
Web Services as a New Approach to Distributing

and Coordinating Semantic-based Verification

Toolkits

Michael Baldamus1, Jesper Bengston1, GianLuigi Ferrari2 Roberto Raggi2

1Department of Information Technology, Uppsala University
2Dipartimento di Informatica, Università di Pisa

Abstract

We describe a coordination–oriented way of integrating semantic-based
verification toolkits, being motivated by a three–pronged observation:

• There is a potential for integration since verification toolkits are
typically based on well–understood mathematical notions.

• There is a need for and a profit to be gained from integrating such
tools since they are often of rather special and, at the same time,
complementary functionality.

• There is a problem with such integration since the formal verification
community prefers decentralisation and, at the same time, the avail-
able resources for working on portability are often limited anyway.

Our approach is distributed, thereby moving the issue to the realm of
coordination. To this end, we argue that toolkit integration, while not
new, can be given a new life by applying the emerging paradigm of web
services. We argue that web services can not only serve as a technological
platform for our purposes but, indeed, also as a coordination framework,
addressing all the basic issues present in the situation we are dealing with.
We give an account of a prototype implementation of these concepts.

1 Introduction

We describe a coordination–oriented way of integrating semantic-based verifi-
cation toolkits, being motivated by a three–pronged observation:

• There is a potential for integration since verification toolkits are typically
based on well–understood mathematical notions.

This work is funded as part of the Profundis project within the Global Computing Initia-
tive of the European Union.

1

• There is a need for and a profit to be gained from integrating such tools
since they are often of rather special and, at the same time, complementary
functionality.

• There is a problem with such integration since the formal verification com-
munity prefers decentralisation and, at the same time, the available re-
sources for working on portability are often limited anyway.

Our approach is distributed, thereby moving the issue to the realm of coordi-
nation. For two fundamental reasons, this way of dealing with the problem
seems to be natural:

1. Distribution addresses the reluctance of the formal methods community
to engage in any centralised effort at tool integration. Some tools are but
others are not or only to a limited degree portable or even available for
download, and this situation is not likely to change anytime soon, for a
variety of reasons. Distribution has some intrinsic advantages over cen-
tralised approaches also, such as availability, reconfigurability and open-
ness.

2. Distributed tool integration seems to be best–viewed from coordination
standpoint, since we are aiming at what we call deep integration: There
shall be automatic means for assigning sub–tasks belonging to any ver-
ification run to those node that are most appropriate for solving them.
That in turn requires both a platform and a language that allow users to
direct what should be done where, at different levels of abstraction. This
requirement can be regarded as almost synonymous with coordination.

Shallow integration would just mean that users could choose between dif-
ferent tools for tackling any verification problem as a whole.

In the last couple of years distributed applications over the world–wide web,
Web for short, such as file sharing, have indeed attained wide popularity, spawn-
ing an increasing demand for evolutionary paradigms in designing and control-
ing them. Uniform mechanisms have been developed for handling computing
problems which involve a large number of heterogeneous components that are
physically distributed and (inter)operate autonomously.

These developments have begun to coalesce around a paradigm where the
Web is exploited as a service distributor. A service in this sense is not a mono-
lithic Web server but rather a component available over the Web that others
might use to develop other services. Conceptually, Web services are stand–
alone components in the Internet. Each Web service has an interface accessible
through standard protocols and, at the same time, describing the interaction
capabilities of the service. Applications over the Web are developed by combin-
ing and integrating Web services. Moreover, no Web service has pre–existing
knowledge of what interaction with other Web services may occur.

One main idea of the work presented here is to make semantic-based verifi-
cation toolkits available as Web services, using standards such as XML, WSDL

2

and SOAP. Another main idea is to establish directories for publishing such
Web services. On this basis, then, we will be able to play out the fact that
verification tools are semantics–based, as that characteristic should allow us to
realize powerful automated matching facilities for services. It is not obvious how
more general directory concepts such as UDDI could provide such automation,
as their very generality precludes them from relying on formal semantics and,
therefore, forces them to count on human intervention in what is called technical
[service] discovery [1].

Verification web services plus automated verification web service directories
thus provide a platform within our concept for distributed, deeply integrated
and therefore coordinated verification. On top of it, there is a verification
scripting facility so that users are able to specify how the sub–tasks within
any verification run are to be carried out. Beyond the current prototype, we
envisage that an important role in that will eventually be played by the trad-
ing functionality embedded in semantics–based directories. Specifically, there
should be different levels of abstraction in proof scripting, namely goal–oriented,
algorithm–oriented, tool–oriented and node–oriented levels.

The rest of this paper presents the prototype of an environment which inte-
grates and coordinates different verification tools via the Web as a service dis-
tributor. The development of the verification environment has been performed
inside the Profundis project (see URL http://www.it.uu.se/profundis) within
the Global Computing Initiative of the European Union. We called Profundis
WEB, shortly PWeb.

The PWeb implementation has been conceived to support reasoning about
the behaviour of systems specified in some dialect of the π-calculus. It supports
the dynamic integration of several verification techniques (e.g. standard bisim-
ulation checking and symbolic techniques for cryptographic protocols). The
PWeb has been designed by targeting also the goal of extending available ver-
ification environments (MobilityWorkbench [10], HAL [5]) with new facilities
provided as Web services. This has given us the opportunity to verify the effec-
tive power of the Web service approach to deal with the reuse and integration
of “old” modules.

2 Preliminaries

Over the years several semantic-based verification toolkits have been designed
and experimented to formally address some issues raised by software develop-
ment. The Concurrency Workbench [4], for example, was developed at the
University of Edinburgh and performs analysis on the Calculus for Commu-
nicating Systems (CCS). The Mobility Workbench (MWB) [10], developed at
the university of Uppsala, does similar analysis but on the π-calculus. The
History-Dependent Automata Laboratory (HAL) [5] supports verification of log-
ical formulae expressing properties of the behaviour of π–calculus agents.

Most of the semantic-based verification environments have been developed
independently of each other and there is no guarantee that they run on the

3

same platforms. Moreover, there is also a need to run these tools in conjuncture
with one another as results from one tool can be used as input for another. For
this to be plausible, a platform independent system has to be created which
allows different tools running on different computers, potentially on different
platforms, to work with each other.

The PWeb, is designed to solve these problems. The PWeb prototype im-
plementation has been conceived to support reasoning about the behaviour of
systems specified in some dialect of the π-calculus. The PWeb integrates and
coordinate the facilities of some verification toolkits provided as Web services.
The MWB and HAL are two of the services of the PWeb. Hereafter, we briefly
review the main features of the other services of the PWeb.

TRUST The TRUST toolkit [9, 8] relies on an exact symbolic reduction
method, combined with several techniques aiming at reducing the number of
interleaving that have to be considered. Authentication and secrecy properties
are specified in a very natural way, and whenever an error is found an intruder
attacking the protocol is given.

MIHDA The MIHDA toolkit [6] performs state minimization of HD au-
tomata. MIHDA has been exploited to perform finite state verification of π-
calculus specifications.

STA STA (Symbolic Trace Analyzer) [2] implements symbolic execution of
cryptographic protocols. A successful attack is reported in the form of an exe-
cution trace that violates the specified property.

3 The PWeb Directory Service

The core of the PWeb is a directory service. A PWeb directory service is a
component that maps the description of the Web services represented by suitable
XML types into the corresponding network addresses. Moreover, it performs
the binding of services.

The PWeb directory maintains references to the toolkits it works with.
Every toolkit has an end-point in the directory service through the WSDL-
specification. As expected, the WSDL-specification describes the interaction
capabilities of the toolkit; namely which methods are available and the types
of their inputs and outputs. In other words, the WSDL-specification describes
what a service can do, how to invoke it and the supported XML types (more pre-
cisely the XML Schema definitions XSD). For instance, the WSDL-specification
of MIHDA provides the description of the reduce method. The invocation of
this method on a given HD-automata performs the state minimisation of the
HD-automata. The WSDL-description of the MIHDA toolkit is displayed in
Figure 1.

4

<?xml version="1.0" encoding="UTF-8"?>

<definitions

name="Mihda"

targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/schemas">

<import namespace=’’http://http://jordie.di.unipi.it:8080/pweb/schemas’’

location=’’http://jordie.di.unipi.it:8080/pweb/hds_over_pi.xsd’’/>

<types>

<xsd:schema

targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd"> </xsd:schema>

</types>

<message name="ReduceRequest">

<part name="contents" type="xsd1:hds_over_pi"/>

</message>

<message name="ReduceResponse">

<part name="return" type="xsd1:hds_over_pi"/>

</message>

<portType name="MihdaPortType">

<operation name="Reduce">

<documentation>Minimize the automata</documentation>

<input message="tns:ReduceRequest"/>

<output message="tns:ReduceResponse"/>

</operation>

</portType>

<binding name="MihdaBinding" type="tns:MihdaPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="Reduce">

<soap:operation soapAction="connect:Mihda:MihdaPortType#Reduce"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="Mihda">

<port binding="tns:MihdaBinding" name="MihdaPort">

<soap:address location="http://jordie.di.unipi.it:8080/pweb/mihda"/>

</port>

</service>

</definitions>

Figure 1: The MIHDA WSDL-specification5

Notice that there is nothing preventing several directory services to connect
to the same toolkits, or to include references to other directory services. Hence,
the PWeb is basically a peer-to-peer system.

The PWEB directory servic has two main facilities. The publish facility is
invoked to make available a semantic-based toolkit as Web service. The query
facility, instead, is used by applications to discover which are the services avail-
able. Notice that the query provides service discovery mechanisms: it yields
the list of services that match the parameter (i.e. the XSD type describing
the kind of services we are interested in). The current prototype implemen-
tation of the PWeb dierectory service can be exercized on-line at the URL
http://jordie.di.unipi.it:8080/pweb.

The service discovery mechanisms is exploited by the trader engine. The
trader engine manipulates pool of services distributed over several PWeb di-
rectory services. It can be used to obtain a Web service of a certain type and
to bind it inside the application. The trader engine gives to the PWeb direc-
tory service the ability of finding and binding at run-time web services without
“hard-coding” the name of the web service inside the application code. In other
words, the trader engine is the resource discovery mechanism for PWeb direc-
tory services.

The following code describes the implementation of a simple trader for the
PWeb directory.

import Trader

offers = Trader.query("reducer")

mihda = offers[0] # choose the first

offers = Trader.query("model-checking")

hal = find_neighbor(offers) # choose the service only among neighbors

offers = Trader.query("bisimulation-checking")

mwb = offers[0] # choose the first

The trader engine allows one to hide network details in the service coor-
dination code. A further benefit is given by the possibility of replicating the
services and maintaining a standard access modality to the Web services under
coordination. For instance, the code

offers = Trader.query("security checker")

can be used to obtain a polymorphic orchestration code that, at run–time, is
able to find, bind and finally invoke any service registered as “security checker”.
In the PWeb prototype implementation both TRUST and STA are registered
as security checkers.

6

The PWeb directory service is powered using Zope [11]. Zope is a (open
source) framework for building web applications and is designed to allow admin-
istrators to build complex and easily maintainable web servers with a minimum
amount of work. Dynamic content is supported through the use of databases
which in turn can be updated through web interfaces. Zope is also highly config-
urable and fully object oriented. New objects can be added and inherited from
if the need arises allowing for existing features to be tailored to the users need.
There is also a robust security system which allows administrators to manage
user privileges. One of the main advantages of Zope is that it is portable. It
runs on a variety of machines infrastructures including Windows 2000/NT/XP,
Linux, Solaris and Max OS X.

As a final remark we want to point out that the trader engine provides
facilities which are similar to the CORBA trader. The CORBA trader is used
to query object infrastructures for specific applications and components.

3.1 Querying XML Types

The PWeb directory service includes a database of XML types which keeps track
of the relationships among the XSD types which can be exploited as arguments
of messagges. Whenever a new XSD type is added to the PWeb directory service
(e.g as a result of a service registration), it is compared with the existing XSD
types and its relationships with the other registrered types are stored in the
database. Whenever an application performs a query, the trader engine will
provide a list of types which are compatible with the type of the query. In the
prototype implementation, this is obtained by a simple script code written in
Python.

We are currently investigating more expressive and powerful mechanisms
for querying XML types. In particular, we started some experiments in using
programming languages specifically designed to manipulate and querying XML
data [7, 3].

4 Lessons Learned

We started our experiment with the goal of understanding whether the Web
service metaphor could be effectively exploited to integrate in a distributed and
coordinated fashion semantics–based verification toolkits. In this respect, the
prototype implementation of the PWeb significant example.

Our approach adopts a service orchestration model whose main advantage
resides in reducing the impact of network dependencies and of dynamic ad-
dition/removal of Web services by the well–identified notions of directory of
services and trader engine. To the best of our knowledge, this is the first veri-
fication environment that specifically addresses the problem of exploiting Web
services.

The service orchestration mechanisms presented in this paper, however, have
some disadvantages. In particular, they do not exploit the full expressive power

7

of SOAP to handle types and signatures. For instance, the so called “version
consistency” problem (namely the client program can work with one version of
the service and not with others) can be solved by types and signatures.

References

[1] UDDI Technical White Paper, 2000.

[2] M. Boreale and M. Buscemi. STA, a Tool for the Analysis of Cryptographic
Protocols (Online version). Dipartimento di Sistemi ed Informatica, Uni-
versità di Firenze, and Dipartimento di Informatica, Università di Pisa,,
http://www.dsi.unifi.it/ boreale/tool.html, 2002.

[3] Luca Cardelli and Giorgio Ghelli. Tql: A query language for semistructured
data based o n the ambient logic. To appear in Mathematical Structures in
Computer Science, 2003.

[4] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concur-
rency Workbench: A Semantics-Based Tool for the Verification of Concur-
rent Systems. ACM Transactions on Programming Languages and Systems,
15(1):36–72, January 1993.

[5] G. Ferrari, S. Gnesi, Ugo Montanari, and Marco Pistore. A model checking
verification environment for mobile processes. To appear in ACM TOSEM,
2003.

[6] Gianluigi Ferrari, Ugo Montanari, Roberto Raggi, and Emilio Tuosto. From
co-algebraic specification to implementation: the mihda toolkit. In First
International Workshop on Methods for Components and Objects (FMCO),
Lecture Notes in Computer Science, pages 428–440. Springer-Verlag, 2003.

[7] Haruo Hosoya and Benjamin C. Pierce. Xduce: A typed xml processing
language, 2003.

[8] V. Vanackere. The TRUST protocol analyser. Lab. Informatique de Mar-
seille, http://www.cmi.univ-mrs.fr/ vvanacke/trust.html, 2002.

[9] V. Vanackere. The trust protocol analyser, automatic and efficient veri-
fication of cryptographic protocols. In Verification Workshop - Verify02,
2002.

[10] Björn Victor and Faron Moller. The Mobility Workbench — a tool for the
π-calculus. In David Dill, editor, CAV’94: Computer Aided Verification,
volume 818 of Lecture Notes in Computer Science, pages 428–440. Springer-
Verlag, 1994.

[11] Zope, http://www.zope.org.

8

