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Abstract. This paper presents history-dependent scheduling, a new tech-
nique for reducing the search space in the verification of cryptographic
protocols. This technique allows the detection of some “non-minimal” in-
terleavings during a depth-first search, and was implemented in TRUST,
our cryptographic protocol verifier. We give some experimental results
showing that our method can greatly increase the efficiency of the veri-
fication procedure.

1 Introduction

In recent years, several symbolic reduction systems have been introduced, that
aim at the analysis of security protocols. Some examples of this approach include
[7, 1, 4]. These symbolic methods have an advantage over more traditional model-
checking approaches in that they allow for the exploration and verification of
an otherwise infinite-branching system, making it possible to perform an exact
analysis for systems with a finite number of cryptographic processes.

However, the same problem remains as in most other model-checking tech-
niques: as the number of parallel processes goes up, the number of possible
interleavings makes the verification task harder – if not impossible in practice –
because of the state-space explosion problem.

In this paper we present history-dependent scheduling, a new reduction tech-
nique that has been developed to be used in TRUST [10, 11], our cryptographic
protocol verifier. This technique allows, in a depth-first search setting, the detec-
tion of some redundant – “non-minimal” – interleavings, and is also well-suited
to symbolic transition systems, where few transitions actually commute and the
usual reduction methods such as those of [6] do not apply.

The paper is organised as follows. After the presentation of our formal model,
we will give an intuitive overview of our reduction procedure. This procedure will
then be formally described and proved in the next two sections. The paper will
end with some experimental results and concluding remarks.



2 Model

Our full model is presented in details in [2], and we will therefore only give a
short version here.

We work under the usual Dolev-Yao model [5], where the network is under full
control of an adversary that can analyse all messages exchanged and synthetize
new ones. In our setting, messages can be viewed as terms in a free algebra –
we work under the perfect encryption assumption – and we distinguish between
basic names (agent’s names, nonces, keys, . . . ) and composed messages (pairs
< , > and encrypted terms E( , )), with the restriction that only basic names
may be used as encryption keys. The set of names is denoted by N and the full
set of messages by M.

2.1 The Intruder’s Knowledge

Given a set of terms T , we will denote the set of terms that the intruder may de-
rive by µ(T ). We assume a (computable) relation D ⊆ N ×N with the following
interpretation:

(C,C ′) ∈ D iff messages encrypted with C can be decrypted with C ′.

We define Inv(C) = {C ′ | (C,C ′) ∈ D}. Further hypotheses on the properties
of D allow to model hashing, symmetric, and public keys. In particular: (i) for
a hashing key C, Inv(C) = ∅, (ii) for a symmetric key C, Inv(C) = {C}, and
(iii) for a public key C there is another key C ′ such that Inv(C) = {C ′} and
Inv(C ′) = {C}.

Given a set of terms T we define the S (synthesis) and A (analysis) operators
as follows:

– S(T ) is the least set that contains T and such that:

t1, t2 ∈ S(T ) ⇒ 〈t1, t2〉 ∈ S(T )
t1 ∈ S(T ), t2 ∈ T ∩N ⇒ E(t1, t2) ∈ S(T ) .

– A(T ) is the least set that contains T and such that:

〈t1, t2〉 ∈ A(T ) ⇒ ti ∈ A(T ), i = 1, 2
E(t1, t2) ∈ A(T ), A(T ) ∩ Inv(t2) 6= ∅ ⇒ t1 ∈ A(T ) .

As an example, if T =
{
E(〈A,B〉,K),K−1

}
then A(T ) = T ∪ {A,B, 〈A,B〉}

and we have E(A,K−1) ∈ S(A(T )).
With the above definitions, the knowledge that the intruder may derive from

T is µ(T ) = S(A(T )). It should be noticed that the knowledge µ(T ) is infinite
whenever T is non-empty, and that it increases monotonically with T .



2.2 Processes and Configurations: Semantics

In our framework, a protocol is modelled as a finite number of processes interact-
ing with an environment. Our process syntax includes the parallel composition
– commutative and associative – of two processes, and thus we define a con-
figuration k as a couple (P, T ) where P is a process and T is an environment;
the environment is a set of terms, composed of the initial knowledge augmented
with all the messages emitted by the participants of the protocol so far. In the
following, the adversary knowledge in a configuration k ≡ (P, T ) will be denoted
by µ(k) = µ(T ).

Figure 1 gives the semantic rules as a reduction system on configurations.
Informally, a process can either:

– (!) Write a message: the term is added to the environment knowledge.
– (?) Read some message from the environment: this can be any message the

adversary is able to build from its current knowledge.
– (d) Decrypt some (encrypted) term with a corresponding inverse key.
– (pl) Perform some unpairing (the symmetric rule (pr) is not written).
– (m1,m2) Test for the equality/inequality of two messages.
– (a) Check if some assertion ϕ holds in the current configuration.

(!) (!t.P | P ′, T ) → (P | P ′, T ∪ {t}) if t ∈M
(?) (?x.P | P ′, T ) → ([t/x]P | P ′, T ) if t ∈ µ(T )
(d) (x← dec(E(t, C), C′).P | P ′, T ) → ([t/x]P | P ′, T ) if C′ ∈ Inv(C), t ∈M
(pl) (x← projl(〈t, t′〉).P | P ′, T ) → ([t/x]P | P ′, T ) if t, t′ ∈M

(a) (assert(ϕ).P | P ′, T ) →


(P | P ′, T )
err if 6|=T ϕ

(m1) ([t = t]P1, P2 | P ′, T ) → (P1 | P ′, T ) if t ∈M
(m2) ([t = t′]P1, P2 | P ′, T ) → (P2 | P ′, T ) if t 6= t′, t, t′ ∈M

Fig. 1. Reduction on configurations

Missing from the figure is the terminated process, denoted by 0, as well as the
syntax of the assertion language, that will be presented in the next section. err
denotes a special configuration that can only be reached from a false assertion.

In our model, a correct protocol is a protocol that cannot reach the err con-
figuration – or, put in other words, a protocol such that all assertions reachable
from the initial configuration of the system hold.

This reachability problem was shown to be NP-complete [2, 9].

2.3 The Assertion Language

The full assertion language we consider is the following:

ϕ ::= true || false || t = t′ || t 6= t′ || known(t) || secret(t) || ϕ1 ∧ ϕ2 || ϕ1 ∨ ϕ2



This is equivalent to saying that we consider arbitrary boolean combinations
of atomic formulas checking the equality of two messages (t = t′) and the secrecy
of a message (secret(t)) with respect to the current knowledge of the adversary.
As shown in [2], this language allows to easily express authentication properties
such as aliveness and agreement [8]. An actual example of a specification using
this assertion language is given in Appendix A.

The valuation of an assertion formula in an environment T is the “intuitive”
one: for example, we have |=T secret(t) iff t 6∈ µ(T ). The only property on
assertions that is used in this paper is the fact that the truth value of an assertion
in an environment T depends only on the knowledge µ(T ).

2.4 Symbolic Reduction and Challenges for Practical Verification

The main difficulty in the verification task is the fact that the input rule is
infinitely branching as soon as the environment is not empty. In [1, 2] it was
shown that it is possible to solve this problem by using a symbolic reduc-
tion system that stores the constraints in a symbolic shape during the exe-
cution. As an example, the input rule (?x.P, T )→ ([t/x]P, T ), t ∈ µ(T ) becomes
(?x.P, T, E) → (P, T, (E ; x : T )). The complete description of the symbolic re-
duction system can be found in [2]. The main property we rely on is the fact that
the symbolic reduction system is in lockstep with the ground one and provides a
– sound and complete – decision procedure for processes specified using the full
assertion language described in Sect. 2.3.

Although the symbolic reduction system is satisfying from a theoretical point
of view, an inherent limitation is that it does not handle iterated processes (as
the general case for iterated processes is undecidable). Thus, in order to verify a
protocol against replay attacks and/or parallel sessions attacks, it is important
to handle cases where there is a finite – even if small – number of participants
playing each role.

Of course, as the number of parallel threads goes up, the number of possible
interleavings make the verification task harder – if not impossible in practice
– because we face the classical state explosion problem. Usual model-checking
techniques to handle this problem involve the use of partial-order reduction [6],
but unfortunately the symbolic reduction system doesn’t lend itself very well to
this approach, as different sequences of symbolic transitions will usually not lead
to the same symbolic state.

We will tackle this problem by using a different approach: the basic idea
is that by monitoring the inputs/outputs of the processes, we will be able to
explore only some “complete” set of “interesting” interleavings. Due to the rel-
ative complexity of our reduction procedure, we will start by giving an intuitive
overview in the next section.

3 A Scheduler for Cryptographic Processes

This section provides the intuition behind our reduction procedure. First, we
recall the most important facts about our system:



– We consider a parallel composition of n processes.
– Processes can only interact through the environment.
– Each reduction step occurs only on one process, and its effect only depends

on the environment knowledge.
– The environment knowledge can only increase along the reduction.

We will tackle our verification problem by using the following point of view:

– To each process of the parallel composition is associated a unique “nice level”
(in the following, we will, without loss of generality, assume that the nice
level of a process is its number in the parallel composition).

– The verification procedure is performed by a scheduler which is in charge,
at each step of the reduction, of choosing the next process to be reduced,
based on information on the past of the reduction. The scheduler may also
choose to stop the exploration of the current branch.

This scheduler is similar to the one in a usual operating system, in the sense
that it makes use of information on the past to make his decisions; the analogy
stops here because our verification scheduler does not aim at achieving fairness
or latency, but only at completeness. Moreover, it is also non-deterministic and
has the possibility to sequentially explore several branches starting from the
same configuration. Obviously, if we take as a scheduler the one exploring all
possible branches at each step of the reduction, our description is just another
name for a depth-first search (but, of course, we will try to be more clever...).

Our reduction procedure can now be (informally) illustrated as a scheduler
that does the following:

Eager reduction: If the scheduler has selected some process for reduction, then
this process may as well remain selected until it modifies the environment
knowledge, else the reduction done on this process would not be able to affect
the possible reductions of the other processes. From now on, we will call
“eager step of reduction” any succession of reductions on the same process
where the last step strictly increases the environment knowledge, and we will
assume that the scheduler only performs eager steps of reduction.

Minimal traces: Whenever the scheduler stops reducing some process and
then, later, decides to resume the reduction of this process, it will expect
that the new eager step of reduction:
1. could not have happened at the time the reduction on this process was

stopped (“no late work” clause);
2. could not have happened before the reduction of another process with a

higher nice level (“priority” clause).
If any of those 2 conditions does not hold, the scheduler will simply stop the
exploration of the current reduction.

We will now focus at formally defining and proving this reduction procedure.
Section 4 will focus on the eager reduction procedure (this notion was already
briefly described in [10]). Then, in Sect. 5 we will introduce a notion of minimal
traces and give some criterions allowing the detection of non-minimal traces.



4 Eager Reduction

This section focuses on the description of the eager reduction procedure, that
will be proven correct and complete w.r.t. the original reduction system.

In the following, we study the reduction of a configuration (P1 | . . . | Pm, T ),
denoted by (ΠPi, T ). We will not allow the rewrite of P | Q as Q | P , and
therefore we can define the relation→x as a reduction on the x-th process of the
parallel composition. The variables k, k′, . . . will be used for configurations: we
recall that if k ≡ (ΠPi, T ), then µ(k) is defined as the environment knowledge
in that configuration (µ(k) = µ(T ) = S(A(T ))), and if k = err we set µ(err) = ∅.

Reduction steps that do not modify the environment knowledge will play an
important role in the following, and will be denoted as “silent”:

Definition 4.1 (Silent reduction).
We will note k

τ→k′ iff k → k′ and µ(k′) = µ(k).

The following commutation lemma for silent reductions, whose proof can be
found in Appendix B, plays a crucial role in our reduction procedure:

Lemma 4.1 (Commutation lemma).

If i 6= j,
(1) k

τ→i · →j err⇒ k →j err

(2) k
τ→i · →j k′ 6= err⇒ k →j ·

τ→i k′

A corollary of this lemma is the fact that if we consider a sequence of silent
reductions k

τ→ ∗k′, then we can choose – in the path from k to k′ – any order
to reduce the processes of the parallel composition.

We will now annotate sequences of reductions to include the order in which
the different processes modify the environment knowledge. In the following, we
will write −� as a shortcut for →∗. In a similar way, we will write −�x ≡ (→x)∗

for a sequence of reductions occurring on the process x.

Definition 4.2. We write:

(1) k
τ
−�k′ iff k−�k′ and µ(k′) = µ(k)

(2) k
x
−�k′ iff k

τ
−�· →x ·

τ
−�k′ and µ(k′) 6= µ(k)

(3) k
x1,...,xn−−−−−�k′ iff k

x1−� ·
x2−� · · ·

xn−−�k′

The relation
τ
−� stands for any sequence of silent reductions ;

x
−� means that

the environment knowledge is modified (increased) exactly once, by the process
x, during the reduction. Notation

x1,...,xn−−−−−� is only syntactic sugar: intuitively,
the sequence {x1, . . . , xn} represents the order in which the processes bring new
information to the environment.

Remark 4.1 (An output can hide behind another. . . ).
If k−�k′ then there exists a sequence {x1, . . . , xn} such that k

x1,...,xn−−−−−�k′. It
should be noted that the set of sequences s satisfying k

s
−�k′ is not related to



Mazurkiewicz traces1; as an example, if k = (!A.P1 | !〈A,B〉.P2, {B}) and
k′ = (P1 | P2, {A,B, 〈A,B〉}), both the sequences {1} and {2} satisfy k

s
−�k′

(after the output from either one of the processes, an output from the other one
will not bring any new information to the environment).

Definition 4.3 (Eager reduction).
We define ↪→x, a step of eager reduction on the process x, as:

k ↪→x k′ iff k
τ
−�x· →x k′ and µ(k′) 6= µ(k) .

The eager reduction relation ↪→ is then defined by ↪→=
⋃
x

↪→x .

By extension, we will write k ↪→x1,...,xn
k′ whenever k ↪→x1 · ↪→x2 · · · ↪→xn

k′.

Thus, during a step of eager reduction, we reduce only some process x of the
configuration until it increases the environment knowledge or reaches error: this
formal definition is the one corresponding to rule (1) of our scheduler.

By using Lemma 4.1, we can establish the following theorem on eager reduc-
tion (the proof can be found in Appendix C):

Theorem 4.1.

1. k
x1,...,xn−−−−−�k′ 6= err⇒ k ↪→x1,...,xn ·

τ
−�k′

2. k
x1,...,xn−−−−−�err⇒ k ↪→x1,...,xn err

We can now state the soundness and completeness of the eager reduction:

Theorem 4.2.
k →∗ err iff k ↪→∗ err

Proof. Completeness follows from Theorem 4.1(2): if k−�err, then there exists
{x1, . . . , xn} such that k

x1,...,xn−−−−−�err, and thus k ↪→x1,...,xn err, which means k ↪→∗

err. Soundness comes trivially from ↪→⊆→∗. ut

5 Characteristics and Minimal Traces

In this section we will show how it is possible to avoid the full exploration of all
eager traces by exploiting some information on the past of a trace. It is namely
possible, by monitoring the values taken in input, to detect, at the end of its
execution, that some step of reduction could have occurred earlier in the trace;
by using a suitable order on traces (Definition 5.2), we will show that we can
cut this branch of the search space whenever we detect that the current trace
cannot be a minimal one.

In all this section, we consider an initial configuration k such that k →∗ err
and we will show the existence of a reduction sequence from k to err verifying
some particular properties.
1 We recall that two words/traces are Mazurkiewicz-equivalent iff they can be obtained

by permutations of independent letters/transitions.



5.1 Definitions

Definition 5.1 (Traces and characteristics).
An eager trace from k to k′ is a sequence k ↪→ k1 ↪→ · · · ↪→ k′.
We will denote k ↪→pm k′ whenever k ↪→p · · · ↪→p k′ with m eager steps.
Any eager trace can be uniquely written as:

k ↪→p1
m1 ,...,pn

mn k′ with ∀i pi 6= pi+1 and mi > 0 .

The characteristic of this trace is then defined by the tuple (p1
m1 , . . . , pn

mn).

In the following, we will often write “trace” as a shortcut for “eager trace”.
We now introduce a way to compare the traces characteristics:

Definition 5.2 (Partial order on characteristics).
The relation ≺ is defined as:

(p1
m1 , . . . , pn

mn) ≺ (p′1
m′

1 , . . . , p′n′
m′

n′ )

iff ∃i ∈ {1, . . . ,min(n, n′)}
{
∀j < i (pj ,mj) = (p′j ,m

′
j)

pi < p′i ∨ (pi = p′i ∧mi > m′
i)

Example 5.1. If a < b < c, then (a3, b1, c2) ≺ (a3, c2) ≺ (a3, c1, b7).

The introduction of this particular relation could appear counter-intuitive,
due to condition mi > m′

i. . . The informal explanation is the following: the
purpose of this order is to set as minimal the traces for which stopping the
reduction on some process implies that the next reduction on this process must
necessarily depend on what happened “in-between”. Then, if k ↪→a · ↪→a · ↪→b k′

and k ↪→a · ↪→b · ↪→a k′, the first sequence will have a smaller characteristic
than the second one (and should ideally be favoured by our scheduler).

It should be noted that our relation makes use of an arbitrary order on the
processes – their number – that corresponds in fact to the “nice levels” of our
informal scheduler description.

Lemma 5.1. ≺ is a partial order.

Remark 5.1. In fact, two characteristics are always comparable unless one is the
prefix of the other.

The following lemma will allow us to establish the existence of minimal traces
leading to error:

Lemma 5.2. The set of all characteristics associated to some non-empty set of
traces from the same initial configuration admits some minimal elements.

Proof. Although ≺ is not well founded this property simply holds because there
is only a finite number of possible characteristics for all the traces starting from
a given initial configuration k (namely if W is the total number of output in-
structions contained in k, any eager trace will be at most of length W + 1). ut



Definition 5.3 (Minimal traces).
We consider the set of all characteristics associated to all traces from k to

err: this set admits minimal elements, and any trace from k to err whose char-
acteristic is minimal will be called minimal.

As a consequence, finding criteria for non-minimal traces will allow us to
avoid the full exploration of all traces by the scheduler.

5.2 Criteria for Non-Minimal Traces

In this section, we will develop a characterisation of some non-minimal traces,
based on the observation of the values taken by the input variables of the pro-
cesses. This will require a new notation:

Definition 5.4. Let X be a set of terms. We denote:

(?x.P, T ) ?X→ ([t/x]P, T ) iff t ∈ S(A(T )) ∩X

By extension, we will also denote k
?X
↪→p k′ when all the input values in the

reduction from k to k′ are included in the set X.

The following – crucial – lemma is proven in Appendix D:

Lemma 5.3 (Eager commutation).

If i 6= j, X ⊆ µ(k) and k ↪→i ·
?X
↪→j · ↪→+ err, then k

?X
↪→j · ↪→+ err.

We can now state our fundamental theorem, that gives two sufficient condi-
tions for the non-minimality of a trace:

Theorem 5.1 (Non-minimality). Any trace k1 ↪→p1
m1 · · · ↪→pn

mn err con-
taining a sub-trace of one of the following forms is not minimal (we denote
Xi ≡ µ(ki)):

(1) ki ↪→pi
mi ki+1 · · · ↪→pj

mj ·
?Xi+1
↪→ p k′ 6= err

p = pi, p 6∈ {pi+1, . . . , pj}

(2) ki ↪→pi
mi · · · ↪→pj

mj ·
?Xi
↪→p k′ 6= err

p < pi, p 6∈ {pi, . . . , pj}
Proof.

(1) By iterating Lemma 5.3, we show ki ↪→pi
mi+1 · ↪→+ err. Therefore there

exists some trace of characteristic (p1
m1 , . . . , pi

mi+q, . . .) leading to error,
with q ≥ 1. However, by definition of ≺ we have (p1

m1 , . . . , pi
mi+q, . . .) ≺

(p1
m1 , . . . , pi

mi , . . .), thus the non-minimality of our initial trace.
(2) By iterating Lemma 5.3, we get ki ↪→p · ↪→+ err. If i > 1 and p = pi−1, we

are back to the previous case, else there exists some trace with characteristic
(p1

m1 , . . . , pi−1
mi−1 , pq, . . .) leading to error, with q ≥ 1. As p < pi, we

have (p1
m1 , . . . , pq, . . .) ≺ (p1

m1 , . . . , pi
mi , . . .), and our initial trace is not

minimal.



5.3 Configurations with History

Theorem 5.1 shows that by having the relevant information on the past of the
current trace, our scheduler could easily detect – and discard – non-minimal
traces. We will therefore enrich configurations with a third component, the his-
tory, which will be a list of triple; for each reduction sequence on one process, we
will indeed record the process number, the current environment just at the begin-
ning of the reduction on this process, and the list of all the values that were read
during the sequence. Formally, we write: H = (p0, T0, X0) : · · · : (pn, Tn, Xn),
where each pi is a process number, Ti an environment and Xi a set of terms.

We define a function appendH for updating a history as follows:

Definition 5.5. If H = (p0, T0, X0) : · · · : (pn, Tn, Xn), then:

– if p = pn, appendH(H, p, T,X) = (p0, T0, X0) : · · · : (pn, Tn, Xn ∪X)
– if p 6= pn, appendH(H, p, T,X) = (p0, T0, X0) : · · · : (pn, Tn, Xn) : (p, T, X) .

Reduction rules are then modified to integrate a history:

– the input rule becomes:

(?x.P | P ′, T,H)→i ([t/x]P | P ′, T,H′) if
{

t ∈ S(A(T ))
H′ = appendH(H, i, T, {t})

– for all the other rules, if (P, T )→i (P ′, T ′) then:

(P, T,H)→i (P ′, T ′,H′) if H′ = appendH(H, i, T, ∅) .

Put in other words, each time the scheduler will choose a new process for reduc-
tion, it will start a new section of the history and record the current environment;
this section will then be updated with all the values that are read by this process
during its execution/reduction.

We can now state our final theorem, giving the two conditions that will be
checked, after each eager step, by the scheduler in order to discard non-minimal
traces:

Theorem 5.2 (Non-minimal history). We consider a trace k ↪→+ k′ 6= err
such that the history H(k′) = (p0, T0, X0) : · · · : (pn, Tn, Xn) satisfies one of the
following properties:

(1) ∃i < n.

pi = pn

pn 6∈ {pi+1, . . . , pn−1}
Xn ⊆ µ(Ti+1)

(2) ∃i < n.

pi > pn

pn 6∈ {pi+1, . . . , pn−1}
Xn ⊆ µ(Ti)

Then this trace cannot be the prefix of a minimal one.

Proof. H(k′) verifies either (1) or (2) and therefore the eager reduction to k′ will
verify the corresponding condition from Theorem 5.1. As a consequence, any
trace having the one to k′ as a prefix cannot be a minimal one.



6 Experimental Results

We have implemented our history-based reduction procedure in our verifier,
TRUST. Figure 2 gives some times for the full analysis of some typical pro-
tocols: the measures were taken on an Athlon XP 1800, and all times are in
seconds (the time spent by the verifier is roughly proportional to the number
of basic reduction steps that are done). For each protocol, we detail the num-
ber of roles involved and give the times to do a full search depending on the
number of parallel – interleaved – sessions2. T0 is the time when the usual re-
duction method is applied (i.e. the scheduler reduces each process until it emits
an output); TEager is the time for the eager reduction procedure alone; TMin is
the time without eager reduction, but using the history to detect non-minimal
traces; then TEager+min is the time for the full reduction procedure presented
in this paper. As can be seen in the figure, our reduction method reveals itself
quite effective in practice: sometimes a reduction factor of 60 is gained, and we
did not encounter any case where the added checks (for non-minimality) made
history-dependent scheduling slower.

Protocol # roles # sessions T0 TEager TMin TEager+Min

Needham-Schroeder-Lowe 2 3 50 6.80 1.18 0.59

2 4 ? 2034 99 41

Needham-Schroeder-Lowe3 3 2 277 2.38 1.04 0.16

3 3 ? 963 163 8.46

Otway-Rees 3 2 0.75 0.32 0.28 0.14

3 3 5879 722 497 98

Carlsen 3 2 6.15 4.79 1.29 0.91

3 3 ? ? ? 2272

Kerberos v5 4 2 5.40 4.11 2.31 1.93

Fig. 2. Times for the analysis of various protocols (in seconds).

7 Conclusion

In this paper we have presented history-dependent scheduling, a new reduction
method for cryptographic protocols that is based on the monitoring of the in-
puts/outputs performed by the processes during the reduction. This method
relies on the two following techniques:

2 A question mark instead of the time means that we were not “patient” enough to
wait for the end of the verification procedure.

3 This is the seven-message version of the protocol, making use of 3 key servers in
parallel.



– Eager reduction, that was already presented in [10], is a natural big-step
semantics based on the outputs of the different processes.

– Detection of non-minimal traces, through the use of a history of the current
reduction sequence, allows to stop the exploration of some traces and is based
on very simple criteria on the inputs of the processes.

As far as related work is concerned, our technique seems to share some com-
mon grounds with the one developed independently in [3], in that both methods
somehow aim to reduce the search space by verifying/maintaining additional
constraints on the input values; however, differences between the formalisms
make the comparison a non-trivial task, that we have to leave as a future work.

It should be noted that we have only defined and proved here our method on
the ground reduction system; this method can be adapted in a straightforward
manner to the symbolic system, and the same non-minimality conditions are
then checked at the symbolic level (although we should mention that the proof
of completeness for the symbolic case becomes more complex, due to some slight
differences between the symbolic eager reduction and the ground one).

As practical experiments show, history-dependent scheduling can be quite
effective in practice – and in all our tests never induces any slowdown. We
expect that the ideas behind this method are general enough to be applied to
other verification systems, and also stress the fact that this technique is, by its
nature, especially well suited for verification in a depth-first setting.
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A Specifying Security Properties through Assertions

We take as an example the following 3 message version of the Needham-Schroeder
Public Key protocol:

A→ B : {na,A}Pub(B)

B → A : {na, nb}Pub(A)

A→ B : {nb}Pub(B)

In our framework, the protocol can be modeled as follows:

Init(myid, resp) : fresh na.
!E(〈na,myid〉, Pub(resp)).
?e. 〈na′, nb〉 ← dec(e, Priv(myid)). [na′ = na].
!E(nb, Pub(resp)).
assert(secret(nb) ∧ auth(resp, myid, na, nb)). 0

Resp(myid, init) : ?e. 〈na, a〉 ← dec(e, Priv(myid)). [a = init].
fresh nb.
!auth(myid,init,na,nb) E(〈na, nb〉, Pub(init)).
?e′. [e′ = E(nb, Pub(myid))].
0

The assertion “auth(msg)” is a shortcut for “known(E(msg,Kauth))”, and in-
struction “!auth(msg)t” is some syntactic sugar for “!〈E(msg,Kauth), t〉”. In this
example, the initiator specifies that at the end of its run of the protocol the
nonce nb must be secret, and expects an agreement with some responder on the
nonces na and nb.

B Proof of Lemma 4.1

(1) We have k
τ→i k′ →j err. The reduction on j is a false assertion, and as we

have µ(k) = µ(k′) and as the truth value of an assertion only depends on
the environment knowledge, the same assertion will also evaluate to false in
the configuration k.

(2) We have k1
r1→i k2

r2→j k3 (k1 = k and k3 = k′). The proof is done by
basic case analysis on the rules r1 and r2. . All rules but (?), (a) and (!) do
not depend at all from the environment nor modify, it and thus the result
holds whenever→i 6∈ {(a), (?), (!)} or→j 6∈ {(a), (?), (!)}. Commutation when
r1 = (a) or r2 = (a) is always possible, given the fact that a process may
choose not to evaluate an assertion. There remains only 4 cases:

1. k1
?→i k2

?→j k3

2. k1
!→i k2

!→j k3

3. k1
?→i k2

!→j k3

4. k1
!→i k2

?→j k3



Cases (1), (2) and (3) are straightforward4. Case (4) is the interesting one
(and the one where our eager reduction procedure will take advantage):
namely we can perform the input rule first and then reach k3 after an output
from the process number i, due to the fact that the input rule only depends
on the knowledge µ(k2), which is the same as µ(k1) since k1

τ→i k2. ut

C Proof of Theorem 4.1

We simultaneously prove (1) and (2) by induction on n.

Case (n = 1). We have to establish:
(1) k

x
−�k′ 6= err⇒ k ↪→x ·

τ
−�k′

(2) k
x
−�err⇒ k ↪→x err

Both properties are easily shown by iterating Lemma 4.1 in order to move
all reductions on the process x at the beginning of the reduction sequence.

Case (n > 1). By induction:
(1) k

x1,...,xn−−−−−�k′ implies k
x1,...,xn−1
−−−−−−−�k′′

xn−−�k′ and by induction hypothesis we
know that:

∃kn−1. k ↪→x1,...,xn−1 kn−1
τ
−�k′′ .

Then kn−1
τ
−�k′′

xn−−�k′, which means kn−1

xn−−�k′, and by the result for case
n = 1 we can deduce ∃kn. kn−1 ↪→xn

kn
τ
−�k′.

(2) We have k
x1,...,xn−1
−−−−−−−�k′

xn−−�err and by induction hypothesis:

∃k′′. k ↪→x1,...,xn−1 k′′
τ
−�k′

xn−−�err .

Then k′′
xn−−�err and thus, by the result for case n = 1, k′′ ↪→xn err, which

ends the proof. ut

D Proof of Lemma 5.3

First, we will extend Lemma 4.1 with the two following properties (i 6= j):

(1) If k →i ·
?X→j k′ and X ⊆ µ(k) then k

?X→j · →i k′

(2) If k →i k1
!→j k′ and µ(k1) 6= µ(k′) then ∃k2. k

!→j k2 →i k′ ∧ µ(k) 6= µ(k2)

By iterated application of (1), (2) and Lemma 4.1, we can now move the
reduction steps on the process j at the beginning of the sequence and get:

∃(k′, k′′). k
?X−−�jk

′ !→j k′′−�i· ↪→+ err ∧ µ(k′) 6= µ(k′′) .

As µ(k′) 6= µ(k′′), k
?X−−�jk

′ !→j k′′ implies ∃q ≥ 1. k
?X
↪→jq k′′. On the other

hand, we know by the completeness of eager reduction that k′′ ↪→+ err. Therefore

k
?X
↪→jq · ↪→+ err, which implies k

?X
↪→j · ↪→+ err. ut

4 It should be noted that (3) is “folklore” and used very broadly in the literature; we
can summarize it as: “if we have in a parallel one process doing an input and another
one an output, the output can always be done first without any loss”.


