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Abstract—Dynamic Voltage and Frequency Scaling (DVFS) is
an essential part of controlling the power consumption of any
computer system, ranging from mobile phones to servers. DVFS
efficiency relies on hardware-software co-optimization, thus using
existing hardware cannot reveal the full optimization potential
beyond the current implementation’s characteristics.

To explore the vast design space for DVFS efficiency, that
straddles software and hardware, a simulation infrastructure
must provide features that are not readily available today,
for example: software controllable clock and voltage domains,
support for the OS and the frequency scaling module of it, and an
online power estimation methodology. As the main contribution,
this work enables DVFS studies in a full-system simulator. We
extend the gem5 simulator to support full-system DVFS modeling.
By doing so, we enable energy-efficiency experiments to be
performed in gem5 and we showcase such studies. Finally, we
show that both existing and novel frequency governors for Linux
and Android can be effortlessly integrated in the framework, and
we evaluate the efficiency of different DVFS schemes.

I. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is one
of the most important techniques for managing the dynamic
power consumption of a system. From mobile devices to large
data centers, scaling frequency down when it is not critical
for performance also allows voltage to be scaled down. Due
to the dependence between power consumption and voltage-
frequency[22], this technique can provide significant energy
savings, with limited or no performance loss. DVES policies
have focused on detecting idleness in the system [28, 30, 29, 19]
to scale frequency down and maximize energy savings at a
minimum performance cost. Even though DVFS is implemented
in most modern processors, a significant amount of DVFS-
related work has been taking place in simulators [23, 27, 24].

Simulation frameworks have always been a powerful tool in
the hands of computer architects. Incorporating detailed per-
formance models in simulators and using them to approximate
the behavior of real hardware enables the computer designers
to experiment with a variety of different configurations early in
the design stage of a system and investigate interesting trade-
offs before the prototype stage of the design process. Moreover,
simulators can be utilized to gain insight about how real
hardware works with respect to application behavior; executing
applications in a controlled simulation environment allows
the computer architect to investigate and better understand
complex interplays between different aspects of the system,

such as the memory hierarchy organization, pipeline design,
interconnection between multiple cores in a multi-core system,
etc. The freedom to monitor all these aspects gives the designer
a better insight and can prove an extremely useful tool towards
developing abstract models of computer systems.

Although a variety of different performance simulators
exist, not as much effort has been spent towards enhancing
these simulators with power modeling and power control
features. Wattch [7] was one of the first frameworks to
deliver power-related information, and was successfully used
as an extension in several performance simulation frameworks
(SimpleScalar, etc.) More recently, McPAT [25] provided a
unified power, area and timing estimation framework, and
quickly developed as the most popular power extension for
performance simulators. Several researchers[9, 32, 21] have
combined the gem5 simulator[5] with McPAT to get energy
consumption estimation of a system. The way this typically
works is to simulate a system, collect all the statistics required
by McPAT and then feed them to the power models offline
to get the final estimation. Although this approach works, it
suffers from serious limitations:

o MCcPAT has no DVFS support, in the sense that voltage and
frequency are design parameters that cannot be changed at
runtime (changing frequency invokes the power optimizer
to come up with a new system design)

o MCcPAT and gem5 interfaces are not always on par with
each other and the assumptions that have to be made are
hard to verify

« gem) stats have to be mapped to McPAT stats, which is
an error-prone process

e power estimation numbers are hard to feed into the
performance simulator execution engine, which is pro-
hibitive for simulator extensions dependent on online
power-estimation

The above-mentioned issues introduce extra overhead for the
user and narrow down the capability of extending the simulator
with features that depend on power monitoring. Examples of
such features are the integration of power sensors that are
exposed to the software running on the simulator and system
thermal management (e.g. throttling processor frequency when
temperature gets critically high.) Since performance and power
are so tightly coupled with each other, a simulator should



support easy integration of power estimation models.

Apart from estimating power consumption, a simulator
should also model various power-saving techniques that are
commonly used in computer systems. DVFS, clock gating and
power gating are among the most popular techniques used
for improving energy efficiency and have been extensively
researched in both industry and academia, thus a simulator
should be able to address these features from the hardware
level till the software-control level.

The goal of this paper is to turn gem5 into a complete
hardware-software framework suitable for full-system DVEFS
studies. To achieve that, apart from the DVFS-control features
we also add a power-estimation framework which is required
for evaluating the efficiency of various DVFS policies. More
specifically, the main contributions of this paper are the
following:

« we add the notion of clock and voltage domains to the
simulator, as well as the simulation structures that manage
voltage and frequency scaling (Section III)

« we extend gem5 with full DVFS support (Section IV.)
On the hardware side, we implement a memory mapped
DVFEFS controller which is flexible enough to control any
clock/voltage domain topology and provides registers for
software interface. On the software side, we implement the
low-level Linux drivers that manage the DVFS controller
in a way that existing higher level kernel modules
(frequency governors) work without any modification

« we extend gem5 by adding a framework that allows easy
power-model integration, and we tweak McPAT to provide
the power coefficients required by gem5 (Section V)

« we show how these extensions can be used to perform
full-system power efficiency studies (Section VI)

II. GEM5 BACKGROUND

The gem5 simulator is the outcome of merging two very
popular tools, the M5 [6] and the GEMS [26] simulators. The
MS5 simulator provided features that many CPU-centric simu-
lators lacked, such as full-system (including OS) simulation
and I/O support. GEMS, on the other hand, featured more
detailed memory models, and it was widely used in academia
for memory-hierarchy related research. gem5 combines the
pipeline models and full-system support of M5 with the memory
model of GEMS, delivering a powerful tool that can cover a
wide range of research topics.

We use gem5 because it already supports full-system
simulation, which is crucial for enabling DVFS. gem5 is
capable of booting Linux and Android, which already feature
modules for DVFS management, thus we do not need to develop
the whole software stack from scratch. Moreover, I/O devices
are fully supported in gem3, thus we can use existing simulation
structures to implement a memory-mapped DVFES controller.

gemS is written in a combination of C++ and python. Most
of the execution engine of the simulator is written in C++,
using a flexible class hierarchy scheme. Base classes provide
the main functionality aspects of commonly used components,
such as CPUs, caches, buses etc. Classes derived from the base

classes are used to define more specialized units, such as an out-
of-order CPU, interconnect components and instruction/data
caches. For C++ classes associated with major components,
such as CPUs or buses, there are python classes that are used
for configuring and connecting components with each other.
Thus, on the user side, setting up and simulating a system
in gem5 is nothing more that writing a python script that
instantiates and connects various components with each other.
This way, the topology of the system is not hard-coded in the
simulator, and a variety of different systems can be created.

Listing 1 shows a simplified example of how a gem5
configuration script is built. In this example we skip many
of the details and focus on the idea of how a system can be
created and simulated in gem5. More complex configuration
scripts, however, can be used to model systems ranging from
smartphones/tablets to desktops and servers. Every object
can be created in the python script by calling the class
constructor and setting the parameters. This way, a CPU
and instruction/data caches are added to the system. The
LinuxSystem class sets up the whole simulation environment,
including the hardware, kernel and disk images. In gem5, every
object needs to be the child of another object, forming thus
the simulation object-hierarchy. One object can have multiple
children, but every object has only one parent object. In our
example, the root object is the root of the hierarchy, and
my_system is its child. my_system is the parent of the my_cpu
object, which, in turn, has two children, the icache and dcache
objects which are both of the type BaseCache. After the system
has been configured, two special gem5 methods are used to i)
instantiate all the objects in the hierarchy in the C++ part of
the simulator and ii) start the simulation.

Listing 1. Default gemS5 configuration script

from m5.objects import =

my_cpu=SimpleCPU (clock=’'2GHz’, width=2)
my_cpu.icache=BaseCache (size='32KB’, assoc=2)
my_cpu.dcache=BaseCache (size=' 64KB’, assoc=2)
my_system=LinuxSystem (cpu=my_cpu)

root=Root (system=my_system)

m5.instantiate (root)
m5.simulate ()

III. INTRODUCING CLOCK AND VOLTAGE DOMAINS

In this section we discuss what is the landscape of clock
and voltage domains in real systems, how gem5 deals with
them, and how we extend gem5 to realistically model clocks
and voltages in the system.

A. Clock/Voltage Domains Landscape

Real systems comprise of different clock and voltage islands.
Typically, a CPU core operates under a single clock and
voltage domain, but several alternatives have been proposed
for a multi-core chip: different cores can operate under the
same (Intel) or different (AMD) clock domains, and similarly
cores can be either on a single or multiple voltage domains.
Apart from the CPU cores, the rest of the system in an SoC



(buses, shared caches, devices etc.) usually has different voltage-
frequency requirements and thus separate domains are specified
for them. Hence, it is clear that a simulator should support the
flexibility for a variety of topologies to be expressed, allowing
the exploration of a vast design space regarding DVFES for
individual clock/voltage domains in the system.

B. Clocks in gem5

In gem5 (as of March 2013), every component (object) that
has the notion of a clock is derived from the ClockedObject
class. Every such object has a clock parameter, which is the
clock frequency the component operates at. By default, objects
inherit the clock of their parent, thus the user only needs to
specify the clocks for high-level components. For example,
since a cache is part of the CPU, and thus a child of the
CPU object, it will operate under the same frequency, unless
specified otherwise in the configuration script.

This infrastructure, although convenient for configuring
statically the clock frequencies of individual components, is
not appropriate for managing frequencies dynamically; in the
existing gem5 framework, each object has a clock running
independently from any other clock in the system. There
is a connection between the clock values of objects linked
with a parent-child relationship, but only in the sense that the
initial values of these objects will be the same. Changing the
clock period of the parent during the simulation will not affect
the child’s clock period. In other words, changing the clock
frequency of a CPU object will not affect the cache’s clock
frequency, resulting in the CPU and the cache operating under
different frequencies which is something undesirable.

C. Clock Domain Extension

Typically, we want to define simulation entities that have a
single clock source. These entities may comprise of multiple
clocked objects, thus whenever the clock frequency is scaled
up/down, this change has to be communicated to each of
these objects. Moreover, the way of declaring the top-level
entities, i.e., the ones that correspond to the components that
are clocked individually from any other component in the
system, might change and should be configurable by the user;
e.g., an Intel multi-core chip has all of the cores operating
under the same clock frequency, AMD multi-cores, however,
provide different clock signals to each of the cores in a multi-
core[11], allowing each core to run at a different frequency.
Thus, the introduction of a common clock source should not
be hard-coded in a particular level of the class hierarchy, but
should be kept generic enough for a variety of topologies to
be supported.

We introduce a new class type to gem5, called ClockDomain.
This class defines the clock period that, all objects belonging
to that domain, will operate under. The ClockedObject class is
modified so that, instead of declaring the clock period of the
object, it now declares the clock domain the object belongs
to. This is on par with the way real systems are implemented:
a clock source is created in the system and the clock is fed

as an input to each of the components that are supposed to
operate under this clock.

Introducing this new class type makes handling the clocks of
the system more flexible and convenient. Every clocked object,
in order to simulate the timings at which specific events will
occur, gets the clock period directly from the ClockDomain
object it belongs to. Thus, changing the frequency of the clock
domain immediately reflects on all of the objects under that
domain. Objects linked with a parent-child relationship, belong
by default to the same clock domain (the child inherits the
clock domain parameter from its parent.) In our CPU example,
this means that every child of the CPU object (caches, TLBs
etc.) belongs to the same clock domain, unless the configuration
script specifies different domains for some of them.

We provide two specialized classes that can be used for
declaring Source Clock Domains and Derived Clock Domains.
A Source Clock Domain is a clock domain that has a clock
period independent of any other domain. On a real system[13],
this corresponds to a tunable PLL which provides the clock
signal to the components that are under this clock domain. On
the other hand, Derived Clock Domains are clock domains that
always run on some fraction of the frequency of another clock
domain, and these are usually associated with sub-blocks of the
design that do not need to operate on high frequency. Hence,
the clock period of a Derived Clock Domain is determined
using some hardware divider logic, and changes on par with
the Source Clock Domain it is associated with.

D. Voltage Domain Extension

Similarly to grouping individual objects into clock domains,
we also group them in voltage domains, i.e., objects that always
operate under the same voltage. For this classification we make
the following assumptions:

« objects that belong to the same clock domain always
belong to the same voltage domain

« objects that belong to different clock domains can belong
to a single or multiple voltage domains.

These two assumptions are compatible with the way clock and
voltage domains are specified in a real system. Components
that are clocked under the same clock source, have the same
voltage requirements and thus should belong to the same
voltage domain. On the other hand, if two components have
individual clock sources, they can still get powered by the same
voltage source as long as the voltage is tuned so as to satisfy
the component with the highest voltage requirement. This is
because, for a given clock frequency, a minimum voltage is
required for the component to operate properly, so any voltage
greater than this minimum is also valid.

Regarding gemS5, we create a VoltageDomain class and we
assign every clock domain object to some voltage domain
object in the configuration script. This way we ensure that
every component in a single clock domain belongs to the same
voltage domain. Moreover, since voltage is essentially an object
and not just a parameter in the ClockDomain class, we can
assign multiple clock domains to the same voltage domain.
Finally, both clock period and voltage of clock/voltage domains



respectively are exported as statistics, and they are a crucial

part of the power-estimation framework discussed in Section V.

Listing 2 shows how the example configuration script of
Listing 1 can be updated to declare clock and voltage domains
and assign components to them. In the example we first create
a voltage domain and then a clock domain that is registered
to that voltage domain. The CPU is assigned to that clock
domain, and all the children of the CPU (icache and dcache
objects), inherit the clock domain parameter from their parent,
i.e., the my_cpu object. Thus, with the addition of clock and
voltage domains, the simulator has the ability to express the
notion of clock and voltage sources, providing support for all
the connections to be configured in the configuration script.

Listing 2.
domains

gem5 configuration script augmented with clock and voltage

from m5.objects import =

v_dom=VoltageDomain (voltage='1V’")
clk_dom=SrcClockDomain (clock="2GHz’,
voltage_domain=v_dom)

my_cpu=SimpleCPU (clock_domain=clk_dom, width=2)
my_cpu.icache=BaseCache (size="32KB’, assoc=2)
my_cpu.dcache=BaseCache (size=' 64KB’, assoc=2)
my_system=LinuxSystem (cpu=my_cpu)

root=Root (system=my_system)

m5.instantiate (root)
m5.simulate ()

IV. INTRODUCING DVEFS IN GEM5

In this section we explain how we extend gem5 with full
DVFEFS support. In Section III we explained how the notion
of clock and voltage domains is introduced to the simulator.
This extension provides the flexibility to declare clock/voltage
topologies for a system, but there is no functionality for
managing clock frequencies and voltages dynamically. In
real systems, such a functionality requires both hardware and
software support. On the hardware side (Section IV-A), we
need to implement a controller that i) manages the frequencies
of the various clock domains in the system based on OS
requirements, ii) manages the voltages of the voltage domains
so that all the voltage requirements for the individual clock
domains are satisfied and iii) provides a register interface so
that software can issue DVFS commands for any clock domain
of interest. On the software side (Sections IV-B, IV-C), we
need to develop the drivers that control the modeled hardware
and, if possible, integrate them on the current frequency scaling
module of the Linux kernel. An important consideration in our
design is to keep the implementation generic enough so that
any configuration of interest can be applied.

A. DVFS Controller

In a real system, a DVFS controller is a component that
is responsible for setting clock frequencies according to OS
policies. It provides memory-mapped registers to communicate
with software[17], and should be able to handle all the different
clock domains available in a system. For every different clock

domain, the controller needs to provide a register that can
be used by the software to request for different frequency
levels. OS can write some integer value in that register, which
corresponds to some frequency level (in Linux, lower frequency
level values correspond to higher clock frequencies, with 0
mapping to the highest available frequency of the system.)
It is also possible to read the same register to retrieve the
current frequency level of the domain. Another register can be
provided for the same domain for handshaking purposes: the
controller can set this register once the transition to the new
frequency has been completed, and the register can be reset
once it is read by the software.

In our implementation, similarly to a real SoC, we need
to design a controller flexible enough to model an arbitrary
number of clock domains. Dedicating one pair of registers for
each clock domain however is rather restricting. The number
of registers of the controller needs to vary depending on the
simulated system, which means that the memory-map of the
device is not constant across different system configurations.
Instead of having a configurable number of registers for the
device, we minimize the amount of registers required by
multiplexing the clock domains.

Figure 1 shows a high level schematic of our controller along
with an example SoC[2]. Depending on the actual SoC, the
implementation of the controller differs. The controller shown
in Figure 1 is an ad-hoc implementation specific to gemS5, but it
is generic enough to model any topology of interest. We assume
that the example system consists of a Little CPU, a Big CPU
and a GPU, each of them in a separate clock/voltage domain.
One more clock/voltage domain is used to supply the rest of the
system, i.e., interconnect, DRAM and other system components.
In this example there is one-to-one mapping between clock and
voltage domains, but as explained in Section III multiple clock
domains can lie under the same voltage domain. Software (OS)
can interact with the controller through 3 registers. The Domain
ID is a read/write register, used for selecting the clock domain
of interest. Freq level register is also read/write register and is
used for setting or reading the frequency level of the domain
that Domain ID register points to. Finally, Ack is a read-only
register used for acknowledging that a DVFS transition has
finished. In that case, the controller sets the Ack register to 1
and, once software reads the register, it resets it to 0.

A limitation of the current design is that only one outstanding
DVFS request can exist at a time. This is in accordance with
the way cpufreq drivers are developed: the part of the code
that makes the request and waits for the DVFS transition to
complete is in a critical section of the driver, thus only one
request can exist at a time. However, our controller design
can be easily extended to support multiple concurrent DVFS
transitions: for each clock domain, there can be an internal
pair of registers (Freq level and Ack) that maintains the state
of that domain, and the 3 registers exposed to the memory
address of the system would remain the same. This way, we
can have multiple DVFS transitions, with one Ack register per
domain, and the selection of which register is to be exposed on
the memory map can be done using the Domain ID register.
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Figure 1. DVES controller and example system to control. The controller features 3 different registers to control the available clock domains of the system.
These registers are used to specify the domain of interest, set/get the performance level and acknowledge that the transition has completed. The controller is
aware of the exact topology of the system and the V-f parameters of each of the domains.

The DVFS Handler is a simulation object that handles all
the clock and voltage domains in the system. Unlike the DVFS
controller, which is an actual I/O device, the handler does not
have a physical representation in the system; it is a simulation
component which is part of the controller and maintains all
the required information for each clock domain. Moreover,
it provides methods for setting/getting clock frequency and
voltage values, and, in the case of multiple clock domains lying
under the same voltage domain, it makes sure that the voltage
requirements of all of the clock domains are satisfied. For each
clock domain in the system, the handler maintains an entry in
an array which includes the ID of the domain, pointers to the
corresponding ClockDomain and VoltageDomain C++ objects,
the current frequency level of the domain and, finally, all the
available V-f pairs the domain can operate under.

Listing 3. gem5 configuration script with DVFS controller declaration
from m5.objects import »*
v_dom=VoltageDomain (voltage='1V’")

clk_dom=SrcClockDomain (clock="2GHz’,
voltage_domain=v_dom)

domains_config = []
clk_dom_config = DomainConfig(

clk_domain = clk_dom,

freq op_points = [’1.7GHz’, ’'1.2GHz,
"0.7GHz’, '0.2GHz'],

voltage_op_points = [71.28V’, ’71.08V’,
r0.96vV’, "0.93V’'],

domain_id = 0,

transition_latency = "100us’)

domains_config.append(clk_dom_configqg)
my_dvfs_controller.dvfs_handler =
DVFSHandler (domains = domains_config)

my_cpu=SimpleCPU (clock_domain=clk_dom, width=2)

my_cpu.icache=BaseCache (size="32KB’, assoc=2)

my_cpu.dcache=BaseCache (size='64KB’, assoc=2)

my_system=LinuxSystem (cpu=my_cpu,
dvfs_controller=my_dvfs_controller)

root=Root (system=my_system)

m5.instantiate (root)
m5.simulate ()

Listing 3 completes the configuration script shown in
previous sections with DVFS Handler and DVFS Controller
declarations. For the clock domain we have declared, we specify
the configuration parameters (domain ID, DVFS transition
latency, and voltage-frequency operating points), pass them to
the handler, and assign the handler to the DVFS controller.

B. Linux Cpufreq Driver

With the hardware extensions in place, it is still left to the
software to make use of it and control all the clock and voltage
domains in the system. Figure 2 shows the software stack for
the cpufreq component in Linux. This can be divided into
three parts. At the lowest level, the machine-specific driver
initializes the power control unit and provides the basic I/O
access functions to the device. At the next level, kernel modules
use the functions provided by the underlying layer to implement
more high-level functionalities, such as detecting the system
domain-topology, translating requests for frequency transitions
to appropriate frequency levels and call the low-level DVFS
routines provided by the lower-level driver. These modules,
called cpufreq drivers, are machine-specific and only one of
them can be registered in a system at a time. Registering the
cpufreq driver is part of the kernel-boot process, and every
cpufreq driver should comply with the interface specified by
the cpufreq module. As Figure 2 shows, it is only the low-level
modules that are gem5 specific. The remaining of the cpufreq
module can be used as it is, without any modifications.

In our implementation, the lowest level driver simply
reads and writes to the DVFS controller registers. A
set_performance function writes first the domain ID and
then the required performance level to the corresponding
registers. Then, it keeps polling the Ack register until it gets set,
meaning that the DVFS transition has completed. Similarly, for
a get_performance function, the driver writes the Domain ID
register and then reads the Freq level register to acquire the
current frequency of the specified domain.

Listing 4 shows the convention for developing a cpufreq
driver. The cpufreq_driver struct consists of a set of function
pointers. Once a driver is registered as the system’s cpufreq
driver, the high-level cpufreq modules call these functions to get
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the low-level modules are gemS5-specific, whereas all the high-level kernel and userspace modules can be reused as they are.

the low-level services. Implementing the proper function is the
only task that the driver developer needs to do for everything
to work seamlessly between the different levels of the software
stack. Hence, as Figure 2 shows, we only need to develop
proper configurable low-level modules, and all the standard
high-level modules can be reused as they are.

Listing 4. Linux convention for a cpufreq driver
static struct cpufreq driver gem5_cpufreqg driver =

{

.flags = CPUFREQ_STICKY,

.verify = gem5_cpufreqg verify_ policy,
.target = gemb_cpufreq set_target,
.get = gem5_cpufreq_get,

.init = gemb5_cpufreq_init,

.name = "cpufreg_gemb",

.attr = gemb5_cpufreq_attr,

}i

We refer the interested reader to the Linux kernel
documentation[4] for more details about each of these fields.
For the gem5_cpufreq_init function, it is worth mentioning
that the driver parses the device tree (see Section IV-C) to
discover the topology of clock domains and then registers and
populates the frequency tables for every clock domain in the
system. Hence, for different system configurations, we only
need to provide a valid device tree instead of modifying the
driver source code.

C. Linux Device Tree

The device tree is a structure that contains all the necessary
information to setup and initialize all the devices in a system.
During the boot process, the device driver parses the corre-
sponding entry of the device tree to obtain information such
as the memory map for the device, the number of registers
required and various configuration parameters. For our kernel
extensions, we need to extend the device tree by adding the
frequencies available for each clock domain, and also create a
node to register our DVFS controller as a system device.

Listing 5 shows how a device tree can be extended to support
DVES on gemS5. First we create a “domains” node, and under
that node we declare all the clock domains along with the
available frequencies for each domain. Then, we add a device
entry for our DVFS controller, and we specify the address

range and a compatible driver for our device. To pick the
address range, we need to examine the memory map of the
system and detect an area of 12 bytes (3 registers, 4 bytes each)
not used by other devices. We should mention that currently
device tree and configuration script are written separately, so
special care has to be taken for the configuration parameters
to match each other. A device tree auto-generated from the
configuration script is left for future work.
Listing 5. Linux Device Tree extensions
domains {
cpu_clock_domain@0 {
fregs = <1700000000 1200000000 700000000 200000000>;
}i
cpu_clock_domain@l {
fregs = <1300000000 1100000000 400000000
}i
bi

200000000>;

gem5_dvfs_controller@1c080000 {
compatible = "arm,gem5_dvfs_controller";
reg = <0x1c080000 Oxc>;

bi

V. POWER MODEL INTEGRATION

So far we have discussed the DVFS extensions in gem5
that enable us to provide run-time, software-managed control
of clocks and voltages of the different parts of the design.
To perform interesting experiments and evaluate the benefits
of various DVFS schemes we need two additional features
currently lacking in gem5: i) the power models of the various
blocks (simulation objects) of interest and ii) a well-defined
methodology for run-time power estimation.

For power models we still rely on McPAT, although any
power-modeling methodology can be used to provide the
input for the power-modeling framework of gem5. In order to
seamlessly integrate estimation in the simulator and not to rely
on external tools, we designed a power-estimation framework
within the simulator’s existing framework that enables us to port
power models in a gem5-friendly format. To achieve this, we
use the existing statistics infrastructure within gem5. Using the
statistics of gem5 is indispensable for power estimation, since
power models rely on the activity of various components, as
well as voltage and frequency of the various domains which are



also reported as statistics (section III.) For our studies we used
this infrastructure for estimating total power consumption of the
system, however our infrastructure allows more sophisticated
studies to be performed, such as power control based on run-
time power usage and temperature profile of the design.

The run-time power consumption of a configurable IP
block in the design depends on a large set of static and
dynamic parameters, such as the implementation technology
node, design parameters (size, number of gates, flops, SRAMs
etc.), switching activity of the component, voltage-frequency
operating points, temperature variations, power state (clock-
gated/power-gated) etc. With our proposed methodology we
intend to address all this information and provide the necessary
infrastructure to ensure that gemS users can express the above
intent with their power model at relative ease.

The power models are specified for each simulation object
of interest. Every power model is expressed as a set of
i) configuration parameters which are used to determine whether
a given object qualifies for an available power model in
the database, and ii) power model coefficients that are used
to estimate power consumption based on statistics collected
dynamically by the simulator. Different power models can
co-exist for various configurations, and gem5 picks a proper
model (if it exists) based on the simulation configuration script
provided by the user.

We assume that the power models are only expressed for
objects that are clocked objects which have a notion of clock
and voltage associated with the modeled simulation object.
This assumption comes because of the fact that power/en-
ergy consumption of a component being simulated varies
with its operating frequency and voltage. Coefficients in the
power/energy models are therefore expressed as clock/voltage
variant or invariant. Every gem5 component that has a physical
representation in the system, is a clocked object at some point
in the hierarchy. For example, a TLB might not be a clocked
object, but it is a part of a CPU which is a clocked object.
Hence, a power model can be created for every component in
the system.

The energy consumption equation can be described with in
principle (but not limited to) three different types of coefficients:

« frequency-independent, voltage-dependent Energy Coef-
ficients: such coefficients are used to estimate the event-
based energy consumption of the system. Each event, such
as a cache access, a cache miss or an ALU access, is as-
sociated with a frequency-independent, voltage-dependent
coefficient, and the total energy consumed is simply the
total number of the occurrences of the event multiplied
by the coefficient.

« frequency-dependent, voltage-dependent Power Coeffi-
cients: such coefficients are used to estimate the power
consumption due to activity that is not associated with
some event count, e.g., power consumed in clock tree.

« frequency-independent, voltage-dependent Power Coeffi-
cients: this type of coefficient is used to take into account
leakage power consumption, which depends on voltage
but not on frequency.

We modified McPAT to retrieve a set of coefficients that
describes our gem5 modeled system, and we feed these
coefficients in our power-estimation framework. For each
component, different equations can be defined reflecting the
different power state it can be. Thus our power-estimation
framework can be used for idle-power management studies.
Apart from estimating power consumption in idle state, such
studies require hardware and software support. As future work,
we plan to extend the simulator with idle-power management
support, as well as thermal management.

VI. USING GEMS5 FOR ENERGY-EFFICIENCY STUDIES

In this section we show how the infrastructure we developed
can be used for studying the efficiency of different DVFS
schemes. To showcase the usefulness of our framework, we
focus on experiments that are impossible or hard to run without
the use of a simulator.

The main contribution of this paper is to enable DVFS studies
to be performed in gem5. In the remainder of this section, we
provide examples of experiments that can be carried out using
the extended version of gem5. As future work, we target on
more advanced studies that will investigate in more depth the
design space of DVFS energy-efficiency (beyond the standard
DVFS schemes of this paper) using the proposed framework.

Table I
GEM5 ARM MODEL DEFAULT SYSTEM PARAMETERS

Parameter Value
CPU type out-of-order
number of cores 1
dtlb 64 entries
itlb 64 entries
dcache 64KB-2way-64Byte block
icache 32KB-2way-64Byte block
L2 cache 2MB-8way-64Byte block
decode width 3
issue width 8
Reorder buffer 40 entries
Table 11

VOLTAGE-FREQUENCY PAIRS FOR OUR EXPERIMENTS (RETRIEVED FROM
SAMSUNG EXYNOS 5250)

Frequency(GHz)  Voltage(V)  Frequency(GHz)  Voltage(V)
1.7 1.278 0.9 1.001
1.6 1.228 0.8 0.989
1.5 1.177 0.7 0.963
1.4 1.140 0.6 0.951
1.3 1.115 0.5 0.939
1.2 1.077 0.4 0.926
1.1 1.046 0.3 0.926
1.0 1.027 0.2 0.926

First, we validate that our gem5 extension works as it is
supposed to, by comparing the frequency transitions observed in
gemS and a real ARM-based development board when running
an adaptive frequency governor. Then, we investigate what is
the impact of DVFES transition latency in the system’s efficiency,
and whether existing frequency governors can take advantage
of reduced DVFS latency to adapt faster to the workload



behavior and thus improve efficiency. Finally, we explore how
the number of different V-f pairs affects efficiency, and how
a computer architect can possibly reduce design complexity
without sacrificing efficiency by picking the most important
V-f points for specific workloads. For our evaluation, we use
the default gemS5 configuration for an ARM processor, the most
important parameters of which are shown in Table 1.

An important parameter for our experiments is the available
frequencies the core can run at and the corresponding volt-
ages. We get the available V-f pairs from an existing ARM
implementation, the Samsung Exynos 5250 chip[3] featuring
a dual-core ARM A15 processor. We get accesses to the V-f
pairs of this processor by measuring the core voltage of an
Arndale development board[1]. The voltage pin is exposed on
the PCB of the development board and it is fairly easy to locate
using the board schematics. By using the userspace governor
to control the frequency and an oscilloscope to measure the
voltage, we come up with the V-f pairs shown in Table II.
We run a browser benchmark called BBench [15] on top of
Android Ice Cream Sandwich operating system, and we evaluate
against existing DVFS Governors (Interactive, Ondemand and
Performance governors.) Note that, apart from modifying the
decision interval of adaptive governors to make them take
advantage of the reduced DVFS transition latency, no further
modification was required to run the governors in gems5.

A. Validation

To validate that DVFS in gem5 works as it is supposed
to, we run BBench in both gem5 and our Arndale board
and profile the frequency migrations driven by the Interactive
governor. Figure 3 shows that both the Arndale and gem5 runs
follow similar frequency-migration patterns. The reasons for
the imperfect alignment are i) the Arndale run is only sparsely
sampled (5 samples/sec) so that the frequency-monitoring
process does not affect the governor behavior, ii) noise from
system processes running simultaneously with BBench and iii)
a certain amount of discrepancies is explained by the fact that
gem5S does not model precisely the Arndale board. gemS is
a generic simulator that allows high-level parameters (such
as cache sizes, number of cores etc.) to be configured, but
it cannot capture the details of the processor pipeline design.
Therefore, in the figure we can see similar behavior between
the two runs (e.g., intervals A, B, C and D), even though the
durations of idle/active intervals might differ between the real
system and the simulator.

B. Running BBench with different governors

We run BBench with 3 different governors: Performance
governor, which sets the frequency always at maximum value,
and Ondemand and Interactive governors, which set the
frequency based on CPU-utilization. For these experiments we
assume that the DVFS latency is 100usec (as in Exynos chip)
and we use the voltage-frequency pairs of Table II. Figure 4
shows execution time and energy consumption for BBench
normalized on the case of Performance governor. As the figure
shows, Performance governor is the one that achieves the
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Figure 3. Running BBench with Interactive governor on Arndale board (top)

and gem5 (bottom). The two cases, even though not identical, follow similar
frequency migration patterns. In the figure, we have highlighted four example
intervals that, although shifted in time, behave similarly in terms of frequency
migrations.
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Figure 4. Execution time and energy consumed for Performance, Interactive
and Ondemand governors, normalized to the case of Performance governor.
Performance governor is slightly faster, but utilization-based governors can
save a significant amount of energy by scaling frequency down during idle
periods.

lowest execution time, but at the same time consumes the most
energy. This is because Performance governor always picks
the highest frequency, even during the periods that CPU is
idle, hence losing any opportunity to lower power consumption
during the idle periods. Interactive and Ondemand, on the
other hand, are adaptive governors that scale CPU frequency
based on CPU-utilization. By lowering frequency during idle
periods they achieve low static power consumption, while by
raising frequency during non-idle periods they try to maximize
performance, thus both Interactive and Ondemand achieve
slightly worse performance but significant energy savings
compared to Performance governor. If we compare Interactive
and Ondemand, Interactive is faster to adapt to the workload
changes and thus achieves better performance at about the
same energy consumption.

C. Sensitivity to DVFS Transition Latency

In this section we take the two adaptive governors explored in
VI-B and investigate whether a faster DVFS transition latency
has an impact on the governor’s efficiency. We try 4 different
transition latencies: 100usec, 50usec, 10usec and lusec. For
the governor to take advantage of the reduced latency, we scale
the interval that the governor takes a decision proportionally to
the DVFS transition latency. For example, going from 100us to
50us transition latency, we also reduce the duration of decision
interval by a factor of 2. Figure 5 illustrates the results of our
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Figure 5. Impact of DVFS transition latency in execution time and energy
consumption of Interactive and Ondemand governors running BBench. For
each governor, execution time and energy are normalized to the case of 100usec
of transition latency.

experiments for Interactive and Ondemand governors. Both
governors can take advantage of the reduced latency to i) scale
frequency down faster during idle periods, resulting in better
energy savings, and ii) scale frequency up faster when the idle
period is over and the CPU is active again executing BBench
code, improving this way the execution time.

Since Interactive governor was already quite fast in adapting
to program’s behavior, Ondemand experiences a larger benefit
from the DVFS-latency reduction. At 50usec, however, On-
demand governor shows an increase in energy consumption
compared to the base case. This can be explained by the fact that
at lower latencies, the governor gets invoked more frequently,
more instructions are executed and an energy overhead is
introduced. As the DVFES latency gets further reduced, however,
the benefits in execution time and energy compensate for the
extra instructions that are executed. Interactive governor, on
the other hand, does not suffer from similar effects, since it
enters a “wait” state during idle periods and is not invoked
until the processor wakes up again.

At the lowest DVFS latency point (lusec), we observe only
marginal differences with the 10usec case. At this point, the
governor invocation frequency has dropped below the Linux
scheduling quantum, which is 10msec by default in Android
systems, hence the governors will be invoked with a 10msec
interval and thus they cannot take advantage of the reduced
DVES latency. To overcome this limitation, there are two
alternatives: lowering the scheduling quantum and using high-
resolution timers. Even though both of them would allow faster
invocation of the DVFS governors, modifying timing aspects
of the system should be done very carefully. A parameter that
one should take into account is that in real systems, individual
cores can be shut down after some period of idleness to save
energy. Although this technique comes with great potential
for energy savings, the cost of switching the state between
active/idle is rather high. Hence, enabling DVFS switching at
a pace faster than the default OS schedule interval should be
explored in accordance with the overhead it would cause in the
switching between “on” and “off” states of the system. Such
an investigation requires idle-power management capabilities
which are not currently available in the simulator, so we leave
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Figure 6. Execution time and energy consumed for Interactive and Ondemand
governors, when the Base and Reduced voltage-frequency sets are used.
Reduced cases are normalized to the corresponding Base cases. The binary
behavior of BBench results in the number of available frequencies only
marginally impacting the efficiency of the system.
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Figure 7. Distribution of execution time in different frequencies for Interactive
and Ondemand governors. A high concentration in maximum and minimum
frequency indicates that the number of intermediate frequency steps does not
highly impact governors’ behavior.

this kind of analysis for future work.

D. Sensitivity to number of available V-f pairs

In this section we explore how the amount of V-f pairs
impacts execution time and energy of BBench. We compare
two cases, the Base case with the V-f pairs shown in Table II,
and the Reduced case, using only 200MHz, 700MHz, 1.2GHz
and 1.7GHz and the corresponding voltages from Table II.

Figure 6 shows that changing the number of available
frequencies has almost no effect in execution time and energy
consumed, for both Interactive and Ondemand governors. A
close inspection of how much time each governor spends on
each frequency (Figure 7) sheds more light on this behavior.
BBench has a rather binary behavior, spending most of the
time in either maximum or minimum frequency for both
Interactive and Ondemand governors. Thus, for this workload,
the most important parameter is the range for frequency scaling
instead of the number of intermediate steps. By exploring the
behavior of a wider set of workloads, and given that this
shows similar trends, one could argue that we can reduce the
design complexity by reducing the number of V-f pairs without
significantly affecting performance and energy efficiency of the
system. If, on the other hand, this analysis reveals that there
are workloads highly affected by the frequency steps, one can
use the extended version of gem5 to decide upon the optimal
set of voltage-frequency pairs for the workloads of interest.



VII. RELATED WORK

Here we summarize work related to power-modeling and
DVFS-modeling. Table III shows how different frameworks
compare against each other in terms of the features they offer.

Brooks, Tiwari and Martonosi developed Wattch, one of
the first frameworks to estimate power consumption at the
architectural level [7]. It used power models to estimate
energy consumption of different structures (array structures,
combinational logic, clock distribution circuit, wires, etc.) in
order to project how architecture-level decisions impact the
power consumption of a system. Wattch was developed as an
extension to SimpleScalar, and for several years the fusion
of the two was the most commonly used power-performance
simulator. Nowadays, however, this framework is somewhat
outdated, since it does not offer any full-system and DVES
support, and, regarding the power-modeling part, it does not
follow the latest technology advances.

More recently, McPAT makes use of updated power models
and projections about technology nodes to deliver a tool that
was validated against contemporary processors [25]. McPAT has
served as an extension to performance simulators, such as gem5
and Sniper [8, 16], however, McPAT’s XML interface does
not support coefficients for many different voltage-frequency
operating points, thus these tools cannot be readily used for
DVES explorations even in the cases that the performance-
modeling part of the framework supports frequency scaling
(e.g., SNIPER.) Comparing Sniper and gem3, the main differ-
ence is that gem5 is a cycle-accurate, full-system simulator,
whereas Sniper is a fast simulator based on interval models
for the core and does not support full-system simulation. Thus,
Sniper cannot run unmodified DVFS governors. On the other
hand, gem5 can model a whole SoC booting Linux/Android,
and with our extensions it now fully supports DVES.

Various researchers have characterized existing hardware
using statistical models that correlate power consumption with
performance counter events [20, 10, 18, 14, 31]. All of these
power-modeling techniques are orthogonal to our work for
integrating power models in gem3, since any technique can be
used to derive the coefficients to be used in the simulator.

Table III
COMPARING DIFFERENT SIMULATION FRAMEWORKS

Simulator Cycle- Full Full DVES up-to-date
accurate  System Support power models
SimpleScalar+ yes no no no
Wattch
gemS5+McPAT yes yes no yes
Sniper+McPAT no no no yes
gem5 standalone yes yes yes yes

Regarding DVFS-Management, the Linux kernel offers a
series of standard cpufreq governors for the user to pick from
[4, 28] and are mainly based on detecting periods of low CPU
load to scale frequency down and save energy. Other methods
rely on empirical [19] or analytical [23, 30, 12] techniques to
detect phases on an application’s execution that memory is the

bottleneck. These methods exploit that fact by scaling down
core frequency without significantly harming performance and,
at the same time, achieving high energy savings.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrate how a full-system simulator
can be extended with DVFS support. We enhance gem5 with
features that are not available in most simulators: clock and
voltage domain declaration, online power-estimation, a DVFS
controller, and kernel drivers for full-DVFES support. The
most important contribution of our work is that it is not a
“hack”: instead of taking shortcuts to come up with some
implementation that “sort of works”, we develop a framework
that comes with robust specifications and complies with all
the hardware and software conventions, so that it is highly
configurable and can be used along with existing cpufreq
governors. We intend to release the software as an open-source
tool, so that in the future it will be integrated with the mainline
gemS5 source code.

To showcase the usefulness of our framework, we perform
a series of DVFS experiments looking on both software and
hardware aspects. We experiment with different governors and
DVES transition latencies/frequency operating points, and we
reason about the energy efficiency of different DVFS schemes.

As future work, we plan to enhance gemS with even
more power-control features, such as idle-power management,
thermal monitoring and power sensors, so that it can serve as a
tool for exploring numerous energy-efficiency optimizations.
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