
MetaKlaim: A Type Safe Multi-stage Language

for Global Computing

GianLuigi Ferrari∗

Dipartimento di Informatica — Università di Pisa

e-mail: giangi@di.unipi.it

Eugenio Moggi †

Dipartimento di Informatica e Scienze dell’Informazione — Università di Genova

e-mail: moggi@disi.unige.it

Rosario Pugliese‡

Dipartimento di Sistemi e Informatica — Università di Firenze

e-mail: pugliese@dsi.unifi.it

Abstract

This paper describes the design and the semantics of MetaKlaim, an higher order

distributed process calculus equipped with staging mechanisms. MetaKlaim integrates

MetaML (an extension of SML for multi-stage programming) and Klaim (a Kernel Lan-

guage for Agents Interaction and Mobility), to permit interleaving of meta-programming

activities (like assembly and linking of code fragments), dynamic checking of security poli-

cies at administrative boundaries and “traditional” computational activities on a wide area

network (like remote communication and code mobility). MetaKlaim exploits a powerful

type system (including polymorphic types á la system F) to deal with highly parameter-

ized mobile components and to dynamically enforce security policies: types are metadata

which are extracted from code at run-time and are used to express trustiness guarantees.

The dynamic type checking ensures that the trustiness guarantees of wide are network ap-

plications are maintained whenever computations interoperate with potentially untrusted

components.

∗Supported by MIUR project NAPOLI and EU project PROFUNDIS IST-2001-33100.
†Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.
‡Supported by MIUR project NAPOLI and EU project AGILE IST-2001-32747.

1

CONTENTS 2

Contents

1 Introduction 3

2 Further Motivations 5

3 MetaKlaim 7

4 Type System 11

4.1 Basic Properties of the Type System . 13

5 Operational Semantics 14

5.1 Reduction and Transition Relation . 14

5.2 Net Transition Relation . 17

5.3 Basic Properties of the Operational Semantics 17

6 Type Safety 18

6.1 Technical Lemmas for Type Safety . 19

7 Examples 22

7.1 Group Communication . 23

7.2 Nomadic Data Collector . 25

7.3 Dynamic Linking and Loading . 26

8 Related Work 28

9 Conclusions and Future Work 30

1 INTRODUCTION 3

1 Introduction

The distributed software architecture (model) which underpins most of the wide area network

(WAN) applications typically consists of a large number of heterogeneous computational entities

(sometimes referred to as nodes or sites of the network) where components of applications are

executed. Differently from traditional middle-wares for distributed programming, the structure

of the underlying network is made manifest to programmers of WAN applications. In general,

the various nodes are handled by different authorities having different administrative policies

and security requirements. Components of WAN applications are characterized by an highly

dynamic behavior and have to deal with the unpredictable changes over time of the network

environment (changes due to the unavailability of network connectivity, lack of services, node

failures, network reconfiguration, and so on). Moreover, nomadic or mobile components must

be designed to support heterogeneity and interoperability because they may detach from a node

and re-attach later on a different node. We refer to [FPV98] and [Car99] for comprehensive

analysis of issues related to WAN applications.

The problems associated with the development of WAN applications have prompted the

study of the foundations of programming languages with advanced features including mecha-

nisms for code and agent mobility, for managing security, and for coordinating and monitoring

the use of resources. Several foundational calculi have been proposed to tackle most of the phe-

nomena related to WAN programming. We mention the Distributed Join-calculus [FGL+96],

Klaim [DFP98], the Distributed π-calculus [HR01], the Ambient calculus [CG00a], the Seal

calculus [VC99], and Nomadic Pict [SW00]. All these foundational models encompass a notion

of location to reflect the idea of administrative domains: computations at a certain location are

under the control of a specific authority. In other words, they focus on the spatial dimension

(which is often referred to as network awareness) of WAN programming.

In a WAN setting no central authority can define and enforce policies which regulate ac-

cesses to network resources. Moreover, components of applications should be designed to be

executed and interoperate with potentially malicious components. The advent of safe pro-

gramming languages such as Java and C] has led to the definition of strong type systems which

can be effectively exploited to rule out a variety of security bugs. Notice that the use of a

typed intermediate code has come into prominence in the last few years (e.g. the Java Byte-

code or the Microsoft Intermediate Language). However, static type checking cannot detect

all potential security holes. Current run-time environments exploit some mechanisms (e.g. see

[SMH00, Sch00, FBF99]), like reference monitors and certifying compilers, to dynamically check

security properties which cannot be enforced either statically or at linking time. Dynamic en-

forcing of security checks increases the security level of WAN applications, because it permits to

identify those portions of applications code that are potentially untrusted, and can support the

1 INTRODUCTION 4

revocation of previously granted permissions to partially trusted code. Moreover, components

of WAN applications are often developed and maintained by different providers/principals and

may be downloaded and linked together “on demand”. Hence, the run-time system may in-

terleave computational activities with meta-programming activities, such as dynamic linking,

assembling and customization of components, that permit to reconfigure the application with-

out having to restart it. In fact, the interest towards formally understanding dynamic linking

(and separate compilation) is witnessed by several papers that have recently tackled the prob-

lem [Car97a, MG99, HWC00, Dro00, HW00, Sew01]. To sum up, dynamic enforcement of

security properties together with dynamic assembling and customization of components make

the temporal dimension of WAN programming.

The spatial and the temporal dimensions of WAN programming have been studied at con-

siderable depth but in isolation, and their interplay has not been properly formalized and

understood, yet. This paper proposes a foundational model which integrates the spatial and

temporal aspects of WAN programming. We have abstracted the basic features of the prob-

lem in a calculus having primitives for programming processes which may migrate among

nodes, and primitives which support fine-grain control on dynamic linking of components and

dynamic checking of security policies. Our calculus, called MetaKlaim, builds on Klaim

[DFP98, KHP98, DFPV00] and MetaML [TS97, She99, TS00, MHP00]. Klaim (Kernel Lan-

guage for Agents Interaction and Mobility) is an experimental language, inspired by the Linda

coordination model [Gel85, CG89], specifically designed to model and to program WAN ap-

plications by exploiting distribution and mobility. MetaML supports staging constructs for

meta-programming and most features of SML. It is ideal for describing customization and

combination of software components, since the staging constructs have the same status of the

other programming constructs.

MetaKlaim takes the form of an higher-order distributed process calculus where staging

handles naturally typed code. The calculus is designed around the following ingredients:

• Localities and code mobility to deal with the spatial dimension of WAN programming;

• Polymorphic types á la system F to deal with highly parameterized mobile components;

• Types, namely metadata extracted at run-time from potential untrusted code, to dynam-

ically enforce security policies;

• Staging and meta-programming constructs (á la MetaML) to link, specialize, adapt, run

and reconfigure mobile components by taking advantage of run-time type information.

In this paper we introduce the operational semantics of MetaKlaim. To our knowledge,

this is the first semantics for a general-purpose higher order distributed process calculus with

2 FURTHER MOTIVATIONS 5

staging constructs. The operational semantics performs dynamic type checking of untrusted

code, thus the trustness guarantees of wide are network applications are maintained, even

when they interoperate with potentially untrusted components. Moreover, the type system of

MetaKlaim and the dynamic type checking can ensure local Type Safety, i.e. type safety of

just that part of the net we want to control.

The rest of the paper is organized as follows: Section 2 gives further motivations for our

work; Section 3 presents the syntax of MetaKlaim and discusses the main linguistic design

choices; Section 4 and 5 introduce a type system and define the operational semantics for

MetaKlaim; Section 6 states and demonstrates the type safety result; Section 7 gives a few

examples of distributed and mobile code applications; Section 8 presents some comparisons with

related work; finally, Section 9 draws some conclusions and discusses directions for further work.

2 Further Motivations

Current software technologies emphasize the notion of components as the key idiom to con-

trol the design and the development of applications. Ideally, programmers should design and

build applications by combining and integrating together (pre-existing) components. To sup-

port this simple idea, programming languages should provide mechanisms to link and specialize

components. In other words, components are assumed to be generic and pluggable to other

components to achieve the required functionalities. Modern operating systems and program-

ming languages (such as Java) include dynamic linking mechanisms as a fundamental part of

their run time environment. COM [Cor01] and Java Beans [Mic02] support component updat-

ing: run-time type checking is used to determine what versions of components are available.

Components often embody facilities to specialize their structure and generate efficient code

once the parameters of the components have been provided. These components are called gen-

erative [EC00]. An illustrative example is given by C++ template mechanisms and template

metaprogramming [MS96]. Multi-stage programming languages have been proposed for writ-

ing generative components. For instance, [KCC00] presents several examples of components,

described as higher-order macros in a functional meta-language similar to MetaML.

The execution cycle of component-based programming (that is characterized by the ability

of integrating components into applications) consists of

1. Finding the required components;

2. Linking and specializing components;

3. Running the application assembled from components.

2 FURTHER MOTIVATIONS 6

The advent of network technologies introduces new phenomena: components are available

on the net and are managed (and provided) by different authorities. The use of components

in a WAN environment raises a number of interesting issues. First, given the heterogeneity of

the environment net components should be highly portable: components could be used any-

where but require some services to behave properly (i.e. services are used to adapt components

to a variety of infrastructures). Functional abstraction is not enough for expressing the de-

sirable forms of parametrization. Also a limited form of polymorphism, like that supported

by SML, appears inadequate. Second, security should be ensured: components downloaded

from different authorities have different security requirements, and they should be executed

within different run-time environments. Third, dynamic adaptability should be ensured: WAN

applications are highly dynamic and can reconfigure their structure and their components at

run-time to respond to dynamic changes of the network environment.

Thus, in the case of WAN programming, the execution cycle of components includes addi-

tional steps and becomes:

1. Downloading generic components;

2. Adapting components to the local infrastructure and the local execution environment;

3. Fixing the loading and specialization policies according to local requirements;

4. Monitoring the execution of the assembled application;

5. Reconfiguring the application and its policies whenever the network environment changes.

The refined execution cycle (we will call it the network cycle), also applies to nomadic (mo-

bile) applications: it suffices to substitute the Download step with a MoveTo step. This is

important because it has been widely acknowledged that mobility [FPV98, RPM00] provides a

suitable abstraction to design and implement WAN applications. In particular, the usefulness

of mobility emerges when developing both applications for devices with intermittent access to

the network, and network services having different access policies.

Current technologies provide solutions only to some of the issues discussed above. For

instance, in the Java programming language heterogeneity is handled through bytecode in-

terpretation. Permissions, grants and stack inspection handles dynamic check of possibly un-

trusted code. C] generics account for highly parameterized generic components [KS01]. The

.NET architecture supplies a programming technology embodying general facilities for handling

heterogeneity and orchestration of WEB services.

3 METAKLAIM 7

3 MetaKlaim

This section introduces MetaKlaim, a foundational multi-stage calculus specifically designed

to model both the spatial and temporal aspects of global computing. MetaKlaim extends

system F [Gir72, Rey74] with primitives from Klaim and MetaML: Klaim’s primitives

permit to model the spatial aspects of distributed concurrent applications, including code

mobility, while the staging annotations of MetaML provide a fine-grain control of the temporal

aspects.

Notation 3.1 [Notations and Conventions used throughout the paper]

• m,n range over the set N of natural numbers. Furthermore, m ∈ N is identified with the

set {i ∈ N|i < m} of its predecessors.

• Syntactic equivalence, written ≡, is α-conversion. FV(e) is the set of free variables in e.

If E is a set of syntactic entities, then E0 indicates the set of entities in E without free

variables.

• e ranges over finite sequences of e. |e| is the number of elements in the sequence e. e1, e2

denotes the concatenation of the sequences e1 and e2 (and similarly for sequences Γ1 and

Γ2 of declarations). e: t is a shorthand for ei: t for each ei in the sequence e.

• ρ ranges over substitutions, i.e. functions (with finite domain) mapping variables to terms

(or types). ∅ is the empty substitution, x: = e is the substitution mapping x to e, and

ρ1, ρ2 denotes the union of two substitutions (with disjoint domains). e[ρ] is the result

(modulo α-conversion) of applying the substitution ρ to e.

• µ(A) is the set of multisets with elements in A, and] is multiset union.

• Given a BNF e: = P1 | . . . | Pm, we write e+ = Pm+1 | . . . | Pm+n as a shorthand for

the extended BNF e: = P1 | . . . | Pm+n. ¥

From Klaim [DFP98, KHP98, DFPV00] we borrow the computational paradigm, which iden-

tifies processes as the basic units of computation, and nets, i.e. collections of nodes, as the

coordinators of process activities. Each node has an address, called locality, and consists of a

process component and a tuple space (TS), i.e. a multi-set of tuples. Processes communicate

asynchronously via TSs. The types of MetaKlaim include the types L and (ti|i ∈ m) of

localities and tuples, but not a type of processes, because process actions can be performed by

terms of any type. In MetaKlaim the primitives of Klaim take the following form:

• spawn(e) activates a process (obtained from e) in a parallel thread.

3 METAKLAIM 8

• new(e) creates a new locality l, activates a process (obtained from e) at l, and returns l.

• output(l, e) adds the value of e to the TS at l (output is non-blocking).

• input(l, (pi⇒ei|i ∈ m)) accesses the TS located at l for gathering data. The input

operation checks each pattern pi and looks in the TS at l for a matching value v. If such

a v exists, it is removed from the TS, and the variables x!t declared in the matching

pattern pj are replaced within ej by the corresponding values in v. If no matching tuple

is found, the operation is suspended until one becomes available (thus input is a blocking

operation). Notice that input exploits dynamic type-checking (namely a matching v must

be consistent with the types attached to variables declared in a pattern).

Remark 3.2 In Klaim there is a primitive eval(l, e) for activating a process at a remote locality

l. This primitive is used for asynchronous process mobility, but it has not been included in

MetaKlaim for the following reasons:

• eval relies on dynamic scoping (a potentially dangerous mechanism), which is not avail-

able in MetaKlaim, since in a functional setting one can use (the safer mechanism of)

parameterization.

• with eval a node may activate a process on another node, but the target node has

no control over the incoming process. This can be a source of security problems. In

particular, Local Type Safety (see Theorem 6.2) fails, if eval would be added.

In MetaKlaim process mobility occurs only by “mutual agreement”, i.e. a (sending) node can

output a process abstraction in any TS, but the abstraction becomes an active process only if

(a process at) another (receiving) node input it. Higher-order remote communication between

nodes, like that provided by Klaim, is essential to implement this form of mobility. ¥

From MetaML [TS97, She99, TS00, MHP00] we borrow the types 〈t〉 for code with potentially

unresolved links (represented by dynamic variables), the stratification into levels of declarations

(level n > 0 for dynamic variables) and evaluation (level n > 0 for symbolic evaluation), and

the following staging annotations:

• Brackets 〈e〉 constructs code representing the program fragment obtained by the symbolic

evaluation of e, e.g. 〈2+x〉 is a value of type 〈nat〉 representing the fragment 2+x, where

x is a dynamic variable.

• Escape ˜ e returns the program fragment represented by code e. During symbolic

evaluation Escape is used for splicing program fragments into bigger programs, e.g.

〈λx.1 + ˜〈2 + x〉〉 evaluates to 〈λx.1 + 2 + x〉.

3 METAKLAIM 9

• Cross-stage persistence %e permits to use the value of e at a higher level, e.g. 〈%(1+1)+x〉
evaluates to 〈%2 + x〉. Notice that %(1 + 1) and ˜〈1 + 1〉 have the same type, but their

symbolic evaluation is different: the first evaluates to %2, while the second evaluates to

1 + 1.

• run(e) executes the program represented by code e, e.g. run〈1 + 1〉 evaluates to 2.

Remark 3.3 In MetaML it is possible to evaluate under (dynamic) lambda. This feature

is essential for allowing arbitrary interleaving of code generation and normal computation,

but it may cause new forms of improper run-time behavior, that do not arise in traditional

programming languages:

• execution of code with unresolved links, e.g. the evaluation of 〈λx. ˜ (run〈x〉; . . .)〉 will

attempt to evaluate run〈x〉, before the dynamic variable x gets bound to a value.

• extrusion of a value with free dynamic variables from the scope of the binding lambda,

e.g. the evaluation of 〈λx.˜ (output(l, 〈x〉); . . .)〉 will output 〈x〉 in the TS located at l,

thus loosing the connection with the binding lambda.

In a statically typed language these improper behaviors can be prevented by a more sophis-

ticated type system, e.g. [CMS02] exploits closed types. For a language with dynamic type-

checking, like MetaKlaim, we prefer to keep the type system simple (the cost of type checking

is linear in the size of the term). The trade-offs are a run-time overhead on local operations

(linear in the size of their operands) for checking the absence of unresolved links or scope

extrusion, and run-time exceptions exn raised when a check detects a problem. ¥

Figure 1 summarizes the syntax of MetaKlaim, which uses the following primitives categories

• a numerable set XT of type variables, ranged over by X, . . .;

• a numerable set X of term variables, ranged over by x, . . .;

• a numerable set L of localities, ranged over by l, . . .;

• a finite set Op = {spawn, new, output, input, run} of local operations, ranged over by op.

The syntax of MetaKlaim can be explained in terms of system F , Klaim and MetaML.

• From system F we borrow functional types t1 → t2, abstraction λx: t.e and application

e1 e2, and polymorphic types ∀X.t, type abstraction ΛX.e and instantiation e{t}.

3 METAKLAIM 10

• Types t ∈ T: : = X | L | t1 → t2 | (ti|i ∈ m) | 〈t〉 | ∀X.t | U⇒t

• Contexts Γ ∈ Ctx: : = ∅ | Γ, Xn | Γ, x: tn

• Terms e ∈ E: : = x | l | λx: t.e | e1 e2 | fix x: t.e | (ei|i ∈ m) | πj e | op e

| 〈e〉 | ˜e | %e | ΛX.e | e{t} | (mri|i ∈ m) with m > 0

Patterns p ∈ P: : = x!t | x = e | (pi|i ∈ m)

Match Rules mr: : = p⇒e

Figure 1: Syntax of types and terms

• From Klaim we borrow localities l of type L, tuples (ei|i ∈ m) of type (ti|i ∈ m), and the

construct (pi⇒ei|i ∈ m) of type U⇒t, which performs pattern matching and dynamic

type-checking on untrusted values deposited in tuple spaces (in Klaim this construct

is bundled with the input primitive); the primitives spawn, new, output and input are

among the local operations Op.

• From MetaML we borrow code types 〈t〉, and the staging annotations brackets 〈e〉,
escape ˜e, and cross-stage persistence %e; run is among the local operations Op.

• Finally, we have recursive definitions fix x: t.e and projections πj e.

In MetaKlaim, we perform a dynamic type check, when we input an untrusted value from

a tuple space, in order to ensure some trustiness guarantees. The type system of MetaKlaim

is relatively simple, and the guarantees we can express are limited. For instance, we cannot

express constrains on the computational effects of a term, such as the ability to spawn new

threads or to perform input/output. We circumvent this limitation of the type system by

allowing only the input of global values.

Definition 3.4 A term e ∈ E0 is global ∆⇐⇒ it has no occurrences of local operations op ∈ Op.

Thus the only way we can turn a global value v into a process (interacting with its envi-

ronment) is by passing some local operations (possibly in customized form), in other words

v must be a higher-order abstraction representing processes parameterized w.r.t. customized

local operations. Even if we improve the expressiveness of type system by adding effects, there

is still a need to consider processes parameterized w.r.t. customized local operations, and this

parameterization will require also effect polymorphism (besides type polymorphism).

Remark 3.5 The use of dynamic type dispatching in a distributed polymorphic programming

language has been strongly advocated in [Dug99]. For simplicity, we have chosen not to in-

clude dynamic type dispatching in MetaKlaim, but it would be a very appropriate extension.

4 TYPE SYSTEM 11

However, one may wonder whether input(x!t⇒e) of MetaKlaim is semantically equivalent to

typecase of (x: t)e of [ACPP91, ACPR95]. In fact, they are different! To simplify the compar-

ison we consider a type U of untrusted values, and replace the input primitive with a construct

check against (x!t)e.

• The type U of untrusted values has the following introduction and elimination rules

Γ `
Γ ` u(e):U

Γ ` v: U Γ, x: t ` e: t

Γ ` check v against (x: t)e: t

the reduction semantics is check u(v) against (x: t)e > e[x: = v] provided ∅ ` v: t, thus

at run-time we have to check that v has type t (in the empty context).

• In [ACPP91, ACPR95] the type D of dynamics has similar introduction and elimination

rules (provided we do not consider pattern variables in types)

Γ ` e: t

Γ ` d(e: t):D

Γ ` v: D Γ, x: t ` e: t

Γ ` typecase v of (x: t)e: t

the reduction semantics is typecase d(v: t′) of (x: t)e > e[x: = v] provided t′ ≡ t, thus

at run-time we only need to check equality of types.

Therefore, the two mechanisms accomplish different useful tasks. For instance, if we have an

untrusted dynamic value u(d(v: t)), we must first check that d(v: t):D (or equivalently that

v: t), and only then we can compare t with other types to decide how to use v safely. ¥

4 Type System

The type system derives judgments of the following forms

• Γ ` , i.e. Γ is a well-formed context

• Γ `n t, i.e. t is a well-formed type at level n ≥ 0

• Γ `n e: t, i.e. e is a well-formed term of type t at level n ≥ 0

Levels are typical of multi-level languages (like λ© of [Dav96]). In a dynamically typed multi-

stage language, like MetaKlaim (see also [SSP98]), type variables get bound at different stages

of a computation, and thus well-formedness is level dependent not only for terms, but also for

types. The declarations in a context Γ have the following meaning: Xn means that the type

variable X ranges over types t at level n, while x: tn means that the term variable x ranges

over values of type t at level n.

Figure 2 gives the typing rules. Most of them are the multi-level extension of standard

typing rules. The only typing rules that deserve some comments are:

4 TYPE SYSTEM 12

∅ `
Γ `

Γ, Xn `
X fresh

Γ `n t

Γ, x: tn `
x fresh

X
Γ `

Γ `n X
Xm ∈ Γ and m ≤ n L

Γ `
Γ `n L

→
Γ `n t1 Γ `n t2

Γ `n t1 → t2
()

Γ `n ti i ∈ m

Γ `n (ti|i ∈ m)

〈 〉
Γ `n+1 t

Γ `n 〈t〉
∀

Γ, Xn `n t

Γ `n ∀X.t
U⇒

Γ `n t

Γ `n U⇒t

var
Γ `

Γ `n x: t
x: tn ∈ Γ loc

Γ `
Γ `n l:L

fun
Γ, x: tn1 `n e: t2

Γ `n λx: t1.e: t1 → t2

app
Γ `n e1: t1 → t2 Γ `n e2: t1

Γ `n e1 e2: t2
fix

Γ, x: tn `n e: t

Γ `n fix x: t.e: t

tuple
Γ ` {Γ `n ei: ti | i ∈ m}
Γ `n (ei|i ∈ m): (ti|i ∈ m)

proj
Γ `n e: (ti|i ∈ m)

Γ `n πj e: tj
j < m

spawn
Γ `n e: () → t

Γ `n spawn e: ()
new

Γ `n e: L → t

Γ `n new e: L
input

Γ `n e: (L,U⇒t)

Γ `n input e: t

output
Γ `n e: (L, t)

Γ `n output e: ()
run

Γ `n e: 〈t〉 Γ `n t

Γ `n run e: t
brck

Γ `n+1 e: t

Γ `n 〈e〉: 〈t〉

esc
Γ `n e: 〈t〉

Γ `n+1 ˜e: t
csp

Γ `n e: t

Γ `n+1 %e: t
poly

Γ, Xn `n e: t

Γ `n ΛX.e: ∀X.t

spec
Γ `n e:∀X.t2 Γ `n t1

Γ `n e{t1}: t2[X: = t1]
case

{Γ `n e(pi): L | i ∈ m} {Γ,Γn(pi) `n ei: t | i ∈ m}
Γ `n (pi⇒ei|i ∈ m): U⇒t

m > 0

Figure 2: Type System

• The rule for type variables supports a form of cross-stage persistence (as in [SSP98]),

namely an X declared at level m can be used at higher levels.

• The typing for run has the additional premise Γ `n t, since the other premise implies

only that Γ `n+1 t.

• Rule (case) uses some auxiliary notation, namely a context Γn(p) and a sequence e(p)
of terms defined by induction on p ∈ P as follows:

p Γn(p) e(p)

x!t x: tn ∅
x = e x:Ln e

(pi|i ∈ m) Γn(p0), . . . , Γn(pm−1) e(p0), . . . , e(pm−1)

4 TYPE SYSTEM 13

4.1 Basic Properties of the Type System

Properties like Weakening and Substitution are typical of type systems. Substitution is partic-

ularly important, since it clarifies the meaning of different declarations, namely how the type

and level assigned to a variable x constrain the terms that may safely replace it. Lemma 4.5

expresses a property of interest for multi-level languages, namely how the validity of a judg-

ment is affected when (some of) the levels are incremented. The situation is more subtle when

(some of) the levels are decremented (see Lemma 6.5).

Notation 4.1 [Notation and Convention used in the rest of the paper]

• Γ ` J ranges over the possible judgments of the type system, thus J matches anything

that can be on the right hand side of `.

• Γ+1 is the context obtained from Γ by incrementing the level of each declaration by 1,

i.e. Xn becomes Xn+1 and x: tn becomes x: tn+1. ¥

Lemma 4.2 (Weakening) The following rules are admissible
Γ1, Γ2 ` J

Γ1, X
m, Γ2 ` J

X fresh
Γ1 `m t Γ1, Γ2 ` J

Γ1, x: tm,Γ2 ` J
x fresh

Proof: By induction on the derivation of Γ1, Γ2 ` J .

Lemma 4.3 (Substitution) The following rules are admissible
Γ1 `m t Γ1, X

m, Γ2 ` J

Γ1,Γ2[X: = t] ` J [X: = t]

Γ1 `m e: t Γ1, x: tm,Γ2 ` J

Γ1, Γ2 ` J [x: = e]

Proof: By induction on the derivation of Γ1, X
m,Γ2 ` J and Γ1, x: tm, Γ2 ` J respectively.

The following lemma implies that the type of a closed term is necessarily closed. This

property is quite subtle, for instance it fails if we extend the language with an exception exn: t,

instead of a polymorphic constant raiseexn: ∀X.X.

Lemma 4.4 (Strengthening) The following rules are admissible
Γ1, X

m, Γ2 `n e: t

Γ1, Γ2 `n e: t
X 6∈ FV(Γ2, e)

Γ1, x: tm, Γ2 `n e: t

Γ1,Γ2 `n e: t
x 6∈ FV(e)

Proof: By induction on the derivation of Γ1, X
m,Γ2 ` J and Γ1, x: tm, Γ2 ` J respectively.

Lemma 4.5 (Promotion) The following rules are admissible
Γ1, Γ2 `
Γ1,Γ+1

2 `
Γ1,Γ2 `n t

Γ1,Γ+1
2 `n+1 t

Γ `n e: t

Γ+1 `n+1 e: t

5 OPERATIONAL SEMANTICS 14

Proof: The first two rules are proved by mutual induction on the derivation of Γ1, Γ+1
2 ` and

Γ1, Γ+1
2 `n+1 t. The third rule is by induction on the derivation of Γ+1 `n+1 e: t.

Remark 4.6 One can easily adapt a type inference algorithm for system F (e.g. see [Car97b])

to MetaKlaim. Namely, given Γ, e and n the algorithm either returns a t such that Γ `n e: t

is derivable (t is unique up to α-conversion), or fails when such a t does not exists. ¥

5 Operational Semantics

Following the Klaim computational paradigm, we define the operational semantics over nets.

Definition 5.1 A net N ∈ Net
∆= µ(L×(E0+V0

0+{exn, err})) is a multi-set of pairs consisting

of a locality l and either a process p(e), or a value u(v) in the tuple space, or exn indicating

that a process at l has raised an exception, or err indicating that a process at l has crashed. ¥

The dynamics of a net is given by a relation N ===⇒ N ′ defined in terms of two transition

relations e
a
> e′ and e > exn | err for terms1: err means that a process has crashed, this

is different from node failure (that we do not model), and from a deadlocked process (e.g. a

process that is waiting to input a tuple that never arrives); exn means that an exception has

been raised (for simplicity we do not provide exception handling facilities, although in practice

they are important). The transitions relations are defined in terms of evaluation contexts (see

[WF94]) and reductions r0 a
> e′ (and r0 > exn | err) for actions and r1 1

> e′ | err for

symbolic evaluation.

Figure 3 summarizes the syntactic categories for the operational semantics. Redexes are

the subterms where rewriting takes place. Evaluation contexts identify which of the redexes

in a term should be evaluated first, namely the hole [] gives the position of such a redex. The

syntax is complicated by the stratifications into levels (borrowed from MetaML).

5.1 Reduction and Transition Relation

Even if we are interested in defining > only on closed terms, we must consider open redexes

because of evaluation under (dynamic) lambda. Figure 4 defines the reduction > and uses

the following auxiliary operations:

• Function match(p, v0) either returns a closed substitution ρ: X
fin→ V0

0 or fail. Its defini-

tion is by induction on p ∈ P. The base cases are:
1We write e > exn | err to denote e > exn or e > err (and similarly for other transition relations).

5 OPERATIONAL SEMANTICS 15

• Values vn ∈ Vn ⊂ E at level n ∈ N

v0: : = l | λx: t.e | (v0
i |i ∈ m) | 〈v1〉 | ΛX.e | (vmr0

i |i ∈ m)

vn+1: : = x | l | λx: t.vn+1 | vn+1
1 vn+1

2 | fix x: t.vn+1 | (vn+1
i |i ∈ m) | πj vn+1

| op vn+1 | 〈vn+2〉 | %vn | ΛX.vn+1 | vn+1{t} | (vmrn+1
i |i ∈ m)

vn+2+ = ˜vn+1

Evaluated Patterns vpn ∈ VPn: : = x!t | x = vn | (vpn
i |i ∈ m)

Evaluated Match Rules vmr0: : = vp0⇒e

vmrn+1: : = vpn+1⇒vn+1

• Redexes ri ∈ Ri at level i ∈ {0, 1}
r0: : = x | v0

1v0
2 | fix x: t.e | πj v0 | op v0 | ˜e | %e | v0{t}

r1: : = ˜v0

• Evaluation Contexts En
i ∈ ECn

i at level n ∈ N with hole at level i ∈ {0, 1}
En

i : : = En
i e | vnEn

i | (vn, En
i , e) | πj En

i | op En
i | 〈En+1

i 〉 | En
i {t} | (vmrn, Epn

i ⇒e, mr)

En+1
i + = λx: t.En+1

i | fix x: t.En+1
i | ˜En

i | %En
i | ΛX.En+1

i | (vmrn+1, vpn+1⇒En+1
i ,mr)

Ei
i+ = []

Evaluation Contexts for patterns Epn
i : : = x = En

i | (vpn, Epn
i , p)

• Actions a ∈ A: : = τ | l: e | s(e) | i(v)@l | o(v)@l with e ∈ E0 and v ∈ V0
0

Figure 3: Values, redexes and evaluation contexts

p match(p, v0)

x!t x: = v0 if ∅ `0 v0: t and v0 global, otherwise fail

x = e x: = v0 if v0 ≡ e ∈ L, otherwise fail

match is used by input for dynamic type checking of global values (see Definition 3.4).

• Demotion vn+1 ↓n∈ E is defined by induction on vn+1 ∈ Vn+1 (and vpn+1 ∈ VPn+1):

vn+1 vn+1 ↓n∈ E

x x

〈vn+2〉 〈vn+2 ↓n+1〉
˜vn ˜vn ↓n−1 (n > 0)

%vn
%vn ↓n−1 if n > 0

vn[x: = %x|x ∈ FV(vn)] otherwise

vpn+1 vpn+1 ↓n∈ P

x!t x!t

x = vn+1 x = vn+1 ↓n

vmrn+1 vmrn+1 ↓n

vpn+1⇒vn+1 vpn+1 ↓n ⇒vn+1 ↓n

In all other cases ↓n commutes with the top level term (and pattern) construct.

Remark 5.2 Intuitively, Demotion is like Compilation: it translates a value 〈v1〉 representing

a program into an executable term v1 ↓0. However, the reduction for run performs demotion

5 OPERATIONAL SEMANTICS 16

(λx: t.e) v0
2

τ
> e[x: = v0

2]

v0
1 v0

2 > err if v0
1 6≡ λx: t.e

fix x: t.e
τ
> e[x: = fix x: t.e]

πj (v0
i |i ∈ m)

τ
> v0

j if j < m

πj v0 > err if v0 6≡ (v0
i |i ∈ m) with j < m

spawn v0 s(v0())
> () if v0 ∈ V0

0, otherwise exn (scope extrusion exception)

new v0 l:(v0l)
> l if v0 ∈ V0

0, otherwise exn (scope extrusion exception)

output (l, v0)
o(v0)@l

> () if v0 ∈ V0
0, otherwise exn (scope extrusion exception)

output v0 > err if v0 6≡ (l, v0
1)

input (l, (vp0
i⇒ei|i ∈ m))

i(v0)@l
> ej [ρ] if match(vp0

j , v
0) = ρ for some j ∈ m

input v0 > err if v0 6≡ (l, (vp0
i⇒ei|i ∈ m))

run 〈v1〉 τ
> v1 ↓0 if v1 ∈ V1

0, otherwise exn (demotion exception)

run v0 > err if v0 6≡ 〈v1〉

(ΛX.e){t} τ
> e[X: = t]

v0{t} > err if v0 6≡ ΛX.e

x > err

˜e > err

%e > err

˜〈v1〉 1
> v1

˜v0 1
> err if v0 6≡ 〈v1〉

Figure 4: Reductions for actions and symbolic evaluation

only when v1 is closed, in order to prevent unresolved link errors (see Remark 3.3). ¥

We comment some of the reduction rules in Figure 4 (the others are standard):

• The rules for spawn, new, output and input come from Klaim, those for run and symbolic

evaluation
1
> come from MetaML.

• spawn (and similarly new and output) checks that the process spawned is closed (in order

to prevent scope extrusion), and raises an exception otherwise.

• input is non-deterministic and requires pattern matching, which includes dynamic type-

checking of global values. Moreover, input may get stuck, e.g. input(l, x!X⇒e) is stuck

because there are no closed values of type X.

5 OPERATIONAL SEMANTICS 17

• run checks that the value that is demoted is closed (in order to prevent unresolved links),

and raises an exception otherwise.

• All reductions to err correspond to type- or level-errors. For instance, ˜e and %e are not

well-typed at level 0, nor is x when all variables are declared at level > 0.

The transition relation > is defined (in terms of >) by the following standard rules

r0 a
> e′

E0
0 [r0]

a
> E0

0 [e′]

r0 > exn | err

E0
0 [r0] > exn | err

r1 1
> e′

E0
1 [r1]

τ
> E0

1 [e′]

r1 1
> err

E0
1 [r1] > err

5.2 Net Transition Relation

The relation ===⇒ is defined (in terms of >) by the following rules

e > exn

N] (l: p(e)) ===⇒ N] (l: exn)

e > err

N] (l: p(e)) ===⇒ N] (l: err)

e
τ
> e′

N] (l: p(e)) ===⇒ N] (l: p(e′))

e
i(v0)@l2

> e′

N] (l1: p(e))] (l2: u(v0)) ===⇒ N] (l1: p(e′))] (l2: p(()))

e
o(v0)@l2

> e′

N] (l1: p(e)) ===⇒ N] (l1: p(e′))] (l2: u(v0))

e
s(e2)

> e1

N] (l: p(e)) ===⇒ N] (l: p(e1))] (l: p(e2))

e
l2:e2

> e1

N] (l1: p(e)) ===⇒ N] (l1: p(e1))] (l2: p(e2))
l2 6∈ L(N) ∪ {l1}

where L(N) ∆= {l | (l:) ∈ N} ⊆fin L is the set of localities in the net N . The rules have an

obvious meaning, we just remark that the side condition in the last rule ensures freshness of l2.

5.3 Basic Properties of the Operational Semantics

The following properties are straightforward to prove.

Lemma 5.3 (Reduction) If r
a
> e′ or r

1
> e′, then FV(e′) ⊆ FV(r).

Lemma 5.4 (Unique Decomposition) Given n ∈ N and e ∈ E, then

• either e ∈ Vn

• or exist (unique) i ∈ {0, 1} and En
i ∈ En

i and ri ∈ Ri such that e ≡ En
i [ri]

Proof: By induction on the structure of e ∈ E.

6 TYPE SAFETY 18

Lemma 5.5 (Transition) If e ∈ E0 and e
a
> e′, then e′ ∈ E0.

Proof: Immediate from Lemmas 5.4 and 5.3.

Lemma 5.6 (Net Transition) If N ===⇒ N ′, then L(N) ⊆ L(N ′).

6 Type Safety

In order to express the type safety results we introduce two notions of well-formed net: one is

global, the other is relative to a subset L of nodes.

Definition 6.1 (Well-formed Net)

Global: A net N is well-formed ∆⇐⇒ (l: err) 6∈ N , and for every (l: p(e)) ∈ N exists t s.t.

∅ `0 e: t.

Local: A net N is well-formed w.r.t. L ⊆ L(N) ∆⇐⇒ (l: err) 6∈ N when l ∈ L, and for every

(l: p(e)) ∈ N with l ∈ L exists t s.t. ∅ `0 e: t.

¥

In the definition of well-formed net nothing is said about values u(v) in the tuple spaces, since

they are considered untrusted. In fact, processes can fetch such values only through the input

primitive, which performs dynamic type-checking.

Theorem 6.2 (Type Safety) If N ===⇒ N ′, then

Global: N well-formed implies N ′ well-formed

Local: N well-formed w.r.t. L implies N ′ well-formed w.r.t. L

The type safety theorem then guarantees that a well-formed net will never give rise to type-

or level-errors. Together with dynamic type checking performed with input operations, these

imply that our type system can be used for protecting hosts from imported code, thus ensuring

various kinds of host security properties (as in [YH99b]).

Remark 6.3 The local type safety property is enforced by two features of MetaKlaim: the

dynamic type-checking performed by the input operation (namely match), which prevents

ill-typed values in tuple spaces to pollute well-typed processes; the absence of Klaim’s eval

primitive, which would allow processes external to L to spawn ill-typed processes at a locality in

6 TYPE SAFETY 19

L. For instance, with an eval primitive similar to a ‘remote’ spawn the following net transition

would become possible

lbad: p(eval(lgood, vbad)), lgood:u(v) ===⇒ lbad: p(()), lgood: p(vbad()), lgood: u(v)

where vbad is any closed value (at level 0) such that vbad() > err. ¥

6.1 Technical Lemmas for Type Safety

The proof of Type Safety relies on the basic properties of the type system (see Section 4.1),

and the following lemmas linking operational semantics and type system.

Notation 6.4 [Auxiliary definitions and notations used in this section]

• ` a means that action a is well-formed. Action τ , i(v) and o(v) are always well-formed.

Actions s(e) and l: e are well-formed, provided that ∅ `0 e: t for some t.

• Γn(En
i) is the typing context for the hole in the evaluation context En

i ∈ ECn
i , and is

defined by induction on En
i ∈ ECn

i (and Epn
i)

En
i Γn(En

i) ∈ Ctx

[] ∅ (n = i)

〈En+1
i 〉 Γn+1(En+1

i)

vmrn, Epn
i ⇒e,mr Γn(Epn

i)

Epn
i Γn(Epn

i) ∈ Ctx

x = En
i Γn(En

i)

En+1
i Γn+1(En+1

i) ∈ Ctx

λx: t.En+1
i x: tn+1, Γn+1(En+1

i)

fix x: t.En+1
i x: tn+1, Γn+1(En+1

i)

ΛX.En+1
i Xn+1, Γn+1(En+1

i)

˜En
i Γn(En

i)

%En
i Γn(En

i)

vmrn+1, vpn+1⇒En+1
i , mr Γn+1(vpn+1), Γn+1(En+1

i)

In all other cases Γn() is applied to the immediate sub-context. Γn(vpn) is a special case

of Γn(p) defined in Section 4 (indeed, according to the grammars in Figures 1 and 3, VPn

is included in P).

• e >6 err means that e > err does not hold (and similarly e >6 err).

Lemma 6.5 (Demotion) The following rules are admissible
Γ+1 `
Γ `

Γ+1 `n+1 t

Γ `n t

Γ+1 `n+1 vn+1: t

Γ `n vn+1 ↓n: t

Proof: The first two rules are proved by mutual induction on the derivation of Γ+1 ` and

Γ+1 `n+1 t. The third rule is by induction on the derivation of Γ+1 `n+1 vn+1: t.

Lemma 6.6 (Structure) If Γ `0 v0: t, then one of the following possibilities holds:

6 TYPE SAFETY 20

• v0 ≡ l and t ≡ L

• v0 ≡ (v0
i |i ∈ m) and t ≡ (ti|i ∈ m) with Γ `0 v0

i : ti for all i ∈ m

• v0 ≡ λx: t1.e and t ≡ t1 → t2 with Γ, x: t01 `0 e: t2

• v0 ≡ 〈v1〉 and t ≡ 〈t′〉 with Γ `1 v1: t′

• v0 ≡ ΛX.e and t ≡ ∀X.t′ with Γ, X0 `0 e: t′

• v0 ≡ (vp0
i⇒ei|i ∈ m) and t ≡ U⇒t′ with Γ, Γ0(vp0

i) `0 ei: t′ for all i ∈ m

Proof: By case analysis on the last rule in the derivation of Γ `0 v0: t. Because of the structure

of v0 ∈ V0 we have to consider only the following cases (see Figure 2): (loc), (fun), (tuple),

(brck), (poly) and (case).

Lemma 6.7 (Match) If ρ = match(p, v0), then ∅ `0 ρ(x): t and ρ(x) is global when x: t0 ∈
Γ0(p).

Proof: By induction on the structure of p ∈ P.

• Base case x!t. ρ is x: = v0 and Γ0(p) is x: t. The property follows immediately from the

definition of match.

• Base case x = e. ρ is x: = v0 ∈ L and Γ0(p) is x: L. The property follows immediately

from v0 ∈ L.

• Inductive step (pi|i ∈ m). Γ0(p) ≡ Γ0(p0), . . . , Γ0(pm−1) and v0 must be of the form

(v0
i |i ∈ m).

ρ = ρ0, . . . , ρm−1 with ρi = match(pi, v
0
i). If x: t0 ∈ Γ0(pj), then ρ(x) = ρj(x) and the

property follows by the induction hypothesis for pj .

Lemma 6.8 (Safety and Subject Reduction for >)

• If Γ+1 `0 r0: t, then r0 >6 err and r0 a
> e′ implies Γ+1 `0 e′: t and ` a.

• If Γ+1 `1 r1: t, then r1 >6 1err and r1 1
> e′ implies Γ+1 `1 e′: t.

Proof: By induction on the derivation of Γ+1 `i ri: t. The last rule in the derivation uniquely

determines (the structure of) ri.

• (var) contradicts that ri is a redex, because all x declared in Γ+1 are at a level > 0

6 TYPE SAFETY 21

• (loc), (fun), (tuple), (brck), (csp), (poly) and (case) contradict that ri is a redex

• (app) implies r0 ≡ v0
1v

0
2 and Γ+1 `0 v0

1: t1 → t and Γ+1 `0 v0
2: t1. By Lemma 6.6 v0

1 must

be of the form λx: t1.e and Γ+1, x: t01 `0 e: t, therefore r0 τ
> e[x: = v0

2]. By Lemma 4.3

we get Γ+1 `0 e[x: = v0
2]: t.

• (fix) implies r0 ≡ fix x: t.e
τ
> e[x: = fix x: t.e] and Γ+1, x: t0 `0 e: t. By Lemma 4.3 (and

Γ+1 `0 fix x: t.e: t) we get Γ+1 `0 e[x: = fix x: t.e]: t.

• (proj) implies r0 ≡ πj v0 and Γ+1 `0 v0: (ti|i ∈ m) with j < m and t ≡ tj . By Lemma 6.6

v0 must be of the form (v0
i |i ∈ m) with Γ+1 `0 v0

i : ti for i ∈ m, therefore r0 τ
> vj .

• (spawn) implies r0 ≡ spawn v0, t ≡ (), and Γ+1 `0 v0: () → t′. If v0 ∈ V0
0, then r0

s(v0())
> ()

and ∅ `0 v0: () → t′. By (app) we get ∅ `0 v0(): t′, i.e. ` a. Otherwise exn.

• (new) is similar to (spawn).

• (output) implies r0 ≡ output v0, t ≡ () and Γ+1 `0 v0: (L, t′). By Lemma 6.6 v0 must be

of the form (l, v0
0) with Γ+1 `0 v0

0: t
′. If v0

0 ∈ V0
0, then r0 o(v0

0)@l
> (). Otherwise exn.

• (input) implies r0 ≡ input v0 and Γ+1 `0 v0: (L,U⇒t). By Lemma 6.6 v0 must be of the

form (l, (vp0
i⇒ei|i ∈ m)) with Γ+1,Γ0(vp0

i) `0 ei: t for all i ∈ m. Therefore, the possible

reductions are r0 i(v0
0)@l

> ej [ρ] with match(vp0
j , v

0
0) for some j ∈ m. By Lemma 6.7 and

repeated application of Lemma 4.3 we get Γ+1 `0 ej [ρ]: t.

• (run) implies r0 ≡ run v0, Γ+1 `0 v0: 〈t〉 (and Γ+1 `0 t). By Lemma 6.6 v0 must be of the

form 〈v1〉 with Γ+1 `1 v1: t. If v1 ∈ V1
0, then r0 τ

> v1 ↓0 and ∅ `1 v1: t by Lemma 4.4.

Therefore, by Lemma 6.5 we get ∅ `0 v1 ↓0: t. Otherwise exn.

• (spec) implies r0 ≡ v0{t1} and Γ+1 `0 v0: ∀X.t2 and Γ+1 `0 t1 with t ≡ t2[X: = t1]. By

Lemma 6.6 v0 must be of the form ΛX.e with Γ+1, X0 `0 e: t2. Thus r0 τ
> e[X: = t1],

and by Lemma 4.3 we get Γ+1 `0 e[X: = t1]: t.

• (esc) implies r1 ≡ ˜v0 and Γ+1 `0 v0: 〈t〉. By Lemma 6.6 v0 must be of the form 〈v1〉
with Γ+1 `1 v1: t, and thus r0 τ

> v1.

Lemma 6.9 (Replacement for Evaluation Context) If En
i ∈ ECn

i and Γ `n En
i [e]: t,

then exists t′ ∈ T such that

• Γ,Γn(En
i) `i e: t′

• Γ,Γn(En
i) `i e′: t′ implies Γ `n En

i [e′]: t.

7 EXAMPLES 22

Proof: By induction on the structure of En
i ∈ ECn

i and the derivation of Γ `n En
i [e]: t.

Lemma 6.10 (Safety and Subject Reduction for >) If ∅ `0 e: t, then e >6 err

and e
a
> e′ implies ∅ `0 e′: t and ` a.

Proof: By Lemma 5.4 either e ∈ V0 (and there is nothing to prove) or e ≡ E0
i [ri] for some

i. In the latter case, by Lemma 6.9, we have Γ0(E0
i) `i ri: t′ for some t′. Thus we can apply

Lemma 6.8, since Γn(En
i) is always of the form Γ+1 (see Notation 6.4).

Finally we prove Theorem 6.2.

Proof: We give the details only for the proof of Local Type Safety (the proof of Global Type

Safety is similar). The proof is by case-analysis on the rule used to derive N ===⇒ N ′. The

only interesting cases correspond to net transitions that involve at least one locality in L:

• if e > exn, then the safety property remains trivially true

• if e > err, then l 6∈ L because of Lemma 6.10

• if e
τ
> e′ and l ∈ L, then e′ is well-typed at level 0 by Lemma 6.10

• if e
i(v0)@l2

> e′ and l1 ∈ L, then e′ is well-typed at level 0 by Lemma 6.10

• if e
o(v0)@l2

> e′ and l1 ∈ L, then e′ is well-typed at level 0 by Lemma 6.10, and whether

l2 ∈ L is irrelevant for the safety property

• if e
s(e2)

> e1 and l ∈ L, then e1 and e2 are well-typed at level 0 by Lemma 6.10

• e
l2:e2

> e1 and l ∈ L, then e1 is well-typed at level 0 by Lemma 6.10, also e2 is well-typed,

but it is irrelevant for local safety because l2 6∈ L.

7 Examples

In this section, we exemplify the use of MetaKlaim to program WAN applications. Each

example is presented in a simplified form, but addresses a significant aspect in WAN program-

ming. The first example, group communication, deals with generation of lightweight efficient

components implementing a form of broadcast remote communication. The second example,

nomadic data collector, addresses the issue of protecting host machines from mobile code that

travels along the net for retrieving information on a piece of data. The third example, dynamic

linker and loader, illustrates separation of concerns supported by generative components. In

7 EXAMPLES 23

the rest of this section, we will freely use ML-like notations for functions, local declarations,

datatypes, lists, conditional and sequential composition. Moreover, for type-setting reasons,

we write fn x:t.e instead of λx: t.e and V X.t instead of ∀X.t.

7.1 Group Communication

We introduce a function grout that implements a form of group communication: a message
(the parameter of the function) is broadcasted to each locality of a given list statically known.
Function grout is a simple example of multipoint applications (e.g. audio/video applications)
which exploit multicast communications. In fact, function grout can be tought of as a basic
building block for constructing more sophisticated applications which permit, e.g., to dynami-
cally change the group of receivers or to hierarchically structure the group (like in distributed
mailing lists). We make use of the following types:

L (* localities *)

type Data = ... (* type of messages *)

type GO = L List -> Data -> () (* type of group output *)

type GOs = L List -> <Data> -> <()> (* type for staged group output *)

type GOcg = L List -> <Data -> ()> (* type for group output code generator *)

We first present a version of grout that does not use staging. As it is expected, function grout

takes a list of localities l and a message x as arguments and outputs a tuple containing x at
each locality in l. Notice that to be well-typed the message has to be a global value.

fun grout (l:L List, x:Data):() =

if l=nil then ()

else output(hd l,x) ; grout(tl l,x)

This version of grout does not take advantage of the fact that its parameters are available

at different stages of the computation. Indeed, the fact that the list parameter l is statically

available (while the message parameter x will be available at run time) offers an opportunity to

optimize the code of the function with respect to l. In this way, the overhead of looking up the

first element of l, and of recursively calling the function on the tail of l each time a message has

to be sent, can be removed. Following a general staging method (see [CMS02, TS00, She01]),

we define a staged version grout_s of grout

fun grout_s (l:L List, x:<Data>):<()> =

if l=nil then <()>

else <output(%(hd l),~x) ; ~(grout_s(tl l,x))>

The types reflect the fact that the list parameter is available in the first stage, and the message

is available in the second stage. The brackets around the branches of the if-expression means

7 EXAMPLES 24

that the function grout_s returns code. In the else branch, the output operation is delayed

to the second stage, while the recursive call to grout_s is performed in the first stage. The

staging annotations in output(%(hd l),~x) have been inserted because the value of hd l is

computed in the first stage but used later, while x has type code. The staged version of grout

is used to define a function grout_cg that takes a list l of localities and generates specialized

code for broadcasting a message to all localities in l.

(* code generator *)

fun grout_cg (l:L List):<Data -> ()> = <fn x:Data . ~(grout_s l <x>)>

(* grout specialized for a list l *)

fun grout_l:Data -> () = run(grout_cg l)

For instance, when grout_cg is applied to a list of localities [l1,l2], we get

< fn x:Data . output(l1,x) ; output(l2,x) ; () >

If we have an application that reads messages from orig and broadcast them to the same
list dest of localities, then one could use the broadcast specialized for dest

fix p:(). input(orig, x!Data => grout(dest,x) ; p)

fix p_o:(). input(orig, x!Data => grout_dest(x) ; p_o) (* optimized p *)

The main advantage of p_o over p is better performance.

Adaptive applications can benefit from code generation, as described in [HS01]. The follow-
ing application extends p with a new functionality, that permits to change the list of destinations

fun ap (dest:L List):() =

input(orig, x!Data => grout(dest,x) ; (ap dest)

| l!L List => (ap l))

One can obtain the process ap dest from a general template ap_gen parameterized w.r.t.
a function do specifying what to do when an input x:X is received, and a function upd for
updating what to do when an input y:Y is received

fun ap_gen (do:X->(), upd:Y->X->()):() =

input(orig, x!X => (do x) ; ap_gen(do,upd)

| y!Y => ap_gen(upd y,upd))

More precisely ap dest amounts to ap_gen(upd dest, upd) where upd y x = grout(y,x).

However, we can exploit the code generator grout_cg for defining a different updating function

upd y = run(grout_cg y), that returns a better do.

7 EXAMPLES 25

7.2 Nomadic Data Collector

We now address the issue of protecting host machines from possibly malicious mobile code.
Consider the following scenario. A certain user requires to assemble information on a piece of
data (e.g. the price of certain devices). Part of the behavior of the user’s application strictly
depends on this information. However, there are some activities which are independent of it.
The user’s application can be structured to exploit the mobility paradigm: a mobile component
can dynamically travel among hosts of the net looking for the required information. Here, for
simplicity, we assume that each node of the distributed database contain tuples of the form
(i,d), where i is the search key and d is the associated data, or of the form (i,l), where l

is a locality where more data associated to i can be searched. We make use of the following
types:

L (* localities *)

type Key = ... (* authorization keys *)

type Data = ...

(* polymorphic types of local operations input, output, spawn *)

type I = V X. (L,U=>X) -> X

type O = V X. (L,X) -> ()

type S = V X. (() -> X) -> ()

(* polymorphic types of meta-operations for input, output, spawn *)

type MI = Key -> <I>

type MO = Key -> <O>

type MS = <S>

(* code abstractions with static security checks *)

type MEnvK = (L,MI,MO,MS)

type CAK = MEnvK -> <()>

The types of meta operations exploit code types, hence meta operations are able to insert the

code fragments of the operations provided locally into larger programs.

The type of code abstractions (e.g. the type of mobile code) is parameterized with respect
to the locality (where the code will be executed) and the meta-operations. In other words,
the type of code abstractions can be intuitively interpreted as the network environment of the
code. This environment must be fed with the information about the current location and its
local operations. We want to emphasize the fact that the meta-operations for communication
require an authorization key as parameter. In such a way, depending on the value of the key
k (that is checked in the example below by a function safe), the meta-operation in’ k could
generate an actual input without run-time overhead, or () when the key does not allow to
read anything (or customized run-time checks, that we do not detail). Customization of the
other local operations can be done similarly.

fun in’ (k:Key):<I> = if safe k then <input> else <()>

7 EXAMPLES 26

We now discuss the main module of our mobile application: the nomadic data collector.
The code abstraction pca(k,i,u) is the mobile code which retrieves the required information
on the distributed database. The parameter k is an authorization key, i is a search key, and u

is the locality where all data associated to i should be collected. The behavior of the mobile
code pca(k,i,u) is rather intuitive. After being activated, pca(k,i,u) spawns a process that
perform a local query (here the query removes data which are associated in the local database
to the search key i). Then the mobile code forwards the result of the query to the tuple space
located at u, and sends copies of itself (i.e. of pca(k,i,u)) to localities that may contain data
associated to i. In the definition of pca(k,i,u) cross-stage persistence is used to hard-wire
the parameters i and u at the appropriate level.

fun pca(k:Key, i:Data, u:L):CAK =

fix ca:CAK. fn (self’, in’, out’, spawn’):MEnvK .

<~spawn’ {()} (() => fix p:().

~(in’ k) {()}

(%self’, (_=%i, x!Data) =>

~(out’ k) {Data} (%u,x)) ; p);

fix q:().

~(in’ k) {()}

(%self’, (_=%i, l!L) =>

~(out’ k) {CAK} (l,%ca)) ; q>

The code abstraction pca(k,i,u) is instantiated and activated by process execute. This
process fetches code abstractions of type CAK from the local tuple space, instantiates them by
providing a customized environment env, and finally activates the resulting code.

fun execute (self:L, env:MEnvK):() =

fix exec:().

input (self, X!CAK => spawn (() => run(X env)) ; exec)

7.3 Dynamic Linking and Loading

We now present the MetaKlaim implementation of a basic facility to dynamically load com-

ponents. We have already pointed out that a key issue of most WAN applications is the ability

to control the loading policy of components. One may want either to load components just-

when-needed, or prefer to fetch in advance all components requested by a certain application.

The (naive) solution is to parameterize applications with respect to a linker, and call the linker

whenever a component (or service) is needed. However, this does not ensure enough flexi-

bility. A better approach is to define a generative component parameterized with respect to

a meta-linker. The meta-linker can decide whether to load a requested component at code-

generation-time, by immediately invoking the linker, or to postpone the loading at run-time,

namely by generating code for a call to the linker.

7 EXAMPLES 27

Hereafter, we view a linker as a specialized component which, given a name of a service,

either succeeds in establishing a connection between the service and the calling application by

returning an authorization key, or raises an exception. Indeed, we are not interested in the

details of the linker, but only in its abstract behavior. We make use of the following basic

types:

type Key = ... (* authorization keys *)

type Name = ... (* service names *)

A linker behaves like a function: given the name of the component returns the authorization

key required to exploit component functionalities. Hence, a linker has the type

type Linker = Name -> Key (* linkers *)

A meta-linker is an higher order component which given the name of a component returns

a frozen authorization key: the metadata information which has to be actualized to provide

the linking step. Hence, the meta-linker delays the computation which performs the linking of

the component. The meta-linker has the type

type MLinker = Name -> <Key> (* metalinkers *)

Finally, a parameterized component is a component whose linking policy has not been

fixed in advance. To behave properly a meta-linker must be supplied to the parameterized

component. Hence, the type of a parameterized component is:

type PC = MLinker -> <()> (* parameterized components *)

A directory (i.e. repository) of components in MetaKlaim takes the form of a tuple space.

Parameterized components are distinguished tuples stored in the tuple space: they are tuples

having type PC.

The input operation is the basic facility to find a component inside a directory. It queries

the tuple space to find the required component: pattern-matching is used to select components

according to their types . For instance, the expression

input (self, x!PC => spawn(() => e)

queries the local tuple space to select a parameterized component of type PC.

The following process execute fetches a parameterized component from the local tuple

place, generates code by supplying it a meta-linker, and then spawns a process that executes

the generated code.

8 RELATED WORK 28

fun Mexecute (self:L, mlinker:MLinker):() =

fix exec:().

input (self, x!PC=> spawn(() => run(x mlinker)) ; exec)

An invocation of the meta-linker will be of the form <...~(mlinker n)...>. The escape

operator ~e is used to insert delayed computation into larger computation. Using the meta

programming facilities, the programmer has a fine grain control on the evaluation order of

the program. For instance, the meta-linker can decide whether to invoke the linker at code

generation time, i.e. mlinker n = <%(linker n)>, or whether to generate code for invoking

the linker at run-time, i.e. mlinker n = <%linker %n>. In the first case, linker n is statically

evaluated; if the linker fails to make a connection, the code of the application will not be

executed at all.

Notice that the MExecute cannot be transmitted over the net. It is not a mobile component

since it will not get through the dynamic checking of the pattern matching. The critical point

is that the input operation could have been programmed to download a malicious component

from a remote, untrusted, host.

A mobile Meta-Execute can be programmed as follows

fun MMExecute (self:L, mlinker:MLinker, in’, spawn’, run’):() =

fix exec:().

in’ (self, x!PC=> spawn’(() => run’(x mlinker)) ; exec)

The type of MMExecute is parameterized with respect to the locality (where the code will

be executed) and the local operations exploiting the full power of system F.

8 Related Work

There are several approaches related with some of the issues tackled by MetaKlaim. Some

of these approaches have been mentioned in the first two sections of the paper, here we only

consider the most strictly related one and draw comparisons with some process languages

equipped with process distribution and higher-order remote communication.

Kali Scheme [CJK95] is a distributed implementation of Scheme [SS75] which adds to

facilities for program distribution and for communication of higher order objects, such as pro-

cedures and closures. These features, and the continuation passing programming style inherited

from Scheme, fit the language also for applications dealing with dynamic code transmission,

linking and generation. However, differently from MetaKlaim, the language does not have a

type system and type errors are detected at run-time.

8 RELATED WORK 29

Dπλ [YH99a] is the result of integrating the call-by-value λ-calculus, the π-calculus, and

primitives for process distribution and remote process creation. Differently from MetaKlaim,

communication is synchronous and channel based, and localities are anonymous. This last

feature implies that localities cannot be explicitly referred by processes and do not have a first-

class status, thus the distributed fragment of the calculus is not as expressive as MetaKlaim.

Dπλ permits the transmission of process abstractions parameterized with respect to resource

(i.e. channel) names. The language is equipped with a type system that, by constraining values

that may be output, statically guarantees that processes willing to perform inputs at a given

channel are co-located. The type system for Dπλ is completely static and relies on restrictions

laid on values that are sent across localities, whilst the type system for MetaKlaim uses

dynamic checks for controlling the type of values that are received by input actions. Moreover,

for a Dπλ system to type check all of its subsystems have to type check (this burden is partially

alleviated from the fact that subsystems can be type checked independently and then composed

while checking compatibility of their use of resources), while a MetaKlaim net can also be

partially checked relatively to a subset of localities (in the same spirit as [RH99]). These

features indicate that the MetaKlaim approach better fits also open and, possibly, untrusted

large scale distributed systems where it is important to protect hosts from imported code.

[YH99b] extends to Dπλ the type system of [YH02] for an higher order variant of the π-

calculus. This type system permits controlling the effect of transmitted process abstractions on

local resources (i.e. channels). All the remarks about the first type system also apply to this one.

Furthermore, differently from MetaKlaim, processes are assigned fine-grain types that, like

interfaces, record the resources to which processes have access together with the corresponding

capabilities, and process abstractions are assigned dependent functional types that abstract

from channel names and types. Although process abstractions are not polymorphic as in

MetaKlaim, channel names may appear and be bound both in terms and in types and thus,

in some sense, play the role of MetaKlaim type variables.

Confined-λ [Kir01] is an higher-order functional language that supports distributed com-

puting by allowing expressions at different localities to communicate via channels. In Confined-

λ, authors of code can assign regions (i.e. subsystems) to values in order to limit the part of a

system where a value can freely move. Then, a type system is defined that statically guarantees

that each value can roam only within the corresponding region. Differently from our approach,

communication is channel based, localities cannot be dynamically created, the transmissible

process abstractions can be parameterized with respect to channel names, and the type of a

transmissible value restricts the subsystem where the value can freely move. The Confined-λ

type system is completely static and relies on restrictions laid on values whenever they are

used as arguments of output operations, while the MetaKlaim type system relies on dynamic

9 CONCLUSIONS AND FUTURE WORK 30

checks whenever input operations are performed. Moreover, differently from MetaKlaim, a

Confined-λ program may execute only if all the expressions it contains are well-typed. In con-

clusion, while the MetaKlaim approach better fit open and untrusted large scale distributed

systems, the Confined-λ approach is more suitable for guaranteing secrecy properties, i.e. that

a given (secret) information is not leaked outside a fixed subsystem, in small scale distributed

systems.

Additional examples of type systems for distributed higher order functional languages can

be found in [Kir02]. In addition to the previous considerations, we can also say that they all

use static effect systems for approximating dynamic properties, while MetaKlaim uses global

values, which is a naive way of saying that processes have no effect annotations in their type.

9 Conclusions and Future Work

We have described MetaKlaim, a foundational calculus for global computing. Our approach

is based on polymorphic types á la system F, staging constructs (á la MetaML), and dynamic

type checking. To the best of our knowledge, MetaKlaim is the first calculus that integrates

multi-stage features with primitives for mobile distributed processes. In this paper we have

mainly focussed on developing the foundations of its mathematical theory, but we believe that

our programming notations can form the core of a real programming language with facilities

for code mobility and multi-stage programming. The consistency of operational semantics

and type system implies that in our approach hosts are protected from imported code, thus

ensuring various kinds of host security. This, together with the possibility of partially check-

ing MetaKlaim nets only relatively to subsets of localities, make MetaKlaim suitable for

programming applications in open and, possibly, untrusted large scale distributed systems.

Process calculi with distribution and mobility other than Klaim could in principle be en-

riched with staging and meta-programming constructs. However, if some properties must be

guaranteed, mobile code should be dynamically checkable and, possibly, customizable. This in

practice requires the exploitation of higher-order remote communication (to split code migra-

tion into code exchange and code spawning) and code types at the object level, and does not

seem to fit well with process calculi with just name passing.

There are several directions one can consider for improving MetaKlaim, for instance

• We could replace Klaim’s flat structure of localities with hierarchical (dynamically chang-

ing) tree structure typical of Ambients [CG00b]. Each ambient will have a tuple space,

a pool of local processes, and a pool of (mobile) sub-ambients.

• We could refine the type system into a type-and-effect system [TJ94], and extend it with

9 CONCLUSIONS AND FUTURE WORK 31

dynamics [ACPR95, Dug99].

• We could introduce guardians for monitoring node activities [FMP02], in addition to the

dynamic checks performed by processes (during an input-action).

As a future work we plan to implement MetaKlaim by possibly exploiting the Klaim

prototype implementation as a starting point. The Klaim prototype implementation can be

downloaded from the Klaim homepage [KHP98], while its detailed description, together with

some programming examples, can be found in [BDP02]. Moreover, we also plan to develop

realistic WAN applications to gather more data for further validating the advantages of the

approach and to assess our linguistic choices (for example, different forms of output could be

envisaged that differ for the amount of performed checks and, then, for the secrecy properties

guaranteed).

Acknowledgements. We thank the anonymous referees for their useful comments and crit-

icisms, and Didier Remy for his advise to look at dynamics in statically typed languages.

REFERENCES 32

References

[ACPP91] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed

language. ACM Transactions on Programming Languages and Systems, 13(2):237–268, April

1991.

[ACPR95] M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic typing in polymorphic languages.

Journal of Functional Programming, 5(1):111–130, January 1995.

[BDP02] L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Mobile Code. Software

— Practice and Experience, 32:1365–1394, 2002.

[Car97a] L. Cardelli. Program fragments, linking, and modularization. In Conference Record of

POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 266–277, Paris, France, 15–17 January 1997.

[Car97b] L. Cardelli. Type systems. In A.B.Jr Tucker, editor, The Computer Science and Engineering

Handbook. CRC Press, 1997.

[Car99] L. Cardelli. Abstractions for Mobile Computation. In J. Vitek and C. Jensen, editors, Secure

Internet Programming: Security Issues for Mobile and Distributed Objects, number 1603 in

LNCS, pages 51–94. Springer-Verlag, 1999.

[CG89] N. Carriero and D. Gelernter. Linda in Context. Comm. of the ACM, 32(4):444–458, 1989.

[CG00a] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science special issue

on Coordination, 240(1), July 2000.

[CG00b] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–

213, 2000. An extended abstract appeared in Proceedings of FoSSaCS ’98, number 1378 of

Lecture Notes in Computer Science, pages 140-155, Springer, 1998.

[CJK95] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects. ACM Transac-

tions on Programming Languages and Systems, 17(5):704–739, 1995.

[CMS02] C. Calcagno, E. Moggi, and T. Sheard. Closed types for safe imperative MetaML. To appear

in Journal of Functional Programming, 2002.

[Cor01] Microsoft Corporation. Microsoft DCOM Technical Overview, 2001. Available on-line at

http://www.microsoft.com/ntserver/techresources/appserv/COM/dcomtec.asp.

[Dav96] R. Davies. A temporal-logic approach to binding-time analysis. In the Symposium on Logic

in Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996. IEEE Computer

Society Press.

[DFP98] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction

and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

[DFPV00] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control. Theoretical

Computer Science special issue on Coordination, 240(1):215–254, 2000.

REFERENCES 33

[Dro00] S. Drossopoulou. Towards an abstract model of java dynamic linking and verification. In

Proc. of The Third ACM SIGPLAN Workshop on Types in Compilation, Montreal, Canada,

September 21, 2000. ACM.

[Dug99] D. Duggan. Dynamic typing for distributed programming in polymorphic languages. ACM

Transactions on Programming Languages and Systems, 21(1):11–45, 1999.

[EC00] U.W. Eisenecker and K. Czarnecki. Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley, 2000.

[FBF99] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic software

wrappers. In IEEE Symposium on Security and Privacy, pages 2–16, 1999.

[FGL+96] C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A Calculus of Mobile

Agents. In U. Montanari and V. Sassone, editors, Proc. of 7th Int. Conf. on Concurrency

Theory (CONCUR’96), volume 1119 of LNCS, pages 406–421. Springer-Verlag, 1996.

[FMP02] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring. In V. Sas-

sone, editor, F-WAN: Foundations of Wide Area Network Computing, number 66 in ENTCS.

Elsevier Science, 2002.

[FPV98] A. Fuggetta, G. Picco, and G. Vigna. Understanging code mobility. IEEE Transactions on

Software Engineering, 24(5):342–361, 1998.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming

Languages and Systems, 7(1):80–112, 1985.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur. Thèse de doctorat d’etat, University of Paris VII, 1972.

[HR01] M. Hennessy and J. Riely. Distributed processes and location failures. Theoretical Computer

Science, 266(1–2):693–735, September 2001.

[HS01] B. Harrison and T. Sheard. Dynamically adaptable software with metacomputations in a

staged language. In W. Taha, editor, Proc. of the Int. Work. on Semantics, Applications,

and Implementations of Program Generation (SAIG), volume 2196 of LNCS, pages 163–182.

Springer-Verlag, 2001.

[HW00] M. Hicks and S. Weirich. A calculus for dynamic loading. Technical Report MS-CIS-00-07,

University of Pennsylvania, 2000.

[HWC00] M. Hicks, S. Weirich, and K. Crary. Safe and flexible dynamic linking of native code. In

R. Harper, editor, Proc. of Types in Compilation: Third International Workshop, TIC 2000,

volume 2071 of LNCS, pages 147–176. Springer-Verlag, 2000.

[KCC00] S. Kamin, M. Callahan, and L. Clausen. Lightweight and generative components II: Binary-

level components. In [Tah00], pages 28–50, 2000.

[KHP98] The Klaim Home Page, 1998. Provides source code, applications and documentation online

at http://music.dsi.unifi.it/klaim.html.

REFERENCES 34

[Kir01] Z.D. Kirli. Confined mobile functions. In 14th IEEE Computer Security Foundations Work-

shop (CSFW ’01), pages 283–294, Washington - Brussels - Tokyo, June 2001. IEEE Computer

Society.

[Kir02] Z.D. Kirli. Mobile Computation with Functions. Kluwer, April 2002.

[KS01] A. Kennedy and D. Syme. The design and implementation of generics for the .net common

language runtime. In Proc. ACM SIGPLAN Conference on Programming Language Desing

and Implementation (PLDI), Snowbird, Utah, USA, june 2001. ACM Press.

[MG99] G. Morrisett and N. Glew. Type-safe linking and modular assembly language. In Proc. of

the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 250–261. ACM, 1999.

[MHP00] The MetaML Home Page, 2000. Provides source code and documentation online at

http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

[Mic02] SUN Microsystems. Java Beans API Specification, 2002. Available on-line at

http://java.sun.com/products/javabeans/docs/spec.html.

[MS96] D. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the

Standard Template Library. Professional Computing Series. Addison Wesley, 1996.

[Rey74] J.C. Reynolds. Towards a theory of type structure. In Proceedings Colloque sur la Program-

mation, Paris, volume 19 of Lecture Notes in Computer Science, pages 408–425, New York,

NY, june 1974. Springer-Verlag. Extension of typed lambda calculus to user-defined types

and polymorphic functions.

[RH99] J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile agents. In

Proceedings of POPL ’99, pages 93–104. ACM, 1999. Full version as CogSci Report 4/98,

University of Sussex, Brighton.

[RPM00] G.-C. Roman, G.P. Picco, and A.L. Murphy. Software engineering for mobility. In Proceedings

of the 22th International Conference on Software Engineering (ICSE-00), pages 241–260,

NY, June 4–11 2000. ACM Press.

[Sch00] F.B. Schneider. Enforceable security policies. ACM Transation on Information and System

Security, 3(1):30–50, 2000. Also appeared as Technical Report TR99-1759, Department of

Computer Science, Cornell University, Jul 1999.

[Sew01] P. Sewell. Modules, abstract types, and distributed versioning. In C. Norris and Jr.J.B.

Fenwick, editors, Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL-01), volume 36, 3 of ACM SIGPLAN Notices, pages 236–

247, New York, January 17–19 2001. ACM Press.

[She99] T. Sheard. Using MetaML: A staged programming language. In Lecture Notes in Computer

Science, volume 1608, pages 207–239, 1999.

[She01] T. Sheard. Accomplishments and research challenges in meta-programming. In W. Taha,

editor, Proc. of the Int. Work. on Semantics, Applications, and Implementations of Program

Generation (SAIG), volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

REFERENCES 35

[SMH00] F.B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security. In

Informatics: 10 Years Ahead, 10 Years Back. Conference on the Occasion of Dagstuhl’s 10th

Anniversary, number 2000 in Lecture Notes in Computer Science, pages 86–101. Springer-

Verlag, 2000.

[SS75] G.J. Sussman and G.L. Steele. Scheme: An Interpreter for Extended Lambda Calculus.

Technical Report AI Memo, no. 349, Massachusetts Institute of Technology, Artificial Intel-

ligence Laboratory, 1975.

[SSP98] M. Shields, T. Sheard, and S.L. Peyton Jones. Dynamic typing as staged type inference.

In ACM, editor, Conference record of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 289–302, New York, NY, USA, 1998. ACM

Press. San Diego, California, 19–21 January 1998.

[SW00] P. Sewell and P.T. Wojciechowski. Nomadic Pict: Language and infrastructure design for

mobile agents. IEEE Concurrency, 8(2):42–52, April/June 2000.

[Tah00] W. Taha, editor. Semantics, Applications, and Implementation of Program Generation,

volume 1924 of Lecture Notes in Computer Science, Montréal, 2000. Springer-Verlag.

[TJ94] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and Computation,

111(2):245–296, 1994.

[TS97] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. In Proceedings

of Symposium on Partial Evaluation and Semantics Based Program manipulation, pages

203–217. ACM SIGPLAN, 1997.

[TS00] W. Taha and T. Sheard. MetaML: Multi-stage programming with explicit annotations.

Theoretical Computer Science, 248(1-2), 2000.

[VC99] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In Proc.

Workshop on Internet Programming Languages, volume 1686 of Lecture Notes in Computer

Science, pages 47–77. Springer-Verlag, 1999.

[WF94] A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, 1994.

[YH99a] N. Yoshida and M. Hennessy. Subtyping and locality in distributed higher order processes.

In J.C.M. Baeten and S. Mauw, editors, Proc. of the Int. Conf. on Concurrency Theory

(CONCUR), volume 1664 of LNCS, pages 557–572. Springer-Verlag, 1999.

[YH99b] N. Yoshida and M. Hennessy. Assigning types to processes. CogSci Report 99.02, School of

Cognitive and Computing Sciences, University of Sussex, UK, 1999.

[YH02] N. Yoshida and M. Hennessy. Assigning types to processes. Information and Computation,

174(2):143–179, 2002.

