Security and dynamic compositions of open systems

A. Bracciali A. Brogi G. Ferrari E. Tuosto

Dipartimento di Informatica
Universita di Pisa
Corso Italia 40, I-56125
Italia

Abstract Designing software by coordinat-
ing components is becoming a pervasive
software development methodology. This
practice of building (distributed) applica-
tions is currently supported by several in-
dustrial standards competing in the market-
place. Moreover, Internet facilitates the dis-
tributions of services to be embedded into ap-
plications. In this highly dynamic scenario,
we discuss a methodology to formally de-
scribe the (behavioural) features of the single
components and to reason about the proper-
ties of the assembled applications.

Keywords: Formal Methods, Component Compo-
sition, Dynamic Aspects of Coordination, Property
Verification.

1 Introduction

Open systems can be thought of as sys-
tems which can deal with dynamic addi-
tion/replacement of components, modification
of the communication infrastructures without
compromising the overall system behaviours.
They can be built by composition of a set of
components having a clear defined interface
that may vary during time. The openness of
the system manifests itself also in the computa-
tional environment: components interact with-
out being able of making complete trustness
assumptions on the behaviour of all the other
(possibly malicious) components.

The World Wide Web provides a paradig-

matic example of an environment where open
systems may be designed, developed and dis-
tributed. Current software technologies em-
phasize the notion of WEB SERVICE as a key id-
iom to control the design and the development
of applications. Conceptually, WEB SERVICES
[8] are stand-alone components that reside over
the nodes of the network. Each WEB SERVICE
has an interface which is network accessible
through standard network protocols and de-
scribes the interaction capabilities of the ser-
vice (e.g., the message format). Applications
are developed by combining and integrating to-
gether WEB SERVICES, which do not have pre-
existing knowledge of how they will interact
with each other.

The stages of WEB SERVICE development
can be summarized as follows:

1. publishing the services,
2. emphfinding the required service,
3. binding the services inside the application,

4. running the application through the Web.

The use of WEB SERVICES, namely open sys-
tems over the World Wide Web, raises a num-
ber of interesting issues. First, security should
be ensured: WEB SERVICEs belonging to dif-
ferent service providers meet different security
requirements. Second, dynamic adaptability
should be ensured: applications can reconfig-
ure their structure (e.g. the security policy)
and their WEB SERVICES at run-time to respond

to dynamic changes of the network environ-
ment (new services may be offered and existing
services may disappear and reappear later with
more functionalities).

Current technologies provide limited solu-
tions to some of the above issues. For instance,
the Microsoft .NET architecture supplies a pro-
gramming technology embodying general facil-
ities for handling heterogeneity, but the coor-
dination of WEB SERVICES is subtle and error-
prone since one has to deal with the visible in-
terfaces, the message formats, the underlying
communication infrastructures and the appli-
cation requirements such as security and qual-
ity of services.

The research activities in the field of co-
ordination languages and models have im-
proved the formal understanding of dynami-
cally adaptable mobile components. However,
a full-fledged foundational model is still miss-
ing. Some preliminary results in this direction
can be found in [9] where a discipline for or-
chestrating WEB SERVICES is outlined. The ap-
proach of [9] is based on the idea of separating
WEB SERVICE providers from contracts mecha-
nisms (also known under the name of connec-
tors), which regulate WEB SERVICE coordina-
tion.

Our goal is to contribute to providing a for-
mal understanding of WEB SERVICE coordina-
tion, as a first step towards the development
of proof techniques for the automated verifica-
tion and certification of properties of web ap-
plications. Moreover, a formal understanding
of WEB SERVICEs may suggest the design of
robust coordination patters.

In this extended abstract we provide an in-
formal introduction to the model. In particu-
lar, we discuss and motivate the main design
issues, and we highlight some feature of the
model. The proposed methodology has been
applied [4, 3] to the static analysis of security
protocols in a dynamically evolving computa-
tional environment.

The paper is organized as follows. In Section
2 we introduce a formal model for WEB SER-
VICE composition. The model exploits the no-
tion of naming to handle coordination. Hence,

the model takes the form of a name-passing
calculus where WEB SERVICES are composed to-
gether by appropriately sharing their network
references. Behavioural properties of applica-
tions are formulated as invariants that the ap-
plication is required to guarantee. Only WEB
SERVICES satisfying the invariants can join the
application. For example, absence of deadlocks
can be formulated as a notion of “up to now”
correctness of an open session of the applica-
tion: A new WEB SERVICE will not be admit-
ted to the session if it can introduce a dead-
lock that will not be removed by any other
WEB SERVICE possibly joining the session. In
Section 3 we illustrate how the methodology
facilitates reasoning about security properties.
Finally, in Section 4 we argue how the method-
ology can support the validation of more gen-
eral properties of the coordination of WEB SER-
VICES.

2 Interaction Patterns

The Interaction Patterns calculus (IP calculus)
[5] has been specifically designed to describe
composition of software components. The be-
haviour of a component is described by an in-
teraction pattern C = (X)[E] which consists of
a behavioural expression F and of a set of ref-
erences X, called open variables, that the com-
ponent makes available to any environment in
which it is executed. We require that an inter-
action pattern will be name disjoint form other
interaction patterns.

Indeed, the IP calculus is a finitary fragment
of the m-calculus [11] with the addition of vari-
ables and without recursion. We argue that
this hypothesis may be assumed when deal-
ing with component composition because in-
teraction among components usually happens
following recurrent finite patterns. Moreover,
this simplification leads to a formal framework
suitable for locally and uniformly reasoning on
properties of both static and dynamic compo-
sitions.

A session S is a set of (partially connected)
interaction patterns. An Interaction pattern C

accesses a session by means of a join operation
J(S,7v,C). The join operation connects some
of the open variables of C' and §, according
to the declaration (name sharing) given by the
binding . Instantiated variables are not open
anymore. By communicating channel names,
the connection topology of a session may dy-
namically change. A session whose interaction
patterns do not have open variables is called a
closed session, otherwise it is open. A pattern
joining a closed session cannot interfere with
the patterns already in the session.

Let us consider two simple interaction pat-
terns. In the examples the combinator +” de-
notes non deterministic choice, ‘and ‘.” de-
notes sequential composition. Moreover, x,y,
w are variables, c is a channel name and abort,
query are basic data.

The first interaction pattern S describes a
simple server, which offers to the environment
a single channel (the open variable x). Once
connected to a client, it can either send a ref-
erence to a service (the channel name c) or it
can be terminated by receiving an interruption
(abort). The second pattern C is a “compat-
ible” client. It also offers one open variable
(y)- However, it may either receive dates or
“autonomously” commit to abort.

S = (x) [out(x,c) + in(x,abort)]
C (y) [7.in(y,w) + 7.out(y,abort)]

The internal action 7 is used to model local
choices: the choice 7._ 4+ 7._ is not determined
by an external synchronization, but by one of
the two internal steps.

The two patterns join an (empty) session,
by J(@,[z — d,y — d],{S,C}), yielding a
closed session that never deadlocks:

{ O [out(d,c) + in(d,abort)],
(O [r.in(d,w) + 7.out(d,abort)] }

Besides the static incremental construction
of a system, the same connecting mecha-
nisms also models the dynamic interplay of
components that intend to join a running
environment. Let us consider an open session
containing a client that, after receiving the
datum, forwards it along an open variable (k):

{ (y,k) [7.in(y,w).out(k,w)
+ T.out(y,abort)] }

After the server S has joined the session, the
session is still open.

Let us now consider the case where the
session is joined, by exploiting the same
mapping, by a server not capable of handling
abort events S':

{O [out(d,c)],
(k) [7.in(d,w) .out(d,w) + 7.out(d,abort)]}

Despite any pattern that will join the ses-
sion, it appears as a session that may run in
trouble in some points of its evolution. In fact,
if the client commits to send abort, the session
evolves in the permanently deadlocked session
S

{ OO [out(d,c)], (k) [out(d,abort)] }

where both the patterns are trying to send over
a channel, but, since the channel is not any-
more open, no other pattern will receive their
messages.

Summing up, this short example shows how
it is possible to state strong (correctness) prop-
erties about closed systems. It also points out
how the same model can uniformly deal with
open systems, for which it is possible to state
weaker (correctness) properties, as acceptabil-
ity [5], depending on the so far specified sys-
tem.

3 Verifying security protocols

Cryptographic (security) protocols consist of
a number of participants, called principals,
which behave following a finite and deter-
ministic role. Principal instances interact to-
gether, possibly interleaving more instances of
the same protocol, by appropriately sharing
their cryptographic keys. A protocol is hence
verified against the presence of an intruder,
which, intercepting potentially all the commu-
nications exchanged by principals in an un-
trusted environment, violates a security prop-
erty of the protocol, [7].

The IP calculus has been extended to deal
with secure composition of components. The
IP approach to protocol verification can be
roughly summarized as follows:

(a) Protocol principals are represented as in-
teraction patterns;

(b) Security properties are specified by logical
formulae ¢;

(¢) An automatic procedure verifies whether
there exists a session, formed by (multi-
ple) principal instances together with an
intruder, having a trace which invalidates
the security property ¢.

Hereafter, we will briefly discuss these
points. As a running example we will con-
sider the Needham-Shroeder public key proto-
col (NS). The NS protocol is used to authen-
ticate a principal A to a principal B. In the
protocol principal A speacks first by sending to
principal B a nonce na and its name encrypted
with the public key of B: {na, A}g+. Princi-
pal B replies encrypting na and a new nonce nb
with the public key of A: {na,nb} +. Princi-
pal A confirms to be the principal who started
the protocol with B and has received the nonce
nb generated by B by sending {nb}p+. The
standard specification of the NS protocol is
given below.

A — B: {na, A}B+
B — A: {na,nb},+
A — B: {nb}p+

(a) The IP calculus has been extended with
spi-calculus-like [1] cryptographic primi-
tives. Communication happens along an
untrusted channel that can be accessed by
any of the principals. Only the principals
which have the correct key can read an en-
crypted message. The join operation mod-
els the sharing of keys. The IP calculus
specification of the NS protocol is:

A=(y)
B =)

out({na,A},+).in({na, u},-).out({u},+)]

[
[in({x,z}s-).out({x,nb},+).in({nb}s-)]

(b)

Notice that in the NS specification the
pattern for principle B exploits the open
variable y to acquire the public key of (an
instance) of A.

To distinguish multiple instances in the
same session, principal instances are ob-
tained by assigning a unique index to the
corresponding pattern. For instance, as-
sume that session S contains only an in-
stance A; of the principal A. An in-
stance By of B joins S, by the operation
J(S, [yg — Aii_], BQ):

{ Olout (nal,{Al}B;r) . in({na1,111}A1—) .
out ({ui }g+)1,

O [in({xz,zz}Bz_) . out({zz,nbg}zj) .
in({nb2}}3;)] }

The join operation keeps track of the shar-
ing of keys among the principals involved
in the protocol sessions.

The logic allows one to make statements
about values exchanged, variables and
their relations. The key issue of the ap-
proach is that the logic makes explicit the
indexing of instances and quantifiers range
over such indexes.

In the logical language, integrity proper-
ties are expressed by predicating about
values of variables. For instance, the for-
mula Vi.z; = na; reads as “for all instances
indexed with ¢ containing z;, at the end of
the protocol, the value of z; must be na;”.

Similarly, secrecy properties can be ex-
pressed by explicitly mentioning the
knowledge x that the intruder may have
acquired by intercepting data exchanged
in the protocol, e.g. Vi.—(na; € k).

Finally, authentication properties are ex-
pressed as relations among values ex-
changed and variables, in the style of the
correspondence relations, [6, 2].

An authentication property for NS may
be expressed by the logical formula ¢ =

Vidj. z; = A; — y; = B;, that reads
as: “if (a responder) B; believes that he
is talking with (an initiator) A;, then A;
has intended to talk with B;”.

(a) The verification process considers a ses-
sion, that can be joined by a bound num-
ber of instances of the protocol and by an
undefined attacker. By exploring the state
space of the possible traces, it is checked
if the intruder can drive the session along
a trace that violates the security property
¢. If any, the pattern of the intruder is
returned.

Notice that this is a “static” wverifica-
tion, since model-checking the property,
i.e. “certifying” the protocol, is done by
means of an off-line simulation.

In the case of the NS protocol, with
respect to ¢, the intruder By performing
the Lowe attack [10], is returned:

Bp = (yo)[in({w,w’};-).

4 WEB SERVICEs: Coordination
and Verification

In our approach, the join mechanism is the ba-
sic building block to assemble together highly
dynamic systems. It appears hence natural to
augment the expressiveness of the join mech-
anism with constraints enforcing the desired
coordination properties web applications must
satisfy.

As far as security issues are considered, let
us assume that a security policy for a session
S is given as a constraint 9 on the sharing of
references. Hence, J(S,7, P) yields the new
session S’ only if the mapping v respects the
policy 9, namely S’ |=, 1.

Notice that the relation |=, is not meant to
require a model checking of traces, but rather
the checking for the satisfiability of ¢ with re-
spect to the mapping . Indeed, this can be
dynamically verified efficiently.

out({w,w’}y;r) .
in({w’ ’}BO—) . out({w’ ’}y;r)] .

Examining the intruder of the NS example,
one could argue that the attack is made pos-
sible by an erroneous, unintended sharing of
keys. In other words, by an improper use of
the functionalities, of the components involved
in the protocol. This observation can be used
for avoiding the exhaustive analysis of all the
possible traces of a protocol session joined by a
new principal. Instead, access will be granted
on the basis of a constraint on the key sharing.

For example, the constraint

¢ =3 0,5 yi = Bj = Vh(y; # AnVy; #
Bp)

reads “any responder B; (whose public key
has been linked to the open variable y; of an-
other principal) cannot require any public key
to be linked to its open variable y;”. By associ-
ating this constraint to all the mappings of the
session, any principal attempting to concur-
rently playing more roles in the protocol would
be rejected. Hence the NS intruder would not
be able to join the session. Notice that ¢,
is “more restrictive” than ¢, since also non-
malicious components can be refused.

Interesting properties of WEB SERVICE coor-
dination can be formally expressed by exploit-
ing constraints over the sharing of references.
For example, the interaction pattern of a WEB
SERVICE offering a generic chat service may be
thought as

{ xgyeeyxn) [..

chat room ...] }

where x4, ..., X, give the chat connections. The
chat manager aims at preventing users to di-
rectly communicate each other, by refusing
users that provide (and hence know) a con-
nection already in the session. This property
can be enforced by a constraint of the form
’(/J EVi,j. Xi #Xj.

We can also equip WEB SERVICE specifi-
cations with logical formulae expressing non-
functional requirements of components, like for
instance quality of services (e.g. a component
can join a session only if a pool of needed WEB
SERVICES can be guaranteed).

5 Concluding Remarks

In this paper we have introduced a formal
model to specify and verify coordination prop-
erties of distributed (web) applications. The
novelty of our proposal is given by the combi-
nation of the following ingredients:

e A name-passing process calculus is ex-
ploited to describe coordination policies of
interacting components. In particular the
join operator models the dynamic com-
position of components inside an evolving
application (e.g. WEB SERVICES).

e Properties of the coordination policies are
specified in a declarative style as con-
straints (invariants) of the join operation.

e Property verification is reduced to the dy-
namic solution of the constraint problem
associated to the session.

We are currently investigating the expressiv-
ity of the logic to formally classify which classes
of properties can be stated and checked. More-
over, we plan to exploit efficient constraint
solving techniques to improve the effectiveness
of the proposed methodology.

Acknowledgments The work reported in this
paper has been supported by the MIUR project
NAPOLI Ferrari and Tusoto have been sup-
ported by EU FET Project “PROFUNDIS”;
Bracciali and Brogi have been supported by
EU FET Project “SOCS”.

References

[1] M. Abadi and A.D. Gordon. A calculus
for cryptographic protocols: The spi-calculus.
Information and Computation, 148(1):1-70,
1999.

[2] M. Boreale. Symbolic trace analysis of cryp-
tographic protocols. In 28th Colloguium
on Automata, Languages and Programming
(ICALP), LNCS. Springer, July 2001.

[3] A. Bracciali, A. Brogi, G. Ferrari, and
E. Tuosto. Formal intruder identikit for
open security protocols. Available at
http://www.di.unipi.it/ etuosto, 2001.

[4] A. Bracciali, A. Brogi, G. Ferrari, and E. Tu-
osto. Security issues in component-based de-
sign. ENTCS, 54, 2001.

[5] A. Bracciali, A. Brogi, and F. Turini. Coordi-
nating interaction patterns. In Proceedings of
the ACM Symposium on Applied Computing,
Las Vegas, USA. ACM, 2001.

[6] E. Clarke, S. Jha, and W. Marrero. Using state
space exploration and a nautural deduction
style message derivation engine to verify se-
curity protocols. In IFIP PROCOMET, 1998.

[7] D. Dolev and A. C. Yao. On the security of
public key protocols. IEEE Transactions on
Information Theory, 29(2):198-208, 1983.

[8] IBM Software Group. Web services conceptual
architecture. In IBM White Papers, 2000.

[9] J.L Fiadeiro L. Andrade. Coordination for
orchestration. In To appear in COORDINA-
TION 2002. LNCS, 2002.

[10] G. Lowe. An attack on the Needham-
Schroeder public-key authentication protocol.
Information Processing Letters, 56(3):131-
133, November 1995.

[11] R. Milner, J. Parrow, and D. Walker. A calcu-
lus of mobile processes, I and II. Information
and Computation, 100(1):1-40,41-77, Septem-
ber 1992.

