLOG: when only one domain is desired,
the other domain may be ignored, when more than two
linked domains are desired, we can use 2-tuples to construct
them, e.g., a construction with the same aliasing semantics as
domain (A,B,C,D) extend X in {...} looks like this:

domain (A, Tmp) extend X in {
domain (B, Tmp’) extend Tmp in {

domain (C, D) extend Tmp’ in { ... }}}

A view type Tv is the local view of an object used for
variables. It is an object-type To decorated with the domain
of the variable and there may be aliases referring to the same
object with different view types, but they will all have the
same object type To.

A domain is a domain kind (either St, Wk, or Sh) and a
domain name.

6.2 Well-Formedness
We present well-formedness judgement by judgement, with
an explanation following each of them. The static variable
environment E is a standard map from variables to types
and we omit its definition. We further omit some judgements
(like well-formed programs, well-formed class definitions,
and well-formed method definitions) for not being necessary
to understand disjointness domains.

` ∆ (Well-formed relation environment)

W F - R E N V- E M P T Y

` ε

W F - R E N V- E X T
` ∆ K1,K2 ∈ {St,Sh}
d1 6= d2 d1, d2 6∈ ∆

` ∆, (K1 d1,K2 d2) extend d

A well-formed relation environment ∆ contains domain
relations of the form DT extend d as they are introduced by
either domain expressions or by domain-parameters. The do-
main kinds of the linked domains DT are either St (strong)
or Sh (shared), reflecting how domains are created (see Sec-
tion 2.3.3, running example). An empty relation environment
is well-formed (rule W F - R E N V- E M P T Y). Extending a re-
lation environment is only well-formed if none of the newly
introduced domain names already exist (rule W F - R E N V-
E X T).

∆ ` d (Well-formed domain names)

W F - D N A M E - U Q

` ∆

∆ ` unique

W F - D N A M E - L K P
(K1 d1,K2 d2) extend d ′′ ∈ ∆

d ∈ {d1, d2} ` ∆

∆ ` d

According to rule W F - D N A M E - U Q , the domain name
unique is well-formed in any well-formed relation environ-
ment ∆. Other domain names are well-formed if and only if
the relation environment contains a relation that introduces
the domain name.

∆ ` D (Well-formed domains)

W F - D - L K P
(D1,D2) extend d ∈ ∆
` ∆ D ∈ {D1,D2}

∆ ` D

W F - D - S T
∆ ` Sh d

∆ ` St d

W F - D - W K
∆ ` Sh d

∆ `Wk d

A domain D is well-formed if it is found in the well-
formed domain relation environment (rule W F - D - L K P). If a
shared domain is well-formed, it also implies that its strong
and weak counterparts are well-formed (rules W F - D - S T and
W F - D - W K); unique is well-formed in any well-formed ∆
(rule not shown).

6.3 Aliasing
In this section, we formalise reasoning about aliasing and
object disjointness using disjointness domains. We start with
simple building blocks related to the hierarchy of domains
and finish with object disjointness, E ; ∆ ` x1⊥⊥x2.

6.3.1 Domain Extension

∆ ` d1 ≺ /≺∗ d2, (Domain name extension)

A - E X D I R E C T- L O O K U P
(K ′ d ′,K ′′ d ′′) extend d2 ∈ ∆

d1 ∈ {d ′, d ′′}
∆ ` d1 ≺ d2

A - E X T R - D I R E C T
∆ ` d1 ≺ d2

∆ ` d1 ≺∗ d2

A - E X T R - T R
∆ ` d1 ≺∗ d ′
∆ ` d ′ ≺∗ d2
∆ ` d1 ≺∗ d2

A - E X T R - U Q

∆ ` d1

∆ ` d1 ≺∗ unique

The extension-relations (direct extension ≺ and transitive
extension ≺∗) express the partial order in which domain
names were introduced. This is used to reason about what
domains may contain aliases.

6.3.2 Linked Domains

∆ ` not-linked(d1, d2) (Domain names are not linked)

A - N O T L I N K E D - S I B L I N G
` ∆

(D1,D2) extend d ∈ ∆ (D ′1,D
′
2) extend d ∈ ∆

(D1,D2) 6= (D ′1,D
′
2)

K1 d1 ∈ {D1,D2} K2 d2 ∈ {D ′1,D ′2}
∆ ` not-linked(d1, d2)

A - N O T L I N K E D - C H I L D
∆ ` d1 ≺ d ′1

∆ ` not-linked(d ′1, d2)

∆ ` not-linked(d1, d2)

A - N O T L I N K E D - S Y M M
∆ ` not-linked(d2, d1)

∆ ` not-linked(d1, d2)

Rule A - N O T L I N K E D - S I B L I N G expresses that two
domain names d1, d2 are not linked (linked domains can not
alias, as explained in Section 2.2.2) if they directly extend the
same domain name d but are not created together in the same
domain tuple. Rule A - N O T L I N K E D - C H I L D expresses that
if two domains d′1 and d2 are not linked, then d′1’s child d1
and d2 are also not linked. The relation is symmetric by
rule A - N O T L I N K E D - S Y M M.

6.3.3 Reference Flow in Assignment

∆ ` D1
copy−−−→ /

move−−−→ /
linked−−−−→ D2 (Reference flow)

A - C A N M O V E - S T W K
K ,K ′ ∈ {St,Wk}

K ′ = St =⇒ K = St
∆ ` K ′ d

∆ ` K d
move−−−→ K ′ d

A - C A N C O P Y- S
∆ ` Sh d

K ∈ {Wk,Sh}
∆ ` K d

copy−−−→ Sh d

A - C A N C O P Y- U P
∆ ` d ≺∗ d ′

∆ ` K d ∆ ` Sh d ′

∆ ` K d
copy−−−→ Sh d ′

A - C A N L I N K E D - D I R E C T
K ∈ {St,Wk} ∆ ` K d
(K1 d1,K2 d2) extend d ∈ ∆

∆ ` K d
linked−−−−→ (St d1,St d2)

As explained in Section 2.4, assignment of references from
variable to variable is governed by the domains the target and
the source variable are in. Assigning using the move operator
from a variable in domain D1 to a variable in domain D2 is
only possible if ∆ ` D1

move−−−→ D2 can be derived.
The rule A - C A N M O V E - S T W K allows a programmer

to move from a strong domain to its weak counterpart, or
from a strong domain to itself or from a weak domain to
itself. Moving down the hierarchy is omitted w.l.o.g, as linked
assignment allows moving down the hierarchy.

Rule A - C A N C O P Y- S allows her to copy from a weak or
shared domain to a shared domain with the same name. The
rule A - C A N C O P Y- U P allows her to copy from a domain
to a shared domain that is an ancestor, as required by the
≺∗ relation. Having this rule forces us to recover strong
child domains only to weak parent domains if there exists a
weak parent domain: an alias of a variable in a strong child
domain could have been created in the shared parent domain.
Recovering the child variable to a variable in the strong parent
domain would be unsound as now there would be aliases in
the strong and shared domains of the same name.

Last, rule A - C A N L I N K E D - D I R E C T allows her to ex-
ecute a linked assignment down the hierarchy. Similarly,
if two domains are created in the same expression, linked-
assignment from unique to linked domains is always possible
(rule not shown).

We omit convenience rules that exist solely to prevent
temporary variables, e.g., the rule that makes the move−−−→
relation transitive, the rule that allows a move to either domain
in a domain tuple if the linked assignment to the domain tuple
is allowed (“moving down the hierarchy”) and the rule that
allows linked assignments also to weak domains down the
hierarchy.

6.3.4 May-Not-Alias for Domains

∆ ` D1 ⊥D2 (Domains may not alias)

A - D M N A - S A M E N A M E
K1 = St ∨ (K1 6= Sh∧K2 6= Sh)

∆ ` K1 d ∆ ` K2 d

∆ ` K1 d ⊥K2 d

A - D M N A - S Y M M
∆ ` D2⊥D1

∆ ` D1⊥D2

A - D M N A - N O T L I N K E D
∆ ` not-linked(d1, d2)

∆ ` K1 d1 ∆ ` K2 d2

∆ ` K1 d1⊥K2 d2

A - D M N A - A N C E S T O R
∆ ` d2 ≺∗ d1
K1 ∈ {St,Wk}

∆ ` K1 d1 ∆ ` K2 d2

∆ ` K1 d1⊥K2 d2

The judgement ∆ ` D1 ⊥D2 means that two domains
may not be aliased.

By rule A - D M N A - S A M E N A M E, domains with the same
name but possibly different domain kinds may not alias if a)
one domain kind is strong or b) none is shared. See Inv-St-Int.

By rule A - D M N A - S Y M M , the relation is symmetric.
By rule A - D M N A - N O T L I N K E D , unlinked domains

may not alias. This is so as no reference can have been stored
in two variables in both unlinked subhierarchys – it could
only have been moved into one of the two. See Inv-St-Btw,
Inv-Wk-Int.

If two domains are related by extension (transitive), rule A -
D M N A - A N C E S T O R expresses that if the ancestor domain
K1 d1 is strong or weak, that is proof that the reference has
not been moved down in the hierarchy yet – therefore, there
can’t be aliasing. See Inv-St-Btw, Inv-Wk-Btw1.
The invariant Inv-Wk-Btw2 says that a weak domain Wk D and
an equally-named shared domain Sh D may alias. The rules
therefore do not allow deriving ∆ `Wk d⊥Sh d. Similarly
for Inv-Sh-Int (any two variables in a shared domain may
alias), Inv-Sh-Btw1 (if a shared domain is an ancestor of a
domain, they may alias) and Inv-Sh-Btw2 (if a shared domain
and any other domain are linked, they may alias).

6.3.5 Object Disjointness

E ; ∆ ` x1⊥⊥x2 (Object disjointness)

A - D I S J O I N T- C A N N O T S H A R E
E ; ∆ ` x1 : T1 E ; ∆ ` x2 : T2

∀D1 ∈ domains(T1),D2 ∈ domains(T2). ∆ ` D1⊥D2

E ; ∆ ` x1⊥⊥ x2

The objects referred to by two stack variables x1, x2 are
disjoint if there are no two paths x1.f1 . . . fi and x2.g1 . . . gj
(with i, j ≥ 0) that may be aliases.

The domains helper function returns a conservative (max-
imally aliased) set of all the domains that a type may use for
fields and the domain of the original variable; for view-types
Tv ::= To#D, these are the domain parameters of the object

type To and the domain D, while for a function type it is an
empty set (reflecting that functions can not capture any state
and are freely sharable).

For i = 0 ∨ j = 0, A - D I S J O I N T- C A N N O T S H A R E
requires that the two variables may not alias directly (and that
neither is reachable from the other) by using the domains-
function that also returns the domain D of the original
variable.

For i > 0 ∧ j > 0, A - D I S J O I N T- C A N N O T S H A R E
looks at a conservative approximation of the domain para-
meters D1 that the x1 object can use for its fields and all the
domains D2 that the x2 object can use: if there is no domain
from x1 that may alias any domain in x2 and vice versa, then
there cannot be any field in the aggregate after x1 that reaches
the object at the end of x2 or any object in the aggregate after
it (or vice versa).

For instance, when parallelising foreach in Section 5.1.2:
domains(DLink[(Fwd,Bwd),Data]#Fwd) = {Data, Fwd,Bwd},
domains(Person#Data) = {Data}. Running an expression
involving such a DLink object in parallel with an expression
involving such an Person object is allowed as all pairs of
domains may not alias:

∆ ` Data ⊥ Data (by rule A - D M N A - S A M E N A M E)
∆ ` Fwd ⊥ Data (by rule A - D M N A - N O T L I N K E D)
∆ ` Bwd ⊥ Data (by rule A - D M N A - N O T L I N K E D)

6.4 Well-Typedness
6.4.1 Well-Formed Type

∆ ` To (Well-formed object type)

W F - O T- M AT C H
∆ ` classpmatch(To) a σ

∆ ` To

A U X - D E F PA R A M S - L K P

class c[Ri
i
]{Vj

j
Mk

k} ∈ P

defparams(c) = Ri
i

A U X - C P - M AT C H

defparams(c) = Ri
i

∆; id ` pmatch(DTi
i
,Ri

i
) a σ

∆ ` classpmatch(c[DTi
i
]) a σ

A U X - P - M AT C H
` ∆ (D1,D2) extend d ∈ ∆

canbind(D ′1,D1) canbind(D ′2,D2)
σ′ = [D ′1 7→ D1,D

′
2 7→ D2] ◦ [∀K .K d ′ 7→ K d]

∆\(D1,D2) extend d = ∆′

∆′;σ ◦ σ′ ` pmatch(DTj
j
,R′i

i
) a σ′′

∆;σ ` pmatch((D1,D2)DTj
j
, (D ′1,D

′
2) extend d ′R′i

i
) a σ′′

A U X - C A N B I N D - K I N D S
Kdecl = Sh =⇒ Kuse = Sh

Kdecl = St =⇒ (Kuse = St ∨ Kuse = Wk)

canbind(Kdecl ddecl ,Kuse duse)

An object type To is well-formed (rule W F - O T- M AT C H)
if we can match the class’ declaration site relations to the type
parameters (rule A U X - C P - M AT C H). The judgement ∆;σ `
pmatch(DTi

i
, Ri

i
) a σ′ matches bound domain tuples (and

their parent domains, which are implicitly present in ∆) to
declaration site domain relations and returns a substitution
σ′ which maps declaration-site domains to use-site domains.
The composition of substitutions σ ◦ σ′ is undefined if there
exists a domain D such that σ(D) 6= σ′(D).

When matching parameters, we need to make sure that
the declaration site domain kinds and the use site domain
parameters are compatible: shared domains at declaration site
require a shared use site domain while strong domains at de-
claration site can be bound to a strong or weak parameter, as
explained in Section 3.1. The rule A U X - C A N B I N D - K I N D S
enforces this rule. By removing the matched relation from the
environment and matching the rest of the parameters with ∆’
(∆\(D1, D2) extend d = ∆′), we avoid matching the same
use-site domains to different parameters at declaration site. If
we would not do that, we could bind the same use site domain
to two declaration site domains that are not linked. Binding,
for instance, the same shared domain to notlinked declaration
site domains could lead to two variables in those domains
being aliases when from the class’ view point they must not
be.

6.4.2 Well-Typed Path and Expression

E ; ∆ ` p : T (Well-typed path)

W T- P - X
∆ ` T

∆ ` E x : T ∈ E
E ; ∆ ` x : T

W T- P - P F
∆ ` To#D

E ; ∆ ` p : To#D
f : Tv ∈ fields(∆, To)

E ; ∆ ` p.f : To#D

A variable’s type is stored directly in the variable envir-
onment E (rule W T- P - X). In rule W T- P - P F , the type of a
path p.f relies on a field lookup: f : Tv#D ∈ fields(∆, To).
The field lookup simply substitutes the domains bound for an
object’s declared parameters, similarly to type substitution in
e.g., Java’s generics.

E ; ∆ ` e : T (Well-typed expression)

W T- E - M O V E
p 6= this

E ; ∆ ` p : To#D ′

∆ ` D ′
move−−−→ D

E ; ∆ ` move p : To#D

W T- E - C O P Y
E ; ∆ ` p : To#D ′

∆ ` D ′
copy−−−→ D

E ; ∆ ` copy p : To#D

W T- E - L I N K E D

E ; ∆ ` e1 : To#K d ∆ ` K d
linked−−−−→ (D1,D2)

E , x1 : To#D1, x2 : To#D2; ∆ ` e2 : T

E ; ∆ ` (x1 : To#D1, x2 : To#D2) = e1 in e2 : T

W T- E - L E T PA R
starts(e1) = [xi

i] starts(e2) = [yj
j]

∀x ∈ xi
i , y ∈ yj

j . E ; ∆ ` x ⊥⊥ y
E ; ∆ ` e1 : T1 E ; ∆ ` e2 : T2

E , x : T1, y : T2; ∆ ` e3 : T

E ; ∆ ` letpar x : T1 = e1 ‖ y : T2 = e2 in e3 : T

W T- E - D O M A I N
∆ ` d ′

E ; ∆, (K1 d1,K2 d2) extend d ′ ` e : T ′

` ∆, (K1 d1,K2 d2) extend d ′

T = recoverd1 7→d′(T ′) ∆ ` T

E ; ∆ ` domain(K1 d1,K2 d2) extend d ′ in e : T

Rules W T- E - M O V E, W T- E - C O P Y, and W T- E - L I N K E D

use the move−−−→,
copy−−−→, linked−−−−→ judgements. They constrain

reference-flow between variables based on the domains they
are in and were described in detail in Section 6.3.

The rule W T- E - L E T PA R looks at all pairs of stack
variables x1, x2 where x1 is a variable used in e1 and x2
is a variable used in e2. If all the objects reachable through
these variables are disjoint from each other (⊥⊥, as defined by
rule A - D I S J O I N T- C A N N O T S H A R E), the two expressions
can be safely run in parallel since there is no shared memory
accessed by both. The starts function takes an expression
and returns all the paths that are used in the expression. We
require all of these paths to be variables.

The rule W T- E - D O M A I N introduces a new domain
relation and makes it available to its inner expression e.
We arbitrarily choose the first child domain and recover it
in the return type by replacing it with the parent domain.
The recoverd1 7→d′ function is the substitution [St d1 7→
Wk d′,Wk d1 7→ Wk d′,Sh d1 7→ Sh d′] if Sh d′ is well-
formed and the substitution [St d1 7→ St d′,Wk d1 7→
St d′] otherwise. In the former case, we recover from strong
domains only to weak domains as an alias in the linked
domain Wk d2 might have been assigned to a variable
in Sh d′ using rule A - C A N C O P Y- U P . Giving up this
rule would allow to recover fully but make the system less
expressive. In the latter case, if Sh d′ is not well-formed,
we can recover strong, as the rule A - C A N C O P Y- U P could
not have been used for lack of a variable in Sh d′. We can
furthermore recover the weak domain to the strong parent
as the shared variables are about to go out of scope and that
means that the strong and weak child domains can be merged
into one strong domain without violating any invariants.

7. Dynamic Semantics
The dynamic semantics is a small-step reduction semantics.
Table 2 defines heapsH as maps from locations ι to objects.
Objects O are tuples of object types To and a list of fields
mapping to values v .

A configuration is a heap, a relation environment ∆, a
stack frame F, and an expression e – or ERROR (in case of
a null pointer dereference). A frame maps variable names to

H ::= ε |H, ι 7→ O Heap
O ::= (To, fi 7→ vi

i
) Dynamic Object

Γ ::= ε | ι 7→ To Store Environment
v ::= ι#D | null Stack value
F ::= ε | F , x 7→ v | F , x 7→ eλ Frame
Cfg ::= 〈H; ∆;F ; e〉 | ERROR Configuration

Table 2. Syntax extensions for the dynamic semantics and
meta semantics.

stack values or to lambda expressions and we avoid name
clashes by replacing all new variable names and argument
names that go in the frame by replacing them by fresh names.

Cfg ↪→ Cfg ′ (Reduction step, selection)

D Y N - S T E P - A S S I G N VA L
fresh x ′1 fresh x ′2 e ′2 = e2[x1 7→ x ′1, x2 7→ x ′2]

〈H; ∆;F ; (x1 : To#D1, x2 : To#D2) = ι#D in e2〉 ↪→
〈H; ∆;F , x ′1 7→ ι#D1, x

′
2 7→ ι#D2; e ′2〉

D Y N - S T E P - L E T PA R L E F T
〈H; ∆;F ; e1〉 ↪→ 〈H′; ∆′;F ′; e ′1〉

〈H; ∆;F ; letpar x : T1 = e1 ‖ y : T2 = e2 in e3〉 ↪→
〈H′; ∆′;F ′; letpar x : T1 = e ′1 ‖ y : T2 = e2 in e3〉

Rule D Y N - S T E P - A S S I G N VA L creates two aliases
once the right hand side expression is fully evaluated and
rule D Y N - S T E P - L E T PA R L E F T evaluates the left hand side
expression e1 of a letpar expression. Dynamic semantics,
other than destroying variables that are moved are standard
and we omit most rules for brevity.

8. Meta-Theory
We prove progress and preservation. Preservation maintains a
well-typed configuration. The conditions for well-typedness
are mostly standard, but also require that no aliasing exists in
the system outside of that allowed by the domains and their
associated variables.

Store type environments Γ in Table 2 map locations to
their object type To. Values also denote the domain they are
in, used in the preservation proof.

Γ ` Cfg : T (Well-typed configuration)

M E TA - L O C A L - U N I Q U E N E S S

∀ιi#Di , ιj#Dj ∈ allrefs(F ,H).
i 6= j ∧ (∆ ` Di ⊥Dj) =⇒ (ιi 6= ιj)

∆ ` localuniqueness(F ,H)

M E TA - W T- C O N F I G
Γ; ∆ ` H Γ; ∆;H ` F
∆ ` localuniqueness(F ,H)

Γ; ∆;H; ε ` e : T

Γ ` 〈H; ∆;F ; e〉 : T

The local uniqueness property demands that all the refer-
ences in all variables in both heapH and frame F (a multiset,
returned by the allrefs function – if N aliases to an object
exist, even with the same domain, they will be present in this
multiset N times) only alias if the type system allows their
domains to contain aliases.

A configuration is then well-typed if both its heap and
frame are well-formed (explained later in this section), its
expression is well-typed (using the store environment) and
the local uniqueness property holds.

Γ; ∆;H; E ` e : T (Store typing)

M E TA - S T Y P E D - R E P L A C E L O C
e ′ = e[∀D s. t ∆ ` D. (ι#D 7→ freshxι#D)]
E ′ = E ,∀D s. t ∆ ` D. xι#D.To#D

Γ; ∆;H; E ′ ` e ′ : T

Γ, ι 7→ To; ∆;H; E ` e : T

M E TA - S T Y P E D - T R I V I A L
Γ; ∆ ` H
E ; ∆ ` e : T

Γ; ∆;H; E ` e : T

The store typing rules M E TA - S T Y P E D - R E P L A C E L O C
and M E TA - S T Y P E D - T R I V I A L replace values by fresh
variables with the same type of the expression that produced
the value. This enables well-typed configuration to involve
localuniqueness even though localuniqueness does not have
access to the store environment Γ.

∆ ` Γ (Well-formed store environment Γ)

M E TA - W F - S T O R E E N V
` ∆ unambiguous(Γ)
∀To ∈ range(Γ). ∆ ` To

∆ ` Γ

A store environment Γ is well-formed if each location is
contained only once (the unambiguous-judgement demands
that no location maps to several object types To). Additionally,
all object types in the store environment (the range function
returns the range of a map, which is) must be well-formed.

Γ; ∆ ` O (Well-formed object O)

M E TA - W F - O B J

O = (To, fi 7→ vi
i
) ∆ ` To ∆ ` Γ

∀i . (vi = ιi =⇒ ιi ∈ domain(Γ))

Γ; ∆ ` O

An object O is well-formed, Γ; ∆ ` O, if all of its fields
are either null (vi 6= ιi) or contain references to objects that
actually exist in the store environment (the domain function
returns the domain of a map, which is a set of locations in
this case).

Γ; ∆ ` H/Γ; ∆;H ` F (Well-formed heapH/ frame F)

M E TA - W F - H E A P
∆ ` Γ unambiguous(H) ∀O ∈ range(H). Γ; ∆ ` O

Γ; ∆ ` H

M E TA - W F - F R A M E
Γ; ∆ ` H unambiguous(F)

∀ι#D ∈ range(F). ι ∈ domain(H)∧
H(ι) = O ∧ Γ; ∆ ` O

Γ; ∆;H ` F

A heap is well-formed (rule M E TA - W F - H E A P), if no
location maps to several objects (unambiguous(H)) and it
contains only well-formed objects.

A frame is well-formed if it is unambiguous (has each
variable name only once) and only contains well-formed
objects.

8.1 Type Soundness
We prove type soundness in the standard way of progress
plus preservation and present sketches for brevity. A Gift
programme must define a well-typed starting expression e.
The initial configuration is defined as 〈ε; ε; ε; e〉.

8.1.1 Preservation
In this context, preservation means that if Γ ` Cfg : T and
Cfg ↪→ Cfg ′ then Cfg ′ = ERROR ∨ ∃Γ′. (Γ′ ⊇ Γ ∧ Γ′ `
Cfg ′ : T).

The relation Γ′ ⊇ Γ denotes that Γ is extended monoton-
ically: every location that is in Γ, is also in Γ′ and it will map
to the same object type To:

Γ′ ⊇ Γ ⇐⇒ ∀ι. ((Γ(ι) = To) =⇒ (Γ′(ι) = To))

Proof The proof is by induction on expressions. Local
uniqueness, required in the premises of a well-formed con-
figuration, requires the most attention in the proof. Local
uniquness is maintained by using the move operation where
appropriate – the key insight is that moving a reference from
one variable to another does not change the multi set that
allrefs returns.

8.1.2 Progress
A well-typed configuration whose expression is not a value
is able to take a step leading to another configuration (pos-
sibly ERROR): Γ ` 〈H; ∆;F ; e〉 : T =⇒ (e =
v ∨ ∃Cfg ′. 〈H; ∆;F ; e〉 ↪→ Cfg ′).

Proof The dynamic semantics have no non-standard feature
other than the move operation, the proof is straightforward
by induction on expressions.

8.2 Uniqueness
From type soundness follow two interesting theorems.

8.2.1 Local Uniqueness
The first theorem states that all aliasing that can be observed
in the system is allowed by the type system:

Theorem 1 (Local Uniqueness). Γ ` 〈H; ∆;F ; e〉 : T∧
i 6= j ∧ [. . . ιi#Di . . . ιj#Dj . . .] = allrefs(H,F)∧
∆ ` Di⊥Dj =⇒ ιi 6= ιj .

Proof Well-formed configuration is the main workhorse
in the proof of this theorem, since it relies on rule M E TA -
L O C A L - U N I Q U E N E S S.

8.2.2 Global Uniqueness
The second theorem states that references in the unique
domain are never aliased.

Theorem 2 (Global Uniqueness). Γ ` 〈H; ∆;F ; e〉 : T∧
i 6= j ∧ [. . . ιi#Di . . . ιj#Dj . . .] = allrefs(H,F)∧
Di = unique =⇒ ι1 6= ι2.

Proof The theorem holds as an instance of Theorem 1: as it
is not possible to have a well-formed domain that may alias
unique no aliases of variables in this domain may exist.

Note that the only things special about the unique domain
is that it is the root, so there is no other domain linked to it —
thus, we conclude that global uniqueness is merely a special
case of local uniqueness. This is not surprising: the larger the
scope of the domain, the more powerful it’s invariants. The
unique domain has a global scope, hence it’s alias-freedom
guarantees are also global.

8.3 Corollary: Deterministic Parallelism
The determinism of the letpar construct follows from the
disjointness of the state on the left and right hand expressions
of the letpar expression. The letpar construct requires that
all reachable objects in sub-expressions on the left and right
hand side of || do not share objects through fields. This is
achieved by requiring that the objects in point do not have
domains in their type which would allow such pointers.

9. Related Work
Hogg’s seminal Island’s paper [25] uses unique references
to achieve a strong notion of encapsulation and disjointness.
This work introduced the notion of a destructive read. Sub-
sequent work on uniqueness includes Balloons [3], Capab-
ilities for sharing [10], Eiffel∗ [27], OOFX [21], Vault [19],
External Uniqueness [12], AliasJava [1], SafeJava [7], and
derivatives (e.g., [20, 22, 31, 34]). They all differ from dis-
jointness domains in that they treat uniqueness as a global
property (although generally temporary borrowing of refer-
ences is allowed with special limitations to prevent borrowed
pointers from leaking to the heap). In contrast, disjointness
domains can express global uniqueness, but also allow to fall
back to local uniqueness once requirements change. Vault
[19] invents adoption, where a unique reference to an “ad-
optee” can be converted to one of a sharable type and an

“adopter” stores (invisibly) a reference to the adoptee. Unique-
ness can then be regained either temporally by “focusing” on
such a sharable reference (during focusing, the type checker
will not allow accesses to possible aliases) or forever by free-
ing the adopter (which will make the aliases ill-typed and
return the invisible, unique reference). Using disjointness
domains, a form of adoption could be implemented by stor-
ing a strong alias to the “adoptee” in a field of an “adopter”
and using aliases in a shared, linked domain as the sharable
aliases. Uniqueness can then be regained using recovering.
Disjointness domains are more flexible, but the flexibility also
means that the programmer needs to implement some alias
management herself.

Systems that structure the heap (Ownership types [13, 14],
Universes [29], DPJ [6] and others) enforce object encapsu-
lation statically by imposing a hierarchical structure on the
heap. They are concerned with what part of the system may
alias what other part – if two variables are tagged with the
same owner, they may alias. These system are not concerned
with individual references, for example expressing a tree in
ownership types would require explicitly expressing the same
nesting structure at the type level which makes balancing and
deleting hard [11].

Uniqueness is applied, in combination with encapsula-
tion, to parallelism in SafeJava, [7], Joelle [31] and other sys-
tems [20, 34]. Haller and Odersky [22] use global uniqueness
and disjointness of objects for copyless message passing in
an actor-based concurrency model. Aliases between sending
and receiving actors would result in data races.

Unique references are important for work that performs
strong updates, such as session types [17], type state [2, 35]
and other purposes [16, 18, 28, 33]. Such work generally
requires global uniqueness. Trying to combine disjointness
domains and such systems is an interesting direction for future
work.

Bocchino and Aldrich [5] introduce the notion of reference
groups, which like disjointness domains, are sets of fields and
variables which are locally unique. Reference groups are not
related to each other, and there is no support for reasoning
about may-aliasing or disjointness between different refer-
ence groups.

Fractional permissions and descendants [9, 24, 36] address
the creation of aliases by implementing single-writer/multiple-
readers at a type system level. Fractional permissions are
simpler than disjointness domains, but also less powerful.
For instance, they do not provide non-shallow insights like
object disjointness (Section 3). Immutability is useful, but
immutability for the sake of parallelism may hinder reuse and
result in brittle code – imperative code cannot be reused in a
shared setting, where the mutable parts of class interfaces are
not usable any longer. Westbrook et al. [36] allow task-local
aliasing, similar what our letpar expression implements.

10. Conclusion
Disjointness domains are a descriptive static means for alias
control that support a notion of local uniqueness, which
allows a more gradual approach to uniqueness than simply
unique or shared references. Disjointness domains allow a
programmer or compiler to reason about may-alias properties
of different variables based on the domains in which variables
are placed, the kinds of those domains, and the relationship
between them. Reasoning about aliasing is complicated, using
a type system or not. Benefits of using a type system is that
programmer intent is captured, thereby giving insights to
readers, compilers and runtimes alike.

References
[1] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers.

Alias Annotations for Program Understanding. In Object-
oriented Programming, Systems, Languages, and Applications
(OOPSLA, pages 311–330. ACM Press, 2002.

[2] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary
Sparks. Typestate-Oriented Programming. In Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 1015–1022, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-768-4. .

[3] PauloSérgio Almeida. Balloon types: Controlling sharing of
state in data types. In Mehmet Aksit and Satoshi Matsuoka,
editors, ECOOP’97 — Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages 32–59.
Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63089-
0. .

[4] Brian Anderson, Lars Bergstrom, David Herman, Josh Mat-
thews, Keegan McAllister, Manish Goregaokar, Jack Moffitt,
and Simon Sapin. Experience Report: Developing the Servo
Web Browser Engine using Rust. CoRR, abs/1505.07383, 2015.

[5] Robert Bocchino and Jonathan Aldrich. Reference Groups for
Local Uniqueness. Technical report, Technical Report, CMU-
ISR-14-100, to appear.

[6] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V.
Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Over-
bey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. A
Type and Effect System for Deterministic Parallel Java. In
Proceedings of the 24th ACM SIGPLAN Conference on Object
Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 97–116, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-766-0. .

[7] Chandrasekhar Boyapati. Safejava: A Unified Type System for
Safe Programming. PhD thesis, MIT, 2004.

[8] John Boyland. Alias Burying: Unique Variables Without
Destructive Reads. Software - Practice and Experience, 31
(6):533–553, 2001. ISSN 00380644. .

[9] John Boyland. Checking Interference with Fractional Per-
missions. In R. Cousot, editor, Static Analysis: 10th Interna-
tional Symposium, volume 2694 of Lecture Notes in Computer
Science, pages 55–72, Berlin, Heidelberg, New York, 2003.
Springer.

[10] John Boyland, James Noble, and William Retert. Capabilities
for Aliasing: A Generalisation of Uniqueness and Read-Only.
In Jørgen Lindskov Knudsen, editor, ECOOP 2001 — Object-
Oriented Programming, 15th European Conference, number
2072 in Lecture Notes in Computer Science, pages 2–27, Berlin,
Heidelberg, New York, 2001. Springer.

[11] Elias Castegren, Johan Östlund, and Tobias Wrigstad. Refined
Ownership: Fine-grained Controlled Internal Sharing. In
Formal Methods for Multicore Programming. 2015.

[12] Dave Clarke and Tobias Wrigstad. External Uniqueness Is
Unique Enough. In Luca Cardelli, editor, ECOOP 2003
– Object-Oriented Programming, volume 2743 of Lecture
Notes in Computer Science, pages 176–200. Springer Berlin
Heidelberg, 2003. ISBN 978-3-540-40531-3. .

[13] Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad.
Ownership Types: A Survey. In Dave Clarke, James Noble,
and Tobias Wrigstad, editors, Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, volume 7850
of Lecture Notes in Computer Science, pages 15–58. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-36945-2. .

[14] David G. Clarke, John M. Potter, and James Noble. Ownership
Types for Flexible Alias Protection. In In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA,
pages 48–64. ACM Press, 1998.

[15] Sylvan Clebsch and Sophia Drossopoulou. Fully Concurrent
Garbage Collection of Actors on Many-Core Machines. In Pro-
ceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Ap-
plications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013, pages 553–570, 2013. .

[16] Robert DeLine and Manuel Fähndrich. The Fugue protocol
checker: Is your software Baroque? Technical report, Technical
Report MSR-TR-2004-07, Microsoft Research, 2004.

[17] Mariangiola Dezani-ciancaglini, Dimitris Mostrous, Nobuko
Yoshida, and Sophia Drossopoulou. Session Types for Object-
Oriented Languages. In In Proceedings of ECOOP’06, LNCS,
pages 328–352. Springer, 2006.

[18] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-
Ciancaglini, and Paola Giannini. Fickle: Dynamic Object Re-
classification. In JørgenLindskov Knudsen, editor, ECOOP
2001 — Object-Oriented Programming, volume 2072 of Lec-
ture Notes in Computer Science, pages 130–149. Springer Ber-
lin Heidelberg, 2001. ISBN 978-3-540-42206-8. .

[19] Manuel Fähndrich and Robert DeLine. Adoption and Focus:
Practical Linear Types for Imperative Programming. In Pro-
ceedings of the 2002 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages
13–24. ACM, May 2002.

[20] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks
Bromfield, and Joe Duffy. Uniqueness and Reference Immut-
ability for Safe Parallelism. SIGPLAN Not., 47(10):21–40,
October 2012. ISSN 0362-1340. .

[21] Aaron Greenhouse and John Boyland. An Object-Oriented Ef-
fects System. In ECOOP’99 — Object-Oriented Programming,
13th European Conference, number 1628 in Lecture Notes in

Computer Science, pages 205–229, Berlin, Heidelberg, New
York, 1999. Springer.

[22] Philipp Haller and Martin Odersky. Capabilities for Unique-
ness and Borrowing. In Theo D’Hondt, editor, ECOOP 2010 –
Object-Oriented Programming, volume 6183 of Lecture Notes
in Computer Science, pages 354–378. Springer Berlin Heidel-
berg, 2010. ISBN 978-3-642-14106-5. .

[23] D.E. Harms and B.W. Weide. Copying and Swapping: In-
fluences on the Design of Reusable Software Components.
Software Engineering, IEEE Transactions on, 17(5):424–435,
May 1991. ISSN 0098-5589. .

[24] Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexan-
der J. Summers. Abstract Read Permissions: Fractional Per-
missions without the Fractions. In Roberto Giacobazzi, Josh
Berdine, and Isabella Mastroeni, editors, Verification, Model
Checking, and Abstract Interpretation, volume 7737 of Lecture
Notes in Computer Science, pages 315–334. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-35872-2. .

[25] John Hogg. Islands: Aliasing Protection in Object-Oriented
Languages. In Conference Proceedings on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA
’91, pages 271–285, New York, NY, USA, 1991. ACM. ISBN
0-201-55417-8. .

[26] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and
Richard Holt. The Geneva Convention on the Treatment of
Object Aliasing. SIGPLAN OOPS Mess., 3(2):11–16, April
1992. ISSN 1055-6400. .

[27] Naftaly H. Minsky. Towards Alias-Free Pointers. In Pierre
Cointe, editor, ECOOP ’96 — Object-Oriented Programming,
volume 1098 of Lecture Notes in Computer Science, pages
189–209. Springer Berlin Heidelberg, 1996. ISBN 978-3-540-
61439-5. .

[28] Greg Morrisett, Karl Crary, Neal Glew, and David Walker.
Stack-Based Typed Assembly Language. In Journal of Func-
tional Programming, pages 28–52. Springer-Verlag, 1998.

[29] Peter Müller and Arnd Poetzsch-Heffter. Universes: A Type
System for Alias and Dependency Control. Technical Report
279, FernUniversität Hagen, 2001.

[30] James Noble, Jan Vitek, and John Potter. Flexible Alias
Protection. In Eric Jul, editor, ECOOP’98 — Object-Oriented
Programming, volume 1445 of Lecture Notes in Computer
Science, pages 158–185. Springer Berlin Heidelberg, 1998.
ISBN 978-3-540-64737-9. .

[31] Johan Östlund, Stephan Brandauer, and Tobias Wrigstad. The
Joelle Programming Language : Evolving Java Programs
Along Two Axes of Parallel Eval. International Workshop
on Languages for the Multi-core Era 2012, 2012.

[32] Alex Potanin, James Noble, and Robert Biddle. Checking
Ownership and Confinement. Concurrency and Computation:
Practice and Experience, 16(7):671–687, 2004. ISSN 1532-
0634. .

[33] Francois Pottier and Jonathan Protzenko. Programming with
Permissions in Mezzo. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’13), pages 173–184, September 2013.

[34] Marco Servetto, David J. Pearce, Lindsay Groves, and Alex
Potanin. Balloon Types for Safe Parallelisation over Arbitrary
Object Graphs. In Proceedings of the Workshop on Determin-
ism and Correctness in Parallel Programming, 2013.

[35] R.E. Strom and S. Yemini. Typestate: A Programming Lan-
guage Concept for Enhancing Software Reliability. Software
Engineering, IEEE Transactions on, SE-12(1):157–171, Jan
1986. ISSN 0098-5589. .

[36] Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek
Sarkar. Practical Permissions for Race-Free Parallelism. In
James Noble, editor, ECOOP 2012 – Object-Oriented Pro-
gramming, volume 7313 of Lecture Notes in Computer Sci-
ence, pages 614–639. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-31056-0. .

A. Auxiliary Rules

To#D f ∈ fields(∆, c[DTi
i
]) (Field type lookup)

A U X - F I E L D T Y P E - L K P

class c[Ri
i
]{Vj

j
f : To#DV ′j

j
Mk

k} ∈ P

∆ ` classpmatch(c[DTi
i
]) a σ

D ′ = σ(D)

f : To#D ′ ∈ fields(∆, c[DTi
i
])

allrefs(F ,H) = [ιi#Di
i
] (All references in fields and

variables)

A U X - A L L - R E F S

ιi#Di
i

= [ι#D | ι#D ∈ range(F)]

ι′j#D
′
j

j
= [ι′#D′ | H(ι).f = ι′#D′, ι ∈ domain(H)]

allrefs(F ,H) = [ιi#Di
i
, ι′j#D ′j

j
]

B. Table of Judgements
` ∆ Well-formed relation env.
∆ ` d Well-formed domain name
∆ ` D Well-formed domain
E ; ∆ ` p : T Well-typed path
E ; ∆ ` e : T Well-typed expression
∆ ` not-linked(d1, d2) Domain names not linked
∆ ` D1

copy−−−→ D2 Can copy from D1 to D2

∆ ` D1
move−−−→ D2 Can move from D1 to D2

∆ ` D1
linked−−−−→ DT Can assign linked fr. D1 to DT

∆ ` d1 ≺ d2 D. name d1 extends d2 directly
∆ ` d1 ≺∗ d2 D. name d1 extends d2

transitively
∆ ` D1⊥D2 D1, D2 may not contain aliases
E ; ∆ ` x⊥⊥ y Objects are disjoint
Cfg ↪→ Cfg′ Reduction step
Γ ` Cfg : T Well-typed configuration
∆ ` Γ Well-formed store environment
Γ; ∆ ` O Well-formed object
Γ; ∆ ` H Well-formed heap
Γ; ∆;H ` F Well-formed frame
Γ; ∆;H; E ` e : T Store-typed expression
` P Well-formed program
` C Well-formed class
To; ∆ `M Well-formed method
∆ ` T Well-formed type
∆ ` To Well-formed object-type
f : Tv#D ∈ . . .
. . . fields(∆, To) Field type lookup
H(ι).f = v Field access
H′ = (H(ι) := v) Field assignment
starts(e) = [pi

i] Starting paths of expression
unambiguous(..) Locations in map’s domain are

unambiguous (no key maps to
several values)

domains(T) The domains an object’s fields
can be in (over-approximation)

	Introduction
	Overview
	Running Example
	Core Concepts
	Domains and Aliasing
	Domain Hierarchy
	Linked Domains

	Disjointness Domains and their Invariants
	Strong Disjointness Domains
	Weak Disjointness Domains
	Shared Disjointness Domains

	Moving and Copying References within and between Domains
	Moving Assignment
	Copying Assignment
	Linked Assignment
	Getting Uniqueness Back

	From May-Not-Alias to Object Disjointness
	Declaring Class Aliasing using Domain Parameters
	Domain Extension in Classes

	Disjointness of Objects

	Recipes for Local Aliasing Invariants
	Disjointness for Parallelism
	Example: Doubly Linked List
	The List Class
	The Link Class
	The Iterator Class

	Semantics of Disjointness Domains
	Core Syntax
	Well-Formedness
	Aliasing
	Domain Extension
	Linked Domains
	Reference Flow in Assignment
	May-Not-Alias for Domains
	Object Disjointness

	Well-Typedness
	Well-Formed Type
	Well-Typed Path and Expression

	Dynamic Semantics
	Meta-Theory
	Type Soundness
	Preservation
	Progress

	Uniqueness
	Local Uniqueness
	Global Uniqueness

	Corollary: Deterministic Parallelism

	Related Work
	Conclusion
	Auxiliary Rules
	Table of Judgements

