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Abstract

We propose a process algebra, the Algebra of Behavioural Types, as a language
for typing concurrent objects in process calculi. A type is a higher-order labelled
transition system that characterises all possible life cycles of a concurrent object.
States represent interfaces of objects; state transitions model the dynamic change
of object interfaces. Moreover, a type provides an internal view of the objects that
inhabit it: a synchronous one, since transitions correspond to message reception. To
capture this internal view of objects we define a notion of bisimulation, strong on
labels and weak on silent actions. We study several algebraic laws that characterise
this equivalence, and obtain completeness results for image-finite types.
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1 Introduction

Types in a programming language are used to discipline the computational mechanism of
the language, disallowing interactions that may lead to erroneous operations. Examples
of such errors are the assignment of some value of an invalid type to a variable, or the
invocation of a non-existing method in an object. Therefore, the types are abstract repre-
sentations of the correct behaviour of the various entities of a program, constituting partial
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behavioural specifications. A programming language is type safe if it is equipped with a
(static) type system that guarantees a safety property known as Curry’s subject-reduction:
if a program is typable, then the computation mechanism preserves the typability of all
the programs resulting from the intermediate steps. Thus, it results as a corollary that
subject reduction guarantees the absence of run-time errors in well-typed programs. In
sequential and functional languages, types are assigned to the terms of the language. The
information that a type encode can be very simple (e.g. a set of values, like booleans or
integers), more elaborate (e.g. a function, like from integers to booleans), or can even be
some complex structure (e.g. a graph or a term of a process algebra), depending on the
purpose of the type system. They can ensure a wide range of properties, from basic ones,
like all operations are invoked with the adequate arguments, to more elaborate ones, like
guaranteeing termination or deadlock freedom. In systems of objects, the types record the
methods of the objects and the types of its parameters, constituting interfaces for these
objects. In a programming language with objects, a type system should prevent the usually
known as “method-not-understood” error, a run-time error due to the erroneous call of a
method (non-existence, wrong number the arguments, or arguments of incorrect types).

To be able of ensuring a safety result like subject reduction for example, for a program,
one needs mathematical tools to deal with, and reason about, these notions of types. Ideas,
concepts, and techniques from the typed lambda-calculus and from (name-passing) pro-
cess calculi have been successfully applied to the study of behavioural properties and of
type systems for concurrent object-oriented languages. A calculus of mobile—or name-
passing—processes is one where the communication topology changes dynamically. Pro-
cesses communicate via channels—called names—and may also exchange names during
the interaction, acquiring new acquaintances that they can use for further communica-
tions [MPW92]. As a process algebra, one may use a mobile calculus not only to specify
(concurrent) systems, but also to verify properties of those systems using the rich alge-
braic theory that such a calculus possesses. On one hand, its features, like referencing—or
naming—and scoping, make process calculi approaches very suitable for studying and rep-
resenting object-oriented programming. Thus, not surprisingly, there are many works on
the semantics of (concurrent) objects as (mobile) processes [NR99]. On the other hand,
process calculi provide: (1) structural operational semantics—an essential element for rea-
soning about the correctness of programs; (2) various static type systems—ensuring the
absence of run-time errors in well-typed programs; and (3) several notions of behavioural
equivalences together with proof techniques, algebraic laws, and logical characterisations—
providing tools to reason about properties of programs.

In mobile calculi, types are usually assigned to names, constituting a discipline for com-
munication: they determine the arity of a name (and, in some systems, its directionality—
input or output), and recursively, the arity of the names carried by that name [Mil93,
PS96, VH93]. The role of a type system in a mobile calculus is two-fold: (1) it avoids
communication errors, due to arity mismatch; and (2) it allows refinements to the al-
gebraic theory, leading to specialised behavioural equivalences. Nonetheless, the ref-
ereed systems provide little information about process behaviour, and to ensure more
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than the usual safety properties one needs richer notions of types. Note that then the
types should capture causality of actions, as properties like deadlock or even livelock are
global properties (and not compositional—as it is usually the case of liveness proper-
ties). Thus, the types should capture the flow of the processes, being themselves pro-
cesses [Bou98, GH99, HVK98, IK01, Kob00, Yos96]. Note that some of these systems
assign types to processes, not to names.

In a name-passing calculus of objects such as TyCO [VT93] or πV
a [San98], processes

denote the behaviour of a community of interacting objects, where each object has a
location identified by a name. Statically detecting “method-not-understood” errors is a
more delicate problem in systems of (possibly distributed) concurrent objects. The usual
records-as-types paradigm gives each name a static type that contains information about
all the methods of the object, regardless of whether they are enabled or not. Is this an
adequate notion of type of an object, in the presence of concurrency? In the beginning
of the 90’s, Nierstrasz argued that typing concurrent objects posed particular problems,
due to the ‘non-uniform service availability of concurrent objects ’. By synchronisation
constraints, the availability of a service depends upon the internal state of the object
(which reflects the state of the system) [Nie95]. Objects exhibiting methods that may be
enabled or disabled, according to their internal state, are very common in object-oriented
programming, e.g. a stack—from which one cannot pop elements if it is empty, a finite
buffer—where one cannot write if it is full, a cash machine—from which one can only
get a balance if the connection with the bank is enabled. Therefore, a static notion of
typing, like interfaces-as-types, is not powerful enough to capture dynamic properties of
the behaviour of concurrent objects. A rigid interface, exhibiting all the methods of an
object, gives misleading information about the functionality of the object. Accordingly,
Nierstrasz proposes the use of a regular language to type active objects, i.e., objects that
may dynamically change behaviour. The purpose is to characterise all the traces of menus
offered by those objects and define a notion of behavioural subtyping. He proposes as notion
of subtyping a relation called ‘request substitutability ’, which is based on a generalisation
of the ‘principle of substitutability ’ by Wegner and Zdonick [WZ88], which states that
“services may be refined as long as the original promises are still upheld”. Despite having
developed a calculus of objects, Nierstrasz did not apply these ideas in a type system for it,
neither did he show how to model non-uniform objects. This task has be taken by several
authors [Bou98, Col97, CPS97, CPDS99, NN97, NNS99b, Pun96, Pun97, Pun99, RL99,
RV00]. Some of these works propose a specific calculus and develop a particular language
of types for that calculus to guarantee some envisaged property.

The aim of this work is to study the semantic foundations of types for concurrent
objects, using the tools and the body of knowledge of the theory of process algebras. Since
non-uniform types should capture the behaviour of objects, the types themselves can be
modelled as processes. Then, several questions arise: what is the appropriate syntax
and operational semantics? what is a good notion of behavioural equality? This paper
addresses theses questions, proposing a (partial) solution: we develop herein the Algebra of
Behavioural Types, ABT, where a type characterises all possible life cycles of an object: it is
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basically a collection of enabled methods (an interface); such a type is dynamic in the sense
that the execution of a method can change it, and reflect a dependency of the interface
of an object upon its internal state, conveying information about dynamic properties of
objects. Hence, the type of an object is a partial representation of its behaviour, modelled
as a labelled transition system; the operational semantics describes how the execution of a
method yields a new type. Therefore, a type may express temporal properties like ordering
sequences of events. We assume that objects communicate via asynchronous message-
passing; nevertheless, types, as defined here, essentially correspond to a notion of object
behaviour as it would be perceived by an internal observer located within an object (the
object’s private “gnome”). This observer can see methods being invoked and can detect
whether the object is blocked, even though its methods may be internally enabled. Hence,
this notion of behaviour is synchronous, as the gnome can detect refusals of methods. The
action of unblocking an object, denoted by υ, corresponds to an invocation of a method
in another object. Thus, this action is similar to CCS’s τ in that it is hidden, but it
is external rather than internal [Mil89a]. Naturally, the resulting notion of equivalence
has an intuition different from the one for bisimulations in CCS, since the observer is
internal, rather than external: it distinguishes a blocked from an unblocked type, but
does not distinguishes between types blocked by a different number of υs—does not count
unblockings. Accordingly, we define a notion of bisimulation, strong on labels and weak on
silent actions, and reach a set of algebraic laws different from Milner’s τ -laws. The proof
system based on these laws is complete with respect to the notion of bisimulation, at least
for image-finite types.

ABT is similar to the Basic Parallel Processes, BPP [Chr93], a fragment of CCS pro-
posed by Christensen where communication is not present—parallel composition is simply
a merge of processes. The differences are basically three. In ABT: (1) all sums are pre-
fixed; (2) mixed sums (with labels and silent actions) are not allowed; and (3) the silent
action represents activity external, rather than internal, to the process. Since these items
correspond to our main criteria for the envisaged notion of type, instead of using BPP, we
decided to design a new process algebra. We construct ABT gradually. The next section
presents finite types built with a non-deterministic labelled sum and a blocking operator;
then defines the operational semantics and an equivalence notion; and finally provides a
complete axiomatisation for that equivalence. In Section 3 we add a parallel composition
operator, this operator being a merge of processes (i.e. without communication), and ex-
tend the previous axiomatic system with two expansion laws—consequence of the absence
of mixed sums—and a saturation law. Since the normal forms include parallel composi-
tions, the proof of completeness of the axiomatic system is not standard, and the result
depends on a new inference rule that we add to the proof system. The rule does not seem
to be derivable. Finally, Section 4 presents the full algebra, with dynamic types obtained
by a recursive constructor. The axiomatic system contains three more laws to deal with
recursion. In Section 5 we prove the completeness of the axiomatic system for image-finite
terms. The paper closes with comparisons with related work and with some directions for
future research, namely on a modal logic and on a notion of subtyping.

5



2 Non-deterministic finite types

We start by presenting an algebra of non-deterministic sequential finite types. The basic
term is an object type, a labelled sum that stands for an interface of an object—the collection
of methods it offers. As we allow the same label to appear more than once (possibly
with different continuations under the prefix), the sum is non-deterministic. This fact
makes possible the definition of an expansion law later on when we introduce a parallel
composition operator. When an object is in a state where its methods are disabled, its
type reflects the situation: unavailable, or blocked, object types are types prefixed by a
blocking operator—denoted by υ. A sum of blocked object types represents the possible
types of an object, after becoming enabled. Hence, the silent transition is labelled with υ
and corresponds to the release—or unblocking—of the blocked type due to some action in
other object: it is an inter-object choice that makes available one of the types in the sum.
Thus, it should be interpreted as an action that is external to the object.

The intended meaning of a labelled sum and of a blocked sum clarify that it does not
make sense to allow mixed sums: we want to distinguish an object that is enabled and offers
a certain collection of methods from one it is blocked. Furthermore, we did not find in the
realm of process algebra any equivalence notion build with this intuition. Therefore, we
develop a notion of type equivalence accordingly to the requirements explained above. This
fact leads to axiomatic systems that are not standard and require new proof techniques.

2.1 Syntax

Assume a countable set of method names l,m, possibly subscripted.

Definition 2.1 (Non-deterministic sequential finite types).
The following grammar defines the set Tsf of sequential finite types.

α ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi

where I is a finite, possibly empty, indexing set, and each α̃i is a finite sequence of types.

A term of the form l(α̃).α is a method type. The label l in the prefix stands for the name
of a method possessing parameters of type α̃; the type α under the prefix prescribes the
behaviour of the object after the execution of the method l with parameters of type α̃. A
term of the form υ.l(α̃).α is a blocked method type, the type of an unavailable method type
l(α̃).α. Thus, the only type composition operator of the algebra is the sum, ‘

∑
’, which

has two uses:

1. gathers together several method types to form the type of an object that offers the
corresponding collection of methods: the labelled sum

∑
i∈I li(α̃i).αi;

2. associates several blocked types in the blocked sum
∑

i∈Iυ.αi; after being released,
the object behaves according to one of the types αi.
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Notation. We write α≡β when the types α and β are syntactically identical. Consider
also the following abbreviations:

1. 0 denotes the empty type (sum with empty indexing set); we omit the sum symbol
if the indexing set is singular, and we use the plus (‘+’) to denote binary sums of
types, which we assume associative;

2. l(α̃) denotes l(α̃).0, and l denotes l().

Henceforth we call blocked types the blocked sums. A non-empty interface presents the
active methods of an object (having that type).

Definition 2.2 (Interface of a type).
In a labelled sum α ≡

∑
i∈I li(α̃i).αi the set {li(α̃i) | i ∈ I} is the interface of the object

type, denoted by int(α). The interface of a blocked type is empty.

2.2 Operational semantics

A labelled transition relation on types defines the structural operational semantics for
non-deterministic sequential finite types.

Definition 2.3 (Actions).
The following grammar defines the set of actions: π ::= υ | l(α̃) .

The action υ denotes a silent transition that releases a blocked object; a action like l(α̃)
denotes a transition corresponding to the invocation of method l with actual parameters of
types α̃. When occurring in sums, we refer to actions as prefixes. We write

∑
i∈I πi.αi to

refer to an arbitrary sum, either with prefixes li(α̃i)—labelled—or with prefix υ—blocked.

Definition 2.4 (Labelled transition relation).
The following rule inductively defines a labelled transition relation on Tsf.

Act
∑
i∈I

πi.αi
πj−→ αj (j ∈ I)

Act is in fact an axiom-schema that captures two cases:

1. the basic transition l(α̃)—execution of a method—corresponds to the invocation of a
method with name l and parameters of types α̃, yielding the type α of the object in
the method body;

2. a silent transition υ—unblocking—releases a blocked type.

7



Terminology. Some terminology regarding the transition relation will make the proofs
clearer.

1. If α
l(α̃)−−→ α′ or α

υ−→ α′ then α′ is a derivative of α. In the first case it is an l-derivative
and the second an υ-derivative.

2. Types of the form
∑

i∈I li(α̃i).αi are unblocked, and types of the form
∑

i∈Iυ.αi are
blocked. If I 6= ∅, then

∑
i∈I li(α̃i).αi is strictly unblocked, and

∑
i∈Iυ.αi is strictly

blocked.

Notation. Let =⇒ denote
υ−→∗ and

υ
=⇒ denote

υ−→+.

2.3 Equivalence notion

We want two types to be equivalent if they offer the same methods—have the same
interface—and if, after each transition, they continue to be equivalent, in a bisimulation
style. Furthermore, from the point of view of each type, transitions of other types can be
regarded as hidden transitions, which would suggest weak bisimulation as the right notion
of equivalence for our types, with υ playing the role of Milner’s τ , but representing external
interaction rather than internal. However, we want types to distinguish an object that im-
mediately makes available a method from another that makes it available only after being
unblocked (by some object). This is because, although υ is supposed to be unobservable,
we assume that an internal observer—the object’s gnome—can detect that the object is
blocked. Hence, we would expect υ.l to be different from l, since all the internal observer
can see is that the object is blocked, and after being released it can eventually execute the
method l. This discards weak bisimulation as a candidate for type equivalence. Further-
more, we want υ.l and υ.υ.l to be equivalent, because the number of unblockings cannot
be counted from within the object as they correspond to transitions on other objects, thus
discarding strong bisimulation [Mil89a] and progressing bisimulation [MS92]. We also want
to distinguish l.υ.m from l.m on the grounds that, for the latter, a blocking after l cannot
be observed, and thus observational congruence [Mil89a] and rooted bisimulation [BBK87]
are unsuitable. Also, notice that all the above mentioned equivalences, with the exception
of weak bisimulation, are finer than necessary, because they are congruences with respect
to binary sums, as in CCS [Mil89a], whereas in this work we stick to prefixed sums.

These considerations lead to the choice of a notion of equivalence that we call label-
strong bisimulation, or lsb. It is a higher-order strong bisimulation on labels and a weak
bisimulation on unblockings. Hence, we require that if α and β are bisimilar then:

1. if α offers a particular method, then also β offers that method, and the parameters
and the bodies of the methods are pairwise bisimilar;

2. if α offers a hidden transition, then β can offer zero or more hidden transitions.
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Thus, the intuition is: two types are not bisimilar if they have different interfaces or, after
some matching transitions, their derivatives have different interfaces.

Definition 2.5 (Bisimilarity on types).

1. A symmetric binary relation R⊆Tsf × Tsf is a label-strong bisimulation, or simply a
bisimulation, if, whenever α R β:

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃ R β′β̃)1;

(b) α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′ R β′).

2. Two types α and β are label-strong bisimilar, or simply bisimilar, and we write α≈β,
if there is a label-strong bisimulation R such that α R β.

The usual properties of a bisimilarity hold.

Proposition 2.6.
Label-strong bisimilarity is an equivalence relation and the largest bisimulation.

Proof. The proof is standard (cf. [Mil89a], Proposition 4.2).

Label strong bisimilarity is a greatest fixed point.

Proposition 2.7 (Fixed point).
Types α and β are bisimilar, if, and only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈ β′β̃);

2. α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′ ≈ β′).

Proof. The proof is standard (cf. [Mil89a], Proposition 4.16).

The following characterisation of lsb is useful for proofs.

Proposition 2.8 (Label-strong bisimilarity).
Types α and β are bisimilar, if, and only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈ β′β̃);

2. α =⇒ α′ implies ∃β′ (β =⇒ β′ and α′ ≈ β′).

Proof. Notice that α =⇒ α′ means α
υ−→

n
α′, for some natural number n. The proof is

by induction on n.

1Let (α1 · · ·αn) R (β1 · · ·βn) denote α1 R β1, . . . , and αn R βn; the order is irrelevant.
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The sum of method types and the sum of blocked types preserve bisimilarity. This result
is simple to verify, since both sums are guarded.

Proposition 2.9 (Congruence).

Let α̃i ≈ β̃i and αi ≈ βi for all i in some indexing set I.

1.
∑

i∈I li(α̃i).αi ≈
∑

i∈I li(β̃i).βi, and

2.
∑

i∈I υ.αi ≈
∑

i∈I υ.βi.

Briefly, lsb is a (higher-order) congruence relation with respect to prefixing and summa-
tion.

Proof. Proving that labelled sums and blocked sums preserve lsb is a direct application
of Definition 2.5, and of the fixed point property of lsb (Proposition 2.7).

2.4 Algebraic characterisation

We present an axiomatisation of the equivalence notion and show that it is sound and
complete. The proof scheme for completeness is standard: a definition of a normal form
for the types; a lemma ensuring that for all types there exists an equivalent term in normal
form; and finally the completeness theorem says that for all pairs of equivalent normal forms
there exists a derivation of their equality using the rules of the axiomatic system. However,
the proofs differ from those in the literature, since the particular syntactic conditions and
restrictions of ABT make these proofs an elaborate combinatoric problem.

Prop/Definition 2.10 (Axiomatisation).
The following equivalences inductively define the axiomatic system Asf.

Commutativity: for any permutation σ : I → I we have
∑

i∈I πi.αi ≈
∑

i∈I πσ(i).ασ(i);

Idempotence: π.α + π.α + β ≈ π.α + β;

υ-law: υ.
∑

i∈I υ.αi ≈
∑

i∈I υ.αi.

Proof. It is straightforward to build the respective bisimulations.

Notation. We write `α = β when we can prove α ≈ β using the laws above and the
usual rules of equational logic.

Theorem 2.11 (Soundness of Asf).
If `α= β then α≈ β.

Proof. Follows from Proposition 2.9 and of Prop/Definition 2.10.
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Remark. The novelty of this system is the υ-law: one can observe if a method is enabled
or not, but in the latter case, one cannot count how many unblockings must occur to enable
the method.

Notice some more facts about the υ-law:

1. The proof of completeness uses two derived rules.

(a) If ∀i∈I∃j∈J `αi = βj and ∀j∈J∃i∈I `αi = βj , then `
∑

i∈I υ.αi =
∑

j∈J υ.βj .

(b) If ∀i∈I∃j∈J (li ≡mj, ` α̃i = β̃j , and `αi = βj)

and ∀j∈J∃i∈I (li ≡mj, ` α̃i = β̃j, and `αi = βj) ,

then `
∑

i∈I li(α̃i).αi =
∑

j∈J mj(β̃j).βj .

The soundness of these rules is a consequence of Proposition 2.9, but it results also
from the fact that they are derived rules (the proof is simple). Therefore, the proof
system without them is still complete.

2. An interesting instance of the υ-law is that α ≈ 0, if α is a blocked sum with all its
derivatives being also blocked sums (i.e. α is a tree with all branches labelled by υ).

3. The υ-law corresponds to an instance of the CCS’s τ -law α.τ.P = α.P when α is τ .

One can easily recognise particular instances of the remaining τ -laws of CCS that
hold in this setting. For example, the following derivable laws are instances of the
second and third τ -laws.

(a) υ.P + υ.υ.P = υ.υ.P ;

(b) υ.(υ.P + υ.Q) = υ.(υ.P + υ.Q) + υ.Q;

The first clause is easy to prove, since υ.υ.P = υ.P ; to prove the second clause use
first the υ-law, then idempotence, and then again the υ-law.

However, the τ -laws do not hold in general in this setting; for instance, the third one
does not hold, as the following counter-example shows:

l.(υ.m+ υ.n) 6≈ l.(υ.m+ υ.n) + l.n .

After an l-transition, the right hand side offers an n-transition, which is not available
in the left hand side.

From these remarks it is easy to conclude that both weak bisimulation, which is a congru-
ence for prefixed sums, and observation congruence are coarser than lsb, when considered
in this setting.

We proceed now towards the completeness result for the axiomatic system, with respect
to lsb. The path is known: via normal forms.
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Definition 2.12 (Normal forms of sequential finite types).

1. A type α is saturated if α
υ

=⇒ α′ implies α
υ−→ α′.

2. A type α is a normal form if it is saturated and, furthermore, one of the following
conditions holds:

(a) α≡ 0;

(b) α≡
∑

i∈I υ.αi and each αi is a normal form;

(c) α≡
∑

i∈I li(α̃i).αi, where each component of each sequence αiα̃i is a normal form.

The proof technique to establish the next result uses the notion of depth of a type.

Definition 2.13 (Depth of a type).
The following rules inductively define the depth of a type.

depth(0) = 0,

depth(
∑

i∈I υ.αi) = 1 + max{depth(αi) | i ∈ I}, and

depth(
∑

i∈I li(α̃i).αi) = 1 + max{depth(α̃i) + depth(αi) | i ∈ I},

where depth(α̃) = max{depth(β) | β ∈ α̃}.

We must prove that all types have equivalent normal forms, a crucial lemma to achieve
completeness.

Lemma 2.14 (Normal form lemma).
For all types α there exists a normal form α′ such that `α=α′, with depth(α′)≤depth(α).

Proof. By induction on the depth of α. The base case is when depth(α) = 0; so, α≡0, and
it is a normal form by definition. Otherwise, if α≡

∑
i∈I πi.αi then, by induction hypothesis,

for each αi there exists a normal form α′
i such that `αi = α′

i, with depth(α′
i)≤ depth(αi).

The prefix can be of two forms.

1. Case πi ≡ li(α̃i), for all i.

Since the types α̃i also have normal forms α̃′
i, we conclude that `α=

∑
i∈I li(α̃

′
i).α

′
i,

as clearly, depth(
∑

i∈I li(α̃
′
i).α

′
i) ≤ depth(α).

2. Case πi ≡ υ, for all i.

We have to guarantee saturation. For each i such that α′
i

υ−→, there is a Ji 6= ∅ such
that α′

i ≡
∑

j∈Ji
υ.αj and, for each j ∈ Ji we have

∑
i∈I υ.α

′
i

υ.υ−→ αj. By idempotence
and the υ-law, we have `

∑
i∈I υ.α

′
i =

∑
i∈I υ.α

′
i +υ.αj. We can add υ.αj to

∑
i∈I υ.α

′
i

for all such αj and thus obtain a normal form of α whose depth clearly equals that
of

∑
i∈I υ.α

′
i.

Since there are no remaining cases, the proof is complete.
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We are now in a position to prove the main result of this chapter: the completeness of the
axiomatic system Asf with respect to the notion of equivalence.

Theorem 2.15 (Completeness of Asf).
If α≈ β then `α= β.

Proof. By induction on the sum of the depths of the types α and β (assumed to be
normal forms, following Lemma 2.14).

Base case: depth(α) = depth(β) = 0;

Then, α ≈ 0 ≈ β, and it follows from the reflexivity law of the proof system that
`α= β.

Induction step: there are two cases under consideration.

1. Case α is a labelled sum, and hence also β is a labelled sum, as α≈ β.

Thus, if α
l(α̃)−−→ α′ then β

l(β̃)−−→ β′ and α′α̃ ≈ β′β̃; it follows by the induction
hypothesis that `α′α̃= β′β̃.

2. Case α is a blocked sum, and hence also β is a blocked sum.

Thus, if α
υ−→ α′ then β

υ−→ β′, and again we conclude that `α′ = β′.

The result follows using the derived inference rules: rule 1b in the first case and rule 1a in
the second.

3 Concurrent finite types

We extend the algebra of non-deterministic sequential finite types with concurrent types,
adding a parallel composition operator. Since the algebra does not have communication,
this operator is simply a merge of types (cf. the parallel composition operator of BPP). A
type constructed with the parallel composition operator denotes the behaviour of a parallel
composition of input processes with the same location. In the parallel composition of types
each component is the type of an element of the parallel composition of input processes.
Moreover, it also allows to distinguish enabled from blocked types, a crucial feature of this
calculus.

The axiomatic system includes two new expansion laws: the parallel composition of
labelled sums is equivalent to a labelled sum; the parallel composition of blocked sums
is equivalent to a blocked sum. However, the absence of mixed sums in the grammar of
types prohibits a general expansion law. The main consequence of this fact is that normal
forms include parallel compositions, and the standard proof technique to establish the
completeness of the axiomatic system must be refined. In particular, we are forced to add
a new inference rule to the proof system of equational logic, which we prove sound. The
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rule does not seem to be derivable, but we believe that it is possible that the axiomatic
system without it is still complete.

An alternative proof of completeness uses only induction, but requires that the converse
of the congruence for the parallel holds for normal forms. We conjecture that the result
holds, and leave it as an open problem, since its prove turned out to be quite difficult, due
to the highly combinatoric nature of the problem. Once proved, the conjecture can be used
as a lemma in a simpler proof of the completeness of the axiomatic system for the notion
of equivalence, system that would not require the new inference rule mentioned before.

3.1 Syntax

Take the set of method names assumed in the previous chapter.

Definition 3.1 (Concurrent finite types).
The following grammar defines the set Tf of concurrent finite types.

α, β ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | (α ‖ β)

where I is a finite, possibly empty, indexing set, and each α̃i is a finite sequence of types.

The parallel composition operator, denoted by ‘‖’, represents the existence of several
objects located at (sharing) the same name, and executing in parallel (interpreted as dif-
ferent copies of the same object, possibly in different states). The prefixes of a sum bind
tighter than the parallel constructor ‘‖’, i.e., l.m ‖ n is (l.m) ‖ n.

Terminology. Unblocked types are now not only labelled sums, but also parallel com-
positions involving (at least) a labelled sum. Types that are not of the form

∑
i∈Iυ.αi are

unblocked. Furthermore, each αi is strictly blocked if I 6= ∅, and is strictly unblocked if it
has an l-derivative.2

Therefore, if α is an unblocked type, its interface is the union of the interfaces of the
labelled sums that are involved in the parallel composition.

Definition 3.2 (Interface of a type).
The following rules inductively define the interface of a type.

int(
∑

i∈I υ.αi) = ∅
int(

∑
i∈I li(α̃i).αi) = {li(α̃i) | i ∈ I}
int(α1 ‖ α2) = int(α1) ∪ int(α2)

2Syntactic characterisations, e.g. via grammars, are easily definable.
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3.2 Operational semantics

Take the set of labels specified by Definition 2.3.

Definition 3.3 (Labelled transition relation).
The axiom schema of Definition 2.4 together with the two rules below inductively define
the labelled transition relation of the algebra of concurrent finite types.

Rpar α
π−→ α′

α ‖ β π−→ α′ ‖ β
Lpar α

π−→ α′

β ‖ α π−→ β ‖ α′

To prove that lsb is still a congruence in this extended language it suffices to show that
the parallel composition operator preserves lsb.

Proposition 3.4 (Preservation of lsb by ‖).
The parallel composition operator preserves lsb 3.

Proof. It is easy to see that the relation R
def
= {(α ‖ β, α′ ‖ β) | α≈ α′} is a bisimulation,

and thus that ‖ preserves ≈. Take (α ‖ β, α′ ‖ β) ∈R and let α ‖ β π−→ δ. We have two cases
to consider:

Case α
π−→ α1 and δ ≡ α1 ‖ β;

1. if π ≡ l(α̃), since by hypothesis α ≈ α′ there are α̃′, α′
1 such that α̃ ≈ α̃′ and

α1 ≈ α′
1, hence (α1 ‖ β, α′

1 ‖ β)∈ R;

2. if π ≡ υ, the reasoning is similar to that of the previous case.

Case β
π−→ β1 and δ ≡ α ‖ β1;

then α ‖ β π−→ α ‖ β1 and obviously, also α′ ‖ β π−→ α′ ‖ β1, hence (α ‖ β1, α
′ ‖ β1)∈ R.

By symmetry we conclude that R is a lsb.

It is useful to characterise active types, i.e. types that are not bisimilar to 0. Syntactically,
one can do it with a two-level grammar. Semantically, one uses the following lemma.

Lemma 3.5 (Active types).

α 6≈ 0, if and only if, ∃α′,l(α̃) α =⇒ α′ l(α̃)−−→.

Proof. The ‘if’ direction follows easily by absurd, considering α′≈0. The ‘only-if’ direc-
tion is by induction on the structure of α.

The subsequent results make use of the notion of depth of a type, which we refine.

3cf. Definition 2.5.
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Definition 3.6 (Depth of a type).
The rules of Definition 2.13, together with the rule below inductively define the depth of a
type.

depth(α ‖ β) = depth(α) + depth(β)

The following result is a consequence of the equivalence relation: a non-active type is
the neutral element of the parallel composition.

Proposition 3.7 (Neutral element of parallel composition).
Let α be a labelled sum and γ be a blocked type, such that α ≈ β ‖ γ, for β a sum (either
labelled or blocked). Then γ ≈ 0.

Proof. If β is blocked then clearly α ≈ 0, hence γ ≈ 0. For the remainder of this proof,
let us assume that β is unblocked. The proof follows by induction on depth(α).

Base case: if depth(α) = 1, then α≈ β and it follows easily that γ ≈ 0.

For the induction step we assume γ 6≈ 0 and we derive a contradiction as follows. By

Lemma 3.5, γ =⇒ γ′
l(γ̃)−−→ γ′′ for some γ′, l, γ̃, and γ′′. Since α is unblocked and

α≈β ‖γ, then α≈β ‖γ′ and α′≈β ‖γ′′, for some l-derivative α′ of α; we are assuming
that β is strictly unblocked and thus so is α′. Furthermore, since α≈ β ‖ γ and γ is
blocked, there is some l-derivative β′ of β such that α′ ≈ β′ ‖ γ where β′ is strictly
unblocked because α′ is and γ is blocked. Finally, depth(α′)< depth(α), and thus by
induction we conclude γ ≈ 0, a contradiction.

The proof is complete.

3.3 Algebraic characterisation

We extend the axiomatic system Asf with laws regarding the parallel composition operator,
and show that the resulting axiomatic system is sound and complete. Notice that we need
two expansion laws, since the syntax of finite types does not allow mixing labels and υ in
sums, e.g., as in l.α + υ.β. Moreover, we further need an extra υ-law which allows us to
saturate blocked parallel types that do not expand.

Prop/Definition 3.8 (Axiomatisation).
The laws of Prop/Definition 2.10, together with the following laws inductively define the
axiomatic system Af.

4

CM 〈Tf/≈, ‖,0〉 is a commutative monoid;

EXP1
∑

i∈I υ.αi ‖
∑

j∈J υ.βj ≈∑
i∈I υ.(αi ‖

∑
j∈J υ.βj) +

∑
j∈J υ.(

∑
i∈I υ.αi ‖ βj);

4Notice that the υ-law of system Asf is now law U1.
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EXP2
∑

i∈I li(α̃i).αi ‖
∑

j∈J mj(β̃j).βj ≈∑
i∈I li(α̃i).(αi ‖

∑
j∈J mj(β̃j).βj) +

∑
j∈J mj(β̃j).(

∑
i∈I li(α̃i).αi ‖ βj);

U1 υ.
∑

i∈I υ.αi ≈
∑

i∈I υ.αi;

U2 υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) ≈

υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) + υ.(αk ‖
∑

j∈J mj(β̃j).βj), with k ∈ I.

Proof. It is straightforward to build the respective bisimulations.

We ensure first that the rules above are sound.

Theorem 3.9 (Soundness of Af).
If `α= β then α≈ β.

Proof. A consequence of Proposition 2.9 and of Prop/Definition 3.8.

To obtain a system that is provably complete, there are three alternatives.

1. Allow arbitrary labelled sums, i.e. mixing labels and υ in sums, and having a single
expansion law; the proof of completeness is standard;

2. Add a new inference rule to the equational logic and proceed as usual.

If ∀i∈I∃k∈K (` α̃i = β̃k, li ≡mk, and `αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl)

and ∀k∈K∃i∈I (` α̃i = β̃k, li ≡mk, and `αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl)

and ∀j∈J∃l∈L (`
∑

i∈I li(α̃i).αi ‖ αj =
∑

k∈K mk(β̃k).βk ‖ βl) (1)

and ∀l∈L∃j∈J (`
∑

i∈I li(α̃i).αi ‖ αj =
∑

k∈K mk(β̃k).βk ‖ βl),

then `
∑

i∈I li(α̃i).αi ‖
∑

j∈J υ.αj =
∑

k∈K mk(β̃k).βk ‖
∑

l∈L υ.βl .

3. Keep the proof system and use induction directly.

The first alternative is somewhat unnatural, since labelled sums represent interfaces of
objects, and an arbitrary sum does not represent a valid object interface. Hence, we
do not follow this path. For the last two alternatives, normal forms include a parallel
composition, as there is no expansion law for the parallel composition of a labelled sum
and a blocked type; thus the proofs of the normal form lemma and of the completeness
theorem are different from those for CCS. The third alternative turns out to be quite
difficult, thus we proceed now according to the second alternative. First we have to show
that the new inference rule is sound.
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Lemma 3.10 (Soundness of the new inference rule).
The inference rule 1 is sound.

Proof. Let α ≡
∑

i∈I li(α̃i).αi ‖
∑

j∈J υ.αj and β ≡
∑

k∈K mk(β̃k).βk ‖
∑

l∈L υ.βl. We
conduct a case analysis of the possible immediate transitions of α and β.

1. Case α
l(α̃)−−→ αi ‖

∑
j∈J υ.αj.

Since by hypothesis there is a k ∈ K such that li ≡ mk, and since α̃i ≈ β̃k, as by

hypothesis ` α̃i = β̃k and the axiomatic system is sound, then also β
mk(β̃k)−−−−→ βk ‖∑

l∈L υ.βl.

Moreover, αi ‖
∑

j∈J υ.αj ≈ βk ‖
∑

l∈L υ.βl, again because by hypothesis we have

`αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl, and the system is sound.

2. Case α
υ−→

∑
i∈I li(α̃i).αi ‖ αj.

Let β
υ−→

∑
k∈K mk(β̃k).βk ‖ βl for some l ∈ L; using again the hypotheses and the

soundness the axiomatic system, it follows that∑
i∈I li(α̃i).αi ‖ αj ≈

∑
k∈K mk(β̃k).βk ‖ βl.

By symmetry we conclude that α≈ β.

Definition 3.11 (Normal forms of concurrent finite types).
A type α is a normal form if it is saturated (cf. Definition 2.12), and furthermore, one of
the following conditions holds:

1. α≡ 0;

2. α≡
∑

i∈I υ.αi and each αi is a normal form;

3. α≡
∑

i∈I li(α̃i).αi and each component of each αiα̃i is a normal form;

4. α ≡ α1 ‖ α2, where α1 and α2 are respectively as in 2 and 3 above, with α1, α2 6≈ 0
and I, J 6= ∅.

Again, we show that all types have equivalent normal forms.

Lemma 3.12 (Normal form lemma).
For all α there exists a normal form α′ such that `α= α′, with depth(α′)≤ depth(α).

Proof. By induction on the depth of α. The proof is similar to that of Lemma 2.14, so
we omit the common cases. Hence, we only have two cases to consider.
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Case α≡
∑

i∈I υ.αi.

By induction hypothesis, for each αi there exists a normal form α′
i such that `αi=α

′
i,

with depth(α′
i)≤ depth(αi). The interesting case now is when

α′
i ≡ (

∑
j∈Ji

υ.αj) ‖ β, with β ≡
∑
k∈Ki

lk(β̃k).βk and Ji, Ki 6= ∅ .

Then, we have
∑

i∈I υ.α
′
i

υ.υ−−→ αj ‖β, and, by U2, `
∑

i∈I υ.α
′
i =

∑
i∈I υ.α

′
i +υ.(αj ‖β).

Notice that (αj ‖ β) may not be a normal form (e.g., if αj ≡ 0), but since clearly
depth(αj ‖ β)<depth(α), thus by induction hypothesis, there is a normal form γ such
that `αj ‖ β = γ; hence `

∑
i∈I υ.α

′
i =

∑
i∈I υ.α

′
i + υ.γ.

We still have to saturate υ.γ. If it is a blocked sum, using U1 we obtain a saturated
form γ′; if it is a parallel composition we use U2 to obtain γ′. So, `

∑
i∈I υ.α

′
i =∑

i∈I υ.α
′
i + γ′.

Repeatedly applying U2 in the same way to all α′
i of this form, and applying U1 as

in the proof of Theorem 2.15, we attain a normal form of α, whose depth obviously
does not exceed that of

∑
i∈I υ.α

′
i.

Case α≡ γ1 ‖ γ2.

We use the commutative monoid laws and the expansion laws to rewrite α either
as a blocked sum, a labelled-prefixed sum, or a parallel composition of the previous
two with I, J 6= ∅, and without increasing the depth of the types. The first two
cases are treated as above, and in the parallel composition case we apply the same
reasoning to each sum separately, obtaining `α = α1 ‖ α2, where α1 and α2 are
respectively a blocked sum and a labelled-prefixed sum, both normal forms. If `α1=0
then `α1 ‖ α2 = α2; otherwise, α1 ‖ α2 is a normal form. Moreover, notice that

depth(α1)≤ depth(
∑

i∈I υ.αi) and depth(α2)≤ depth(
∑

j∈J lj(β̃j).βj).

Therefore, depth(α1 ‖ α2)≤ depth(α).

Since we inspected all cases, the proof is complete.

Proposition 3.13.
If α≡

∑
i∈I υ.αi is a normal form, then no αi is a parallel composition.

Proof. Assume that α1 ≡
∑

j∈Ji
υ.αj ‖

∑
k∈Ki

lk(α̃k).αk, which is a normal form. Then

α
υυ−→ αj ‖

∑
k∈Ki

lk(α̃k).αk. Since α is saturated it follows that α
υ−→ αj ‖

∑
k∈Ki

lk(α̃k).αk,
i.e. for some i∈I, αi≡αj‖

∑
k∈Ki

lk(α̃k).αk. But then αj is blocked since α is a normal form,
and furthermore, αj 6≈ 0. Since the types are finite, applying repeatedly this procedure
lead us to αi ≡

∑
m∈Mi

lm(α̃m).αm ‖
∑

k∈Ki
lk(α̃k).αk, for some i∈ I, which is not a normal

form, and we attain an absurd.

We are now in a position to prove the completeness of Asf, the main result of this section.
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Theorem 3.14 (Completeness of Asf).
If α≈ β then `α= β.

Proof. By induction on the sum of the depths of the types α and β (assumed to be
normal forms, by Lemma 3.12).

Taking into account the proof of Theorem 2.15, we only have one case to consider.

Case α≡
∑

i∈I li(α̃i).αi ‖
∑

j∈J υ.αj and β ≡
∑

k∈K mk(β̃k).βk ‖
∑

l∈L υ.βl.

We examine the indexing sets:

1. If I 6= ∅, then obviously also K 6= ∅, as α≈ β.

2. If J 6= ∅, then, by Lemma 3.7, also L 6= ∅.

3. Thus, consider I, J,K, L 6=∅, and consider the blocked sums not equivalent to 0. The
proof depends on the transition done by α. There are two cases to consider:

(a) Case α
li(α̃i)−−−→ αi ‖

∑
j∈J υ.αj.

Since, by hypothesis, α≈β, then there exists a k∈K such that li≡mk, α̃i≈ β̃k,

and β
mk(β̃k)−−−−→ βk ‖

∑
l∈L υ.βl, with αi ‖

∑
j∈J υ.αj ≈βk ‖

∑
l∈L υ.βl. By induction

hypothesis it follows that ` α̃i = β̃k and `αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl.

(b) case α
υ−→

∑
i∈I li(α̃i).αi ‖ αj.

If β
υ

=⇒
∑

k∈K mk(β̃k).βk ‖βl then, as β is saturated, β
υ−→

∑
k∈K mk(β̃k).βk ‖βl,

and the proof proceeds similarly to the previous case.

Otherwise,
∑

i∈I li(α̃i).αi ‖ αj ≈
∑

k∈K mk(β̃k).βk ‖
∑

l∈L υ.βl with the sum of
their depths being lesser than the sum of the original depths, and we can again
use the induction hypothesis.

The result for the case we are examining follows by the inference rule 1.

As there are no more cases, the proof is complete.

4 Behavioural types

Finally, we present the Algebra of Behavioural Types, ABT for short. We obtain it by
extending the algebra of concurrent finite types with a recursive operator µ to denote
infinite types. A type like µt.α denotes a solution of the equation t = α. These recursive
types allow us to characterise the behaviour of persistent objects, as well as that of objects
living in methods of persistent objects.
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In this section, we present the syntax and operational semantics of ABT, add to the
axiomatic system of the previous chapter three new laws regarding the behaviour of recur-
sive types, laws that we prove correct. The next section shows that the axiomatic system
is complete for image-finite types.

4.1 Syntax

Assume a countable set of variables, denoted by t and possibly subscripted or primed,
disjoint from the set of method names considered in the previous chapters.

Definition 4.1 (Behavioural types).
The grammar below defines the set T of behavioural types.

α, β ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | (α ‖ β) | t | µt.α

where I is a finite, possibly empty, indexing set, and α̃ is a finite sequence of types.

Since types may have type variables, we define when does a type variable occur free in
a type, and when does it occur bound.

Definition 4.2 (Free and bound variables).
An occurrence of the variable t in the type α is bound if it occurs in a part µt.α of α;
otherwise the occurrence of t in α is free.

A type without free variables is said closed ; otherwise it is open. Alpha-conversion in a
type µt.α is defined as usual.

Notation. To simplify our work, we use the following conventions.

1. Assume a variable convention like in Barendregt [Bar84], and that types are equal
up-to alpha-conversion. Moreover, fv(α) denotes the set of variables that occur free
in α and var(α) denotes the set of all variables of the type α.

2. The type α[β/t] denotes the substitution in α of β for the free occurrences of t.

Furthermore, the type α{β̃/t̃} denotes the simultaneous substitution5 of β̃ for the
free occurrences of t̃ in α.

3. Let {t̃} denote the set of the elements and |t̃| the length, of the sequence t̃.

4. For simplicity, we sometimes write α(β) instead of α[β/t].

5Standard notion (see, for instance, Barendregt [Bar84]).
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Act
∑

i∈I πi.αi
πj−→ αj (j ∈ I)

Rpar α
π−→ α′

α ‖ β π−→ α′ ‖ β
Lpar α

π−→ α′

β ‖ α π−→ β ‖ α′ Rec
α[µt.α/t]

π−→ α′

µt.α
π−→ α′

Table 1: The labelled transition relation of the Algebra of Behavioural Types.

Terminology. The following concepts will be useful to prove the subsequent results.

Definition 4.3 (Guarded variables and guarded types).

1. A free variable t is guarded in α if all its occurrences are within some label-prefixed
part of α.

2. A type α is guarded if all its free variables are guarded. Otherwise, we say α is
unguarded.

Example 4.4. The variable t is guarded in l(t).α, in l(α̃).t, and in l(υ.t).0, but not in υ.t.

4.2 Operational semantics

Assume the set of labels defined in Definition 2.4. We define the operational semantics
of ABT by adding a new rule to the labelled transition relation defined in Definition 3.3.
Table 1 presents all the rules together.

Definition 4.5 (Labelled transition relation).
The axiom schema of Definition 2.4 together with the two rules of Definition 3.3 and with
the axiom and the rule below inductively define the labelled transition relation of the algebra
of behavioural types.

Rec
α[µt.α/t]

π−→ α′

µt.α
π−→ α′

The definition of lsb that we have been using (Definition 2.5 in page 9), only applies to
closed terms. Following the usual approach (see, e.g. [Ren]), we extend it to open terms
by requiring them to be bisimilar if all their closed instantiations are bisimilar.

Definition 4.6 (Bisimilarity on open types). Let fv(α)∪ fv(β)⊆{t̃}. Then, α≈β
if, for all indexed sets of closed types γ̃, we have α[γ̃/t̃]≈ β[γ̃/t̃].

It is straightforward to verify that Propositions 2.6 and 2.7 still hold, i.e., that this new
definition of lsb is an equivalence relation and a fix point.
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An important property is substitutivity : according to Rensink [Ren], a relation is sub-
stitutive if it is preserved by insertion— replacing equivalent types for variables do not
change the behaviour of a type—and by instantiation—replacing a closed type for a vari-
able in equivalent types result in equivalent types. Since preservation by instantiation is
built into the new definition of lsb, it suffices to prove that lsb is preserved by insertion.
To prove this result, as well as others in this section, we use the technique of “transition
induction”—see [Mil89a]—an induction on the maximum length of the derivation of the
transition.

Proposition 4.7 (Substitutive).
If α1 ≈ α2 then α[α1/t]≈ α[α2/t].

Proof. It is easy to show that the relation {(α[α1/t], α[α2/t]) | α1 ≈ α2} is an lsb.

It is necessary to verify that lsb is still a congruence—an expected result, but since we
conduct the proof on recursive terms instead of on equations, it turns out to be simpler (in
particular, a bisimulation suffices, whereas for equations one needs to establish a bisimu-
lation up to).

An important auxiliary result is a consequence of the rule Rec: folding or unfolding
a recursive term does not change its behaviour, since µt.α and α[µt.α/t] have the same
transitions, and thus one expects them to be bisimilar.

Lemma 4.8 (Unfolding).
µt.α≈ α[µt.α/t].

Proof. Immediate, since by the rule Rec both have the same transitions.

We prove now that the operator µt preserves lsb and hence, that our notion of equivalence
is still a congruence.

Proposition 4.9 (Preservation of lsb by µ).
The recursive operator preserves label-strong bisimulation.

Proof. We show that the relation {(µt.α, µt.β) | α ≈ β} is an lsb, and thus, that µt
preserves ≈. The proof is by transition induction. The base case is trivial, as the definition
of lsb implies that if α ≈ β and α ≡ t then β ≡ t. There are two cases to consider in the
induction step.

1. Let µt.α
l(α̃(µt.α))−−−−−→ γ. By a shorter derivation (see rule Rec) also α(µt.α)

l(α̃(µt.α))−−−−−→ γ.
Since by hypothesis α≈ β, we have

α(µt.α)≈ β(µt.α)
l(β̃(µt.α))−−−−−→ β′(µt.α)≈ α′(µt.α)≡ γ ,

as there are β̃ such that α̃(µt.α)≈ β̃(µt.α).
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Therefore, µt.β has an l-transition, hence also β(µt.β)
l(β̃(µt.β))−−−−−→ β′(µt.β), and the

result follows as by induction hypothesis α′(µt.α)≈ β′(µt.β) and α̃′(µt.α)≈ β̃(µt.β).

2. Let µt.α
υ−→ α′. The proof is as in the first case, except that we do not need to worry

about the parameters in the prefixes.

The proof is complete.

4.3 Axiomatic system

We present an axiomatisation of the equivalence notion, adding three recursion rules to
the previous axiomatic system, and show its soundness. Completeness will be the topic of
the next section.

The axiomatisation of lsb requires three more laws:

1. unfolding recursive types preserves lsb;

2. equalities involving recursive types have unique solutions up to lsb;

3. one to allow the saturation of recursive types.

Notice that the absence of mixed sums in ABT leads to a simpler axiomatic system than
that of CCS.

Prop/Definition 4.10 (The axiomatic system A).
The laws of Prop/Definition 3.8, together with the following recursion laws, inductively
define the axiomatic system A.

R1 µt.α≈ α[µt.α/t];

R2 if β ≈ α[β/t] then β ≈ µt.α, provided that α is guarded;

R3 µt.(υ.t+
∑

i∈I υ.αi)≈ µt.
∑

i∈I υ.αi.

Remark. Laws R3 and R5 of CCS have no correspondence in this setting, as ABT does
not have binary sums. Thus, our law R3 corresponds to (is an instance of) the CCS’s law
R4. The soundness of the axioms above is not a trivial result. To prove it, one has first to
ensure that the equations have unique solutions, i.e.,

if β is guarded, α1 ≈ β[α1/t], and α2 ≈ β[α2/t] then α1 ≈ α2.

The next subsection is dedicated to the proof of that result. Once we establish it, the proof
of the soundness of the axioms follows.

Proof. Law R2 of Prop/Definition 4.10 is a corollary of the uniqueness of the solutions
of equations and of law R1 (which is the unfolding lemma—just proved). To prove law R3,
one simply has to build the respective bisimulation.
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4.4 Unique solutions

The proof follows a method analogous to that used for CCS, but we attain a more general
result, since we do not require the type to be sequential. The method was set up by Milner;
Ying has a slightly simpler proof [Yin99].

We need the auxiliary notion of lsb up to ≈.

Definition 4.11 (Lsb up to ≈).
An lsb up to ≈ is a symmetric binary relation R on types such that, whenever α R β then

1. α
l(α̃)−−→ α′ implies ∃β̃,β′ β

l(β̃)−−→ β′ and α′α̃≈R≈ β′β̃, and

2. α =⇒ α′ implies ∃β′ β =⇒ β′ and α′ ≈R≈ β′ .

We show that lsb up to ≈ is still a label-strong bisimulation.

Proposition 4.12 (Lsb up to ≈ is a bisimulation).
Let R be an lsb up to ≈. Then,

1. ≈R≈ is an lsb.

2. R ⊆ ≈.

Proof. Similar to the proof for weak bisimulation up to weak bisimilarity in [Mil89a].

Remark. The definition of lsb up to ≈ is slightly different from that of lsb: with
υ−→

instead of =⇒ in the antecedent of the second condition of Definition 4.11, the previous
proposition would not hold, as the example R ={(υ.υ.a.0, υ.0)} shows6.

Two technical lemmas are necessary to prove the result. We present them below, prove
them, and proceed to the main result: equations have unique solutions (up to lsb).

Lemma 4.13.
Let α be guarded with free variables in {t̃}.

1. If α(β̃)
l(γ̃)−−→ γ then there exist α′ and α̃ with free variables in t̃ such that γ ≡ α′(β̃)

and γ̃ ≡ α̃(β̃), and, for all β̃′, α(β̃′)
l(α̃(β̃′))−−−−→ α′(β̃′).

2. If α(β̃)
υ−→ γ then there exists α′ with free variables in t̃ such that γ ≡ α′(β̃) and, for

all β̃′, we have α(β̃′)
υ−→ α′(β̃′). Furthermore, α′ is guarded.

Proof. By transition induction.

6notice the similarities with the Exercise 5.14 in [Mil89a].
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There are two cases to consider, depending on the transition performed.

1. Let α(β̃)
l(γ̃)−−→ γ. The base case is trivial. For the induction step, we have three

different cases to consider, according to the possible forms of α.

(a) Case α≡
∑

i∈I li(α̃i).αi.

Then α(β̃)≡
∑

i∈I li(α̃i(β̃)).αi(β̃), l(γ̃)≡ li(α̃i(β̃)), and γ≡αi(β̃) for some i∈ I.
The result follows from taking α′ ≡ αi and α̃≡ α̃i.

(b) Case α≡ α1 ‖ α2.

Then α(β̃)≡ α1(β̃) ‖ α2(β̃). There are two sub-cases to consider:

i. either γ ≡ γ1 ‖ α2(β̃), with α1(β̃)
l(γ̃)−−→ γ1,

ii. or γ ≡ α1(β̃) ‖ γ2, with α2(β̃)
l(γ̃)−−→ γ2, by a shorter derivation.

Without loss of generality, assume the first case. Since α is guarded, so is α1,
and thus, by induction hypothesis, it follows that γ1≡α′

1(β̃) and γ̃≡ α̃1(β̃). The
result follows from taking α′ ≡ α′

1‖α2 and α̃≡ α̃1.

(c) Case α≡ µt.β.

Then α(β̃)≡ µt.β(β̃), where the free variables of β are taken from t and t̃. The
variables t̃ must be guarded in β, otherwise they would not be guarded in α.

If µt.β(β̃)
l(γ̃)−−→ γ then β[µt.β(β̃)/t]

l(γ̃)−−→ γ, by a shorter derivation. But the
variables of t̃ are guarded in β[µt.β/t], and thus, by induction hypothesis, we

conclude that γ ≡ α′(β̃) and γ̃ ≡ α̃(β̃).

2. Let α(β̃)
υ−→ γ. The proof is as in the first case, except that we need not worry about

parameters in prefixes. The main difference is that we must also prove that α′ is
guarded. The base case is trivial. Case α ≡

∑
i∈I υ.αi, all the αi must be guarded

because α is, and thus α′ is guarded. In the remaining cases, the conclusion is a
consequence of the induction hypothesis.

The proof is complete.

Lemma 4.14.
Let α be guarded with free variables in t̃. If α(β̃) =⇒ γ then there exists α′ with free

variables in t̃ such that γ ≡ α′(β̃) and, for all β̃′, we have α(β̃′) =⇒ α′(β̃′).

Proof. Let α(β̃) =⇒ γ and let n be the actual number of υ’s in the transition. The proof
follows easily from the previous lemma, by induction on n.

We are finally in a position to prove the main result for infinite types: the theorem of the
uniqueness of the solutions of equations.
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Theorem 4.15 (Unique solutions of equations).

Let β̃ be guarded, α̃1 ≈ β̃(α̃1) and α̃2 ≈ β̃(α̃2). Then α̃1 ≈ α̃2.

Proof. Let R be the relation {(γ(α̃1), γ(α̃2)) | var(γ)⊆ t̃}. We will show that:

1. γ(α̃1)
l(δ̃1)−−→ α1 implies ∃α2, δ̃2 γ(α̃2)

l(δ̃2)−−→ α2 and α1(δ̃1)≈R≈ α2(δ̃2);

2. γ(α̃1) =⇒ α1 implies ∃α2 γ(α̃2) =⇒ α2 and α1 ≈R≈ α2.

1. So let us prove the first item: since ≈ is a congruence,

γ(α̃1)≈ γ(β̃(α̃1)) R γ(β̃(α̃2))≈ γ(α̃2) .

Hence, by hypothesis α̃1 ≈ β̃(α̃1) and β̃(α̃2) ≈ α̃2. Let γ(α̃1)
l(δ̃1)−−→ α1. Then,

γ(β̃(α̃1))
l(δ̃′

1)
−−→ α′

1 with δ̃1 ≈ δ̃′1 and α1 ≈ α′
1. By Lemma 4.13, there are γ̃ and γ′

such that δ̃′1 ≡ γ̃(α̃1), α
′
1 ≡ γ′(α1) and γ(β̃(α̃2))

l(γ̃(α̃2))−−−−→ α′
2 ≡ γ′(α̃2), which implies

γ̃(α̃2)
l(δ̃2)−−→ α2, with γ̃(α̃2)≈ δ̃2 and α′

2 ≈ α2.

We conclude that δ̃1 ≈R≈ δ̃2 and α1 ≈R≈ α2.

2. We prove 2 by similar reasoning, but using Lemma 4.14, instead of Lemma 4.13.

By the results we have seen before, and by symmetry, this establishes that R is a label-
strong bisimulation up to label-strong bisimilarity, and also that γ(α̃1) ≈ γ(α̃2) for all γ,
which includes the cases α1i ≈ α2i (γ ≡ ti), for all i= 1, . . . , |t̃|.

Note that from this result it follows as a corollary that the recursive constructor preserves
the equivalence notion (at least for guarded types): if α ≈ β and both are guarded, then
since µt.α≈ α(µt.α), also µt.α≈ β(µt.α), thus µt.α≈ µt.β.

5 Completeness for image-finite types

The presence of the recursive operator in the algebra allows us to define infinite types like
µt.(l.t), a type that represents an infinite sequence of l-actions. It represents the behaviour
of a persistent object that repeatedly offers a method l. This is actually an image-finite
type, but the recursive operator, together with the parallel composition operator, allows
us to define image-infinite types like µt.υ.(l‖t), the type of an ephemeral object with a
method l that lives inside a method of a persistent object.

It is well known that a process algebra where it is possible to define such terms does
not have complete axiomatisations of the equivalence notions, since the process algebra
has full computational power (is turing complete).
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Therefore, in this section we use an image-finite ABT, i.e., the dynamic types without
the parallel composition operator, and show that the axiom system of the previous section
is complete for image-finite types.

The completeness proof of the axiomatisation of the equivalence notion for image-finite
dynamic types is not trivial, and so we dedicate to it this section. For a rigorous defini-
tion of image-finiteness see, e.g., van Glabbeek [vG93a], who proves that a language with
action prefixes, choice, and recursion is image-finite. The completeness proof follows the
“standard” structure of that for image-finite CCS [Mil89b], being significantly simpler, as
ABT does not have communication.

5.1 Equational characterisation

The purpose of this first step of the completeness proof is to show an equational charac-
terisation theorem, i.e., all types satisfy a particular kind of set of equations.

Terminology. Consider a set of variables {t̃}, and a set of types {α̃} where fv(α̃)⊆ t̃.
Let S: t̃ = α̃ denote a system of (possibly mutually recursive) formal equations, where
var(S) is its set of variables. Then,

1. We write ti
π−→ t, if π.t is a summand of αi.

2. System S is guarded, if ∀i ti 6
υ

=⇒ ti and it is saturated if ti
υ

=⇒ t′ implies ti
υ−→ t′.

3. System S is standard, if αi ≡
∑

j∈J υ.tf(i,j) or αi ≡
∑

j∈J lij(t̃
′
(i,j)).tf(i,j), where t̃′(i,j)⊆t̃.

4. Let α1 be a closed type. We write α1 S if there is α̃=α1 · · ·αn such that ` α̃= β̃(α̃).

The following lemma is crucial to prove the theorem that ensures that semantically equiva-
lent types satisfying two different sets of equations also satisfy a common set of equations.

Lemma 5.1 (Saturation).
Let αS, with S standard and guarded. There is an S ′ standard, guarded, and saturated
such that αS ′.

Proof. From S obtain S ′ saturated, by saturating each equation. Consider S: t̃= α̃ and
take t1 = α1. It is now necessary to perform a case analysis on the structure of α1. Since
S is standard, there are only two cases to be considered.

1. Case α1 is a labelled sum, it is already (trivially) saturated.

2. Case α1 is a blocked sum, as it is guarded by hypothesis, if t1
υ.υ−−→ tj then j 6= 1. To

saturate α1 proceed like in the second case of the proof of Lemma 2.14, obtaining α′
1.

Now in S substitute α′
1 for α1 and repeat this process for the remaining equations.
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We prove now the referred theorem.

Theorem 5.2 (Common set of equations).

Consider two systems of equations S: t̃ = γ̃ and T : ũ = δ̃, standard and guarded, where
var(S) is disjoint from var(T ). Let αS, and β T , and let α ≈ β. Then, there is a
system U standard and guarded such that αU and β U .

Proof. By lemma 5.1, assume S and T saturated. We construct the common set U as
follows.

There are α̃ and β̃, with α1 ≡ α and β1 ≡ β such that ` α̃= γ̃[α̃/t̃] and ` β̃ = δ̃[β̃/ũ].

Since by hypothesis α≈ β, then:

1. t1
l(t̃′)−−→ ti implies ∃uj ,ũ′(u1

l(ũ′)−−→ uj and αiα̃
′ ≈ βjβ̃

′)7;

2. u1
l(ũ′)−−→ uj implies ∃ti,t̃′(t1

l(t̃′)−−→ ti and αiα̃
′ ≈ βjβ̃

′);

3. t1
υ−→ ti implies ∃uj

(u1
υ−→ uj and αi ≈ βj);

4. u1
υ−→ uj implies ∃ti(t1

υ−→ ti and αi ≈ βj).

Consider the following bisimulation relation R:

1. R⊆ t̃× ũ such that

(a) t
l(t̃′)−−→ t′ implies ∃u′,ũ′(u

l(ũ′)−−→ u′ and t′t̃′Ru′ũ′);

(b) u
l(ũ′)−−→ u′ implies ∃t′,t̃′(t

l(t̃′)−−→ t′ and t′t̃′Ru′ũ′);

(c) t
υ−→ t′ implies (t′Ru or ∃u′(u

υ−→ u′ and t′Ru′));

(d) u
υ−→ u′ implies (t R u′ or ∃t′(t

υ−→ t′ and t′Ru′)).

2. t1Ru1.

We aim at U : ṽ = ε̃, where ṽ = {vij | ti R uj}, and ε̃= {εij | ti R uj}, with εij being a sum
with summands:

1. l(ṽ′).vkl, if ti
l(t̃′)−−→ tk and uj

l(ũ′)−−→ ul and tk t̃
′Rulũ

′;8

2. υ.vkl, if ti
υ−→ tk and uj

υ−→ ul and tk Rul.

To finally prove ’αU ’, with v11 being the leading variable, we must find ϕ̃ such that
ϕ1 ≡ α and ` ϕ̃= ε̃[ϕ̃/ṽ].

7Consider subfamilies of types α̃′ and β̃′, corresponding respectively to t̃′ and ũ′.
8Consider v′

n the variable associated with t′n × u′
n, e.g., v′

n = v25 if t′n = t2 and u′
n = u5.
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Let ϕij ≡ αi. Since ti ≈ uj we have two cases to consider:

1. Case ti
l(t̃′)−−→ tk, where tk Rul and t̃′R ũ.

Then εij is a labelled sum with a summand l(ṽ′).vkl, and αi has a summand l(α′, . . .).αk;

thus εij[ϕ̃/ṽ] has a summand l(α′, . . .).αk, and we conclude the equality.

2. Case ti
υ−→ tk and tk Rul.

Then εij is a blocked sum with a summand υ.vkl, and αi has a summand υ.αk;

thus εij[ϕ̃/ṽ] has a summand υ.α, with υ.tk ≈ υ.ul, and we conclude the equality.

The proof is complete.

We prove now that all types satisfy a standard and guarded set of equations.

Proposition 5.3 (Equational characterisation).
For every image-finite guarded type α with free variables t̃ there is S standard and guarded
such that αS, and fv(S)⊆ t̃. Moreover, if t is guarded in α, then t is guarded in S.

Proof. By induction on the structure of α. Construct the set S, standard and guarded,
similarly to the construction in the proof of Theorem 4.1 in [Mil89b].

5.2 Completeness for image-finite types

From the results in the previous subsection we establish the main result of this section: the
completeness of the axiom system A with respect to the equivalence notion for image-finite
types, that is, types without the parallel composition operator.

We do this in two steps, as usual: first prove the completeness of the axiom system
for image-finite guarded types, and then show that every type has a provably equivalent
guarded one, hence the axiomatisation is complete for all image-finite types. The former
step is the critical one.

So let us prove first that the types that satisfy a set of equations are unique up to
bisimulation.

Theorem 5.4 (Unique solution of equations).
If S is guarded with free variables t̃, then there is a type α such that αS. Moreover, if
for some β with free variables t̃, β S, then `α= β.

Proof. By induction on the cardinal of S.

The base case is immediate: consider the system S: t = δ with t guarded in δ; making

α
def
= µt.δ, rule R1 ensures µt.δS; moreover, if there is a β with free variables t such that

β S, i.e. ` β = δ(β), then by rule R2, ` β = µt.δ, as required. For the induction step
proceed similarly to the proof of Theorem 4.2 in [Mil89b].
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Theorem 5.5 (Completeness for image-finite guarded types).
If α and β are image-finite guarded types, and α≈ β then `α= β.

Proof. Proposition 5.3 ensures that there is an S standard and guarded such that αS
and an S ′ standard and guarded such that β S ′. But then Theorem 5.2 guarantees that
there is a single set of equations that they both satisfy, and hence the result follows using
Theorem 5.4.

Proposition 5.6 (Reduction to guarded types).
For every type α there is a guarded type β such that `α= β.

Proof. First, one should perform a case analysis on the form of α, but obviously, it is
enough to consider types of the form µt.α. The difficulty is that t may occur arbitrarily
deep in α, possibly within other recursions. Therefore, it is useful to prove a stronger result
(according to the proof for CCS by Milner [Mil89b]):

For every type α there is a guarded type β for which:

1. t is guarded in β;

2. no free unguarded occurrence of any variable in β lies within a recursion in β;

3. `µt.α= µt.β.

We prove this by induction on the depth of the nesting of recursions in α.

1. The first step is to remove from α free unguarded occurrences of variables occurring
within recursions. By induction hypothesis, for every µt′.γ in α such that the recur-
sion depth of γ is smaller than that of α, there is a γ′ for which the result above
holds. Thus, no free unguarded occurrence of any variable in γ′[µt′.γ/t′] lies within a
recursion. Now substitute in α every top-level µt′.γ by γ′[µt′.γ/t′], obtaining a type
α′ that fulfils the three required conditions.

2. Finally, we only need to remove the remaining free unguarded occurrence of t in α′,
which do not lie within recursions. A case analysis on the structure of α′ leads to
the conclusion α′≡µt.(υ.t+

∑
i∈I υ.αi); applying rule R3 yields `α′ =µt.

∑
i∈I υ.αi.

Repeatedly applying this procedure yields the envisage type µt.β, and the result
follows by transitivity.

Since we conclude the proof of the stronger result, we’re done.

Corollary 5.7 (Completeness for image-finite types).
If α and β are image-finite types, and α≈ β then `α= β.

Proof. Straightforward, using the previous proposition and Theorem 5.5.
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6 Final discussion

To represent the behaviour of a concurrent object with several co-existing clones (the model
emerging naturally from the calculus in its full generality) via a type, a process algebra is a
natural idea. Since a type (partially) specifies an object, there are three basic requirements:

1. method calls are the basic actions, and thus,

2. the silent action is external rather than internal, as it corresponds to an action in
another object (not directly observable);

3. sums (records-as-objects) are either prefixed by method calls or by the silent action,
i.e. there are no free sums.

Hence, actions are either method calls or the silent action, the basic process is the (possibly
empty) action-prefixed sum, and the composition operators are parallel composition and
recursion.

No existing process algebra has all these characteristics together. BPP is similar to,
but not exactly, what we need. For the sake of simplicity and to avoid confusion we define
ABT, a new process algebra. Furthermore, since the notion of observation differs from the
usual one in process algebra, it leads to a new, simple, and natural notion of equivalence,
lsb, which has a complete axiom system, at least for image-finite types.

To conclude, we discuss three last questions:

1. can the proof system be complete, when considering image-infinite types?

2. why is lsb our notion of type equivalence?

3. what else remains to be done?

6.1 Completeness for image-infinite types

Completeness for infinite state types is a considerably more difficult problem. One can-
not hope for completeness of axiomatisations of equivalence notions in CCS, for the cal-
culus is computationally complete. Since the full computational power comes from the
substitution mechanisms (communication in this case), in calculi without communication
it still makes sense to look for completeness. The study of image-infinite (or infinite-
state) systems is a lively area of concurrency theory, with several important results es-
tablished [BE97, CH93, Mol96]. We focus our attention in two process algebras: BPA
and BPP. BPA is the class of Basic Process Algebra of Bergstra and Klop [BK85],
corresponding to the transition systems associated with Greibach Normal Form (GNF)
context-free grammars, in which only left-most derivations are allowed. BPP is the class
of Basic Parallel Processes of Christensen [Chr93], which is the parallel counterpart of
BPA but with arbitrary derivations. Strong bisimilarity is decidable for BPA [CHS95] and
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for BPP [CHM93b, CHM93a]. However there is still no such result for weak bisimilarity
on full BPA and BPP, although the result is already established for the totally normed
subclasses [Hir97], and a possible decision procedure for full BPP is NP-hard [Stř98].

Nevertheless, even if ultimately decidability is an important result to ensure the appli-
cability of our equivalence notion, we are looking for completeness, since decidability is
stronger than what we need: the existence of a proof for each equation suffices.

6.2 The notion of bisimulation

Why is lsb our equivalence notion? Could it be different? Could we have used an existent
notion? We now approach these questions.

An alternative notion of bisimulation. Consider the following definition of a
bisimulation relation.

Definition 6.1 (Label-semi-strong bisimilarity).

1. A symmetric binary relation R ⊆ T × T is a label-semi-strong bisimulation, (lssb),
if whenever α R β then

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃, γ (β

l(β̃)−−→ γ =⇒ β′ and α′α̃ R β′β̃);
(b) α

υ−→ α′ implies ∃β′ (β =⇒ β′ and α′ R β′);

2. Two types α and β are label-semi-strong bisimilar, and we write α≈sβ, if there is a
label-semi-strong bisimulation R such that α R β.

Again, ≈s is an equivalence relation and α ≈s β holds if and only if conditions 1(a)
and 1(b) of the previous definition hold with R replaced by ≈s. Furthermore, lssb is a
congruence relation (the proofs of these results are very similar to those done previously
for lsb).

This notion differs from lsb by allowing unblockings after method calls (condition 1(a)).
For deterministic finite types the two notions coincide, as we have previously shown [RRV98].
However, as we discuss in that paper, the notions do not coincide in more general transition
systems, namely in non-deterministic ones.

Take the systems in Figure 1. In l.υ.l, the second l is only observable after the oc-
currence of the unblocking, which corresponds to the execution of some action in another
object. There is a causal dependency between the first l, the action corresponding to the
unblocking, and the second l. If the law l.υ.l= l.υ.l+ l.l holds for some equivalence notion
then the notion does not capture causality between action execution in different objects,
and thus it is a local notion, whereas a notion that distinguishes the types in the law is
global (with respect to the community of objects).
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Figure 1: Lsb vs. lssb: comparing l.υ.l to l.υ.l + l.l

Theorem 6.2 (Comparing lsb and lssb).
Label-strong bisimulation is finer than label-semi-strong bisimulation.

Proof. Clearly, a label-strong bisimulation is also a label-semi-strong bisimulation. The
converse does not hold, as, e.g., the system in Figure 1 show.

We have adopted lsb as the “right” notion of bisimulation, for it is global, and it is tech-
nically simpler. Furthermore, it is finer than lssb.

Relation to other notions. What is the position of lsb in the lattice of bisimula-
tion equivalences? Since it is a bisimulation it is above a large spectrum of equivalence
notions [vG93b]. Obviously, its relative position varies according to the characteristics of
the transition system in consideration. We focus now on CCS and ABT.

As with weak bisimulation (wb), lsb is not a congruence in CCS. However, one defines
from lsb a congruence (let us call it lsc) just by demanding that a silent action should be
matched by at least one silent action (cf. the observational congruence, oc). Hence, lsc
is finer than oc (as lsb is finer than wb), since the laws of lsc are particular cases of the
laws of oc. In CCS, the coarsest bisimulation which is still a congruence is the progressing
bisimulation (pb) [MS92]. Notice that lsc is incomparable to pb, as, e.g., l.υ.m 6=pb l.υ.υ.m
but l.υ.m≈lsc l.υ.υ.m, and l + τ.l =pb τ.l but l + τ.l 6≈lsc τ.l.

In ABT, wb is a congruence, as the sums are prefixed. Since this setting has no
mixed sums, the υ-laws are particular cases of the laws holding for wb. Thus, wb is still
coarser than lsb, but notice that pb is, in this setting, finer than the previous two, since
it distinguishes, e.g., l.υ.m from l.υ.υ.m (hence, the law U1—valid for lsb and for weak
bisimulation—is not valid for pb).
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6.3 Comparison with related work on types.

Concurrency theory inspires dynamic notions of typing and subtyping. These dynamic
notions of types, capturing some aspects of behaviour, have (at least) three different forms:
types and effects, and regular types, and processes as types. In the following paragraphs we
briefly present each approach and compare it to ABT.

Types and effects. The type and effect discipline is a framework for principal typing
reconstruction in implicitly typed polymorphic functional languages [NN96, TJ94]. Types
describe what expressions compute (sets of values) and effects describe how expressions
compute (behaviour). In a concurrent functional scenario this discipline is particularly
useful to prove ‘subject reduction’ and related results. Types and effects may decrease
with computation. As effects (also called behaviours) model communication, their decrease
corresponds to consuming prefixes, which suggests an operational semantics, and makes
behaviours look like a process algebra, which is an abstraction of the semantics of the
concurrent functional language. In the context of name-passing calculi, types are assigned
to names, not to processes, and are the semantics of the usage of names. Hence, we merge
types and behaviours in a single entity.

Behavioural typing and subtyping. Behavioural typing and behavioural subtyping
are notions of, respectively, typing and subtyping for concurrent object-oriented program-
ming, which take into account dynamic aspects of the behaviour of objects.

Several researchers are working on this track, developing behavioural notions of typing
and subtyping. We give here a brief account of their work. Consider two main approaches:

Regular types : use a regular language as types for objects.

1. Nierstrasz characterises the traces of menus offered by (active) objects [Nie95]. He
proposes a notion of subtyping, request substitutability, which is based on a generali-
sation of the principle of substitutability by Wegner and Zdonick [WZ88], according
to the extension relation of Brinksma et al. [BSS87]. It is a transition relation, close
to the failures model.

2. Colaço et al. propose a calculus of actors based on an extended TyCO, supporting
objects that dynamically change behaviour [Col97, CPS97, CPDS99]. The authors
define a type system which aims at the detection of “orphan messages”, i.e. messages
that may never be accepted by some actor, either because the requested service is
not available, or because, due to dynamic changes in a actor’s interface,the requested
service is no longer available. Types are interface-like, with multiplicities (how often
may a method be invoked), thus without dynamic information) and the type system
requires complex operations on a lattice of types. Nonetheless, they define a type in-
ference algorithm based on set-constraints resolution, a well-known technique widely
used in functional languages.
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3. Najm and Nimour propose a calculus of objects that features dynamically changing
interfaces [NN97, NNS99a, NNS99b]. The authors develop a typing system handling
dynamic method offers in interfaces, and guaranteeing a liveness property: all pend-
ing requests are treated. Types are sets of deterministic guarded parametric equa-
tions, equipped with a transition relation, and representing infinite state systems. A
type inference algorithm is built on an equivalence relation, a compatibility relation,
and a subtyping relation on types, based on the simulation and on the bisimulation
relations (strong versions, thus decidable).

Process types : use a process algebra as types for objects.

1. Boudol proposes a dynamic type system for the Blue Calculus, a variant of the π-
calculus directly incorporating the λ-calculus [Bou97]. The types are functional and
assign to terms, in the style of Curry simple types, and incorporate Hennessy-Milner
logic with recursion—modalities interpreted as resources of names. So, processes
inhabit the types, and this approach captures some causality in the usage of names
in a process, ensuring that messages to a name will meet a corresponding offer.
Well-typed processes behave correctly, a property preserved under reduction.

2. Bowman et al. study the problem of defining behavioural subtyping using the process
algebra LOTOS to describe the types [BBSDS97]. Since none of the standard pre-
orders fits the requirements, the authors re-define the reduction relation to use it as
an instantiation of behavioural subtyping.

3. Puntigam defines a calculus of active objects and process types [Pun97, Pun99].
A static type system ensures that all sequences of messages sent to an object are
received and answered, even if the set of acceptable messages changes dynamically.
Objects are syntactically constrained to a unique identity and messages are received
in the order they were sent, as every object is associated with a FIFO queue. The
expressiveness of types is that of a non-regular language, which is equipped with a
subtyping relation.

4. Kobayashi et al. having been studying deadlock and livelock detection in mobile
calculi for a while [Kob00, KSS00]. Channel types have information not only about
their arity, but also about their usage (sequences of possible inputs and outputs),
about when they should be used, and if they must be used. Recently, Igarashi and
Kobayashi proposed a generic framework to develop type systems to ensure vari-
ous properties, where types are processes themselves and are abstractions of mobile
processes [IK01].

6.4 Further work

The first priority is to find out if ABT is completely axiomatisable. From there, apart
from the decision procedure for lsb, two topics are interesting: a modal characterisation,
to specify properties, and a notion of subtyping, to allow program refinement.
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Modal characterisation. To specify/verify properties of types it is useful to have a
logical characterisation of the equivalence notion. In the process algebra realm this is done
with a modal action logic like the Hennessy-Milner Logic [HM85, Mil89a]. In the same
way we define a modal logic for ABT.

Definition 6.3 (Syntax).
The grammar below defines the set F of formulae of the logic.

ϕ, ψ ::= > | ¬ϕ | (ϕ ∧ ψ) | 〈υ〉ϕ | 〈l(α̃)〉ϕ

The relation below defines when does a type satisfy a formula.

Definition 6.4 (Semantics).
The following rules inductively define the satisfaction relation |= ⊆T × F .

1. α |=>, for any α;

2. α |=¬ϕ, if not α |=ϕ;

3. α |=ϕ ∧ ψ, if α |=ϕ and α |=ψ;

4. α |= 〈υ〉ϕ, if ∃α′(α =⇒ α′ and α′ |=ϕ);

5. α |= 〈l(α̃)〉ϕ, if ∃α′(α
l(α̃)−−→ α′ and α′ |=ϕ).

An equivalence relation rises naturally from the satisfaction relation.

Definition 6.5 (Logical equivalence).
Types α and β are logically equivalent, α =lg β, if, for all ϕ, we have α |=ϕ, if, and only
if, β |=ϕ.

Logical equivalence is sound with respect to lsb. The converse direction is a conjecture.
Usually, it requires assuming image-finite systems, but =⇒ is not image-finite.

Theorem 6.6 (Soundness).
If α=lg β then α≈ β.

Proof. By induction on the structure of the formulas.

We would like to extend this modal logic with recursion (in the lines of the modal µ-
calculus [Koz83]), study our types as logical formulae, and see how to specify and verify
certain properties of systems of objects.
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Subtyping. Since types are partial specifications of the behaviour of objects, the sub-
typing relation gives us the possibility of specifying that behaviour in more detail. In fact,
the principle of substitutability states that “a type β is a subtype of a type α, if β can
safely be used in place of α”. “Safely” means that the program is still typable and thus no
run-time error arises. Therefore, subtyping allows the substitution of: (1) a type for one
with less methods (co-variant in width), as it is safe to provide more than it is expected;
and (2) a parameter type for one with more methods (contra-variant in the arguments),
as it is safe to assume that that the argument has less behaviour than it really has.

Instead of defining the subtyping relation via typing rules, as for instance, in [PS96] we
propose a semantic definition. It would be interesting to define those rules and study the
relationship among both notions; we leave that for future work.

Notice that our equivalence notion lsb is a symmetric simulation.

Definition 6.7 (Similarity on types).

1. A binary relation R⊆T × T is a label-strong simulation, or simply a simulation, if
whenever α R β we have:

(a) β
l(β̃)−−→ β′ implies ∃α′, α̃ (α

l(α̃)−−→ α′ and α′β̃ R β′α̃);

(b) β
υ−→ β′ implies ∃β′ (α =⇒ α′ and α′ R β′);

2. Type β is label-strong similar to type α, or α simulates β, and we write α ≤ β, if
there is a label-strong simulation R such that α R β.

A symmetric simulation is a label-strong bisimulation (Definition 2.5 in page 9). The
simulation is a subtyping relation, since it is a pre-order (reflexive and transitive). Thus,
if α simulates α′, we say that α is a subtype of α′, and write α≤ α′.

Example 6.8. Some examples of subtyping.

1. (n ‖ l(m))≤ l(m) and (n+ l(m))≤ l(m);

2. l(m)≤ l(m+ n);

3. l(m)≤ υ.l(m).

The following result ensures that subtyping is a pre-order.

Proposition 6.9 ((T ,≤) is a pre-ordered set).

1. α≤ α;

2. if α≤ β and β ≤ γ then α≤ γ;

Proof. Straightforward, simply using the definition
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The operators of ABT, as well as lsb, preserve the simulation relation.

Proposition 6.10 (Congruence).

1. Similarity is a congruence relation;

2. lsb preserves similarity.

Proof. The proof of the first clause is standard. The proof of the second clause is trivial,
since ≈ implies ≤.

This pre-order relation induces an equivalence relation (if α ≤ β and β ≤ α then α = β)
that is coarser than lsb, since usually there are types that can simulate each other without
being bisimilar. A simple example is the pair of types υ.(a+ b) and υ.(υ.a+ υ.(a+ b)).

We would like to define a syntactic notion of subtyping and develop a proof system via
subtyping rules, sound and possibly complete with respect to the semantic notion based
on simulation that we just presented.

7 Concluding remarks

The approach of behavioural types in other works is done by using an existing process
algebra as a language of types for a calculus (of objects). We took the inverse approach:
we first define adequate types for our setting—non-uniform objects—and then show that
the types are a process algebra with convenient properties.

The Algebra of Behavioural Types, ABT is a process algebra in the style of CCS. It is
very similar to its proper subclass BPP; in particular, communication is not present. The
actions have terms of the process algebra as parameters. The nature of the silent action
induces an original equivalence notion, different from all other equivalences known for
process algebras. Naturally the set of axioms that characterises the equivalence notion is
also original. However, the proof techniques are basically the same, but some crucial proofs
are simpler. The interesting aspect is that normal forms include a parallel composition, as
there is no expansion law for the parallel composition of a labelled sum and a blocked type.
Thus the proof of the normal form lemma and of the completeness theorem are different
from those for CCS.

Some of the ideas presented in this paper, namely regarding external silent actions and
label-(semi-)strong bisimulation, appeared first in [RRV98], where however the algebra was
much less tractable (e.g., with non-associative sums) and no completeness results were ob-
tained. The developments presented here are part of the first author’s PhD thesis [Rav00].

We use ABT to type non-uniform concurrent objects in TyCO, where we formalise a
notion of process with a communication error that copes with non-uniform service avail-
ability [RV00]: we advocate that the right notion of communication error in systems of
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concurrent objects is that no message should be forever not understood. Using ABT as the
language of types, we have developed for TyCO a static type system that assigns terms of
ABT to TyCO processes, and enjoys the subject reduction property, ensuring that typable
processes are not locally deadlocked, and do not run into errors [RV00, Rav00].

We believe that ABT can be use not only to type other concurrent calculi with extensions
for objects, but also to type calculi with localities. To fully use its expressiveness one can
define in its favourite calculus functionalities like a method update that changes the type
of the method, object extension adding methods, distributed objects without uniqueness
of objects’ identifiers, and non-uniform objects.
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