Power-Performance
Adaptation in Intel Core i7

Vasileios Spiliopoulos!, Georgios Keramidas?,
Stefanos Kaxiras?, and Konstantinos Efstathiou®

lUppsala University, Sweden
2Industrial Systems Institute, Greece
3University of Patras, Greece

Abstract. In this paper, we describe our experiences in building a framework
for power/performance run-time management for the Intel core family. Our
underlying methodology (in contrast to previous work which relied on em-
pirical models) is based on a simple processor performance model in which
frequency scaling is expressed as a change (in cycles) of the main memory
latency. Based on this model and utilizing performance monitoring hardware,
the proposed model is shown to be powerful enough to i) describe and ex-
plain how Intel processors are affected by frequency scaling with respect to
workload behavior, ii) predict with reasonable accuracy the effect of frequen-
cy scaling (in terms of performance loss), and iii) predict the energy con-
sumed by the core under different V/f combinations by directly measuring
from the off-chip voltage regulator the power consumed by the core. Our
long-term plans include integrating in the proposed framework various pow-
er-aware OS/application-driven DVFS policies. As a first step towards this
direction, we show our experimental methodology to justify the power/per-
formance measurements and verify the correctness of our framework in
which any target DVFS policy can be embedded as kernel module.

1 Introduction

The power-aware architecture landscape has been dominated by techniques based on
supply voltage and clock frequency scaling. Dynamic Voltage and Frequency Scaling
(DVFS) offers great opportunities to dramatically reduce energy/power consumption
by adjusting both voltage and frequency levels of a system according to the changing
characteristics of its workloads. The great potential of DVFS in energy/power savings
has been widely studied in a variety of research communities (from circuit to system
designers) and has been extensively used in commercial systems as well. Intel XScale,
AMD Mobile K6, and Intel Pentium M are typical low-power processors that feature
DVFS management capabilities. Example processors from the high-performance area
are the AMD Opteron quad-core and the Intel core i7 processor.

In general, the heart of DVFS techniques is the exploitation of the system slack or
“idleness.” Their objective is to take advantage of slack so that performance is affected
little by frequency scaling while at the same time a cubic benefit in power consumption
—with the help of voltage scaling— is achieved [8]. Slack can appear at different levels
and various approaches have been proposed for each level. According to [8], DVFS de-
cisions can be taken at: i) the system level based on system slack, ii) the program level
based on instruction slack, and iii) the hardware level based on hardware slack. More
details about the criteria used to devise this categorization can be found in [8]. In this

work, we are concerned with the instruction slack due to the long latency memory op-
erations (off-chip memory accesses).

In our previous work [9], we developed two simple analytical models that are able
to drive run-time DFVS decisions for aggressive superscalar OoO processors. These
models work at the microarchitectural level and their target is to exploit the slack due
to the long-latency, off-chip memory operations. The realization that inspired the de-
velopment of these models was that core frequency is nothing more than changing the
memory latency in cycles. This conceptual view of frequency scaling significantly sim-
plifies the DVFS management decisions even for highly-aggressive, highly-pipelined,
dynamic processors (e.g. the Intel core i7 [3]).

Previous approaches [4][5][6][11][12] in the area rely on empirical models requir-
ing large profiling, training and trial-and-error steps or significant compiler assistance
[10]. For example, the model proposed in [6] is prohibitively costly for run-time power
estimation and optimization. It requires four complete program executions with differ-
ent counter configurations, in order to collect the necessary information. In contrast, our
models require minimal input and calculations [9]. The reason for this is that our models
are able to acknowledge and isolate the processor events that directly correlate to DVFS
processor behavior. Consider for example, the penalty of a branch misprediction. This
penalty (measured in cycles) will remain intact no matter what the frequency is, because
a branch misprediction involves only in-core operations. The penalty of in-core opera-
tions is always the same (measured in cycles) during frequency scaling [9].

The simple nature (minimal input and calculations) and the high accuracy of our
models [9], inspired us to move one step forward. While our previous work was con-
ducted in a cycle accurate simulator (equipped with the appropriate power models), in
this work we provide our experiences and application results in applying those models
in a real-life processor: the i7 Intel Nehalem core [3]. Testing research ideas in real
processors was motivated by the integration of a rich set of performance monitoring
counters which resides in almost all modern processors. It is well known that cycle-ac-
curate simulations are very time consuming and their accuracy is a subject of consider-
able debate. Consider for example thermal studies where it takes a long time for proc-
essors to reach equilibrium thermal operation points. Live measurements allow a com-
plete view of operating system and 1/O effects and many other aspects of “real-world”
behavior, often omitted in simulation. However, measuring live, running complex sys-
tems (i7 920 is a quad core SMT CMP) and relating measured results to overall system
hardware and software behavior is not so straightforward as in a simulator, because
many details are omitted from the computer vendors. As a result a systematic approach
is required to reverse-engineer the hardware details of the target processors.

In this work, we provide a framework for power and performance run-time manage-
ment for the Intel processors. Our framework can be formed as a basis for future power-
aware research. As a first step towards this direction, we provide our experimental
methodology to justify the power/performance measurement and verify the correctness
of our framework in which any target DVFS policy can be embedded in the OS as ker-
nel module. Some of the points, we try to shed light on, are: i) How much power (static
and dynamic) is consumed by the core and the uncore areas of the processors? ii) How
Intel processors are affected by frequency scaling with respect to the behavior of the ap-
plications? iii) Is the performance monitoring hardware appropriate for power-oriented
optimizations? iv) How much clock-gated is the i7 core?

To quantify the robustness of the proposed framework, in this work we investigate
the following scenario: we run an application in a specific V/f point collecting perform-

ance and power measurements (see Section 4 and 5). Based on those measures, we eval-
uate our methodology in predicting the performance and energy characteristics of the
application in any given frequency/voltage combination (specified for example by the
user or the OS).

Structure of the paper—Section 2 provides an overview of our previous
work [9]. Section 3 discusses power-related details of the i7 core and presents our
measurement methodology. Section 4 analyses the effect of frequency scaling in i7
core with respect to power “behavior” of the applications. Section 5 provides our
experiences in predicting the energy under different V/f points. Section 6 outlines the
presented methodology and discusses our future work. Section 7 concludes the paper.

2 Interval-based Analytical Models for DVFS
Management

In our previous work [9], we showed that a successful way to model DVFS
management in an 00O, dynamic processor is to account only for the stall cycles
introduced in the machine due to off-chip non-overlapping misses (Last-Level Cache
or LLC misses). The idea is that only these misses directly correspond to the stall
cycles that are affected by the processor’s frequency. Based on this, we introduced a
model, called miss-based model, which takes as input the number of stalls introduced
in the machine due to LLC misses and outputs the execution time —and the energy—
under different frequencies with less than 1% (avg.) error. We also introduced a more
simplified model, called stall-based model, which is not able to distinguish pipelining
of the LLC misses (i.e., it accounts for stalls for both isolated and overlapping misses).
The stall-based model still yields acceptable results (5% on avg.). A deeper
examination of this model shows that the extra error is introduced because the model
disregards useful work performed by the processor when a LLC miss occurs (i.e. from
the occurrence of the miss until no more instructions can enter the execution window
or all the instructions in the execution window are dependent on the pending miss).
However, the latter model offers a great potential: it can be used in real-life processors
(e.g. the i7 core), in contrast to the miss-based model (the current hardware monitoring
events are not able to distinguish between overlapping and isolated misses [2]).

Our modelling methodology is inspired by the interval-based performance model
[1][7]. Intervals are marked by miss-events that upset the “steady state” execution of the
program. A miss-interval starts with a miss-event (LLC misses in our case) and lasts un-
til the IPC reaches again a steady state (a period related to the memory latency). Periods
between miss-intervals are steady—state intervals. The realization that drives this work
is that core frequency scaling in these models is nothing more than changing the mem-
ory latency in cycles. Figure 1.a shows the different areas of a LLC miss interval. The
stall-based model takes as input the cycles which correspond to the full stall+1Q Drain
areas and assumes that this quantity is equal to memory latency measured in cycles —
it disregards the ROB fill area. Note that this area, measured in cycles, remains intact in
all frequencies. The error of the stall-based model can be seen in the following formula:

Stallcycles = Mem, ¢~ ROBgj ~ Mem o

The sum of stalls in overlapping misses (Figure 1.b) is also approximated to memory

latency:
ST1+ST2 =y+ Memlat— ROBfiII —-X= MemIat

The conclusion is that the sum of stall cycles is proportional to memory latency and
thus proportional to frequency scaling. On the other hand, non-stall cycles remain

this area does not scale

at all with frequency scaling

only this quantity scales proportionally

¢———Memory latency ———p

with frequency scaling (@)

1 1 . .
nelastic elastic ! stall cycles as measured
Instructions ™ area P ‘area —w P by the stall based mogel
A LLE miss 1 (do not scale proportionally
r4—full stall—P1 with frequency scaling)
I IQDrain !
-ROB-fill-P] Ramp-up~._1!
Steady State ! Steady State
R ¢ (total execution) >, cycles'
“—Y —W— Memory latency —p=
|nStI’le\tl0nS l— Memory "latency — : (b)
LLC MISSl LLC MISSZ : 1
. ST1—>|<—X->-<—ST2—>:
+4-ROB-fill- P 1 1
Steady State ! :

¢ (total execution) > cycles’
Figure 1 Useful instructions issued in the case of (a) an isolated and (b)

overlapping LLC load misses.

intact. With these observations in mind, extracting the formula for predicting
execution time is straightforward (more details can be found in [9]).

The miss-based model acknowledges that the miss interval equals memory latency
and thus scales proportionally to frequency. Furthermore, it is able to recognize that
only the miss interval of the first miss in a cluster of misses scales with frequency, while
the miss intervals of overlapping misses remain intact with frequency scaling. Another
way to express this is that if a miss occurs y cycles (Figure 1.b) after the initial miss it
will also be serviced y cycles after the first miss is serviced so the extra stall cycles in-
troduced by the overlapping miss do not change with frequency. When the miss that
headed a cluster of overlapping misses is serviced, the next miss in line starts a new
cluster even if it overlaps with an outstanding miss from the previous cluster. The meth-
odology followed by the miss-based model is similar to the stall-based model, but in-
stead of stall cycles, the quantity that scales proportionally to the frequency is the
number of clusters of misses multiplied by the memory latency. More information can
be found in [9].

3 How and What to Measure in Intel Core 17

3.1 Intel Core i7: main features

Intel core i7 is a quad-core CMP. Each core supports hyperthreading execution. i7
Core family is enhanced with a special power-aware characteristic, called Speedstep
technology [3] which allows run-time voltage and frequency scaling between 9
different steps, from 1.6 to 2.66GHz (i7 920). i7 supports also various idle states,
called C-states, in which it is possible to completely deactivate the clock and cut-off
the power supply for a combination of cores to reduce static and dynamic power
consumption.

3.2 Performance Counters in i7

i7 core offers a wide range of hardware monitoring event counters. Table 1 shows the
performance counters used in this work. One of our main problems in this work was

PERFORMANCE COUNTER DESCRIPTION
UOPS_EXECUTED.CORE_STALL_CYCLESJCYCLES NO INSTS ARE EXECUTED IN THE PROCESSOR

L2_RQSTS.LD_MISS LOAD REQUESTS THAT MISSED L2 CACHE

LLC_MISSES LAST LEVEL CACHE MISSES

BRANCH_MISSES.RETIRED MISPREDICTED BRANCHES
UOPS_EXECUTED.PORTO015 MICRO-OPS EXECUTED IN PORTS 0, 1 OR 5
UOPS_EXECUTED.PORT234 MICRO-OPS EXECUTED IN PORTS 2, 3 OR 4

UNHALTED_CORE_CYCLES CYCLES CORE NOT HALTED

Table 1: The Intel i7 core hardware events selected for this work.
NUMBER OF ACTIVE CORES | 2.66 GHz (NOMINAL FREQ.) 1.6 GHz (MINIMUM FREQ.)

4 CORES 15.8W 76W
2 CORES 10.4W 2.1W
1 CORE 2.6W 1w

Table 2: Power consumed by the i7 cores in the idle state.

that there is no performance counter in i7 core to account for the stalls introduced in
the machine due to LLC non-overlapping misses (Section 2). In other words, there are
no specific performance counters to measure the Memory-Level Parallelism of the
LLC misses (also pointed out in [2]). As a result, we could not use our highly accurate
miss-based model. Therefore, we used an approximation of the stall-based model in
order to predict the performance under different f points using the counter event
mentioned in line 1 in Table 1. Finally, all the other performance counters listed in
Table 1 are used only for cross-checking our results (not to predict the effect of
frequency scaling) and to gain a better understanding of the behavior of the running
applications.

3.3 Measuring Power/Energy in i7

i7 core comprises of two main voltage islands: core (exec. and fetch units, OoO and
paging logic, L1/L2 caches and branch prediction) and the uncore (L3 caches, memory
controller and QPI). In order to isolate the core and the uncore power, we compute
core power dissipation by directly measuring voltage and current from the off-chip
voltage regulator (ADP4000) residing in the motherboard by identifying two pins of
interest: the pin that supplies the voltage to the core and the pin monitoring the total
output current of the regulator. By hacking the motherboard (connecting wires to these
pins) we were able to measure power using an oscilloscope while the processor was
under normal operation. We use a sampling period of 10ms (our target is to provide
OS-level optimizations so finer granularities will not provide useful results). The
power measurements can be easily fed to the kernel OS using DLP-108, a USB
analog-to—digital converter. Our future work includes utilizing this information (in the
kernel level) to drive application/OS-driven DVFS policies.

3.4 Static Power in i7

When the processor is in the idle state, it consumes only static power since the clock is
cut-off (the off-chip voltage regulator still provides voltage to the core). To get a full
picture of how much power is consumed in the idle state, we deactivate different
number of cores from the BIOS. The assessed idle power under different frequencies is
gathered by our kernel module. The collected power numbers can be then used for
predicting the processor power at run-time. Table 2 shows idle power for different
number of cores under maximum and minimum frequency.

W2.66->1.6
20% 01.6->2.66

prediction error

< 8 A& N
LEANTE LI E LTS ECELRAL I PSS
F & P L L @& N S FF IRy O &
N F P & OO & & R TR 2
O & S P Q
& 12 N4

Figure 2 Error in predicting execution time using the stall-based model.

3.5 Applications and OS

We run our experiments on an Ubuntu Linux 9.10 system with the 2.6.31-22 kernel.
The kernel is patched to enable our techniques to run as kernel modules. We use the en-
tire SPEC2006 suite with all the ref. inputs. We compiled the benchmarks with gcc 4.3
as 64-bits binaries and -O3 optimization. We use full benchmark runs to get a complete
view of the benchmark behavior (the benchmarks run for several minutes in our ma-
chine). Finally, the measurement of the performance counters runs as a kernel module,
enabling counting in the OS. This way, no changes to the target applications are re-
quired and the timing overhead during execution remains minimal (less than 1%).

4 Predicting Performance for Different f Points

Figure 2 shows the absolute error of predicting the execution time using our stall-
based model in i7 core for a large frequency step: running the program in the nominal
frequency and predicting the execution time in the minimum frequency (black bars) —
the grey bars represent the reverse scenario. Due to space restrictions, for the
benchmarks with multiple inputs, we present in Figure 2 the average error over all
inputs. To further analyze the results, we classify the benchmarks into three categories:
CPU-bound, memory-bound, and intermediate or mixed category. This categorization
is performed as follows: when the frequency is scaled from 2.66 to 1.6 GHz, a purely
CPU-bound program will suffer an increase in its execution time of 66.67%, but due to
memory accesses this penalty will be smaller. Based on this, a program with
performance penalty of more than 55% (when scaling the frequency from max to min)
is CPU-bound, a program with penalty less than 35% is memory bound while the rest
of the benchmarks fall into the intermediate category.

In general, the more memory—bound a program is, the more the increase in the pre-
diction error. This is an inherent property of the stall-based model, since this model ig-
nores the ROB-fill effect. In the rest of this section we explain errors on a per-bench-
mark basis. To be able to delve into details about the power “behavior” of each bench-
mark, we also gather information for all the events listed in Table 1.

CPU bound—This category contains the following benchmarks/inputs: astar_2,
bwaves, bzip2 (6 inputs), cactusADM, calculix, gamess (3 inputs), gobmk (5 inputs),
gromacs, h264ref (3 inputs), hmmer (2 inputs), namd, povray, sjeng, sphinx3, tonto
and zeusmp. The errors in predicting the execution time in this category for 17
benchmarks are below 5%. Clear exceptions are cactusADM (14.8% error), gromacs
(12.7%), and astar_2 (10.9%). To understand and explain these errors, Table 3 shows

CATE- | BENCHMARK | TIME PEN- STALLS L2 L3 BRANCH |pcB | ERROR (%) FROM
GORY ALTY (%)? MISSES MISSES MISPRED 2.66 TO 1.6 GHz
CACTUSADM 63.4 356 2.7 2 0.02 2 14.8
GROMACS 65.8 287 2.2 0.01 4.96 197 12.7
ASTAR_2 67.1 234 6.36 0.09 23.66 2.28 10.9
ZEUSMP 574 348 3.22 25 17.84 1.83 10.1
2 % SJENG 63.3 260 0.96 0.5 30.7 2.26 9.7
o 8 BzIP2_3 60.8 127 11.4 0.02 28.4 2.33 2
H264REF_1 66.1 37 1.35 0.05 13.8 2.49 1.4
GAMESS_2 65.3 46 0.16 0 272 25 13
CALCULIX 65.8 39 1.12 0.1 41 2.54 13
BWAVES 58.4 134 1.04 1 12.47 2.39 0.7
MCF 44.8 518 25 10.4 9.1 147 10
LESLIE3D 52.9 378 41 3.6 0.36 1.9 8.5
GEMSFDTD 52.4 353 76 4.3 0.3 1.67 6.8
ASTAR_1 52.1 357 10.8 3.9 14.4 2.13 6.7
a GCC_2 54.6 304 6.72 1.67 171 2.13 6
E LBM 48 231 1.87 2.88 6.75 1.78 -1.5
GCC_5 374 394 4.35 5.36 715 2.1 -1.3
Gcc_3 35.9 421 3.34 4.45 7.26 2.15 -1.2
GCC_4 43.3 336 4.52 5 10.15 2.14 -0.2
GCC_6 38.4 405 4.21 5.25 6.94 2.14 -0.1
LIBQUANTUM | 17.4 483 3.2/ 558 4.97 16 -12.2
x a MILC 22.5 519 10.9 12.9 3.19 1.99 -6.4
g § GCC_8 28.5 472 3.95 4.89 5.96 2.18 -4.1
£ o] OMNETPP 33 565 14.7 7.35 6.49 2.04 3.4
GCC_7 32.2 480 3.18 5.24 711 21 -1.3

Table 3: Performance counter events (per 1K cycles) and prediction error for
three benchmark categories: CPU bound, mixed, and memory bound category.

a. Performance penalty when the frequency is scaled from 2.66 GHz to 1.6 GHz.

b. Instructions per non-stall cycles (indicates Instruction Level Parallelism).
the results for the full list of the performance counters for representative cases. By
cross comparing the results, we are able to explain the behavior of each benchmark.

The error in cactusADM is due to the increased number of stalls generated by L2
and LLC misses and the low IPC. Although only 2 LLC misses per 1k cycles occur, the
penalty for a fmax to fmin transition is 63.4% which means that these L3 misses overlap
either with each other or with L2 misses, thus few of the stalls counted are strictly due
to LLC misses. gromacs shows a similar behavior. The increased number of stalls are
due to L2 misses, branch mispredictions and low IPC. On the other hand, astar_2 has a
quite high IPC which “hides” the stalls due to the large number of L2 misses thus the
prediction error is smaller (10.9%). zeusmp lies on the border between CPU-bound and
mixed categories, so the 2.5 LLC misses per 1k cycles introduce some stall cycles but
L2 misses, branch mispredictions and low IPC also introduce stall cycles resulting in an
error of 10.1%. Finally, sjeng has few misses but many branch mispredictions and as a
result a 9.7% error. In general, benchmarks with few miss events and high IPC exhibit
smaller errors. For example, h264refl and calculix have about 1 L2 miss per 1k cycles
and 13.8 and 41 branch mispredictions respectively, but due to high ILP (indicated by
high IPC) few stalls are introduced in the machine resulting in low errors. Similar be-

havior is reported by gamess_2. bwaves approaches the mixed category, but the extra
stalls introduced by L2 misses and branch mispredictions boost the model to compen-
sate for its inherent inability to account for the ROB-fill area (this phenomenon will be
further explained in the next categories).

Mixed category—This category includes: astar_1, gcc (6 inputs), gemsFDTD,
Ibm, leslie3d, mcf and soplex (2 inputs). As we move towards more memory-bound
programs, we observe that the prediction error becomes smaller. This is because now
the stall cycles introduced by L3 misses become a larger part of the total stall cycles
and what we measure is closer to what we should measure according to the stall-based
model. mcf yields the largest prediction error in this category (10%) due to the large
amount of L2 misses (25), the branch mispredictions (9.1) and the strong dependencies
between instructions illustrated by the low IPC (1.47). Although there are many L3
misses (10.4), mcf’s penalty is only 44.8%, which means that most of them are not
performance critical (overlapping misses). leslie3d and gemsFDTD are more CPU-
bound compared to mcf and the prediction error is smaller due to the reduced amount
of miss events (4.1 and 7.6 L2 misses and 0.36 and 0.3 branch mispredictions
respectively). astar_1 has about the same penalty with leslie3d and gemsFDTD and
more miss events (10.8 L2 misses and 14.4 branch mispredictions), but it also has
larger IPC (2.13) which means that the processor is able to keep executing instructions
when a miss event occurs and thus the majority of stalls measured are due to L3
misses. Similar to astar_1 is gcc_2 which has a slightly smaller prediction error due to
the reduced amount of L2 misses.

Until now we explained how miss events other than L3 misses pollute our measure-
ments. As the program becomes more memory-bound, L3 misses become the governing
factor in stalls and another source of inaccuracy arises: neglecting the ROB-fill area. Al-
though this is an inherent problem of the stall-based model, the way we measure stalls
improves accuracy because the extra stalls measured due to other miss events compen-
sate for the non-measured ROB-fill area. The negative error indicates that the stall cy-
cles are underestimated. So in Ibm, L2 misses, branch mispredictions, and low IPC pro-
duce extra stalls which reduce the error. The error would be even smaller if more stalls
were measured. This is the case for gcc_3, gcc_4, gec_5, gec_6. The stalls introduced
by L2 misses and branch mispredictions result in small prediction error, less than 1.5%.
Memory bound category— This category includes 5 benchmarks. The largest
prediction error is observed in libquantum (12.2%). The low increase in execution time
(17.4) between the maximum and the minimum frequency indicates that libquantum is
heavily memory bound, although L3 misses are not that many. This means that all or
most of them are performance critical (isolated). libquantum has a few other miss
events which reduce the error (negative error means that stalls are underestimated and
extra stalls reduce prediction error). milc is slightly more CPU-bound compared to
libquantum but also has more L2 misses, so the extra stalls reduce prediction error to
6.4%. gcc_8 is more CPU-bound and the prediction error is improved. omnetpp and
gcc_7 have about the same penalty, but differ in the sign of prediction error. omnetpp
has many L2 misses which results in overestimating the stalls and thus positive errors.
On the other hand, gcc_7 has fewer L2 misses and thus the prediction error is negative.

5 Predicting Energy for Different f Points

Our methodology in predicting the dynamic energy of a program is the following: we
measure static power (power in idle state) under all available different frequencies. To

18% - W dynamic energy
16% - Ototal energy

n
=
<
=

rediction erro

S 4% A

) N S

& m\& & FL & &£ @& & SO & @& P S RS
&V F NS L S © N S FES TSR 9§ S
N F F & & S ISR 4 .‘Q&» RN R 2

Figure 3 Error in predicting dynamic and total energy in i7 core.

calculate the run-time dynamic energy of a program, we subtract from the total energy
the product of execution time and static power for the corresponding frequency.
Finally, to predict the dynamic energy consumed in a new frequency, we tested the two
extremes of a fully clock-gated and fully non-clock-gated processor: dynamic energy

in the former case is proportional to the square of the voltage (E~V2), while in the

latter case the energy should be computed according to the formula: E~f*V2xt,

Our experimental findings reveal that the i7 core is not highly clock-gated, since the
fully non-clock-gating scenario produced better results. Especially, in memory bound
programs, in which the clock gating is expected to save more energy due to the long stall
intervals, the results for the fully clock-gated case were even worse compared to the non
clock gated scenario. A more accurate model could be derived if we knew exactly the
processor clock gating map. However this information is not available [3]. Total energy
can be predicted by adding to the predicted dynamic energy the product of the new static
power and the execution time. Figure 3 shows our results. The grey bar shows the re-
sults for total (dynamic and static) energy prediction, while for clarity reasons we also
depict the results for dynamic energy prediction (black bar). Figure 3 depicts the errors
when all cores are active. Maximum and average error are 14% and 8% respectively for
dynamic energy prediction, while the errors in total energy prediction are less than 5%
and 2% respectively. In case that fewer cores were activated from BIOS, the dynamic
energy prediction error would be the same but the total energy prediction error would
be between the current value and the dynamic energy error for each program.

6 Overview of the Methodology and Future Work

The study presented in the paper shows a development stage of our work in building a
strong framework for power/performance runtime management for the Intel
processors. Our view is that this framework can form the basis for future power-related
research. A unique characteristic of our approach (compared to previous approaches)
is that it requires minimal input and calculations. The required inputs are: a single
performance counter (line 1 in Table 1) and the power consumed by the processor
collected by monitoring the off-chip voltage regulator. Both inputs are gathered at run-
time by our kernel module. The idle power consumed by the processor in all
frequencies (9 values in i7) is also stored in our kernel module. Based on those inputs,
our kernel module is able to predict the effect of frequency scaling with minimal
calculations (presented in our previous work [9]). The whole approach runs in kernel
space thus introducing minimal timing overhead (less than 1%) in the execution of the
applications.

In this work, we focus on the following scenario: we perform a single whole run of
an application and using our methodology we predict the execution time and energy con-
sumed by the application in different frequencies (i.e. the core frequency is kept constant
during the whole execution). We are currently extending this work towards a window-
based approach in which our kernel module applies different V/f points at runtime aim-
ing to optimize different energy-efficient metrics (e.g EDP, application/OS energy met-
rics) in analogy to our runtime DVFS management in a simulated environment [9].

7 Conclusions

We described a hardware-specific implementation of the stall-based model proposed
in our previous work [9]. In order to explain how the model performs in the i7 core, we
attempted a qualitative analysis of how prediction accuracy is affected by various
benchmarks’ behavior. Our experimental results show that the execution time of the
applications can be predicted for various frequency scaling steps —even for the
extreme scaling from fmax to fmin— by our model with good accuracy. We also
reverse engineer the power behavior of i7 core by measuring static energy dissipation,
as well as dynamic energy consumed during the execution of programs and predicting
how the power consumed by the processor is affected by frequency scaling.

Acknowledgments— This work is supported by the EU-FP7 ICT Projects, “A
highly efficient adaptive multi-processor framework (HEAP),” Contract No. 247615,
and “Embedded Reconfigurable Architecture (ERA),” Contract No. 249059.

8 References

[1] S. Eyerman, et al. A mechanistic performance model for superscalar out-of-order
processors. Transactions on Computer Systems, 2010.

[2] S. Eyerman, et al. A performance counter architecture for computing accurate CPI
components. Int. Conference on Architectural Support for Programming Languages and
Operating Systems, 2006.

[3] Intel Core™ i7-800 and i5-700 Desktop Processor Series, Intel, 2010.

[4] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring and prediction
on real systems with application to dynamic power management. Annual Int. Symposium
on Microarchitecture, 2006.

[5] C. Isci, et al. An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. Int. Symposium on
Microarchitecture, 2006.

[6] C. Isci and M.Martonosi. Run-time power monitoring in high-end processors:
methodology and empirical data. Annual Int. Symposium on Microarchitecture, 2003.

[71 T. Karkhanis and J.E. Smith. A first-order superscalar processor model. Annual Int.
Symposium on Computer Architecture, 2004.

[8] S. Kaxiras and M. Martonosi. Computer architecture techniques for power-efficiency.
Morgan & Claypool Publishers, 2008.

[91 G. Keramidas, V. Spiliopoulos, and S. Kaxiras. Interval-based models for run-time DVFS
orchestration in superscalar processors. Int. Conference on Computer Frontiers, 2010.

[10] G. Maglis, et al. Profile-based dynamic power voltage and frequency scaling for a
multiple clock domain processor. Int. Conference on Computer Architecture, 2003.

[11] M. C. Maury, et al. Online power-performance adaptation of multithreaded programs
using event-based prediction. Int. Conference on Supercomputing, 2006.

[12] M. C. Maury, et al. Prediction-based power-performance adaptation of multithreaded
scientific codes. Transactions on Parallel and Distributed Systems, 2008.

