
Symbolic Analysis of Crypto-Protocols

based on Modular Exponentiation?

Michele Boreale1 and Maria Grazia Buscemi2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
2 Dipartimento di Informatica, Università di Pisa, Italy.

boreale@dsi.unifi.it, buscemi@di.unipi.it

Abstract. Automatic methods developed so far for analysis of security
protocols only model a limited set of cryptographic primitives (often,
only encryption and concatenation) and abstract from low-level features
of cryptographic algorithms. This paper is an attempt towards closing
this gap. We propose a symbolic technique and a decision method for
analysis of protocols based on modular exponentiation, such as Diffie-
Hellman key exchange. We introduce a protocol description language
along with its semantics. Then, we propose a notion of symbolic execution
and, based on it, a verification method. We prove that the method is
sound and complete with respect to the language semantics.

1 Introduction

During the last decade, a lot of research effort has been directed towards auto-
matic analysis of crypto-protocols. Tools based on finite-state methods (e.g. [13])
take advantage of a well established model-checking technology, and are very ef-
fective at finding bugs. Infinite-state approaches, based on a variety of symbolic
techniques ([2, 3, 8, 14]), have emerged over the past few years. Implementations
of these techniques (e.g. [4, 16]) are still at an early stage. However, symbolic
methods seem to be very promising in two respects. First, at least when the
number of sessions is bounded, they can accomplish a complete exploration of
the protocol’s state space: thus they provide proofs or disproofs of correctness -
under Dolev-Yao-like [11] assumptions - even though the protocol’s state space
is infinite. Second, symbolic methods usually rely on representations of data that
help to control very well state-explosion induced by communications.

The application of automatic methods has mostly been confined to proto-
cols built around ‘black-box’ enciphering and hashing functions. In this paper,
we take a step towards broadening the scope of symbolic techniques, so as to
include a class of low-level cryptographic operations. In particular, building on
the general framework proposed in [5], we devise a complete analysis method
for protocols that depend on modular exponentiation operations, like the Diffie-
Hellman key-exchange [10]. We expect that our methodology may be adapted
to other low-level primitives (like RSA encryption).

? This work has been partially supported by EU within the FET - Global Computing
initiative, projects MIKADO and PROFUNDIS and by MIUR project NAPOLI.

The Diffie-Hellman protocol is intended for exchange of a secret key over
an insecure medium, without prior sharing of any secret. The protocol has two
public parameters: a large prime p and a generator α for the multiplicative group
Z∗

p = {1, . . . , p−1}. Assume A and B want to establish a shared secret key. First,
A generates a random private value nA ∈ Z∗

p and B generates a random private
value nB ∈ Z∗

p . Next, A and B exchange their public values (exp (x, y) denotes
xy mod p):

1. A −→ B : exp (α, nA)
2. B −→ A : exp (α, nB).

Finally, A computes the key as K = exp (exp (α, nB), nA) = exp (α, nA × nB),
and B computes K = exp (exp (α, nA), nB) = exp (α, nA × nB). Now A and B
share K, and A can use it to, say, encrypt a secret datum d and send it to B:

3. A −→ B : {d}K .

The protocol’s security depends on the difficulty of the discrete logarithm prob-
lem: computing y is computationally infeasible if only x and exp (x, y) are known.

When defining a model for low-level protocols of this sort, one is faced with
two conflicting requirements. On one hand, one should be accurate in account-
ing for the operations involved in the protocol (exponentiation, product) and
their ‘relevant’ algebraic laws; even operations that are not explicitly mentioned
in protocols, but that are considered feasible (like taking the kth root modulo
a prime, and division) must be accounted for, because an adversary could in
principle take advantage of them.

On the other hand, one must be careful in keeping the model effectively
analysable. In this respect, recent undecidability results on related problems of
equational unification [12] indicate that some degree of abstraction is unavoid-
able. The limitations of our model are discussed in Section 2. Technically, we
simplify the model by avoiding explicit commutativity laws and by keeping a
free algebra model and ordinary unification. In fact, we ‘promote’ commuta-
tivity to non-determinism. As an example, upon evaluation of the expression
exp (exp (α, n), m), an attacker will non-deterministically produce exp (α, m×n)
or exp (α, n ×m). The intuition is that if there is some action that depends on
these two terms being equal modulo ×-commutativity, then there is an execu-
tion trace of the protocol where this action will take place. This seems reasonable
since we only consider safety properties (i.e., ‘no bad action ever takes place’).

Here is a more precise description of our work. In Section 2, parallelling [5],
we introduce a syntax for expressions (including exp (·, ·) and related operations),
along with a notion of evaluation. Based on this, we present a small protocol
description language akin to the applied pi [1] and its (concrete) semantics. The
latter assumes a Dolev-Yao adversary and is therefore infinitary. In Section 2,
we introduce a finitary symbolic semantics, which relies on a form of narrowing
strategy, and discuss its relationship with the concrete semantics. A verification
method based on the symbolic semantics is presented in Section 4: the main result
is Theorem 2, which asserts the correctness and completeness of the method with
respect to the concrete model. Remarkably, the presence of the modular root

operation plays a crucial role in the completeness proof. Directions for further
research are discussed in Section 5. An extended version of the present paper is
available as [6]. Complete proofs will appear in a forthcoming full version.

Very recent work by Millen and Shmatikov [15] shows how to reduce the
symbolic analysis problem in the presence of modular exponentiation and mul-
tiplication plus encryption to the solution of quadratic Diophantine equations;
decidability, however, remains an open issue. Closely related to our problem
is also protocol analysis in the presence of the xor operation, which has been
recently proven to be decidable by Chevalier et al. [7] and, independently, by
Comon-Lundh and Shmatikov [9].

2 The model

We recall here the concept of frame from [5], and tailor it to the case of modular
exponentiation and multiplication. We consider two countable disjoint sets of
names m, n, . . . ∈ N and variables x, y, . . . ∈ V . The set N is in turn partitioned
into a countable set of local names a, b, . . . ∈ LN and a countable set of en-
vironmental names a, b, . . . ∈ EN : these two sets represent infinite supplies of
fresh basic values (keys, random numbers,. . .) at disposal of processes and of the
(hostile) environment, respectively. It is technically convenient also to consider

a set of marked variables x̂, ŷ, ẑ, . . . ∈ V̂, which will be used as place-holders
for generic messages known to the environment. The set N ∪ V ∪ V̂ is ranged
over by u, v, Given a signature Σ of function symbols f, g, . . ., each coming
with its arity (constants have arity 0), we denote by EΣ the algebra of terms (or

expressions) on N ∪V ∪Σ, given by the grammar: ζ, η ::= u | f(ζ̃), where

ζ̃ is a tuple of terms of the expected length. A term context C[·] is a term with
a hole that can be filled with any ζ, thus yielding an expression C[ζ].

Definition 1 (frame for exponentiation). A frame F is a triple (Σ,M, ↓),
where: Σ is a signature; M ⊆ EΣ is a set of messages M, N, . . .; ↓⊆ EΣ × EΣ
is an evaluation relation. We write ζ ↓ η for (ζ, η) ∈ ↓ and say that ζ evaluates
to η.

Besides shared-key encryption {ζ}η and decryption decη(ζ) (with η used as
the key), the other symbols of Σ represent arithmetic operations modulo a fixed
and public prime number, which is kept implicit: exponentiation exp (ζ, η), root
extraction root (ζ, η), a constant α that represents a public generator and two
constants for multiplicative unit (unit, 1), two distinct symbols for the product
mult(ζ, η) and its result ζ × η, three symbols, inv(ζ), inv′(ζ) and ζ−1, represent-
ing the multiplicative inverse operation. The reason for using different symbols
for the same operation is discussed below. All the underlying operations are
computationally feasible.

Evaluation (↓) is the reflexive and transitive closure of an auxiliary relation
 , as presented in Table 1. There, we use ζ1×ζ2×· · ·×ζn as a shorthand for ζ1×
(ζ2×· · ·×ζn), while (i1, . . . , in) is any permutation of (1, . . . , n). The relation

Table 1. FDH , a frame for modular exponentiation

Signature Σ = { α , unit , 1 , {·}(·) , dec(·)(·) , exp (·, ·) , root (·, ·) ,

· × · , mult(·, ·) , inv(·) , inv′(·) , (·)−1 }

Factors f ::= u | u−1

Products F ::= 1 | f1 × · · · × fk

Keys K, H ::= f | exp (α, F)

Messages M, N ::= F | K | {M}K

(Dec) decη({ζ}η) ζ

(Mult) mult(ζ1 × · · · ζk, ζk+1 × · · · × ζn) ζi1 × · · · × ζin
1 ≤ k < n ≤ l

(Inv1) inv(ζ1 × · · · × ζn) inv′(ζ1)× · · · × inv′(ζn) n ≤ l

(Inv2) inv′(ζ−1) ζ (Inv3) inv′(ζ) ζ−1 (Inv4) inv′(ζ)× ζ unit

(Unit1) unit× ζ ζ (Unit2) unit 1

(Exp) exp (exp (ξ, η), ζ) exp (ξ, mult(η, ζ))

(Root) root (exp (ξ, η), ζ) exp (ξ, mult(η, inv(ζ)))

(Ctx)
ζ ζ′

C[ζ] C[ζ′]
Evaluation ζ ↓ η iff ζ ∗η

is terminating, but not confluent. In fact, the non-determinism of is intended
to model the commutativity and the associativity of the product operation, as
reflected in the rule (Mult). Also note rule (Root): in modular arithmetic, taking
the kth root amounts to raising to the (k−1 mod p− 1)th power. The adoption

of distinct symbols for product (mult and ×), inverse (inv, inv′ and ()
−1

), and
unit (unit and 1), along with the rules, ensure termination of both and the
induced narrowing relation, introduced in Sec. 3.

The choice of the above message and rule formats corresponds to imposing
the following restrictions on the attacker and on the honest participants: (1)
there is a fixed upper bound (l) on the number of factors; (2) product and in-
verse operations cannot be applied to exponentials and to encrypted terms; (3)
exponentiation starts from the basis α, and exponents can only be products.
More accurately, starting from a term obeying the above conditions, an attacker
is capable of ‘deducing’ all - though not necessarily only - AC variants of the
message represented by the term, in a sense made precise below. Terms not obey-
ing the conditions are just not guaranteed to produce any message. Restriction
(1) might be relaxed at the cost of introducing a class of operations multl, for
each l ≥ 0, but for simplicity we shall stick to the above model in this paper.

The deduction relation below expresses how the environment can generate
new messages starting from an initial set of messages S. Note that environmental

names and marked variables are treated as terms known to the environment.
Pf (X) denotes the set of finite subsets of X .

Definition 2 (deduction relation). For S ⊆ M, the set H(S) is inductively
defined by the following rules:

H0(S) = S ∪ EN ∪ V̂ ; Hi+1(S) = Hi(S) ∪ {f(ζ̃) : f ∈ Σ, ζ̃ ⊆ Hi(S) };
H(S) =

⋃
i≥0

Hi(S).

The deduction relation ` ⊆ Pf (M)×M is defined as: S ` M if and only
if there exists ζ ∈ H(S) such that ζ ↓M.

For instance, let S = { nA, exp (α, nB) }. Then, S ` exp (α, nA × nB) and
S ` exp (α, nB × nA). As another example, let S = { {m}exp (α,k×l), exp (α, k ×
h), h, l }. Then, S ` m since there exists ζ ∈ H(S), ζ = decη({m}exp (α,k×l)),
with η = exp (root (exp (α, k × h), h), l), s.t. ζ ↓ m.

We now present a calculus which is a variant of the applied pi [1]. We consider
a set L of labels which is ranged over by a, b, . . . and assume a unique public
channel; thus input and output labels (a, b, . . .) are simply ‘tags’ attached to
process actions for ease of reference. The syntax of agents is as follows:

A, B ::= 0 | a(x). A | a〈ζ〉. A | let x= ζ in A | [ζ = η]A | A || B | (new a)A.

The occurrences of variable x are bound in input and let operators. Notions
of free variables (v(A) ⊆ V), substitution ([ζ/u]), and α-equivalence arise as
expected. We denote by v(A) the set of free variables of A. An agent A is a
process if v(A) = ∅; P, Q, . . . range over the set of processes P .

Example 1 (the Diffie-Hellman key exchange). The process P below is a formal-
isation of a one-session version of the Diffie-Hellman protocol:

A = (new nA) a1〈exp (α, nA)〉. a2(x). let z = exp (x, nA) in a3〈{d}z〉.0

B = (new nB) b1(y). b2〈exp (α, nB)〉. let w = exp (y, nB) in b3(t). let t′ = decw(t) in B′

P = A || B.

Here B′ is a continuation of B after the reception of the encrypted datum d.

The states of a protocol model are pairs 〈s, P 〉, where s records the current
environment’s knowledge and P is a process term. An action is a term of the form
a〈M〉 (input action) or a〈M〉 (output action), for a a label and M a message. The
set of actions Act is ranged over by α, β, . . ., while the set of strings of actions
Act∗ is ranged over by s, s′, String concatenation is written ‘·’ . act(s) and
msg(s) are the sets of actions and messages, respectively, appearing in s, and
s ` M stands for msg(s) ` M .

We define traces, that is, sequences of actions that may result from the inter-
action between a process and its environment. In traces, each message received
by a process (input message) can be synthesised from the knowledge the envi-
ronment has previously acquired.

Definition 3 (traces and configurations). A trace is a string s ∈ Act∗ such
that ∀s1, s2 and a〈M〉, if s = s1 ·a〈M〉·s2 then s1 ` M . A configuration, written
as 〈s, P 〉, is a pair composed by a ground trace s and a process P . A configuration
is initial if en(s, P) = ∅. Configurations are ranged over by C, C ′, · · · .

The semantics of the calculus is given in terms of a transition relation, which
is also referred to as ‘concrete’ (as opposed to the ‘symbolic’ one discussed in the
next section). Given the evaluation relation (↓), the concrete transition relation
−→ is standard. Hence, here we just present the two most relevant transition
rules and refer the reader to [5] for a complete treatment.

(Inp) 〈s, a(x). P 〉 −→ 〈s · a〈M〉, P [M/x]〉 s ` M

(Out) 〈s, a〈ζ〉. P 〉 −→ 〈s · a〈M〉, P 〉 ζ ↓M

Rule (Inp) makes the transition relation infinitely-branching, as M ranges over
the infinite set {M : s ` M}. Rule (Out) allows to lift the non-determinism of
to processes; this is used to render commutativity and associativity of product.

The security properties that can be formalised within our model are corre-
spondence assertions of the kind ‘for every generated trace, whenever action β
occurs in the trace, then action α must have occurred at some previous point in
the trace’. These correspondence assertions are defined below.

Given a configuration 〈s, P 〉 and a trace s′, we say that 〈s, P 〉 generates
s′, written 〈s, P 〉 ↘ s′, if 〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′. A substitution θ
maps variables to messages; we let ρ range over ground substitutions.

Definition 4 (properties and satisfaction relation). Let α and β be actions
and s be a trace. We say that α occurs prior to β in s if whenever s = s′ · β · s′′

then α ∈ act(s′). For v(α) ⊆ v(β), we write s |= α ←↩ β, and say s satisfies
α ←↩ β, if for each ground substitution ρ it holds that αρ occurs prior to βρ in
s. We say that a configuration C satisfies α ←↩ β, and write C |= α ←↩ β, if all
traces generated by C satisfy α←↩ β.

Assertions α ←↩ β can express interesting authentication and secrecy prop-
erties. We set secrecy in the style of [2] within our framework by assuming a
conventional ‘absurd’ action ⊥ that it is nowhere used in agent expressions.
Thus, ⊥ ←↩ α means that action α should never take place.

Example 2 (Diffie-Hellman, continued). The property that the protocol P in
Example 1 should not leak the datum d can be expressed also by saying that
the adversary will never be capable of synthesising d, without prior knowledge
of it. This can be formalised by extending P with a ‘guardian’ process g(t).0
that at any time can pick up one message from the network and then stop:
S = P || g(t).0. Then we check whether this guardian can ever pick d from the
network, i.e. whether CDH = 〈ε, S〉 |= Secret(d), with Secret(d) = ⊥ ←↩ g〈d〉
and ε being the empty trace.

3 Symbolic Semantics

We equip the frame FDH with a symbolic evaluation relation (↓s), which is in
agreement with its concrete counterpart (↓). Intuitively, ζ ↓θ η means that ζ
evaluates to η under all instances ρ of θ. The main advantage of the symbolic
evaluation relation with respect to the concrete one is that infinitely many pairs
(ζ, η) such that ζ ↓ η can be represented as a single judgement ζ0 ↓θ η0, for
appropriate ζ0, θ, η0. The symbolic evaluation relation ↓s of FDH is presented

in Table 2: it is defined as the reflexive and transitive closure of the relation
θ
 s.

Table 2. Symbolic Evaluation Relation (↓s) for FDH

(Dec
S
) decη(ζ)

θ
 s x1 θ θ = mgu(ζ = {x1}x2

, η = x2)

(Mult
S
) mult(ζ1, ζn)

θ
 s (xi1 × · · · × xin

) θ

{ 1 ≤ k < n ≤ l,

θ = mgu(ζ1 = x1 × · · · × xk,
ζ2 = xk+1 × · · · × xn)

(Inv1
S
) inv(ζ)

θ
 s (inv′(xi1)× · · · × inv′(xin

)) θ
{ 1 ≤ n ≤ l,

θ = mgu(ζ = x1 × · · · × xn)

(Inv2
S
) inv′(ζ)

θ
 s x1 θ θ = mgu(ζ, x1

−1)

(Inv3
S
) inv′(ζ)

ε
 s ζ−1 (Inv4

S
) inv′(ζ)× η

θ
 s unit θ = mgu(ζ, η)

(Unit1
S
) unit× ζ

ε
 s ζ (Unit2

S
) unit

ε
 s 1

(Exp1
S
) exp (x, ζ)

θ
 s exp (α, mult(x1, ζ)) θ = [exp (α, x1)/x]

(Exp2
S
) exp (exp (ξ, η), ζ)

ε
 s exp (ξ, mult(η, ζ))

(Root1
S
) root (x, ζ)

θ
 s exp (α, mult(x1, inv(ζ))) θ = [exp (α, x1)/x]

(Root2
S
) root (exp (ξ, η), ζ)

ε
 s exp (ξ, mult(η, inv(ζ)))

(Ctx
S
)

ζ
θ
 s ζ′

C[ζ]
θ
 s Cθ[ζ′]

Symbolic Eval.: ζ ↓θ η iff ζ
θ1
 s · · ·

θn

 s η and θ = θ1 · · · θn

Variables x1, · · · , xn are chosen fresh according to some arbitrary but fixed rule.

Lemma 1.
θ
 s is image-finite and terminating. Hence, ↓s is image-finite.

Definition 5 (symbolic traces and configurations). A symbolic trace is a
string s ∈ Act∗ s.t.: (a) en(s) = ∅, and (b) for each s1, s2, α and x, if s = s1 ·α·s2

and x ∈ v(α)− v(s1) then α is an input action. Symbolic traces are ranged over
by σ, σ′, A symbolic configuration, written 〈σ, A〉

S
, is a pair composed by a

symbolic trace σ and an agent A, such that en(A) = ∅ and v(A) ⊆ v(σ).

The symbolic semantics is given in terms of a symbolic transition relation
−→

S
which is standard (see [5]), once the symbolic evaluation relation (↓s) has

been defined. Here we simply present the symbolic versions of the input and
output rules for comparison with their concrete counterparts:

(Inp
S
) 〈σ, a(x). A〉

S
−→

S
〈σ · a〈x〉, A〉

S

(Out
S
) 〈σ, a〈ζ〉. A〉

S
−→

S
〈σθ · a〈M〉, Aθ〉

S
ζ ↓θ M

In rule (Inp
S
), input variables are not instantiated immediately. Rather, the input

message is represented as a free variable and constraints on this variable are
added as soon as they are needed, and recorded via mgu’s. This may occur
due to rule (Out

S
). For example, let P = a〈k〉. a(x). let z = root (x, k) in P ′. After

an output action and an input action, the symbolical evaluation of root (x, k)
produces a global substitution θ = [exp (α, x1)/x] (x1 fresh), to be applied to

the whole configuration, and a local substitution θ′ = [exp (α, x1 × k−1)/z]. I.e.,
〈ε, P 〉

S
−→∗

S
〈σθ, P ′θθ′〉

S
, with σ = a〈k〉 · a〈x〉.

Whenever 〈σ, A〉
S
−→∗

S
〈σ′, A′〉

S
for some A′, we say that 〈σ, A〉

S
sym-

bolically generates σ′, and write 〈σ, A〉
S
↘

S
σ′. The relation −→

S
is finitely-

branching since ↓s is. Hence, each configuration generates a finite number of
symbolic traces. It is important to stress that many symbolic traces are in fact
nonsense – sequences of actions that cannot be instantiated to any concrete
trace. For instance, let P = a(y). letx = deck(y) in a〈x〉.0. The initial configura-
tion 〈ε, P 〉

S
symbolically generates a〈{x0}k〉 · a〈x0〉, which is inconsistent, as the

environment cannot generate the value k in {x0}k (i.e. ε 6 ` k). The problem of
detecting these inconsistent traces, that might give rise to ‘false positives’ when
checking protocol properties, will be faced in the next section.

The next theorem establishes a correspondence between the concrete and
the symbolic transition relations. It relies on the notion of consistency, defined
below. Recall that marked variables are intended to carry messages known by
the environment. We denote by σ\x̂ the longest prefix of σ not containing x̂.

Definition 6 (consistency). Let σ ∈ Act∗ and ρ be a ground substitution. We
say that ρ satisfies σ if σρ is a ground trace and, for each x̂ ∈ v(σ), it holds that
(σ\x̂)ρ ` ρ(x̂). In this case σρ is a solution of σ and σ is consistent.

Theorem 1 (concrete vs. symbolic semantics). C be an initial configura-
tion and s be a ground trace. Then C ↘ s if and only if there exists σ such that
C ↘

S
σ and s is a solution of σ.

4 A Verification Method

A crucial point of the method we present is checking consistency of symbolic
traces. Remark that a symbolic trace σ needs not have solutions (ground in-
stances that are traces). The next result allows us to check consistency.

Proposition 1. Let σ be a symbolic trace. Then there exists a finite set of
traces Refinement(σ), which are instances of σ and have the following prop-
erty: for any s, s is a solution of σ if and only if s is a solution of some
σ′ ∈ Refinement(σ).

Proposition 1 implies that σ is consistent if and only if Refinement(σ) 6= ∅.
Roughly, the set Refinement(σ) is computed by repeatedly unifying each input
message in σ to terms that can be synthetized out of previous messages in σ.
We refer to [5] for details; here we just give an example. Let σ′ = c〈h〉 · c〈x〉 ·
c〈exp (α, k×h)〉 · c〈{m}exp (α,k×x)〉 · c〈m〉. Clearly, σ′ is consistent: e.g., map x to
h. And, indeed, Refinement(σ′) = {σ′′} where σ′′ = σ′[x̂/x]. It is notable that
the root extraction operation, though not mentioned in σ′′, is essential to prove
that σ′′ is a trace. In fact, the environment is capable of learning m only by
computing the key of the encrypted message as exp (root (exp (α, k × h), h), x̂).

The verification method M(C, α←↩ β) below checks whether C |= α ←↩ β or
not. Moreover, if the property is not satisfied, M(C, α←↩ β) computes a trace
violating the property, that is, an attack on C.

M(C, α←↩ β)
1. compute ModC = {σ | C ↘

S
σ};

2. foreach σ ∈ModC do

3. foreach action γ in σ do

4. if ∃ θ = mgu(β, γ) and ∃ σ′ ∈ Refinement(σθ) where

5. σ′ = σθθ′
and αθθ′ does not occur prior to βθθ′ in σ′

6. then return(No, σ′);
7. return(Yes);

To understand how the method works, consider the simple case α = ⊥, i.e. the
verification of C |= ⊥←↩ β. This means verifying that in the concrete semantics,
no instance of action β is ever executed starting from C. By Theorem 1, this
amounts to checking that for each σ symbolically generated by C, no solution of
σ contains an instance of β. First, one checks whether there is a mgu θ of γ and
β, for every γ in σ. If, for every σ, such a θ does not exist or if it exists but σθ is
not consistent (check at step 4), then the property holds true, otherwise it does
not, and the trace σ′ violating the property is reported.

Theorem 2 (correctness and completeness). Let C be an initial configura-
tion and α and β be actions with v(α) ⊆ v(β). (1) If M(C, α←↩ β) returns
(No, σ′) then C 6|= α ←↩ β. In particular, for any injective ground substi-
tution ρ : v(σ′) → EN , C ↘ σ′ρ and σ′ρ 6|= α←↩ β. (2) If C 6|= α ←↩ β
then M(C, α←↩ β) returns (No, σ′) and for any injective ground substitution
ρ : v(σ′)→ EN , C ↘ σ′ρ and σ′ρ 6|= α←↩ β.

The method has been applied to analyse the Diffie-Hellman protocol and it
has detected the usual man-in-the-middle attack (see [6]).

5 Conclusions and future work

We have presented a model and a method for the analysis of protocols built
around shared-key encryption and modular exponentiation. We are confident
that our approach smoothly carries over when including other common enci-
phering, signing and hashing primitives. We also believe the method is effective

in practice, because the symbolic model is compact, and the refinement proce-
dure at its heart is only invoked on demand and on single symbolic traces. We
are in the process of integrating our technique into the STA analysis tool ([4]).

Our technical development has been confined to multiplication and expo-
nentiation, but the methodology presented suggests directions for extensions to
other low-level primitives.

Acknowledgements. We thank the anonymous referees for helpful comments.

References

1. M. Abadi, C. Fournet. Mobile Values, New Names, and Secure Communication. In
Conf. Rec. of POPL’01, 2001.

2. R.M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocols.
In Proc. of Concur’00, LNCS 1877, Springer-Verlag, 2000. Full version: RR 3915,
INRIA Sophia Antipolis.

3. M. Boreale. Symbolic Trace Analysis of Cryptographic Protocols. In Proc. of

ICALP’01, LNCS 2076, Springer-Verlag, 2001.
4. M. Boreale, M. Buscemi. Experimenting with STA, a Tool for Automatic Analysis

of Security Protocols. In Proc. of SAC’02, ACM Press, 2002.
5. M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protocol.

In Proc. of CONCUR ’02, LNCS 2421. Springer-Verlag, 2002.
6. M. Boreale and M. Buscemi. On the Symbolic Analysis of Low-Level Cryptographic

Primitives: Modular Exponentiation and the Diffie-Hellman Protocol. To appear
in Proc. of FCS’03, 2003.

7. Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision
Procedure for Protocol Insecurity with Xor. In Proc. of LICS ’03, IEEE Computer
Society Press, 2003.

8. H. Comon, V. Cortier, J. Mitchell. Tree automata with one memory, set constraints
and ping-pong protocols. In Proc. of ICALP’01, LNCS 2076, Springer-Verlag, 2001.

9. H. Comon-Lundh and V. Shmatikov. Intruder Deductions, Constraint Solving and
Insecurity Decision in Presence of Exclusive or. In Proc. LICS ’03, IEEE Computer
Society Press, 2003.

10. W. Diffie, M. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, 22(6):644-654, 1976.
11. D. Dolev, A. Yao. On the security of public-key protocols. IEEE Transactions on

Information Theory, 29(2):198-208, 1983.
12. D. Kapur, P. Narendran, and L. Wang. An E-unification Algorithm for Analyzing

Protocols that Use Modular Exponentiation. In Proc. of RTA ’03, LNCS 2706,
Springer-Verlag, 2003.

13. G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In Proc. of TACAS’96, LNCS 1055, Springer-Verlag, 1996.

14. J. Millen, V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. of 8th ACM Conference on Computer and Communication

Security, ACM Press, 2001.
15. J. Millen and V. Shmatikov. Symbolic Protocol Analysis with Products and Diffie-

Hellman Exponentiation. In Proc. of 16th IEEE Computer Security Foundations

Workshop, IEEE Computer Society Press, 2003.
16. V. Vanackère. The TRUST Protocol Analyser, Automatic and Efficient Verification

of Cryptographic Protocols. In Proc. of Verify ’02, 2002.

