
From Co-algebraic Specifications to

Implementation: The Mihda toolkit ?

Gianluigi Ferrari, Ugo Montanari, Roberto Raggi, and Emilio Tuosto

Dipartimento di Informatica, Universit di Pisa, Italy.
{giangi,ugo,raggi,etuosto}@di.unipi.it

Abstract. This paper describes the architecture of a toolkit, called
Mihda, providing facilities to minimise labelled transition systems for
name passing calculi. The structure of the toolkit is derived from the
co-algebraic formulation of the partition-refinement minimisation algo-
rithm for HD-automata. HD-automata have been specifically designed to
allocate and garbage collect names and they provide faithful finite state
representations of the behaviours of π-calculus processes. The direct cor-
respondence between the coalgebraic specification and the implementa-
tion structure facilitates the proof of correctness of the implementation.
We evaluate the usefulness of Mihda in practise by performing finite state
verification of π-calculus specifications.

1 Introduction

Finite state automata (e.g. labelled transition systems) provide a foundational
model underlying effective verification techniques of concurrent and distributed
systems. From a theoretical point of view, many behavioural properties of con-
current and distributed systems can be naturally defined directly as properties
over automata. From a practical point of view, efficient algorithms and veri-
fication techniques have been developed and widely applied in practise to case
studies of substantial complexity in several areas of computing such as hardware,
compilers, and communication protocols. We refer to [2] for a review.

A fundamental property of automata is the possibility, given an automaton,
to construct its canonical form: The minimal automaton. The theoretical foun-
dations guarantee that the minimal automaton is indistinguishable from the
original one with respect to many behavioural properties (e.g., bisimilarity of
automata and behavioural properties expressed in suitable modal or temporal
logics). Minimal automata are very important also in practise. For instance, the
problem of deciding bisimilarity is reduced to the problem of computing the
minimal transition system [8]. Moreover, it is often convenient, from a compu-
tational point of view, to verify properties on the minimal automaton rather
than on the original one. Indeed, minimisation algorithms can be used to attack

? This work has been supported by EU-FET project PROFUNDIS IST-2001-33100
and by MIUR project NAPOLI

state explosion: They yield a small state space, but still retain all the relevant
information for the verification.

Global computing systems consists of networks of stationary and mobile com-
ponents. The primary features of a global computing systems is that components
are autonomous, software versioning is highly dynamic, the network coverage is
variable and often components reside over the nodes of the network (WEB ser-
vices), membership is dynamic and often ad hoc without a centralised authority.
Global computing systems must be made very robust since they are intended
to operate in potentially hostile environments. Moreover, they are hard to con-
struct correctly and very difficult to test in a controlled way: Testers of global
computing systems cannot be sure that a system will continue to produce correct
results for previously successful test cases. Although significant progresses have
been made in providing formal models and effective verification techniques to
support verification of global computing systems, current software engineering
technologies provide limited solutions to some of the issues discussed above. The
problem of formal verification of global computing systems still requires consid-
erable research and dissemination efforts to gain evidence of the viability and
weaknesses of the new techniques.

History Dependent automata (HD-automata shortly) have been proposed
in [14, 11, 4] as a new effective model for name passing calculi. Name passing
calculi (e.g. the π-calculus [10, 9, 16]) are basically the best known and probably
the most acknowledged models of mobility. Moreover, they provide a rich set of
techniques for reasoning about mobile systems.

Similarly to ordinary automata, HD-automata are made out of states and la-
belled transitions; their peculiarity resides in the fact that states and transitions
are equipped with names which are no longer dealt with as syntactic components
of labels, but become explicit part of the operational model. This allows one to
model explicitly name creation/deallocation or name extrusion: These are the
distinguished mechanisms of name passing calculi.

HD-automata have been abstractly understood as automata over a permu-
tation model, whose ingredients are a set of names and an action of its group
of permutations (renaming substitutions) on an abstract set. This framework
is sufficient to describe and reason about formalisms with name-binding opera-
tions. It has been incorporated into various kinds of transition systems that aim
at providing syntax-free models of name-passing calculi [5, 6, 12, 15]

It is important to emphasise that names of states of HD-automata have lo-

cal meaning . For instance, assume that A(x, y, z) denotes an agent having three
(free) names x, y and z. Then agent A(y, x, z), obtained through the transfor-
mation which swaps names x and y, is syntactically different from A(x, y, z).
However, these two agents can be semantically represented by means of a single
state q of a HD-automaton simply by considering a “swapping” operation on
the local names corresponding to names x and y. More generally, states that
differs only for renaming of their local names are identified in HD-automata.
This property allows for a very compact representation of name passing calculi.

Local meaning of names requires a mechanism for describing how names
correspond each other along state transitions. Graphically, we can represent such
correspondences using “wires” that connect names of labels, source and target
states of transitions. For instance, Figure 1 depicts a transition from source state

σ ds

1
2

3

4

5

lab 02

Fig. 1. A HD-automaton transition

s to destination state d. The transition exposes two names: Name 2 of s and a
fresh name 0. State s has three names, 1, 2 and 3 while state d has two names
4 and 5 which correspond to the old name 1 of s and to the fresh name 0,
respectively. Notice that names 3 is discharged along such state transition.

HD-automata have a natural representation as coalgebras on a category of
named sets and named functions. Set elements are equipped with names which
are defined up to specific groups of name permutations called symmetries [12].
General results concerning coalgebras guarantees the existence of the minimal
HD-automata up to bisimilarity. In [4] two of the authors describe a declarative
coalgebraic procedure to perform minimisation of finite state HD-automata.

In this paper, we review the coalgebraic description of the minimisation al-
gorithm for HD-automata, and we illustrate its prototype implementation. This
yields a toolkit, called Mihda, providing general facilities to minimise labelled
transition systems for name passing calculi. The usefulness of the Mihda toolkit
will be shown by performing finite state verification of π-calculus specifications.

The software architecture of the Mihda toolkit is derived directly from the
coalgebraic formulation of the partition-refinement minimisation algorithm. The
direct correspondence between the semantical structures and the implementation
structures facilitates the design and the implementation of the toolkit. Moreover,
it provides the formal machinery to perform the proof of correctness of the
implementation.

Recently, several software engineering technologies have been introduced to
support a programming paradigm where the web is exploited as a service dis-
tributor. By service we do not mean a monolithic web server but rather a
component available over the web that others might use to develop other ser-
vices. Conceptually, web services are stand-alone components that reside over
the nodes of the network. Each web service has an interface which is net-
work accessible through standard network protocols and describes the inter-
action capabilities of the service. The Mihda toolkit have been designed and
made available as a WEB service. By a few clicks in a browser at the URL

http://jordie.di.unipi.it:8080/pweb/ the toolkit can be accessed remotely
and its facilities can be evaluated directly over the WEB.

2 Preliminaries

This section sketches the main concepts on the coalgebraic representation of
automata as a basis for finite state verification by semantic minimisation. We
illustrate the approach by providing the coalgebraic specification of the minimi-
sation algorithm for ordinary labelled transition systems. Hereafter, we will use
terms ’automaton’ and ’labelled transition system’ interchangeably.

An automaton A is a triple (S, L,→) where S is the set of states , L is the
set of actions or labels and →⊆ S × L × S is the transition relation. Usually,

one writes s
`
−→ d to indicate (s, `, d) ∈−→; s is the source state and d is the

destination or target state.

Let idA denote the identity function on set A and f ; g be the composition of
functions f and g (when it is defined). An endo-functor F (over category Set) is
a mapping from sets to sets and from function to functions that preserves identity
functions and function composition. Figure 2 gives a graphical representation of
how a functor acts on sets and functions. If A is mapped on F(A) then idA is

Set
F +3 Set

A

idA

,,

f

��

//

f ;g

��

F(A)

F(idA) =
id

F(A)

tt

F(f)

��
F(f; g) =
F(f); F(g)

��

B

g

��

// F(B)

F(g)

��
C // F(C)

Fig. 2. Functor over Set

associated to idF(A) and, if f and g can be composed, then F(f) and F(g) can
be composed as well. Moreover, the image through F of the function composition
f ; g is obtained by composing the images of functions f and g.

Definition 1 (F-coalgebra). Let F be an endo-functor on the category Set.
A F-coalgebra consists of a pair (A, α) such that α : A → F(A).

The duality between F-coalgebras and F-algebras (a function F(A) → A)
consists in the fact that domain and codomain are “reversed”, namely, are arrows
between the same objects but with opposite directions. Different directions can
be interpreted as “construction” (induction) and “observation” (coinduction).
The interested reader is referred to [7, 1].

Before specifying the coalgebraic description of the minimisation algorithm
we introduce some notations.

– Expression Q : Set denotes a set and q : Q is synonym of q ∈ Q;
– Fun is the collection of functions among sets (the arrows of category Set).

The function space over sets has the following structure:

Fun = {H | H = 〈S : Set , D : Set , h : S −→ D〉}.

– h : A
bij
−→ B (h : A

inj
−→ B) explicitly states that function h is bijective

(injective).

We shall use SH , DH and hH to denote domain, codomain and mapping of an
element of Fun,respectively. A similar convention will be used throughout the
paper to denote components of tuples.

Let H, K ∈ Fun be two functions, then the composition of H and K (H ; K)
is defined provided that SK = DH and it is the function such that SH;K = SH ,
DH;K = DK , and hH;K = hK ◦ hH . Sometimes, we shall need to work with

surjective functions. Hence we let Ĥ be the function given by S
Ĥ

= SH , D
Ĥ

=
{q′ : DH | ∃q : SH , hH(q) = q′} and h

Ĥ
= hH .

Finite-state transition systems have been coalgebraically described by em-
ploying two ingredients: A set Q, that represents the state space, together with
a function K : Q −→ ℘fin(L × Q) giving the transition relation; K(q) is the set of

pairs (`, q′) such that q
`
−→ q′.

In this paper, we shall work on a more concrete representation. In particular,
we introduce a mathematical structure, called bundle, whose rôle is to provide a
declarative specification of the concrete data structure storing all the transitions
out of a given state. Indeed, each bundle details which states are reachable by
performing certain actions.

Definition 2 (Bundles). Let L be the set of labels, then a bundle β over L is

a structure 〈D : Set, Step : ℘fin(L × D)〉. Set D is the support of β.

Given a fixed set of labels L, BL denotes the collection of bundles and β : BL

indicates that β is a bundle over L.
We now introduce the functor A over the universe of sets and functions. The

following clauses define A:

– A(Q) = {β : BL | Dβ = Q}, for each Q : Set;
– For each H : Fun, A(H) is defined as follows:

• SA(H) = A(SH) and DA(H) = A(DH);
• hA(H) : β 7→ 〈DH , {〈`, hH(q)〉 | 〈`, q〉 : Stepβ}〉.

Definition 3 (Transition systems as coalgebras). Let L be a set of labels.

Then a labelled transition system over L is a coalgebra for functor A, namely it

is a function K such that DK = A(SK).

Example 1. A coalgebra K for functor A represents a transition system where
SK is the set of states, and hK(q) = β, with Dβ = SK . Let us consider a
finite-state automaton and its coalgebraic formulation via the mapping hK .

0
a //

b ��>
>>

>>
1

b����
��

�

a
))

b ��>
>>

>>
2

a

ii

b����
��

�

3

c ��>
>>

>>
4

c����
��

�

5

hK(0) = 〈Sk, {〈a, 1〉, 〈b, 3〉}〉
hK(1) = 〈Sk, {〈a, 2〉, 〈b, 3〉, 〈b, 4〉}〉
hK(2) = 〈Sk, {〈a, 1〉, 〈b, 4〉}〉
hK(3) = 〈Sk, {〈c, 5〉}〉
hK(4) = 〈Sk, {〈c, 5〉}〉
hK(5) = 〈Sk, ∅〉

Note how, for each state q ∈ {0, ..., 5}, hK(q) yields all the immediate successor
states of q and the corresponding labels. In other words, (`, q′) ∈ StephK(q) if,

and only if, q
`
−→ q′.

General results on coalgebras ensure the existence of the final coalgebra for
a large class of functors. These results apply to our formulation of labelled tran-
sition systems. In particular, it is interesting to see the result of the iteration
along the terminal sequence of functor A.

Let K be a transition system, and let H0, H1, . . . , Hi+1, . . . be the sequence
of functions computed by

Hi+1 = ̂K;A(Hi),

where H0 is the unique function from SK to the one-element set {∗} given by
SH0 = SK ; DH0 = {∗}; and hH0(q : SH0) = ∗.

Finiteness of ℘fin ensures convergence of the iteration along the terminal
sequence. We can say much more if the transition system is finite state. Indeed,
if K is a finite-state transition system, then

– The iteration along the terminal sequence converges in a finite number of
steps, i.e. DHn+1 ≡ DHn

(for some natural number n),
– The isomorphism mapping F : DHn

−→ DHn+1 yields the minimal realisation
of transition system K.

Comparing the co-algebraic construction with the standard algorithm [8, 3]
which constructs the minimal labelled transition system we can observe:

– at each iteration i the elements of DHi
are the blocks of the minimisation

algorithm (i.e. the i-th partition). Notice that the initial approximation DH0

contains a single block: in fact H0 maps all the states of the transition system
into {∗}.

– at each step the algorithm creates a new partition by identifying the splitters

for states q and q′. This corresponds in our co-algebraic setting to the fact
that Hi(q) = Hi(q

′) but Hi+1(q) 6= Hi+1(q
′).

– the iteration proceeds until a stable partition of blocks is reached: then the
iteration along the terminal sequence converges.

We now apply the iteration along the terminal sequence to the coalgebraic
formulation of the transition system of Example 1. The initial approximation is
the function H0 defined as follows H0 = 〈SH0 = SK , DH0 = {∗}, hH0(q) = ∗〉 and

the first approximation H1 is the map hH1 : q 7→ 〈DH0 , {〈`, hH0(q
′)〉 : q

`
−→ q′}〉

obtained by

T (H0)〈{1, 2, 3, 4, 5}, {〈a, 2〉, 〈b, 3〉, 〈b, 4〉}〉 = 〈{∗}, {〈a, ∗〉, 〈b, ∗〉}〉

We obtain the function hH1 and the destination state DH1 = {β1, β2, β3} as
detailed below.

hH1 (0) = 〈{∗}, {〈a, ∗〉, 〈b, ∗〉}〉
hH1 (1) = 〈{∗}, {〈a, ∗〉, 〈b, ∗〉}〉
hH2 (2) = 〈{∗}, {〈a, ∗〉, 〈b, ∗〉}〉
hH1 (3) = 〈{∗}, {〈c, ∗〉}〉
hH1 (4) = 〈{∗}, {〈c, ∗〉}〉
hH1 (5) = 〈{∗}, ∅〉

β1 = 〈{∗}, {〈a, ∗〉, 〈b, ∗〉}〉
β2 = 〈{∗}, {〈c, ∗〉}〉
β3 = ∅

A further iteration yields:

hH2(0) = 〈DH1 , {〈a, β1〉, 〈b, β2〉}〉
hH2(1) = 〈DH1 , {〈a, β1〉, 〈b, β2〉}〉
hH2(2) = 〈DH1 , {〈a, β1〉, 〈b, β2〉}〉
hH2(3) = 〈DH1 , {〈c, ∅〉}〉
hH2(4) = 〈DH1 , {〈c, ∅〉}〉
hH2(5) = 〈DH1 , ∅〉

Since DH2 ≡ DH1 the iterative construction converges, thus providing the
minimal labelled transition system depicted as

•1
a

MM
b // •2

c // •3

where •1 = {0, 1, 2}, •2 = {3, 4} and •3 = {5}.

3 HD-automata for π-agents

This section outlines the representation of HD-automata as coalgebras over the
concrete permutation algebra of named sets.

Let N be an infinite countable set of names ranged over by v and let N ?

be the set N ∪ ∗, where ∗ 6∈ N is a distinguished name and will be used for
modelling name creation. We also assume that < is a total order on N ? (for
instance, it can be the lexicographic order on N and ∀v ∈ N : ∗ < v).

Table 1 displays the definitions of named sets, named functions, and composi-
tion of named functions. In Table 1, the general product

∏
is employed (as usual

in type theory) to type functions f such that the type of f(q) is dependent on

Named set A named set A is a structure

A = 〈Q : Set, | |: Q −→ ω,≤: ℘(Q × Q), G :
∏

q∈Q

℘({v1..v|q|}
bij
−→ {v1..v|q|})〉

where ∀q : QA, GA(q) is a permutation group and ≤A is a total ordering.

Named function A named function H is a structure

H = 〈S : NSet, D : NSet, h : QS −→ QD, Σ : QS −→ ℘({h(q)}D
inj
−→ {q}S)〉

where ∀q : QSH , ∀σ : ΣH(q),

1. GDH (hH(q)); σ = ΣH(q) and
2. σ; GSH (q) ⊆ ΣH(q).

Composition of named functions Named functions can be composed in the obvious
way. Let H and K be named functions. Then H; K is defined only if DH = SK , and

SH;K = SH , DH;K = DK , hH;K : QSH −→ QDK = hH ; hK ,

ΣH;K(q : QSH) = ΣK(hH(q)); ΣH(q)

Let H be a named function, Ĥ denotes the surjective component of H:

– S
Ĥ

= SH and QD
Ĥ

= {q′ : QDH | ∃q : QSH .hH (q) = q′},

– |q|
D

Ĥ

= |q|
DH

, GD
Ĥ

(q) = GDH (q), h
Ĥ

(q) = hH(q) and Σ
Ĥ

(q) = ΣH(q)

Table 1. Named sets, Named Functions and Composition of Named Functions

q. Intuitively, a named set represents a set of states equipped with a mechanism
to give local meaning to names occurring in each state. In particular, function
| | yields the number of local names of states. Moreover, the permutation group
GA(q) allows one to describe directly the renamings that do not affect the be-
haviour of q, i.e., symmetries on the local names of q. For technical reasons, we
assume that states are totally ordered.

By convention we write {q : QA}A to indicate the set {v1, ..., v|q|A} and we
use NSet to denote the universe of named sets.

As in the case of standard transition systems, named functions are used to
determine the possible transitions of a given state. Intuitively, hH(q) yields the
behaviour of state q : SH , i.e. the transitions departing from q. Since states
are equipped with local names, a name correspondence is needed to describe
how names in the destination state are mapped into names of the source state,
therefore we must equip H with a set ΣH(q) of injective functions. However,
names of corresponding states (q, hH(q)) in hH are defined up to permutation

groups and name correspondence must not be “sensible” to the local meaning
of names. Therefore, the whole set ΣH(q) must be generated by saturating any
of its elements by the permutation group of hH(q), and the result must be
invariant with respect to the permutation group of q. Condition (1) in Table 1
states that the group of hH(q) does not change the meaning of names in hH(q),
while Condition (2) states that the group of q does not “generate meanings” for
local names of q that are outside hH(q).

3.1 Bundles over π-calculus actions

To represent the minimisation algorithm for the early semantics of π-calculus [10],
the notion of bundle must be enriched. Labels of transitions must distinguish
among the different meanings of names occurring in π-calculus actions, namely
synchronisation, bound/free output and bound/free input. The set of π-calculus
labels Lπ is {TAU, BOUT, OUT, BIN, IN}. We specify two different labels for
input actions: Label BIN is used when the input transition exposes a fresh name,
while label IN handles the case of an input transition that exposes a name of
the source state of the transition. Labels in Lπ have weights. The weight map
| | : Lπ → {∅, {1}, {1, 2}} is defined as:

|TAU | = ∅ |BOUT | = |BIN | = {1} |OUT | = |IN | = {1, 2}

and associates the set of indexes of distinct names the label refers to.
A bundle on π-labels is defined as in Table 2. Table 2 illustrates definitions

of bundles and names of bundles. As it is the case for ordinary automata, the
Step component of a bundle declares the set of successor states for a given source
state. More precisely, if 〈`, π, σ, q〉 ∈ qd D, then q is the destination state; ` is
the label of the transition; π associates to the label the names observed in the
transition; and σ states how names in the destination state are related to the
names in the source state. According to the definition of σ in Table 2, a name in
a destination state of a quadruple is mapped on the distinguished name ∗ only
on transitions where a new name is created (i.e. transitions labelled by BOUT
or BIN).

In order to exploit named functions for representing HD-automata it is nec-
essary to equip the set of bundles B with a named set structure. In other words
we must define

– a total order on bundles,
– a function that maps a bundle to its number of names,
– a group of permutations over those names.

The names of a bundle are the names (different from ∗) that appear either
in the labels or in the range of σ’s of the quadruples of the bundle. Without loss
a generality, we can assume that a total order on states and labels exist. Hence,
quadruples are totally ordered1. The order over quadruples yields an ordering v
over bundles.
1 For instance, we can assume the lexicographic order of labels, states and names.

Bundles A bundle β consists of the structure

β = 〈 D : NSet, Step : ℘(qd D) 〉

where qd D is the set of quadruples of the form 〈`, π, σ, q〉 given by

qd D = {〈` : Lπ, π : N
inj
−→ {v1..}, σ :

∏

`∈Lπ

{q}D
inj
→ Q`, q : QD〉}.

and

Q` =

{
N ? if ` ∈ {BOUT, BIN}
N if ` 6∈ {BOUT, BIN}

under the constraint that GDβ
(q);Sq = Sq, where Sq = {〈`, π, σ, q〉 ∈ Stepβ} and

ρ; 〈`, π, σ, q〉 = 〈`, π, ρ; σ, q〉.

Bundle names Let β be a bundle. Function {| |} : B → N , mapping each bundle to
the set of its names, is defined by

{|β |} =
⋃

〈`,π,σ,q〉∈Stepβ

rng(π) ∪ rng(σ) \ {∗}

where rng yields the range of functions. We only consider bundles β such that {| β |}
is finite and we let bβc to indicate the number of names which occur in the bundle β

(i.e. bβc = |{|β |}|).

Table 2. Bundles: the π-calculus case

The group of β : BLπ is the set of permutations θ : {|β |}
bij
−→ {|β |} such that

β; θ = β where β; θ is defined as 〈Dβ , {〈`, π; θ, σ; θ, q〉 | 〈`, π, σ, q〉 : β}〉.

3.2 Normalising bundles

In the minimisation algorithm two states belong to the same block (partition)
whenever they have the “same” bundles. Hence, the most crucial construction
on bundles is the normalisation operation. This operation is necessary for two
different reasons. The first reason is that there are different equivalent ways for
picking up the step components (i.e. quadruples 〈`, π, σ, q〉) of a bundle. The
second (more important) reason is for removing from the step component of a
bundle all the redundant input transitions. Indeed, redundant transitions occur
when a HD-automaton is built from a π-calculus agent. During this phase, it is
not possible to decide which free input transitions are required, and which tran-
sitions are covered by the bound input transition2. The solution to this problem

2 In the general case, to decide whether a free input transition is required it is as
difficult as to decide the bisimilarity of two π-calculus agents.

consists of adding a superset of the required free input transitions and to exploit
a reduction function to remove the unnecessary ones during the minimisation
phase. Consider for instance the case of a state q having only one name v1 and
assume that the following two tuples appear in a bundle:

〈IN, xy, {v1 → y}, q〉 and 〈BIN, x, {v1 → ∗}, q〉.

Then, the IN transition is redundant if y is not active in q as it expresses exactly
the same behaviour of the second tuple, except that a “free” input transition
is used rather than a “bound” one. Hence, the transformation removes the first
tuple from the bundle. During the iterative execution of the minimisation al-
gorithm, bundles are split; hence the set of redundant transitions of bundles
decreases. Hence, when the iterative construction terminates, only those free
inputs that are really redundant have been removed from the bundles.

The normalisation of a bundle β is done in different steps. First, the bundle
is reduced by removing all the possibly redundant input transitions. Reduction
function red(β) on bundles is defined as follows:

– Dred(β) = Dβ ,
– Stepred(β) = Stepβ \ {〈IN, xy, σ, q〉 | 〈BIN,x, σ′, q〉 : Stepβ ∧ σ′ = σ; {y → ∗}}.

where σ; {y → ∗} is the function equal to σ on any name different from y and
that assigns ∗ to y. Second, the normalisation function norm(β) is defined as
follows:

– Dnorm(β) = Dβ

– Stepnorm(β) = minv

(
Stepβ \ {〈IN, xy, σ, q〉 | y 6∈ anβ}

)
,

where anβ = {|red(β) |} is the active names of β and minv is the function that,
when applied to Stepβ, returns the step of the minimal bundle (with respect
to order v) among those obtained by permuting names of β in all possible
ways3. The order relation v is used to define the canonical representatives of
bundles and relies on the order of quadruples. For this reason we introduced
an ordering relation on named sets in the first place. In the following, we use
perm(β) to denote the canonical permutation that associates Stepnorm(β) and
Stepβ \ {〈IN, xy, σ, q〉 | y 6∈ anβ}.

We remark that, while all IN transitions covered by BIN transitions are
removed in the definition of red(β), only those corresponding to the reception
of non-active names are removed in the definition of norm(β). In fact, even if
an input transition is redundant, it might be the case that it corresponds to the
reception of a name that is active due to some other transitions.

Finally, we need a construction which extracts in a canonical way a group
of permutations out of a bundle. Let β be a bundle, define Gr β to be the
set {ρ | Stepβ; (ρ[∗/∗]) = Stepβ}. It can be proved that Gr β is a group of
permutations.

3 More precisely, given a bundle β, minvβ is the minimal bundle in the set {β; θ | θ :

{|β |}
bij
−→ {|β |}}, with respect to the total ordering v of bundles over D.

3.3 The minimisation algorithm

We are now ready to give the definition of the functor T that states the coalge-
bras for HD-automata. The action of functor T over named sets is given by:

– QT (A) = {β : Bundle | Dβ = A, β normalised},
– |β|T (A) = bβc,
– GT (A)(β) = Gr β,
– β1 ≤T (A) β2 iff Stepβ1 v Stepβ2 ,

while the action of functor T over named functions is given by:

– ST (H) = T (SH), DT (H) = T (DH),
– hT (H)(β : QT (SH)) : QT (DH) = norm(β′),
– ΣT (H)(β : QT (SH)) = Gr(norm(β′)); (perm(β′))−1; inj : {|norm(β′) |} −→ {β}T (SH)

where β′ = 〈DH , {〈`, π, σ′; σ, hH(q)〉 | 〈`, π, σ, q〉 : Stepβ, σ′ : ΣH(q)}〉.

Notice that functor T maps every named set A into the named set T (A) of
its normalised bundles. A named function H is mapped into a named function
T (H) in such a way that every corresponding pair (q, hH(q)) in hH is mapped
into a set of corresponding pairs (β, norm(β′)) of bundles in hT (H). The quadru-
ples of bundle β′ are obtained from those of β by replacing q with hH(q) and
by saturating with respect to the set of name mappings in ΣH(q). The name
mappings in ΣT (H)(β) are obtained by transforming the permutation group of
bundle norm(β′) with the inverse of the canonical permutation of β′ and with
a fixed injective function inj mapping the set of names of norm(β ′) into the
set of names of β, defined as i < j, inj(vi) = vi′ and inj(vj) = vj′ implies
i′ < j′. Without bundle normalisation, the choice of β′ among those in β′; θ
would have been arbitrary and not canonical with the consequence of mapping
together fewer bundles than needed.

Definition 4 (Transition systems for π-agents). A transition system over

named sets and π-actions is a named function K such that DK = T (SK).

HD-automata are particular transition systems over named sets. An HD-automaton
A is given by:

– the elements of QA are π-agents and ≤A is the lexicographic order on QA;
– |p(v1, ..., vn)|A = n;
– GA(q) = {id : {q}A −→ {q}A}, where id denotes the identity function,
– h : QA −→ {β | Dβ = A} is such that 〈`, π, σ, q′〉 ∈ Steph(q) represent the

π-calculus transitions from agent q.

We will often use the notation q
`,π,σ
−−→ q′ to denote the “representative” tran-

sitions from agent q that are used in the construction of the HD-automaton.
We can now define the function K.

– SK = A,
– hK(q) = norm(h(q)),
– ΣK(q) = Gr(hK(q)); (perm(h(q)))−1 ; inj : {|h(q) |} −→ {q}A

The minimal HD-automata is built by an iterative procedure on K: the iteration
along the terminal sequence. The formula which details the iterative construction
is given by

Hi+1 = ̂K;T (Hi).

If K is a finite state HD-automaton. Then
The initial approximation, H0, is defined as follows:

– SH0 = SK , DH0 = unit where Qunit = {∗}, |∗|unit = 0 (and hence {∗} = φ),
Gunit ∗ = φ, and ∗ ≤unit ∗,

– hH0(q : QsH0
) = ∗,

– ΣH0(q) = {φ}

We recall that the iteration along the terminal sequence converges in a finite
number of steps: i exists such that DHi+1 ≡ DHi

, and the isomorphism mapping
F : DHi

→ DHi+1 yields the minimal realisation of the transition system K up
to strong early bisimilarity.

4 The Mihda toolkit

The previous sections outlined the coalgebraic foundation for the finite state
verification of name passing process calculi. It remains to show that this elegant
theory can be used as a basis for the design and development of effective and
usable verification toolkits. This section and the one following explore this is-
sue by describing our experience in designing, implementing and experimenting
a minimisation toolkit, called Mihda, for verifying finite state mobile systems
represented in the π-calculus.

The Mihda toolkit cleanly separates facilities that are language-specific (pars-
ing, transition system calculation) from those that are independent from the
calculus notation (bisimulation) in order to facilitate modifications. The toolkit
has been implemented in ocaml. Indeed, the partition refinement algorithm has
been specified in a “type-theoretic” style and the underlying type system makes
use of parametric polymorphism. The type system of ocaml offers all the neces-
sary features for handling these kind of type. Figure 4 illustrates the modules of
Mihda and their dependencies.

For instance, State is the module which provides all the structures for han-
dling states and its main type defines the type of the states of the automata.
Domination is the module containing the structures underlying bundle normal-
isation. The connections express typing relationships among the modules. For
instance, since states in bundles and transitions must have the same type, then
a connection exist between modules Bundle and Transitions.

Notice that the iterative construction of the minimal automaton is parame-
terised with respect to the modules of Figure 4. Indeed, the same algorithm can
be applied to different kind of automata and bisimulation, provided that these
automata match the constraints on types imposed by the software architecture.
For instance, the architecture of Mihda has been exploited to provide minimisa-
tion of both HD-automata and ordinary automata (up to strong bisimilarity).

Bundle

Block

StatesLabels

Transitions

Automaton

Domination

Fig. 3. Mihda Software Architecture

4.1 The main cycle

We have already pointed out that the iterative step of the minimisation algorithm
can be represented in a functional style form as follows:

hHi+1(q) = norm 〈DHi
, {〈`, π, σ′; σ, hHi

(q′)〉 | q
`,π,σ
−−→ q′, σ′ : ΣHi

(q′)}〉. (1)

Following equation (1), we can compute hHi+1(q) through the following steps:

(a) determine the bundle of q in the automaton;

(b) for each quadruple 〈`, π, σ, q′〉 in this bundle, apply hHi
to q′, the target state

of the quadruple (yielding the bundle of q′ in the previous iteration of the
algorithm);

(c) left-compose symmetry σ′ ∈ Σ(q′) with σ;

(d) normalise the resulting bundle.

In the Mihda implementation the value of the i-th iteration (i.e. hHi
) is stored

in a list of blocks which are the most important data structures of Mihda. They
represent action of the functor on states of the automata and contain all those
information for computing the iteration steps of the algorithm expressed in a
set theoretic framework. Blocks represent both (finite) named functions and
partitions of an automaton (at each iteration of the algorithm). Hence, at the
last iteration a block corresponds to a state of the minimal automaton. A block
has the following structure:

type Block t =
Block of

id : string ∗
states : State t list ∗
norm : Bundle t ∗
names : int list ∗
group : int list list ∗
Σ : (State t → (int ∗ int) list list) ∗
Θ−1 : (State t → (int ∗ int) list)

Field id is the name of the block and is used to identify the block in order
to construct the minimal automaton at the end of the algorithm. Field states

contains the states which are considered equivalent with respect the equivalence
relation used in the algorithm4: In this case the early bisimulation relation.
Remaining fields respectively represent

– the normalised bundle with respect to the block considered as state (norm),
– names is the list of names of the bundle in norm ,
– group is its group,

– the functions relative to the bundle (Σ), last field, Θ−1 , is the function
that, given a state q, maps the names appearing in norm into the name of q.
Basically, Θ−1(q) is the function which establishes a correspondence between
the bundle of q and the bundle of the corresponding representative element
in the equivalence class of the minimal automaton.

θ

q

q

x

Fig. 4. Graphical representation of a block

We draw (some components of) a block as in Figure 4: The upper elements are
the states in the block, while the element x is the “representative state”, namely
it is a graphical representation of the block as a state. For each state q a function
θq maps names of x into the names of q. Function θq describes “how” the block
approximates the state q at a given iteration. The circled arrow on x aims at

4 We recall that Mihda is parametrised with respect to the equivalence relation.

recording that a block also has symmetries on its names. Bundle norm of block
x is computed by exploiting the ordering relations over names, labels and states.

A graphical representation of steps (a)-(d) above in terms of blocks is illus-
trated in Figure 5.

q1

q2

q3

q1

q2

q3

q

x yIN σ

xBIN σ [*/y]

Tau σ3

BIN x q2;s [*/y]

qq

Tau q3;s3

q2

q3

x

x

x

(a) Step 1

q1

q2

q3

q1

q2

q3

x yIN σ

xBIN σ [*/y]

Tau σ3
qq

Tau q3;s3

BIN q2;s [*/y]x

x

q

x

q3

x

q2

(b) Step 2

q1

q2

q3

q1

q2

q3

Tau σ3

x yIN σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2;σ [*/y]

θ2

x

q

θ1

x

θ3

x

(c) Step 3

q1

q2

q3

Tau σ3

q1

q2

q3

x y σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2;σ [*/y]

IN

x

x

x

q

θ
q

θ3

θ2

θ1

(d) Step 4

Fig. 5. Computing hHi+1

Step (a) is computed by the facility Automaton.bundle that filters all transi-
tions of the automaton whose source corresponds to q. Figure 5(a) shows that a
state q is taken from a block and its bundle is computed.
Step (b) is obtained by applying facility Block.next to the bundle of q. The
operation Block.next substitutes all target states of the quadruples with the
corresponding current block and computes the new mappings (see Figure 5(b)).
Step (c) does not seem to correctly adhere to the corresponding step of equa-
tion 1. However, if we consider that θ functions are computed at each step by
composing symmetries σ’s we can easily see that θ functions exactly play the
rôle of σ’s.

Finally, step (d) is represented in Figure 5(d) and is obtained via the function
Bundle.normalise.

The main step of the minimisation algorithm is the function split that com-
putes, at each iteration, the current partition (the list of blocks).

let split blocks block =
try

let minimal =
(Bundle.minimise red

(Block.next
(h n blocks)
(state of blocks)
(Automaton.bundle aut (List.hd (Block.states block))))) in

Some (Block.split
minimal
(fun q →

let normal =
(Bundle.normalise

red
(Block.next (h n blocks)

(state of blocks)
(Automaton.bundle aut q))) in

Bisimulation.bisimilar minimal normal)
block)

with Failure e → None

Let block be a block in the list blocks, function split computes minimal by
minimising the reduced bundle of the first state of block. The choice of the state
for computing minimal is not important: Without loss of generality, given two
equivalent states q and q’, it is possible to map names of q into names of q’

preserving their associated normalised bundle if, and only if, a similar map from
names of q’ into names of q exists.

Once minimal has been computed, split invokes Block.split with parame-
ters minimal and block, while the second argument of Block.split is a function
that computes the current normalised bundle of each state in block and checks
whether or not it is bisimilar to minimal. This computation is performed by
function Bisimulation.bisimilar. If bisimilarity holds through θq then Some θq
is returned, otherwise None is returned.

We are now ready to comment on the main cycle of Mihda reported in Fig-
ure 6. Let k = (start, states, arrows) be a HD-automaton. When the algorithm
starts, blocks is the list that contains a single block collecting all the states of
the automata k.

At each iteration, the list of blocks is splitted, as much as, possible by
split iter that returns a list of buckets which have the same fields of a block
apart from the name, symmetries and the functions mapping names of destina-
tion states into names of source states. Essentially, the split operation checks if
two states in a block are equivalent or not. States which are no longer equiva-
lent to the representative element of the block are removed and inserted into

let blocks = ref [(Block.from states states)] in

let stop = ref false in

while not (!stop) do

begin

let oldblocks = !blocks in

let buckets = split iter (split oldblocks) oldblocks in

begin

blocks := (List.map (Block.close block (h n oldblocks)) buckets);
stop :=

(List.length !blocks) = (List.length oldblocks) &&
(List.for all2

(fun x y → (Block.compare x y) == 0)
!blocks
oldblocks)

end

end

done ;
!blocks

Fig. 6. The main cycle of Mihda

a bucket. Then, by means of Block.close block, all buckets are turned into
blocks which are assigned to blocks. Finally, the termination condition stop

is evaluated. This condition is equivalent to say that a bijection can be estab-
lished between oldblocks (that corresponds to Di) and blocks (corresponding to
Di+1). Moreover, since order of states, names and bundles is always maintained
along iterations, both lists of blocks are ordered. Hence, the condition reduces
to test whether blocks and oldblocks have the same length and that blocks at
corresponding positions are equal.

5 Verifying Mobile Systems with Mihda

In this section we discuss some experimental results of Mihda in the analysis of
mobile systems. In particular, we consider the π-calculus specification of the Han-
dover Protocol for Mobile Telephones borrowed from that given in [17] (which
has been in turn derived from that in [13]).

The π-calculus specification of the GSM is

define GSM(in,out) =

(tca)(ta)(ga)(sa)(aa)(tcp)(tp)(gp)(sp)(ap)

|(Car(ta,sa,out),

Base(tca,ta,ga,sa,aa),

IdleBase(tcp,tp,gp,sp,ap),

Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap))

Centre receives messages from the environment on channel in; these input ac-
tions are the only observable actions performed by Centre. Module Car sends

define Car(talk,switch,out) =

talk?(msg).out!msg.Car(talk,switch,out) +

switch?(t).switch?(s).Car(t,s,out)

define Base(talkcentre,talkcar,give,switch,alert) =

talkcentre?(msg).talkcar!msg.

Base(talkcentre,talkcar,give,switch,alert)

+

give?(t).give?(s).switch!t.switch!s.give!give.

IdleBase(talkcentre,talkcar,give,switch,alert)

define IdleBase(talkcentre,talkcar,give,switch,alert) =

alert?(empty).Base(talkcentre,talkcar,give,switch,alert)

define Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap) =

in?(msg).tca!msg.Centre(in,tca,ta,ga,sa,aa,tcp,tp,gp,sp,ap)

+

tau.ga!tp.ga!sp.ga?(empty).ap!ap.

Centre(in,tcp,tp,gp,sp,ap,tca,ta,ga,sa,aa)

Table 3. π-calculus specification of GSM modules

the messages to the end user along the channel out; these outputs are the only
visible actions performed by the Car. Modules Centre and Car interact via the
base corresponding to the cell in which the car is located. The specification of
modules Car, Base, IdleBase and Centre is reported in Table 3. The behaviour
of the four modules is briefly summarised below:

– Car brings a MobileStation and travels across two different geographical
areas that provide services to end users;

– Base and IdleBase are Base Station modules; they interconnect the Mo-
bileStation and the MobileSwitching Centre.

– Centre is a MobileSwitching centre which controls radio communications
within the whole area composed by the two cells;

The protocol starts when Car moves from one cell to the other. Indeed, Centre
communicates to the MobileStation the name of the base corresponding to the
new cell. The communication of the new channel name to the MobileStation is
performed via the current base. All the communications of messages between
the MobileSwitching centre and the MobileStation are suspended until the Mo-
bileStation receives the names of the new transmission channels. Then the base
corresponding to the new cell is activated, and the communications between the
MobileSwitching centre and the MobileStation continue through the new base.

In Table 4 we report the results of Mihda on two different versions of the
protocols. The first row of the table corresponds to the version discussed above.

Protocol Time to compile States Transitions Time to minimise States Transitions

GSM small 0m 0.931s 211 398 0m 4.193s 105 197

GSM full 0m 8.186s 964 1778 0m 54.690s 137 253
Table 4. Mihda at work

The second line gives the figures on a version of the GSM protocol that models
the MobileSwitching and MobileStation modules in a more realistic way. Indeed,
the ’full’ version exploits a protocol for establishing whether or not the car is
crossing the boundary of a cell and entering the other cell.

The results are obtained by running Mihda on a machine equipped with
an AMD AthlonTMXP 1800+ dual processor with 1Giga RAM. The time for
minimising the automata is very contained. The results on the GSM seem very
promising. Indeed, the size of the minimal automata in terms of states and
transitions is sensibly smaller than their non-minimised version. In the case
of GSM small the size of the minimal automaton is the half or the automaton
obtained by compiling the original specification; while, in version GSM full, states
and transitions are reduced of a factor 8.

6 Conclusions

This paper has provided an overview of a foundational model for the finite
state verification of global computing systems and has showed how efficient tool
supports can be derived from it.

In the future we plan to extend the Mihda toolkit with facilities to han-
dle other notions of equivalences (e.g. open bisimilarity) and other foundational
calculi for global computing (e.g. the asynchronous π-calculus, the fusion calcu-
lus). To improve efficiency, it could also be fruitful to incorporate supports for
symbolic approaches based on Binary Decision Diagrams.

References

1. Peter Aczel. Algebras and coalgebras. In Roy Backhouse, Roland Crole and Jeremy
Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of Pro-

gram Construction, volume 2297 of LNCS, chapter 3, pages 79–88. Springer Verlag,
April 2002. Revised Lectures of the Int. Summer School and Workshop.

2. Edmund M. Clarke and Jeanette M. Wing. Formal methods: state of the art and
future directions. ACM Computing Surveys, 28(4):626–643, December 1996.

3. Jean Claude Fernandez. An implementation of an efficient algorithm for bisimula-
tion equivalence. Science of Computer Programming, 13:219–236, 1990.

4. GianLuigi Ferrari, Ugo Montanari, and Marco Pistore. Minimizing transition sys-
tems for name passing calculi: A co-algebraic formulation. In Mogens Nielsen
and Uffe Engberg, editors, FOSSACS 2002, volume LNCS 2303, pages 129–143.
Springer Verlag, 2002.

5. Marcelo Fiore, Gordon G. Plotkin, and Daniele Turi. Abstract syntax and vari-
able binding. In 14th Annual Symposium on Logic in Computer Science. IEEE
Computer Society Press, 1999.

6. Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax
involving binders. In 14th Annual Symposium on Logic in Computer Science. IEEE
Computer Society Press, 1999.

7. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. Bulletin

of the EATCS, 62:222–259, 1996.
8. Paris C. Kanellakis and Scott A. Smolka. Ccs expressions, finite state processes

and three problem of equivalence. Information and Computation, 86(1):272–302,
1990.

9. Robin Milner. Commuticating and Mobile Systems: the π-calculus. Cambridge
University Press, 1999.

10. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I and II. Information and Computation, 100(1):1–40,41–77, September 1992.

11. Ugo Montanari and Marco Pistore. History dependent automata. Technical report,
Computer Science Department, Università di Pisa, 1998. TR-11-98.

12. Ugo Montanari and Marco Pistore. π-calculus, structured coalgebras and minimal
hd-automata. In Mathematical Foundations of Computer Science 2000, volume
1893. Springer, 2000.

13. Fredrik Orava and Joachim Parrow. An algebraic verification of a mobile network.
Formal Aspects of Computing, 4(5):497–543, 1992.

14. Marco Pistore. History dependent automata. PhD thesis, Computer Science De-
partment, Università di Pisa, 1999.

15. Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In Mathematics of Program Construction, 5th

International Conference, MPC2000, volume 1837. Springer, 2000.
16. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes.

Cambridge University Press, 2002.
17. Björn Victor and Faron Moller. The Mobility Workbench — a tool for the π-

calculus. In David Dill, editor, Proceedings of CAV ’94, volume 818 of Lecture

Notes in Computer Science, pages 428–440. Springer-Verlag, 1994.

