
Spi Calculus Translated to
π-Calculus Preserving

May-Testing

Michael Baldamus, Joachim Parrow, Björn
Victor

Department of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

Technical report 2003-063
December 2003

ISSN 1404-3203



Spi Calculus Translated to π-Calculus Preserving May-Testing ∗
(Extended Abstract)

Michael Baldamus, Joachim Parrow, Björn Victor
Department of Information Technology, Uppsala University, Sweden

Abstract

We present a concise and natural encoding of the spi-
calculus into the more basic π-calculus and establish its
correctness with respect to a formal notion of testing. This
is particularly relevant for security protocols modelled in
spi since the tests can be viewed as adversaries. The trans-
lation has been implemented in a prototype tool. As a con-
sequence, protocols can be described in the spi calculus and
analysed with the emerging flora of tools already available
for π. The translation also entails a more detailed opera-
tional understanding of spi since high level constructs like
encryption are encoded in a well known lower level. The
formal correctness proof is nontrivial and interesting in its
own; so called context bisimulations and new techniques for
compositionality make the proof simpler and more concise.

1 Introduction

The current proliferation of computer communication
services and technologies is accompanied by an equally
bewildering plethora of different formal description tech-
niques. There are many different families with different
purposes. Some of them, like the π-calculus [13], aim at
a basic formalism with few and low-level primitives, appli-
cable as a springboard for more high-level and specialised
techniques. As an example the spi calculus [1, 3] is de-
veloped as an extension of it with high-level primitives for
among other things encryption and decryption. This makes
the spi calculus especially appropriate to describe authen-
tication protocols and services. It is natural to ask if the
added complexity of the spi calculus is necessary in a for-
mal sense, or if there is a natural encoding in terms of the
more basic π-calculus. The contribution of this paper is
to exhibit such an encoding together with new proof tech-
niques to establish its properties.

∗Work supported by European Union project PROFUNDIS, Contract
No. IST-2001-33100.

Our encoding is surprisingly natural and concise. The
main idea is to represent spi calculus terms as objects with
a number of predefined methods. Encryption corresponds to
creating an object with a special method for decryption; the
object will perform this only when the correct encryption
key is presented. This entails a distributed view of encryp-
tions and avoids a global repository of cleartexts and keys
in the formal model.

The spi calculus is expressively powerful enough to
model not only a large class of authentication protocols but
also a large class of potential adversaries trying to break
them. Thus a formal notion of correctness of a protocol
is that it satisfies tests which themselves are spi calculus
terms. Granted, these tests will not be able to model at-
tacks on the fundamental assumptions (for example that ci-
phertexts can never be decrypted without access to the en-
cryption key and that it is impossible to interfere with the
execution of principals), but they do capture the fact that a
protocol is correct under those assumptions. Our main tech-
nical result of the encoding is that it is faithful to such tests
in a formal sense. Let P be a protocol and E a test, both
formulated in the spi calculus, and let J·K be our encoding
from the spi calculus to the π-calculus. We prove that

P satisfies E iff JP K satisfies JEK.
Thus, analyses carried out on the encodings are relevant
for the original spi calculus descriptions. As expected the
formal proof of this is nontrivial. We develop techniques
based on so called context bisimulations previously defined
in higher-order calculi, and new techniques for composi-
tionality make the proof simpler and more concise. To our
knowledge, no equally complicated term-enriched variant
of the π-calculus has been analysed in this way, with a trans-
lation into π that is formally proved adequate.

One implication of our work is that automated analysis
of spi calculus descriptions can be conducted by first trans-
lating them to the π-calculus. There is today an emerging
flora of automatic tools for the π-calculus, and we have im-
plemented the translation in a prototype that works with
some of these tools. This opens the opportunity to formally
connect the efforts on tools and algorithms related to the

1



calculi. Of course much work remains to determine exactly
what analyses can be performed effectively and where the
translational approach holds advantages.

In the next section we give the formal syntax and seman-
tics of the spi- and π-calculi; the paper is formally self con-
tained although a reader completely unfamiliar with these
calculi will probably have difficulty in appreciating the pa-
per. In Section 3 we present and explain the encoding in
detail, and the following section contains a detailed sketch
of the main technical result. The final section comments on
related and future work.

2 The π- and the Spi-Calculus

In this section we present the syntax and operational se-
mantics of the versions of the π-calculus and spi calculus
used.

2.1 The Polyadic π-Calculus

We assume an infinite enumerable set Nπ of names,
ranged over by a, b, . . .. Names represent communication
channels, and are also the values passed in communication.
π-calculus agents are ranged over by P , Q, R, and are

formed by the following grammar:

P ::= 0 | α.P | P |Q | P +Q

| (ν a)P | [a = b]P | !P

0 is the deadlocked process which can perform no actions.
α.P can perform the action α and continue as P ; P |Q acts
as P and Q in parallel; (ν a)P binds the name a in P and
no process outside P knows about a unless P reveals it by
communication; [a = b]P can proceed as P only if a and b
are the same; !P represents any number of copies of P in
parallel. We write (ν ã)P for (ν a1) · · · (ν ak)P where ã is
the vector a1 · · · ak, k ≥ 0.

Prefixes, ranged over by α, are outputs a〈b̃〉 which send
the vector of names b̃ on the channel a, and inputs a(b̃),
where all names in b̃ are distinct, which receive names on
the channel a and substitute them for b̃ in the prefixed agent.

Names are bound by the ν operator and by the input
prefix. We write bn(P ) and fn(P ) for the bound and free
names of P , respectively. We assume, from now on, that all
bound names are distinct from each other and from all free
names. Also, we identify agents that can be alpha-converted
into each other. The result of substituting a name a for (all
free occurrences of) a name b in an agent P is denoted by
P [b := a], with the expected extension to equal-length vec-
tors ã and b̃ of names, where all names in b̃ are mutually
distinct.

The operational semantics is given in Table 1 (cf. also
[16]), where transition labels, ranged over by µ, are inputs

a(̃b), outputs (ν b̃′) a〈̃b〉 (where b̃′ ⊆ b̃ are extruded by the
output), and the internal action τ .

2.2 The Spi Calculus

The spi calculus is an extension of the π-calculus with
primitives for encryption, decryption and hashcodes, and
pairs and the natural numbers as basic datatypes. Encryp-
tion is assumed to be perfect, i.e., the possibility to break a
cipher by crypto-analysis, chance, or brute force is ignored.
The focus is not on cryptographic algorithms but on proto-
cols using them.

We assume the infinite enumerable sets Nspi, ranged
over by m, n, . . . ; and Vspi, ranged over by x, y, . . . . The
set Nspi represents communication channels and atomic en-
cryption keys, and Vspi represents bound variables to be in-
stantiated by communication.

In the spi calculus, the values sent and received are terms,
ranged over by M , N , K. These are defined by

M ::= n | x name, variable
| 0 | suc(M) zero, successor
| (M,N) pair
| {M}N symmetric encryption
| {|M |}N asymmetric encryption
| M+ | M− private, public key
| hashc(M) hashcode

and the spi calculus agents Aspi, ranged over by P , Q,
R, are defined by

P ::= 0 | α.P | P |Q | (ν n)P

| [M is N ]P | !P

| let (x, y) = M in P (pair splitting)
| case M of 0 : P suc(x) : Q (integer case)
| case M of [x]N in P (decryption)

The first few agent constructions are familiar from the π-
calculus. The let and case constructions are used for pro-
jection: pair splitting binds x and y, which must be distinct,
to the first and second component of M and proceeds as P
(if M is a pair); integer case proceeds as P if M is 0 or
binds x to its predecessor and proceeds as Q (if M is a pos-
itive natural number); decryption binds x and proceeds as
P if M is a term encrypted with a key matching N .

Prefixes in spi calculus are outputs, N〈M〉, which sends
the term M on the channel N , and inputs, N(x), which re-
ceives a term on N and substitutes it for x in the prefixed
agent. Here the term N must evaluate to a name of a com-
munication channel.

Names are bound by the ν operator, while variables are
bound by input prefixes and case constructions. We ex-
tend bn(P ) and fn(P ) as expected, and write fv(P ) for the
free variables of P . We still assume that all bound names

2



P + 0 ≡ P P +Q ≡ Q+ P (P +Q) +R ≡ P + (Q+R)

P | 0 ≡ P P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R)

(ν a) 0 ≡ 0 (ν a)P ≡ P if a 6∈ fn(P ) (ν a) (ν b)P ≡ (ν b) (ν a)P (ν a)(P |Q) ≡ ((ν a)P ) |Q if a 6∈ fn(Q)

P ≡ Q µ−→ Q ≡ P ′

P
µ−→ P ′

a(̃b).P
a(eb)−−→ P a〈̃b〉.P a〈eb〉−−→ P

P
µ−→ P ′

P +Q
µ−→ P ′

P
µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

P
(νeb′) a〈eb〉−−−−−−→ P ′ Q

a(ec)−−→ Q′

P |Q τ−→ (ν b̃′)(P ′ |Q′[c̃ := b̃])

|̃b| = |c̃|
b̃′ ∩ fn(Q) = ∅

P
µ−→ P ′

(ν a)P
µ−→ (ν a)P ′

a 6∈ n(µ)
P

(νeb′) a〈eb〉−−−−−−→ P ′

(ν c)P
(ν c,eb′) a〈eb〉−−−−−−−→ P ′

a 6= c

c ∈ b̃ \ b̃′

P
µ−→ P ′

[a = a]P
µ−→ P ′

P
µ−→ P ′

!P
µ−→ P ′ | !P

bn(µ) ∩ fn(P ) = ∅ P
(ν ec′) a〈eb〉−−−−−−→ P ′1 P

a(ec)−−→ P ′2
!P

τ−→ ((ν b̃′)(P ′1 | P ′2[c̃ := b̃])) | !P
|̃b| = |c̃|
b̃′ ∩ fn(P ) = ∅

Table 1. Structural congruence and SOS clauses for late semantics for π-calculus.

and variables are distinct from each other and from all free
names and variables, and we identify agents that can be
alpha-converted into each other. Substitutions are extended
to terms for variables, P [x̃ := M̃ ].

The operational semantics of the closed agents of our spi
calculus are given by the structural axioms and rules listed
in Table 2 (cf. also [3]).

This semantics is modelled on the one for π-calculus in
Table 1, where transition labels, ranged over by µ, are n(x),
(ν m)n〈M〉 and τ . The only essential new ingredient is
that an auxiliary commitment relation is used, intuitively
representing evaluation of terms.

3 The Translation

The main idea of the translation from the spi calculus to
the π-calculus is to represent spi calculus terms as objects
with a number of predefined methods. Encryption, e.g., cor-
responds to creating an object with a special method for de-
cryption; the object will perform this only when the correct
encryption key is presented.

The main complication turns out to lie in representing
equality. In the spi calculus checking equality of terms is a
primitive operation whereas the π-calculus only has equal-
ity of atomic names. Therefore each term needs a particular
method to determine if another term is equal; such methods
actually make up the bulk of the encoding.

In the translation Nspi and Vspi are both represented
by Nπ . Spi-calculus agents and terms are translated to π-
calculus agents where some names (called reserved names)
are used to signal operations on the encodings of terms.

Let P be a spi-calculus agent containing a spi-calculus
term M . In the translation JP K of P there will then occur,
for some name ` restricted in JP K, the translation JMK` of
M located at `, meaning that other parts of JP K will be able
to access the translation of M by using the link `. Over
this link a challenge-response protocol is used to perform
operations on the term. Three names are passed to the term
encoding in the challenge:

c representing the operation to perform, e.g., id to get the
identity of an encoded name, or match to check for
equality to another term.

m representing a parameter to the operation, e.g., the loca-
tion of the term to compare with in a match operation;

r being the name of the channel to send a response or re-
sult on. The type of response depends on the operation,
e.g., for id the name being encoded is passed over r,
while for match no object is needed – the synchro-
nization on r in itself means the terms did match.

The names of operations are reserved, i.e. we assume
they do not appear anywhere in the source term or agent.
They are described in Table 3. The names private and
public are reserved for the types of asymmetric keys, and
in addition, the reserved name void is used as the parame-
ter m for operations which need no parameter, e.g., the id
operation.

An agent (or term) operating on an encoded term typi-
cally generates a new name for the result channel, in order to
avoid interference from concurrent accesses. For example,
to check whether two terms located at ` and m are equal,
the construction (ν r) `〈match,m, r〉.r().P could be used,
which will continue as P if the terms match.

3



P | 0 ≡ P P |Q ≡ Q | P (P |Q) |R ≡ P | (Q |R)

(ν a) 0 ≡ 0 (ν a)P ≡ P if a 6∈ fn(P ) (ν a) (ν b)P ≡ (ν b) (ν a)P (ν a)(P |Q) ≡ ((ν a)P ) |Q if a 6∈ fn(Q)

[M is M ]P > P
let (x, y) = (M,N) in P > P [(x, y) := (M,N)]
case 0 of 0 : P suc(x) : Q > P
case suc(M) of 0 : P suc(x) : Q > Q[x := M ]

case {M}N of [x]N in P > P [x := M ]

case {|M |}N of [x]N−1 in P > P [x := M ]
N = K+ or N = K− for some K,
where (K−)−1 = K+ and (K+)−1 = K−

P ≡ Q µ−→ Q ≡ P ′

P
µ−→ P ′

P > P ′ P ′
µ−→ P ′′

P
µ−→ P ′′

m(x).P
m(x)−−−→ P

m〈M〉.P m〈M〉−−−−→ P

P
(ν en)m〈M〉−−−−−−−→ P ′ Q

m(x)−−−→ Q′

P |Q τ−→ (ν ñ)(P ′ |Q′[x := M ])
ñ ∩ fn(Q) = ∅

P
µ−→ P ′

P |Q µ−→ P ′ |Q
P

µ−→ P ′

(ν m)P
µ−→ (ν m)P ′

m 6∈ n(µ)
P

(ν en)m〈M〉−−−−−−−→ P ′

(ν k)P
(ν k, en)m〈M〉−−−−−−−−−→ P ′

m 6= k
k 6∈ fn(M) \ n′

P
µ−→ P ′

!P
µ−→ P ′ | !P

bn(µ) ∩ fn(P ) = ∅ P
(ν en)m〈M〉−−−−−−−→ P ′1 P

m(x)−−−→ P ′2
!P

τ−→ ((ν ñ)(P ′1 | P ′2[x := M ])) | !P
ñ ∩ fn(Q) = ∅

Table 2. Structural congruence axioms, commitment axioms and SOS clauses for late semantics for
the spi calculus.

As a shorthand for (ν r) `〈c,m, r〉.P we often write
`〈c,m, ν r〉.P .

The type-orthodox reader may notice that our translation
does not give a proper typing for the response channel r,
which is sometimes nullary and sometimes unary. Types
are out of the scope of this paper, but we believe that intro-
ducing a dummy name as object in the nullary case would
remedy the situation.

In the presentation of the translation, we use π-calculus
abstractions of the form (λx)P (ranged over by F ) and
applications, defined by ((λx)P )(m) = P [x := m];
we write (λm, n)P for (λm) (λn)P and F (m,n) for
F (m)(n). The translation also involves a case analysis on
the terms occurring in the outermost operator of spi agents,
and subterms occurring in terms. Each term (or subterm)
which is not a variable must be recursively translated. (Vari-
ables are represented directly by names, which get substi-
tuted by term locations in inputs.) We write M ⇒ F and
M,N ⇒ F for the translated spi calculus term(s) M (and
N ) being used by the π-calculus abstraction F . This is for-
mally defined as follows, where different cases are obtained
depending on whether the parameter(s) of F be variable(s)
or not.

M ⇒ F =





(ν m)(JMKm | F (m))

if M is not a variable
F (M)

if M is a variable

M,N ⇒ F =





(ν m) (ν n)(JMKm | JNKn | F (m,n))

if M and N are not variables
(ν m)(JMKm | F (m,N))

if N is a variable but not M
(ν n)(F (M,n) | JNKn)

if M is a variable but not N
F (M,N)

if both are variables

This notation will be used both in the following section
which describes the translation of spi-calculus agents, and
the the next which describes the translations of the terms
occurring in agents.

3.1 Translating Agents

The parallel composition, replication, and restriction op-
erators involve no terms, and the translation is homomor-
phic: J(ν n)P K = (ν n)JP K, JP | QK = JP K | JQK, and
J!P K = !JP K.

Outputs and inputs use the original subject name as com-
munication channel, but the communicated objects are links
to encodings of terms.

JM〈N〉.P K = M,N ⇒ (λm, n)m〈id,void, ν r〉.
r(i).
i〈n〉.
JP K

(1)
(2)
(3)
(4)

4



Name Term Description
match all synchronize on r if m matches this term
id names respond with the name n being encoded
zero 0 synchronize on r if 0 is the encoded term
pred suc(n) respond with the location of n
text hashcodes respond with the location of the text hashed
fst pairs respond with the location of the first component
scd pairs – or second component
type asymmetric keys respond with the type of key, private or public
base asymmetric keys respond with the location of k in the key k+ or k−

k match asymmetric keys match k against k′ for k+ and k′−

decrypt ciphertexts if m matches the key used for encryption, respond with the location of plaintext
splain symmetric ciphertexts respond with location of plaintext
skey symmetric ciphertexts respond with location of key
pplain asymmetric ciphertexts respond with location of plaintext
pkey asymmetric ciphertexts respond with location of key

Table 3. Reserved names for operations on translated terms

Notes: On line 1, ask the output subject for its identity;
line 2, wait for a reply (carrying the identity, i.e., the name
encoded); line 3, output the link to the output object, and on
line 4, continue.

For the input prefix, note that the bound variable x in
the spi input is syntactically the same as the name x in the
π-calculus input.

JM(x).P K = M ⇒ (λm)m〈id,void, ν r〉.
r(i).
i(x).
JP K

The remaining operators are dealt with using the appropri-
ate operations on the terms involved. Note that for the in-
teger case operator, the two parallel agents in the encod-
ing are mutually exclusive: a term encoding never responds
both on zero and pred operations. Again, the spi variables
x and y bound in let and case are syntactically the same as
the names x and y in the π-calculus translations.

J[M is N ]P K =

M,N ⇒ (λm, n)m〈match, n, ν r〉.
r().
JP K

(1)
(2)

Notes: On line 1, tell the first term object to match against
the second, and on line 2, wait for a reply (indicating that
they did match).

Jlet (x, y) = M in P K =

M ⇒ (λm)m〈fst,void, ν r〉.r(x).
m〈scd,void, ν r〉.r(y).
JP K

(1)
(2)

Notes: On line 1, ask for the first sub-object and wait for
a link in return, and on line 2, do the same for the second
sub-object.

Jcase M of 0 : P suc(x) : QK =

M ⇒ (λm)
(

m〈zero,void, ν r〉.r().
JP K

|
m〈pred,void, ν r〉.r(x).
JQK)

(1)

Notes: Ask the object if it is zero (line 1), and in parallel ask
for a link to a predecessor object. Only one of the challenges
will get a reply.

The decryption operator simply asks the encrypted term
M to decrypt using the key N , binding x to the plaintext
received:

Jcase M of [x]N in P K =

M,N ⇒ (λm, n)m〈decrypt, n, ν r〉.
r(x).
JP K

3.2 Translating Terms

In spi calculus terms are the values sent and received. As
mentioned earlier, their translation into π-calculus, JMK`, is
parameterised by `, which is a link for accessing the encod-
ing of M . We continue to use the M ⇒ F and M,N ⇒ F
notations to handle the case analysis on subterms.

Different types of terms handle different operations. If

5



a term encoding is given an operation it does not handle,
it will simply ignore the challenge and (possibly) let the
“caller” deadlock. This corresponds to a type error in the
source term/agent; again, typing is not in the scope of this
paper. All term translations are replications, which handle
concurrent accesses.

We start by giving the encodings of the two simplest
terms: names n and the constant 0, which have no subterms.

JnK` = ! `(c,m, r).(
[c = id] r〈n〉
+ [c = match]

m〈id,void, ν s〉.
s(x).
[x = n] r〈〉)

(1)
(2)
(3)
(4)
(5)
(6)

Notes: On line 1, replicate in order to handle concurrent
requests; on line 2, handle an identity request by returning
your true name; on line 3, handle a match request by asking
the other end for its identity (line 4), await a reply (line 5),
and if it’s our identity then reply (line 6).

The encoding of zero is similar but simpler:

J0K` = ! `(c,m, r).(
[c = zero] r〈〉
+ [c = match]

m〈zero,void, r〉)

The successor, hash code and asymmetric key terms have
a single subterm, and use M ⇒ F notation.

Jsuc(M)K` =
M ⇒ (λm) Unary(`,pred,m)

Jhashc(M)K` =
M ⇒ (λm) Unary(`, text,m)

JM+K` =
M ⇒ (λm) PKey(`,private,m,public)

JM−K` =
M ⇒ (λm) PKey(`,public,m,private)

The agent Unary handles the simplest unary terms, and
is parameterised by the name of the subterm field; it han-
dles requests for the subterm (line 1 below), and uses the
agent Unary Match which handles match operations
for unary terms. To handle match, it asks the other ob-
ject for its corresponding subobject (line 2 below) and tells
the subobjects to match (line 3).

Unary(`, sub, n) =

! `(c,m, r).(
[c = sub] r〈n〉
+ [c = match]

Unary Match(m, sub, n, r))

(1)

Unary Match(m, sub, n, r) =

m〈sub,void, ν s〉.
s(x).
n〈match, x, r〉

(2)

(3)

Asymmetric keys are encoded using PKey, where the
parameters t and u give the type of the key and its comple-
mentary type, and n is the key base, i.e., the location of M
for a key M+ or M−.

PKey(`, t, n, u) =

! `(c,m, r).(
[c = type] r〈t〉
+ [c = base] r〈n〉
+ [c = match]

m〈type,void, ν s〉.
s(x).
[x = t]

Unary Match(m,base, n, r)
+ [c = k match]

m〈type,void, ν s〉.
s(x).
[x = u]

Unary Match(m,base, n, r))

(1)
(2)
(3)
(4)

(5)

(6)

(7)

Notes: Lines 1 and 2 simply return the type and base of the
key; on line 3 a match request is handled by asking the other
object for its key type (line 4), checking that it’s the same
(line 5), and then matching the key bases. Line 6 handles a
key match request similarly to a match, but now checking
that the key types are complementary (line 7).

The remaining terms (pairs and encryptions) have two
subterms, and thus use the M,N ⇒ F notation.

J(M,N)K` =

M,N ⇒
(λn1, n2) ! `(c,m, r).(

[c = fst] r〈n1〉
+ [c = scd] r〈n2〉
+ [c = match]

Binary Match(
m, fst, n1, scd, n2, r

))

(1)
(2)
(3)

Notes: Lines 1 and 2 handle requests for subcompo-
nents, while line 3 handles match requests using the
Binary Match agent (see below).

6



J{M}N K` =

M,N ⇒ (λm, n)
Cipher(`, splain,m, skey, n,match)

J{|M |}NK` =

M,N ⇒
(λm, n)

Cipher(`,pplain,m,pkey, n,k match)

The Binary Match agent is parameterised by the op-
erations to access the subterms sub1 and sub2 of m, and
simply “chains” a unary match for each.

Binary Match(m, sub1, n1, sub2, n2, r) =

(ν s)
(
Unary Match(m, sub1, n1, s)
| s().Unary Match(m, sub2, n2, r))

Ciphertexts are created using symmetric or asymmetric
ciphers, and use different operations to access plaintext and
to match encryption keys.

Cipher(`, plaintext, p, key, k, k match) =

! `(c,m, r).(
[c = plaintext] r〈p〉
+ [c = key] r〈k〉
+ [c = match]

Binary Match(
m, plaintext, p, key, k, r

)
+ [c = decrypt]

k〈k match,m, ν s〉.
s().
r〈p〉)

(1)
(2)

(3)

(4)

(5)

Notes: Lines 1 and 2 handle requests for plaintext and key
(i.e. splain/pplain and skey/pkey); line 3 handles match
by matching both plaintext and key; line 4 handles decrypt
requests by first key-matching the supplied key against our
own (using match or k match for symmetric or asym-
metric keys, respectively), and returning the plaintext if they
match (line 5).

3.2.1 Unique-Plaintext Ciphertexts

Under the assumption that each encryption of a fixed plain-
text generates a new ciphertext, which is the case e.g. if
random padding of the plaintext is used, the encoding can
be optimized slightly, resulting in smaller state spaces: at
line 1 below, a match is successful only if matching against

the same term.

Cipher(`, plaintext, p, key, k, k match) =

! `(c,m, r).(
[c = plaintext] r〈p〉
+ [c = key] r〈k〉
+ [c = match]

[m = `] r〈〉
+ [c = decrypt]

k〈k match,m, ν s〉.
s().
r〈p〉)

(1)

4 Preservation of Spi Calculus May-Testing

Testing in the sense of De Nicola and Hennessy [10] rests
on the idea of building an observation scenario for some de-
scription framework for concurrent processes by employing
the expressive power of that framework itself. This goal is
achieved by employing agents as so-called experiments, set-
ting them up in concurrent interaction with agents that are
to be tested and letting those experiments emit some sig-
nal if and when they have reached any success state. There
is a substantial literature about testing over the π-calculus,
for example by Boreale and De Nicola [9], and Abadi and
Gordon identified may-testing already in [2] as particularly
suitable for the spi calculus since it is generally associated
with safety properties, the ones that are obviously most in-
teresting in connection with spi. We prove that our transla-
tion is adequate with respect to may-testing in the sense that
a spi calculus agent P may pass a spi calculus experimentE
if and only if its translation, JP K, may pass E’s translation,
JEK. We state next the formal definitions that are needed
for our purposes and the adequacy theorem itself.

Definition 1

1. An experiment is a spi or π-calculus agent that may
use a distinguished name $. We call an action on $ a
success signal.

2. A spi or π-calculus agent P may pass an experimentE
if some sequence of τ -steps of the composed agent P |
E has a state in which success is signalled. Formally,
we denote this property by P may E.

Theorem 2 Let P and E be a spi calculus agent and ex-
periment, respectively. Then P may E if and only if
JP K may JEK.

We give next a largely informal overview of the long and
complex proof of this result, relegating the details to the
appendix. The result is essentially a consequence of sev-
eral operational correspondence properties in whose proofs

7



the actual work lies. By far the most difficult one of these
properties is concerned with going from operational steps
of any agent obtained by translation back to operational
steps or commitments of its pre-image. The translation in-
duces sequences of steps on the π-calculus side where there
is only a commitment or a single step on the spi calculus
side. Concurrent sequences of this kind can be interleaved
and they can be composed of interleaved sub-sequences
amongst which there is communication. Therefore we get
a very complicated correspondence between the states of
JP K and those of P , where P is any spi agent. The deci-
sive observation, however, is that it is not imperative to use
a direct operational correspondence. Instead we use an in-
direct one, where we rearrange the states of JP K along the
way so that they stay structurally more similar to those of
P . This strategy requires that the rearrangement preserves
bisimulation and two crucial properties of the translation are
needed for that: First, it is compositional with respect to all
static operators, that is, parallel composition, restriction and
replication; second, the translations of terms can be viewed
as resources in the sense of the Replication Lemmas over
the π-calculus (see, for example, [16]), and we get suitable
agent rearrangements by applying these lemmas.

For the core of the proof of Theorem 2, we need to use
operational semantics without structural congruence since
arbitrary rearrangements due to it would complicate the
compositional arguments as they would have to be distin-
guished from rearrangements of the kind explained in the
previous paragraph. In consequence, we use bisimulation
over both the π- and the spi calculus to relate our rearrange-
ments to actual states of spi agents and their translations. To
this end, we carry over the notion of context bisimulation
from higher-order process algebra [15] to both calculi. That
gives us a uniform framework to work with and, moreover,
it totally avoids the complications involved in other bisim-
ilarities proposed for the spi calculus (see [7] for a good
recent overview). Our immediate purposes are best served
by the definitions below; the definitions that we actually use
in the proof are equivalent, but are presented somewhat dif-
ferently to make the proof go smoother.

Definition 3 Context bisimilarity on spi calculus agents is
defined to be the largest binary relation∼cxt so that P ∼cxt

Q implies:

i. i. Whenever P
(ν en)m〈M〉−−−−−−−→ P ′, thenQ

(ν en)m〈M〉−−−−−−−→
Q′ for some Q′ s.t. (ν ñ)(R{x := M} |P ′) ∼cxt

(ν ñ)(R{x := M} | Q′) for every spi agent ex-
pression R in which at most x occurs as a free
variable.

ii. Whenever P
m(x)−−−→ P ′, then Q

m(x)−−−→ Q′ for
some Q′ s.t. P ′{x := M} ∼cxt Q

′{x := M}
for every closed term M .

iii. Whenever P τ−→ P ′, then Q τ−→ Q′ for some Q′

s.t. P ′ ∼cxt Q
′.

ii. Like i.i-i.iii but with Q driving the bisimulation game.

Definition 4 Context bisimilarity on π-calculus agents is
defined to be the largest binary relation∼cxt so that P ∼cxt

Q implies:

i. i. Whenever P
(νeb’) a〈eb〉−−−−−−→ P ′, thenQ

(νeb’) a〈eb〉−−−−−−→ Q′

for some Q′ s.t. (ν b̃’)(R{c̃ := b̃} | P ′) ∼cxt

(ν b̃’)(R{c̃ := b̃} | Q′) for every π agent R,
assuming that the names in c̃ are distinct with
|̃b| = |c̃|.

ii. Whenever P
a(ec)−−→ P ′, then Q

a(ec)−−→ Q′ for some
Q′ s.t. P ′{c̃ := b̃} ∼cxt Q

′{c̃ := b̃} for every b̃
with |c̃| = |̃b|.

iii. Whenever P τ−→ P ′, then Q τ−→ Q′ for some Q′

s.t. P ′ ∼cxt Q
′.

ii. Like i.i-i.iii but with Q driving the bisimulation game.

The operational correspondences together establish what
could be regarded as a translation-coupled expansion be-
tween P and JP K for any spi agent P . Conventional expan-
sion, that is, expansion where the translation is not directly
built into it, has played a major role in work on translat-
ing the asynchronous π- to the πI-calculus, the π-calculus
where only private names are mobile [6]. But we need
to formulate our expansion also on the basis of what we
call the ancestor relation (cf. [5]). The ancestor relation
seems to be absolutely necessary for us to handle concurrent
threads of activity on the π-calculus side were each such
thread corresponds to just a single step or commitment on
the spi calculus side. We denote it byJ and some schematic
clauses for it are collected in Table 4, where =⇒ stands for
zero or more τ -labelled transitions,

µ
=⇒ for zero or more τ -

labelled transitions followed by a transition labelled with
µ. An essential property of the ancestor relation is that its
defining clauses are compositional on the static operators,
since that allows us to reason compositionally. The other
essential aspect is conveyed by those clauses that are of the
form

JP K =⇒ Q >ϕ
µ
=⇒∼cxt JP ′K

P J Q ,

where the outermost operator of P is a match, let, case or
prefix. They are to be read as follows: It holds that P J Q
if

i. Q is equal to JP K or an intermediate state in the π-
calculus execution trace of P ’s outermost operator and

ii. if ϕ holds, then Q
µ
=⇒∼cxt JP ′K.

8



The intuition is that P J Q holds if Q is a successor state
of JP K in which no thread of activity that corresponds to
an unguarded occurrence of a match, let, case or prefix
construct in P has been completed.

The central and most difficult part of the proof of The-
orem 2 then consists of establishing a “backward” opera-
tional correspondence that goes from steps of JP K to steps
and commitments of P , where P is any spi agent. This op-
erational correspondence is coupled via the ancestor rela-
tion and involves context bisimilarity as for term rearrange-
ments. There is also a “forward” operational correspon-
dence that goes from steps P to steps of JP K, and there are
auxiliary operational correspondences that bridge the gap
between operational semantics with and without structural
congruence.

As a final remark, we note that, while context bisimilar-
ity is new to the spi calculus, it has recently found proof
technical application also to Cardelli and Gordon’s mobile
ambients [12].

5 Related and Future Work

Our translation from the spi to the π-calculus is obvi-
ously related to the general question of how to express
encryption and other security concepts directly in the π-
calculus, foregoing the spi calculus or any other higher-level
framework. In the appendix to [2] Abadi and Gordon dis-
cuss three different approaches, where these schemes might
partly be considered embryonic versions of what we get via
our translation on the π-calculus side. In particular the tech-
nique of representing a piece of data by an agent that is to
be accessed via a dedicated link, which goes back to the
early π-calculus literature, is already proposed as useful in
[3]. There is, however, no explicit translation from the spi
to the π-calculus in [3] and therefore of course also no ade-
quacy result along the lines of Theorem 2. Moreover, only
a very limited range of features is discussed with respect
to their expressibility in the π-calculus whereas we effec-
tively deal with everything that belongs to the spi calculus
as it was originally presented. It can nevertheless already
be concluded from [3] that in the way we are using the π-
calculus as a kind of assembler language for implementing
the spi calculus, we can probably not hope to obtain full
abstraction: There will be π-calculus experiments that dis-
tinguish the respective translations of any two agents even
if they are testing equivalent with respect to spi calculus ex-
periments.

Another idea discussed in [3], and also by Carbone and
Maffeis in [8], is to model the communication of encrypted
data on the basis of extending the π-calculus by multi-name
synchronisation, that is, a channel may consist of what may
perhaps be seen as several sub-channels that all take part in
any synchronisation on the channel at once. This approach

avoids at least to some degree the above-mentioned prob-
lem with stronger forms of adequacy than the preservation
of may- and must-testing. The downside is of course that
the target framework is less fundamental than the original
π-calculus and also that there do not seem to be any auto-
mated π-calculus verification tools that support multi-name
synchronisation in the input.

We have implemented our translation in a prototype that
generates input for the Mobility Workbench [17]. With re-
gard to this implementation we note that a π-calculus en-
coding will be finite-state if the spi calculus agent is finite-
control. The reason is roughly that (a) only the term parts
are never finite-control and (b) any thread of activity within
them is triggered by activity within some agent part and
then guaranteed to terminate, where that agent part can be
infinite-control only if its pre-image is already such on the
spi calculus side. Our prototype can therefore be used to
translate both an agent and an experiment, whereupon the
Mobility Workbench can check whether the agent may pass
the experiment or not. As for work related to that, we are
aware of work based on [7] that aims at tools for symbolic
bisimulation for the spi calculus. Also, the spi calculus has
been considered as an extension of a logic programming
implementation of the π-calculus in [14].

As for possible future work, we want to carry our fur-
ther experiments and case studies with our prototype, and
enhance it so that we can make it publicly available. We
also want to extend the prototype so as to produce output
for backends other than the Mobility Workbench, such as
for example for the MIHDA toolkit [11].

Acknowledgement We would like to thank Emilio Tu-
osto for discussions about an earlier version of the trans-
lation presented herein.

References

[1] M. Abadi and A. Gordon. The Spi Calculus. In Computer
and Communications Security, pages 36–47. ACM, 1997.
Conference proceedings.

[2] M. Abadi and A. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Technical Report 149, SRC,
Palo Alto, California, 1998.

[3] M. Abadi and A. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Information and Computation,
148(1):1–70, 1999.

[4] R. Amadio and M. Dam. Reasoning about Higher-Order
Processes. In Theory and Practice of Software Development,
LNCS 915, pages 202–216. Springer-Verlag, 1995. TAP-
SOFT ’95 conference proceedings.

[5] M. Baldamus, J. Parrow, and B. Victor. Spi Calculus Trans-
lated to π-Calculus Preserving May-Testing. Technical Re-
port 2003-063, Department of Information Technology, Up-
psala University, Sweden, 2003.

9



J[M is N ]P K =⇒ Q >M=N
τ
=⇒∼cxt JP K

[M is N ]P J Q (J-match)

Jlet (x1, x2) = M in P K =⇒ Q >M=(M1,M2)
τ
=⇒∼cxt JP [(x1, x2) := (M1,M2)]K

let (x1, x2) = M in P J Q (J-pair)

Jcase 0 of 0 : P1 suc(x) : P2K =⇒ Q >true
τ
=⇒∼cxt JP1K

case 0 of 0 : P1 suc(x) : P2 J Q
(J-zero)

Jcase M of 0 : P2 suc(x) : P2K =⇒ Q >M=suc(M1)
τ
=⇒∼cxt JP2[x := M1]K

case M of 0 : P1 suc(x) : P2 J Q
(J-suc)

Jcase M of [x]K in P K =⇒ Q >ϕ
τ
=⇒∼cxt JP [x := M1]K

case M of [x]K in P J Q (J-dec)

ϕ in the above rule stating that (a) M = {M1}K or (b) M = {|M1|}Np and K = (Np)−1 for some N , p = −,+

0 J 0
P1 J Q1 P2 J Q2

P1 | P2 J Q1 |Q2

P J Q
(ν m)P J (ν m)Q

!P J ! JP K
(J-nil, J-par, J-new, J-rep)

Table 4. Selected schematic clauses for the ancestor relation on spi and π-terms.

[6] M. Boreale. On the Expressiveness of Internal Mobility
in Name-Passing Calculi. Theoretical Computer Science,
195:205–226, 1998.

[7] J. Borgström and U. Nestmann. On Bisimulations for the Spi
Calculus. Technical Report IC/2003/34, EPFL I&C, Lau-
sanne, Switzerland, 2003.

[8] M. Carbone and S. Maffeis. On the Expressive Power of
Polyadic Synchronisation in π-Calculus. Nordic Journal of
Computing, 10(2):70–98, 2003.

[9] R. De Nicola and M. Boreale. Testing Equivalences for Mo-
bile Processes. Information and Computation, 120:279–303,
1995.

[10] R. De Nicola and M. Hennessy. Testing Equivalences for
Processes. Theoretical Computer Science, 34:83–133, 1983.

[11] G. Ferrari, U. Montanari, R. Raggi, and E. Tuosto. From Co-
Algebraic Specifications to Implementation: The MIHDA
Toolkit. In Formal Methods for Components and Objects,
LNCS. Springer-Verlag, 2003. FMCO ’03 symposium pro-
ceedings.

[12] M. Merro and F. Zappa Nardelli. Bisimulation Proof Meth-
ods for Mobile Ambients. In Automata, Logic and Program-
ming, LNCS 2719, pages 584–598. Springer-Verlag, 2003.
ICALP ’03 proceedings.

[13] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes, Parts I+II. Information and Computation, 100:1–
77, 1992.

[14] Ping Yang, C. Ramakrishnan, and S. Smolka. A Log-
ical Encoding of the π-Calculus: Model Checking Mo-
bile Processes Using Tabled Resolution. Available via
http://www.cs.sunysb.edu/∼lmc/mmc, 2003.

[15] D. Sangiorgi. Bisimulation in Higher-Order Calculi. Infor-
mation and Computation, 131:141–178, 1996.

[16] D. Sangiorgi and D. Walker. The π-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2003.

[17] B. Victor and F. Moller. The Mobility Workbench – A Tool
for the π-Calculus. In Computer Aided Verification, LNCS
818, pages 428–440. Springer-Verlag, 1994. CAV ’94 pro-
ceedings.

10



A Appendix

Theorem 2 is a direct consequence of Lemmas 17, 19, 21
and 23 below, which are about the preservation of may-
testing with respect to different operational semantics for
the spi and the π-calculus. By far the most difficult one
is Lemma 17, as it is the one that directly connects may-
testing and the translation. The other ones are much easier
since they are not about the translation, but just about indi-
vidually connecting the testing scenarios used in Lemma 17
to those that arise for the two calculi from the operational
semantics laid out in Section 2.

All of Lemmas 17, 19, 21 and 23 are easy consequences
of operational correspondence properties in whose proofs
the actual work lies. It is in proving the operational corre-
spondences required for Lemma 17 where we employ con-
text bisimilarity. This part of the proof of Theorem 2 is the
subject of Subsection A.1, which is titled:

A.1 Preservation of May-Testing in Continuation
Passing Style

since we use continuation-passing style operational seman-
tics in it, a technique that has proved advantageous in
reasoning about context bisimilarity. Subsection A.2 is
about the preservation of may-testing if one goes back from
continuation-passing-style to conventional operational se-
mantics and everything is just very briefly put together in
Subsection A.3.

A.1.1 Continuation-Passing-Style Operational Seman-
tics

The first occurrence of continuation-passing-style opera-
tional semantics for higher-order process calculi was prob-
ably in [4]. The idea is that the receiver in a communi-
cation is transferred as an abstraction or, to put it differ-
ently, as a continuation to the sender, where this abstrac-
tion/continuation is applied to the entity to be sent, be that
entity a process, a name (tuple), a spi calculus term or what-
ever. Besides being very well suited for reasoning about
context is bisimulation, the advantage is that such an op-
erational semantics requires simpler labels and fewer side
conditions on the transitions.

The π-Calculus Case The first thing to put in place for
a continuation-passing-style operational semantics for the
π-calculus consists of introducing higher-order π-calculus
agent expressions. These expressions are ranged over by F
and the syntactic clause for them is F ::= X | (λ ã)P ,
where X is a fixed place holder for abstractions of the form
(λ ã)P . The syntax for ordinary π-agent expressions is ex-
tended by the clause P ::= F ã. A higher-order substitu-

tion, P [X :=ho (λ ã)Q], denotes the result of first substi-
tuting (λ ã)Q for X in P , obtaining a (transient) expression
P ′, and then replacing every sub-expression in P ′ that is of
the form ((λ ã)Q)b̃ by Q[ã := b̃] provided that |ã| = |̃b|.
Higher-order substitution is undefined whenever any sub-
expression of the form ((λ ã)Q)b̃ occurs where |ã| 6= |̃b|.
An agent is an expression in which no sub-expression of
the form F ã occurs. Transition labels are of the form
µ ::= a(̃b) | a〈X: k〉 | τ , where k ∈ ω, a〈X〉 abbre-
viating a〈X: 1〉 The SOS is defined on agents in such a way
that never any undefined higher-order substitution occurs.
See Table 5.

The Spi Calculus Case The continuation-passing-style
operational semantics for the spi calculus is essentially a
re-run of the previous subsection: Higher-order spi calcu-
lus agent expressions are ranged over by F and the syntac-
tic clause for them is F ::= X | (λx)P , where X is
a fixed place holder for abstractions of the form (λx)P .
The syntax for (ordinary) spi expressions is extended by the
clause P ::= FM . A higher-order substitution, P [X :=ho

(λx)Q], denotes the result of first substituting (λx)Q for
X in P , obtaining a (transient) term P ′, and then replac-
ing every sub-term in P ′ that is of the form ((λx)Q)M by
Q[x := M ]. An agent is a closed term in which no sub-term
of the form FM occurs. Transition labels are of the form
µ ::= m(x) | m〈X〉 | τ . The SOS clauses are given
in Table 6. It might be noted that this SOS does not use a
commitment relation. That is to ease the task of obtaining
an operational correspondence between spi agents and their
translations. To relate may-testing under the SOS from Ta-
ble 6 to may-testing with commitments, we use yet another
SOS for the spi calculus (cf. Subsection A.1.5).

A.1.2 A Central Tool: Context Bisimulation in Contin-
uation Passing Style

We continue with a technical definition that helps to make
the definition of context bisimilarity over the spi and the π-
calculus more concise. This definition is about extending
binary relations on agents to terms.

Definition 5

1. Let R be a binary relation on π-calculus agents. Then
we denote by P Rex Q the property that P [x̃ :=
m̃] R Q[x̃ := m̃] whenever |x̃| = |m̃|. Also, we
denote by P RX:k Q the property that P [X :=ho

(λ x̃)R] Rcxt Q[X :=ho (λ x̃)R] for every abstrac-
tion (λ x̃)R where |x̃| = k. We usually abbreviate
P RX:1 Q by P RX Q, we have obj(n〈X:k〉) = X:k,
obj(n(x)) = x and obj(τ) = void, Rvoid = R, and
we usually write Rµ for Robj(µ).

11



a(̃b).P
a(eb)−−→cp P

a〈̃b〉.P a〈X:|eb|〉−−−−−→cp Xb̃ | P
P

µ−→cp P
′

P +Q
µ−→cp P ′

P
µ−→cp P

′

P |Q µ−→cp P ′ |Q
bn(µ) ∩ fn(Q) = ∅

P
a〈X:k〉−−−−→cp P

′ Q
a(eb)−−→cp Q

′

P |Q τ−→cp P ′[X :=ho (λ b̃)Q′]
k = |̃b | P

µ−→cp P
′

(ν a)P
µ−→cp (ν a)P ′

a 6∈ n(µ)
P

µ−→cp P
′

[a = a]P
µ−→cp P ′

P
µ−→cp P

′

!P
µ−→cp P ′ | !P

bn(µ) ∩ fn(P ) = ∅ P
a〈X:k〉−−−−→cp P

′
1 P

a(eb)−−→cp P
′
2

!P
τ−→cp P ′1[X :=ho (λ b̃)P ′2] | !P

k = |̃b|

Table 5. SOS clauses for continuation-passing-style operational semantics for the polyadic π-
calculus, where only one symmetric clause is respectively stated for nondeterministic choice, in-
terleaving and communication.

[M is M ]P
τ−→cp P let (x1, x2) = (M1,M2) in P

τ−→cp P [(x1, x2) := (M1,M2)]

case 0 of 0 : P suc(x) : Q
τ−→cp P case suc(M) of 0 : P suc(x) : Q

τ−→cp Q[x := M ]

case {M}K of [x]K in P
τ−→cp P [x := M ]

case {|M |}Np of [x](Np)−1 in P
τ−→cp P [x := M ] p = −,+

m(x).P
m(x)−−−→cp P

m〈M〉.P m〈X〉−−−→cp XM | P
P

µ−→cp P
′

P |Q µ−→cp P ′ |Q
P

m〈X〉−−−→cp P
′ Q

m(x)−−−→cp Q
′

P |Q τ−→cp P ′[X :=ho (λx)Q′]

P
µ−→cp P

′

(ν m)P
µ−→cp (ν m)P ′

m 6∈ n(µ)
P

µ−→cp P
′

!P
µ−→cp P ′ | !P

P
m〈X〉−−−→cp P

′
1 P

m(x)−−−→cp P
′
2

!P
τ−→cp P ′1[X :=ho (λx)P ′2] | !P

Table 6. SOS clauses for continuation-passing-style operational semantics for the spi calculus, where
only one symmetric clause is respectively stated for interleaving and communication.

2. Let R be a binary relation on closed spi calculus
agents. Then we denote by P Rx Q the property
that P [x := M ] R Q[x := M ] for every closed
term M . Also, we denote by P RX Q the property
that P [X :=ho (λx)R] Rcxt Q[X :=ho (λx)R] for
every abstraction (λx)R. Moreover, similarly to the
above, we have obj(n〈X〉) = X, obj(n(x)) = x and
obj(τ) = void, Rvoid = R, and we usually write
Rµ for Robj(µ).

We have now set up things so that we can give a simulta-
neous definition of context bisimilarity for both the spi and
the π-calculus:

Definition 6 Strong context bisimilarity is defined to be the
largest binary relation ∼cxt on spi or π-calculus agents so
that P ∼cxt Q implies:

i. Whenever P
µ−→cp P

′, then Q
µ−→cp Q

′ for some Q′ so
that P ′ ∼µcxt Q

′.

ii. Whenever Q
µ−→cp Q

′, then P
µ−→cp P

′ for some P ′ so
that P ′ ∼µcxt Q

′.

Remarks:

1. We mostly drop qualifications as “strong” for the rest
of this paper, since our present purposes do not require
us to consider any weak form of bisimulation.

2. Context bisimilarity on π-agents evidently coincides
on input and silent transitions with the familiar notion
of late π-calculus bisimilarity. It is the treatment of
output transitions where the difference lies: Instead
of observing the subject, the object and any extruded
names, one observes only the subjects and compares
the residuals with respect to all receiving contexts. The
universal quantification involved in that renders con-
text bisimilarity not very meaningful as an indepen-
dent, stand-alone notion. Not being able to observe ob-
jects and extruded names in output transitions – at least

12



not directly – may in many situations be another draw-
back. As far as our purposes herein are concerned, it is
not a problem since for proving the required properties
about testing it evidently suffices.

3. As can easily be seen, context bisimilarity is an equiv-
alence.

4. As a side remark, we conjecture that barbed equiva-
lence under the SOS from Table 6 can be characterised
as context bisimilarity if one does not use the late ver-
sion but the early one. The proof is very much along
a proof in [16], where barbed equivalence over the π-
calculus is characterised in terms of early bisimilarity:
One stratifies early context bisimilarity and then one
carries out an inductive argument.

The following two lemmas are concerned with some
standard properties of context bisimilarity that are needed in
the sequel. Analogously to Definition 6, they pertain to both
the π- and the spi calculus, including their proofs, which
also follow standard lines. That might be taken as support-
ing evidence for the versatility of context bisimilarity as an
auxiliary tool when reasoning about the spi – and also the
π- – calculus.

Lemma 7 Context bisimilarity is preserved by parallel
composition and restriction.

Proof. Let C be the closure of ∼cxt under parallel compo-
sition and restriction, that is, C is the smallest binary re-
lation on spi or π-calculus agents so that ∼cxt ⊆ C,
P1 | P2 C Q1 | Q2 whenever Pi C Qi, i = 1, 2, and
(ν m)P C (ν m)Q whenever P C Q. The first step then
consists of showing that P C Q implies:

i. Whenever P
µ−→cp P

′, then Q
µ−→cp Q

′ for some Q′ so
that P ′ C∗µ Q′.

ii. Whenever Q
µ−→cp Q

′, then P
µ−→cp P

′ for some P ′ so
that P ′ C∗µ Q′.

This step is essentially a straightforward matter of induction
on the inference used to establish P C Q.

The second step consists of showing that C∗ is a context
bisimulation, which is straightforward by exploiting Step 1.
We may then conclude that C ⊆ ∼cxt, so ∼cxt = C

as ∼cxt ⊆ C due to the construction of C, so ∼cxt is
preserved by parallel composition and restriction due to the
way C has been constructed.

We claim that context bisimilarity is in fact not only pre-
served by parallel composition and restriction but by all op-
erators except input, so that it is a non-input congruence.
We do not prove this property since it is not required for
proving Theorem 2.

Lemma 8 (Some Basic Laws)

1. P |Q ∼cxt Q | P

2. P | (Q |R) ∼cxt (P |Q) |R

3. (ν m) (ν n)P ∼cxt (ν n) (ν m)P

4. (ν m)(P |Q) ∼cxt P | (ν m)Q if m 6∈ fn(P )

5. P | !P ∼cxt !P

6. (ν subj(α))(P | α.Q) ∼cxt P if subj(α) 6∈ fn(P )

Proof. Properties (1)-(5) can be proved simultaneously and
in a way similar to the proof of Lemma 7. More specifi-
cally, let C be the smallest reflexive and symmetric relation
on spi or π-calculus agents that satisfies (1)-(5) where ∼cxt

is replaced by C, and that is closed under parallel compo-
sition and restriction. The next two steps are then exactly
analogous to the two main steps of the proof of Lemma 7,
and we may then conclude that C ⊆ ∼cxt, so that we have
established the validity of (1)-(5) due to the way C has been
constructed.

Next we state the Replication Lemmas for context bisim-
ilarity over the π-calculus – they will be of crucial impor-
tance in rearranging the states of any translated spi agent so
that we will be able to obtain operational correspondences
by compositional reasoning. As a preliminary, we denote
by P{a = (̃b)Q} the agent (ν a)(P | ! a(b̃).Q) whenever
a occurs in both P and Q only in output subject position,
where this notation binds stronger than any syntactic oper-
ator. The agent ! a(b̃).Q is commonly called a replicated
resource, a notion that obviously fits our term translations,
including the side condition on the occurrences of a. This
fit is why we can use the Replication Lemmas to such a
great extent, since term translations are the main source of
potentially concurrent threads of activity on the π-side that
correspond to single steps or commitments on the spi side.

Lemma 9 (Replication Lemmas – cf. [16])

1. (α.P ){a = (b̃)Q} ∼cxt α.P{a = (̃b)Q} if
subj(α) 6= a

2. (a〈c̃〉.P ){a = (b̃)Q} ∼cxt (a〈c̃〉.(P{a =

(̃b)Q})){a = (b̃)Q}

3. (P1 | P2){a = (̃b)Q} ∼cxt P1{a = (̃b)Q} | P2{a =

(̃b)Q}

4. ((ν n)P ){a = (b̃)Q} ∼cxt (ν n)P{a = (b̃)Q}

5. (!P ){a = (b̃)Q} ∼cxt !P{a = (̃b)Q}

6. P{a = (̃b)Q} ∼cxt P if a 6∈ fn(P )

13



Proof. The Replication Lemmas are stated in [16] for repli-
cated resources with one parameter and strong early congru-
ence. The proof in [16] carries over without any problem to
replicated resources with an arbitrary number of parame-
ters. Moreover, strong early congruence implies strong late
bisimilarity and strong late bisimilarity, in turn, can readily
be seen to be a strong context bisimulation chiefly because
it is a non-input congruence.

Our first application of the Replication Lemmas consists
of a lemma about how translation and substitution com-
mute. As a preliminary, we extend the translation to agent
expressions containing sub-expressions of the form XM :
JXMK = (ν `)(X` | JMK`), where ` is fresh.

Lemma 10

1. JP [x := M ]K ∼cxt (ν x)(JP K | JMKx)

2. If X occurs in P at most beneath parallel composi-
tion and restriction, then JP [X :=ho (λx)Q]K ∼cxt

JP K[X :=ho (λx)JQK].

Proof.

1. Structural induction on P , using the Replication Lem-
mas.

2. Structural induction on P , using (1) to cover the case
of P = XM for some M .

A.1.3 Translation-Coupled Operational Correspon-
dences in Continuation Passing Style

We are now able to carry out the central parts of the proof of
Theorem 2, which consists of establishing operational cor-
respondences between spi agents and their translations. The
first one is about spi terms whose outermost operator is a
match, let, case or prefix construct, stating that to each ini-
tial transition of such an agent on the spi calculus side there
corresponds an initial sequence of transitions of its transla-
tion on the π-calculus side, and conversely. This operational
correspondence already holds up to context bisimilarity. As
a preliminary we denote by⇒cp the reflexive and transitive
closure of the binary relation τ−→cp and by P

µ
=⇒cp P ′ the

property that P ⇒cp
µ−→cp P

′.

Lemma 11 Assertions (a) and (b) are respectively equiva-
lent:

1. a. [M is N ]P
τ−→cp P

b. J[M is N ]P K τ
=⇒cp∼cxt JP K

where in both directions it must hold that M = N

2. a. let (x1, x2) = M in P
τ−→cp P [(x1, x2) :=

(M1,M2)]

b. Jlet (x1, x2) = M in P K τ
=⇒cp∼cxt

JP [(x1, x2) := (M1,M2)]K
where in both directions it must hold that M =
(M1,M2)

3. a. case M of 0 : P suc(x) : Q
τ−→cp P

b. Jcase M of 0 : P suc(x) : QK τ
=⇒cp∼cxt JP K

where in both directions it must hold that M = 0

4. a. case M of 0 : P suc(x) : Q
τ−→cp Q[x := M1]

b. Jcase M of 0 : P suc(x) : QK τ
=⇒cp∼cxt

JQ[x := M1]K
where in both directions it must hold that M =
suc(M1)

5. a. case M of [x]K in P
τ−→cp P [x := M1]

b. Jcase M of [x]K in P K τ
=⇒cp∼cxt JP [x :=

M1]K
where in both directions it must hold that M =
{M1}K

6. a. case M of [x]K in P
τ−→cp P [x := M1]

b. Jcase M of [x]K in P K τ
=⇒cp∼cxt JP [x :=

M1]K
where in both directions it must hold that M =
{|M1|}Np with K = (Np)−1, p = +,−

7. a. M(x).P
m(x)−−−→cp P

b. JM(x).P K m(x)
===⇒cp∼xcxt JP K

where in both directions it must hold that M = m

8. a. M〈N〉.P m〈X〉−−−→cp XN | P

b. JM〈N〉.P K m〈X〉
===⇒cp∼X

cxt JXN | P K
where in both directions it must hold that M = m

Proof. Essentially straightforward by analysing what π-
calculus execution traces after translation are possible for
the outermost operator of the spi term under considera-
tion, doing garbage collection by applying Lemma 9(6) and
also Lemma 8(6) as well as commuting substitution and
translation by applying Lemma 10(1). Lemmas 9(6), 8(6)
and 10(1) are together responsible for why ∼cxt appears in
the (b) parts.

Next we are already able to prove the first main opera-
tional correspondence, the one that states that to every tran-
sition of a spi calculus agent there corresponds a sequence

14



of transitions of its translation so that the ensuing spi agent
is mapped up to context bisimilarity onto the ensuing π-
agent. Its proof is relatively straightforward since we do
not need to take into account any interleaving of concurrent
threads that correspond to single steps on the spi calculus
side.

Lemma 12 Let P be a spi calculus agent. Then P
µ−→cp P

′

implies JP K µ
=⇒cp∼µcxt JP ′K.

Proof. Transition induction on P
µ−→cp P

′, using properties
from above to establish the respective conclusion. Sample
cases:

• Suppose P = P1 | P2, µ = τ and P
µ−→cp P

′ has been

established from P1
m〈X〉−−−→cp P

′
1 and P2

m(x)−−−→cp P
′
2,

where P ′ = P ′1[X :=ho (λx)P ′2].

Then, by induction: JP1K m〈X〉
===⇒cp P

#
1 ∼X

cxt JP ′1K for

some P#
1 and JP2K m(x)

===⇒cp P
#
2 ∼xcxt JP ′2K for some

P#
2 .

Then JP K τ
=⇒cp P

#
1 [X :=ho (λx)P#

2 ] and it remains
to show P#

1 [X :=ho (λx)P#
2 ] ∼cxt JP ′1[X :=ho

(λx)P ′2]K. This property, however, follows from
P#

1 ∼X
cxt JP ′1K, P#

2 ∼xcxt JP ′2K, Lemma 7, the tran-
sitivity of ∼cxt and Lemma 10(2).

• Suppose P = case (M1,M2) of (x1, x2) in P1 and
P

µ−→cp P ′ is of the form P
τ−→cp P1[(x1, x2) :=

(M1,M2)]. Then the desired conclusion follows from
Lemma 11(2).

For the above-explained reasons, a backward opera-
tional correspondence, that is, an operational correspon-
dence that constitutes a converse of Lemma 12 seems to
be definitely much harder to come by. The cornerstone of
our solution is what we call the ancestor relation, which is
a specific binary relation on spi and π–calculus agents. We
denote it by J and it is defined by the clauses in Table 7.
Those clauses there that are of the form

JP K⇒cp Q >ϕ
µ
=⇒cp∼µcxt JP ′K

P J Q ,

where the outermost operator of P is a match, let, case or
prefix, are to be read as follows: It holds that P J Q if

i. Q is equal to JP K or an intermediate state in the π-
calculus execution trace of P ’s outermost operator and

ii. if ϕ holds, then Q
µ
=⇒cp∼µcxt JP ′K.

The intuition is that P J Q holds if Q is a successor state
of JP K in which no thread of activity that corresponds to

an unguarded occurrence of a match, let, case or prefix
construct in P has been completed.

The next two lemmas are about auxiliary properties of
the ancestor relation. Lemma 13 states that every spi cal-
culus agent is an ancestor of its translation; Lemma 14 is
needed to show that every external action of a descendant
of a spi agent P corresponds to an external action of P it-
self.

Lemma 13 For every spi calculus agent P it holds that
P J JP K.
Proof. Let P be a spi calculus agent. The lemma can be
proven by straightforward structural induction on P , where
the base case occurs if P = 0 or if the outermost construct
of P is a replication, match, let, case or prefix. The first
two of these sub-cases are immediate by J-nil, the prop-
erty that J0K = 0 and J-rep; the other sub-cases are very
much alike, so we consider only the one of P = M〈N〉.P1

as a sample case. In this case, if M 6= m for any m, then
the premise of J-out is trivially satisfied for Q = JP K, so
P J JP K. If, on the other hand, M = m for some m, then

P
m〈X〉−−−→cp XN | P1, so we can apply Lemma 11 to deduce

JP K m〈X〉
===⇒cp∼X

cxt JXN | P1K, so the premise of J-out is
satisfied for Q = JP K, so P J JP K.

Lemma 14 Whenever P J Q and (a) Q
a〈X:k〉−−−−→cp Q

′ or

(b) Q
a(eb)−−→cp Q

′, then a = m for some m and |̃b| = 1 in
case (b).

Proof. Suppose P J Q and (a) Q
a〈X:k〉−−−−→cp Q′ or

(b) Q
a(eb)−−→cp Q′. Then the desired conclusion can be

shown by straightforward induction on the inference of
P J Q. The key is that, in the base cases, our translation
ensures that any external action that Q can perform corre-
sponds to an external action of P .

Whenever case (b) above occurs, we may assume, with-
out loss of generality, that b̃ = x for some x.

We are now almost ready for proving backward opera-
tional correspondence. The only two preliminaries that are
still left are a slight variant of Definition 5(2) and a nota-
tional convention that allows us to condense the statement
of the lemma into just one clause.

Definition 15 Let R be a binary relation on spi calculus
agents. Then we denote by P 〈R〉x Q the property that
P [x := M ] R Q[x := M ] for every closed term M ,
and by P 〈R〉X Q the property that P [X :=ho (λx)R] R

Q[X :=ho (λx)S] whenever R 〈R〉x S. Moreover, simi-
larly as before, we have 〈R〉void

= R, and we usually write
〈R〉µ for 〈R〉obj(µ). We call 〈R〉ξ, where ξ ∈ {X, x,void},
a universal closure of R.

15



J[M is N ]P K⇒cp Q >M=N
τ
=⇒cp∼τcxt JP K

[M is N ]P J Q (J-match)

Jlet (x1, x2) = M in P K⇒cp Q >M=(M1,M2)
τ
=⇒cp∼τcxt JP [(x1, x2) := (M1,M2)]K

let (x1, x2) = M in P J Q (J-pair)

Jcase 0 of 0 : P1 suc(x) : P2K⇒cp Q >true
τ
=⇒cp∼τcxt JP1K

case 0 of 0 : P1 suc(x) : P2 J Q
(J-zero)

Jcase M of 0 : P2 suc(x) : P2K⇒cp Q >M=suc(M1)
τ
=⇒cp∼τcxt JP2[x := M1]K

case M of 0 : P1 suc(x) : P2 J Q
(J-suc)

Jcase M of [x]K in P K⇒cp Q >ϕ
τ
=⇒cp∼τcxt JP [x := M1]K

case M of [x]K in P J Q (J-dec)

ϕ in the above rule stating that (a) M = {M1}K or (b) M = {|M1|}Np and K = (Np)−1 for some N , p = −,+

JM(x).P K⇒cp Q >M=m
m(x)
===⇒cp∼xcxt JP K

M(x).P J Q (J-in)

JM〈N〉.P K⇒cp Q >M=m
m〈X〉
===⇒cp∼X

cxt JXN | P K
M〈N〉.P J Q (J-out)

0 J 0
P1 J Q1 P2 J Q2

P1 | P2 J Q1 |Q2

P J Q
(ν m)P J (ν m)Q

!P J ! JP K
(J-nil, J-par, J-new, J-rep)

Table 7. Defining clauses for the ancestor relation on spi and π-terms.

The notational convention is such: Given any spi calcu-
lus agents P , P ′ and some continuation passing label µ, we

denote by P
bµ−→cp P

′ the property that P
µ−→cp P

′ if µ 6= τ

and P = P ′ or P
µ−→cp P

′ if µ = τ .
The backward operational correspondence, then, is by

far the most non-standard part of the proof of Theorem 2.
For this reason, we spell out its proof in some detail. It
is carried out by transition induction but covering the indi-
vidual sub-cases requires relatively long arguments, using
many of the properties introduced earlier.

Lemma 16 Suppose P J Q. Then Q
µ−→cp Q′ implies

that there is a P ′ so that P
bµ−→cp P

′ 〈∼cxtJ∼cxt〉µ Q′.

Proof. Suppose P J Q and Q
µ−→cp Q′. We

show the desired conclusion by induction on the mea-
sure sdepth(P ), where sdepth(op(P1, . . . , Pk)) is 0 if
op is not 0, |, (ν m) for some m or !, and 1 +
max(sdepth(P1), . . . , sdepth(Pk)) otherwise. We organ-
ise the proof along how P is composed at the topmost level

• P = 0 (a sub-case of the overall base case): In this
case P J Q must have been inferred with via J-nil
from Q = 0, whence the case is vacuous.

• P = [M is N ]P1 (a sub-case of the overall base case):

In this case P J Q must have been inferred via
J-match from (i) J[M is N ]P1K ⇒cp Q and (ii) if
M = N , then Q τ

=⇒cp R ∼τcxt JP1K for some R.
We observe that J[M = N ]P1K⇒cp Q

′.
Moreover, if Q′ 6= R, which means that µ = τ , then
it must hold that, if M = N , Q′ must eventually
evolve toR just asQ, so P J Q′, soJ-match entails
P J Q′. Setting P ′ = P , by reflexivity and µ = τ ,
we thus have P ′ 〈∼cxtJ∼cxt〉µ Q′. Obviously we

then have also P
bµ−→cp P

′.
Finally, if Q′ = R, which also means that µ = τ ,
then it must hold that M = N since there are no other
circumstances under which any descendant of JP K can
evolve to a state that is related via ∼cxt to JP1K.
Hence, again P

bµ−→cp P ′, this time setting P ′ = P1.
Moreover, P ′ J JP ′K because of Lemma 13, so we
have also P ′ 〈∼cxtJ∼cxt〉µ Q′.

• P = let (x1, x2) = M in P1,
P = case M of 0 : P1 suc(x) : P2, or
P = case M of [x]K in P (sub-cases of the
overall base case): These cases can be treated very
similarly to the previous one.

• P = M(x).P1 (a sub-case of the overall base case): In
this case P J Q must have been inferred via J-(in)

16



from (i) JM(x).P1K ⇒cp Q and (ii) if M = m for

some m, then Q
m(x)
===⇒cp R ∼xcxt JP1K for some R.

This case is largely a rerun of the first one too except
for the last step, where more effort is required. It seems
to be sensible to spell out the entire case to make that
clear.
We observe that JM(x).P1K⇒cp Q

′.
Moreover, if Q′ 6= R, which means that µ = τ , then
it must hold that, if M = m for some m, Q′ must
eventually evolve to R just as Q, so P J Q′, so J-in
entails P J Q′. Setting P ′ = P , by reflexivity and
µ = τ , we thus have P ′ 〈∼cxtJ∼cxt〉µ Q′. Obviously

we then have also P
bµ−→cp P

′.
Finally, if Q′ = R, then it must hold that M = m
and µ = m(x) for some m since there are no other
circumstances under which any descendant of JP K can
evolve to a state that is related via∼xcxt to JP1K. Hence,

again P
bµ−→cp P ′, this time setting P ′ = P1, and

it remains to show P ′ 〈∼cxtJ∼cxt〉µ Q′ or, in other
words, P1 〈∼cxtJ∼cxt〉x Q′.
So let M be closed. Then, by reflexivity of ∼cxt and
Lemma 13: P1[x := M ] ∼cxtJ JP1[x := M ]K.
Moreover, by Lemma 10: JP1[x := M ]K ∼cxt

(ν `)(JP1K[x := `] | JMK`) and, further, JP1K[x :=
`] ∼cxt Q1[x := `] because of P1 ∼xcxt Q

′, where ` is
fresh.
Then, by Lemma 7: (ν `)(JP1K[x := `] | JMK`) ∼cxt

(ν `)(Q1[x := `] | JMK`), so JP1[x := M ]K ∼cxt

(ν `)(Q1[x := `] | JMK`) by transitivity, so
P1 〈∼cxtJ∼cxt〉x Q′ as required.

• P = M〈N〉.P1 (a sub-case of the overall base case):
In this case P J Qmust have been inferred viaJ-out
from (i) JM(N).P1K ⇒cp Q and (ii) if M = m for

some m, then Q
m(X)
===⇒cp R ∼X

cxt JP1K for some R.
This case is very similar to the previous one up to a
point where one has to conclude the case by showing
XN | P1 〈∼cxtJ∼cxt〉X Q′ under the assumption of
JXN | P1K ∼X

cxt Q
′.

So suppose R 〈∼cxtJ∼cxt〉x S. Then , by definition,

R[x := N ] ∼cxt T J U ∼cxt

(ν `)(S[x := `] | JNK`)

for some T and some U , where ` is fresh. Hence, by
Lemma 7, since Lemma 13 entails P1 J JP1K and be-
cause of J-par:

R[x := N ] | P1

∼cxt T | P1 J U | JP1K ∼cxt

(ν `)(S[x := `] | JNK`) | JP1K.

On the left hand side of that, by definition:

(XN | P1)[X :=ho (λx)R] = R[x := N ] | P1;

on the right hand side, also by definition:

(ν `)(S[x := `] | JNK`) | JP1K
= (((ν `)(X` | JNK`)) | JP1K)[X :=ho (λx)S]

= JXN | P1K[X :=ho (λx)S].

Further, by JXN | P1K ∼X
cxt Q

′:

JXN | P1K[X :=ho (λx)S] ∼cxt Q
′[X :=ho (λx)S].

Hence, by transitivity, XN | P1 〈∼cxtJ∼cxt〉X Q′ as
required.

• P = P1 | P2 (a sub-case of the overall inductive case):
In this case P J Qmust have been inferred viaJ-par
from Pi J Qi, i = 1, 2, where Q = Q1 | Q2. Then
there are three further sub-cases:

– Q
µ−→cp Q

′ has been inferred from Q1
µ−→cp Q

′
1

for some Q′1 , where Q′ = Q′1 |Q2:

By induction, there is a P ′1 so that P1
bµ−→cp P ′1

and P ′1 〈∼cxtJ∼cxt〉µ Q′1. Setting P ′ = P ′1 | P2

we thus have P
bµ−→cp P

′.
As for the property P ′ 〈∼cxtJ∼cxt〉µ Q′, we
consider the case of µ = m〈X〉 for some m, as
the other ones are similar.
So suppose R 〈∼cxtJ∼cxt〉x S. Then, first of
all, P ′1[X :=ho (λx)R] ∼cxt T J U ∼cxt

Q′1[X :=ho (λx)S] for some T and some U .
Hence, by Lemma 7 and J-par:

P ′1[X :=ho (λx)R] | P2

J T |Q2 ∼cxt

Q′1[X :=ho (λx)S] |Q2.

Further, P ′[X :=ho (λx)R] = P ′1[X :=ho

(λx)R] | P2 and Q′1[X :=ho (λx)S] | Q2 =
Q′[X :=ho (λx)S], so P ′ 〈∼cxtJ∼cxt〉µ Q′ as
required.

– Q
µ−→cp Q

′ has been inferred from Q1
a〈X:k〉−−−−→cp

Q′1 for some Q′1 and Q2
a(eb)−−→cp Q′2 for some

Q′2, k = |̃b| and Q′ = Q′1[X :=ho (λ b̃)Q′2] and
µ = τ :
Then, by Lemma 14, a = m for some m, k = 1

and b̃ = x for some x.
Hence, by induction, there are P ′i , i = 1, 2, so

that P1
m〈X〉−−−→cp P ′1, P ′1 〈∼cxtJ∼cxt〉X Q′1,

P2
m(x)−−−→cp P

′
2 and P ′2 〈∼cxtJ∼cxt〉x Q′2.

17



Setting P ′ = P ′1[X :=ho (λx)P ′2], we thus have

P
bµ−→ P ′ and also P ′ 〈∼cxtJ∼cxt〉µ Q′.

• P = (ν m)P1 (a sub-case of the overall inductive
case): In this case P J Q must have been inferred
via J-new from P1 J Q1, where Q = (ν m)Q1.
Hence, Q

µ−→cp Q′ must have been inferred from
Q1

µ−→cp Q
′
1 for some Q′1, where Q′ = (ν m)Q′1 and

m 6∈ n(µ).

Hence, by induction, there is a P ′1 so that P1
bµ−→cp P

′
1

and P ′1 〈∼cxtJ∼cxt〉µ Q′1. Setting P ′ = P ′1 | P2 we

thus have P
bµ−→cp P

′.
As for the property P ′ 〈∼cxtJ∼cxt〉µ Q′, we consider
the case of µ = m〈X〉 for some m, as the ones are
similar.
So suppose R 〈∼cxtJ∼cxt〉x S. Then, first of all,
P ′1[X :=ho (λx)R] ∼cxt T J U ∼cxt Q

′
1[X :=ho

(λx)S] for some T and some U .
Hence, by Lemma 7 and J-new:

(ν m)P ′1[X :=ho (λx)R]

∼cxt (ν m)T J (ν m)U ∼cxt

(ν m)Q′1[X :=ho (λx)S].

Further, by the convention about bound names,
P ′[X :=ho (λx)R] = (ν m)P ′1[X :=ho (λx)R] and
(ν m)Q′1[X :=ho (λx)S] = Q′[X :=ho (λx)S], so
P ′ 〈∼cxtJ∼cxt〉µ Q′ as required.

• P = !P1 (a sub-case of the overall inductive case): In
this case P J Q must have been inferred from Q =
! JP1K. Then there are two further sub-cases:

– Q
µ−→cp Q′ has been inferred from JP1K µ−→cp

Q# for some Q#, where Q′ = Q# | ! JP1K:
First of all, because Lemma 13 entails P1 J
JP1K, we can apply the induction hypothe-

sis, obtaining a P ′1 so that P1
bµ−→cp P ′1 and

P ′1 〈∼cxtJ∼cxt〉µ Q#.

∗ If µ = τ and P1
bµ−→cp P

′
1 is a non-transition,

that is, it holds that P1 = P ′1, then we set

P ′ = P , so that P
bµ−→cp P

′.
As for the property P ′ 〈∼cxtJ∼cxt〉µ Q′,
we observe that P ′1 ∼cxtJ∼cxt Q# and
P1 = P ′1 together entail that P1 ∼cxt R J
S ∼cxt Q

# for some R and some S.
Hence, by Lemma 7, since Lemma 13 en-
tails !P1 J ! JP1K and by J-par:

P1 | !P1

∼cxt R | !P1 J S | ! JP1K ∼cxt

Q# | ! JP1K.

Further, by P ′ = P and Lemma 8(5), it
holds that P ′ ∼cxt P1 | !P1, so P ′ ∼cxt

R | !P1 by transitivity. Still further, we have
Q# | ! JP1K = Q′, so P ′ 〈∼cxtJ∼cxt〉µ Q′
as required.
∗ If P1

µ−→cp P
′
1, then we set P ′ = P ′1 | P , so

that P
bµ−→cp P

′.
As for the property P ′ 〈∼cxtJ∼cxt〉µ Q′,
we consider the case of µ = m〈X〉 for some
m, as the other ones are similar.
So suppose R 〈∼cxtJ∼cxt〉x S. Then,
first of all, P ′1[X :=ho (λx)R] ∼cxt T J
U ∼cxt Q#[X :=ho (λx)S] for some T
and some U .
Hence, by Lemma 7, since Lemma 13 en-
tails !P1 J ! JP1K and by J-par:

P ′1[X :=ho (λx)R] | !P1

∼cxt T | !P1 J U | ! JP1K ∼cxt

Q#[X :=ho (λx)S] | ! JP1K.
Further, P ′[X :=ho (λx)R] = P ′1[X :=ho

(λx)R] | !P1 and Q#[X :=ho (λx)S] |
! JP1K = Q′[X :=ho (λx)S], so
P ′ 〈∼cxtJ∼cxt〉µ Q′ as required.

– Q
µ−→cp Q′ has been inferred from

JP1K
a〈X:k〉−−−−→cp R1 for some R1 and

JP1K
a(eb)−−→cp R2 for some R2, where k = |̃b|,

Q′ = R1[X :=ho (λx)R2] | ! JP1K and µ = τ :
First of all, by Lemma 14, a = m for some m,
k = 1 and b̃ = x for some x.
Hence, because of the property P1 J JP1K,
we can apply the induction hypothesis, ob-

taining a P ′1 and a P ′2 so that P1
m〈X〉−−−→cp P ′1,

P ′1 〈∼cxtJ∼cxt〉X R1, P2
m(x)−−−→cp P ′2 and

P ′2 〈∼cxtJ∼cxt〉x R2.
We set P ′ = P ′1[X :=ho (λx)P ′2] | P , so that

P
bµ−→cp P

′.
As for the property P ′ 〈∼cxtJ∼cxt〉µ Q′, we
observe that P ′1[X :=ho (λx)P ′2] ∼cxt S J
T ∼cxt R1[X :=ho (λx)R2] for some S and
some T Hence, by Lemma 7, since Lemma 13
entails !P1 J ! JP1K and by J-par:

P ′1[X :=ho (λx)P ′2] | !P1

∼cxt S | !P1 J T | ! JP1K ∼cxt

R1[X :=ho (λx)R2] | ! JP1K.
Further, P ′ = P ′1[X :=ho (λx)P ′2] | !P1

and R1[X :=ho (λx)R2] | ! JP1K = Q′, so
P ′ 〈∼cxtJ∼cxt〉µ Q′ as required.

18



A.1.4 Preservation of May-Testing in Continuation
Passing Style

We denote by P may E the property that any agent P
may pass any experiment E over the same calculus with
respect to the appropriate continuation-passing-style opera-
tional semantics. Lemmas 12 and 16 then allow us to con-
clude:

Lemma 17 Let P and E be a spi calculus agent or ex-
periment, respectively. Then P maycp E if and only if
JP K maycp JEK.

Proof. Straightforward from Lemmas 12 and 16.

A.1.5 Equivalence of May-Testing in Continuation
Passing Style with and without Commitments

What is now left of the proof of Theorem 2 is to connect
the testing scenarios treated in Lemma 17 with the testing
scenarios over the operational semantics for the π- and the
spi calculus introduced in Section 2. We proceed in three
steps, where none of them involves the translation. For this
reason, all of them are much simpler than establishing the
validity of Lemma 17.

The first step is concerned with may-testing over the spi-
calculus, namely with proving that continuation-passing-
style operational semantics with and without commitments
yield the same results in that. The axioms and clauses for
the operational semantics with commitments are gathered
in Table 8.

The sought-after equivalence proof is again essentially
a matter of establishing a suitable operational correspon-
dence. More specifically, we use a binary relation on spi
agents, which is given as follows:

P >• P

P >• Q
τ−→cp Q

′

P >• Q′

Q = [M is N ] . . . ,
Q = let . . . or
Q = case . . .

P1 >
• Q1 P2 >

• Q2

P1 | P2 >• Q1 |Q2

P >• Q
(ν m)P >• (ν m)Q

Then the operational correspondence can again be seen as a
kind of expansion:

Lemma 18 Suppose P >• Q. Then:

1. Whenever P
µ−→cp′ P

′, then Q
µ
=⇒cp Q′ for some Q′

so that P ′ 〈>•〉µ Q′.

2. Whenever Q
µ−→cp Q′, then P

bµ−→cp′ P
′ for some P ′

so that P ′ 〈>•〉µ Q′.

Proof. Both (1) and (2) can be shown essentially by
straightforward induction on the length of the inference
used to establish P >• Q, exploiting the universal closures
very much like in the proof of Lemma 16 to treat those sub-
cases where P >• Q has been inferred from Pi >

• Qi,
i = 1, 2, P = P1 | P2 and Q1 | Q2 = Q, and where
P

µ−→cp′ P
′ / Q

µ−→cp Q
′ is the outcome of a communica-

tion between P1 and P2 / Q1 andQ2 with µ = τ . The only
somewhat delicate sub-case occurs in proving (2), namely if
P >• Q has been inferred from P >• Q# τ−→cp Q, where
Q# = [M is N ] . . . , Q# = let . . . or Q# = case . . . .
If that same condition holds with Q# replaced by Q, then
we must have µ = τ and we we can instantiate the same
rule as the one used to establish P >• Q to infer P >• Q′,
in which case P ′ = P with P ′ 〈>•〉µ Q′; otherwise, be-
cause of the side condition on Q#, P >• Q# must have
been inferred either by instantiating the same rule as for
P >• Q or from P = Q# and the first clause for >•.
Thus, we can carry out an auxiliary induction on the length
of the inference used to establish P >• Q# to obtain a se-
quence of the form P = Q#

0
τ−→cp . . .

τ−→cp Q#
k = Q#,

k ≥ 1, so that Q#
i = [Mi is Ni] . . . , Q

#
i = let . . . or

Q#
i = case . . . (and P >• Q#

i ) for all i ∈ {0, . . . , k}.
Thus, it must hold that P = Q#

0 > . . . > Q#
k and, at

the same time, the side condition on Q# entails Q# > Q.
Thus, by moving backward along P = Q#

0 , . . . , Q#
k =

Q#, we can infer P
µ−→cp′ Q

′. In this case P ′ = Q′

and it remains to show P ′ 〈>•〉µ Q′. If µ = τ , then
〈>•〉µ = 〈>•〉void

= >•, whence P ′ 〈>•〉µ Q′

follows from the first clause for >•; if µ = m(x), then
P ′ = Q′ implies P ′[x := M ] = Q′[x := M ] for ev-
ery closed term M , so P ′[x := M ] >• Q′[x := M ] for
every closed M , so P ′ 〈>•〉µ Q′; if µ = m〈X〉, then
the occurrence of X in P ′/Q′ lies beneath zero or more
instances of parallel composition and/or restriction, so we
can carry out a straightforward structural induction to show
that P ′[X :=ho (λx)R] >• Q′[X :=ho (λx)Q] whenever
R 〈>•〉x S, so again P ′ 〈>•〉µ Q′.

Lemma 19 Let P and E be a spi calculus agent or ex-
periment, respectively. Then P maycp′ E if and only if
P maycp E.

Proof. Straightforward from Lemma 18.

A.2 From Continuation Passing back to Conven-
tional Style

The last two steps are the most simple ones, being con-
cerned with establishing the equivalence of may-testing

19



[M is M ]P > P let (x1, x2) = (M1,M2) in P > P [(x1, x2) := (M1,M2)]

case 0 of 0 : P suc(x) : Q > P case suc(M) of 0 : P suc(x) : Q > Q[x := M ]

case {M}K of [x]K in P > P [x := M ]

case {|M |}Np of [x](Np)−1 in P > P [x := M ] p = −,+
P > P ′ P ′

µ−→cp′ P
′′

P
µ−→cp′ P ′′

m(x).P
m(x)−−−→cp′ P m〈M〉.P m〈X〉−−−→cp′ XM | P

P
µ−→cp′ P

′

P |Q µ−→cp′ P ′ |Q
P

m〈X〉−−−→cp′ P
′ Q

m(x)−−−→cp′ Q
′

P |Q τ−→cp′ P ′[X :=ho (λx)Q′]

P
µ−→cp′ P

′

(ν m)P
µ−→cp′ (ν m)P ′

m 6∈ n(µ)
P

µ−→cp′ P
′

!P
µ−→cp′ P ′ | !P

P
m〈X〉−−−→cp′ P

′
1 P

m(x)−−−→cp′ P
′
2

!P
τ−→cp′ P ′1[X :=ho (λx)P ′2] | !P

Table 8. Axioms and SOS clauses for continuation-passing-style operational semantics with commit-
ments for the spi calculus, where only one symmetric clause is respectively stated for interleaving
and communication.

over the spi or π-calculus with standard operational seman-
tics as introduced in Section 2 or with continuation-passing-
style operational semantics as laid out in Tables 5 or 8, re-
spectively. Thanks to context bisimilarity, these steps are
also very much alike, whence we shall comment on them
together: In both cases we first introduce a labelled extrac-
tion relation, by which we get hold of the ordinary label and
the ordinary residual that correspond to any continuation-
passing-style output transition. On this basis, it is pos-
sible to formulate and prove a suitable operational corre-
spondence whereupon the desired equivalence is straight-
forward. When going from continuation-passing-style to
ordinary operational semantics, the operational correspon-
dence is partly up to structural congruence; in the converse
direction, it is partly up to context bisimilarity. Also, as for
output transitions, we show on the fly that a certain closure
property with respect to closed abstractions holds. The op-
erational correspondences are yet again proved by transition
induction and the just-mentioned closure properties are in-
strumental in covering τ -steps that have been inferred from
visible transitions using communication rules.

A.2.1 The Spi Calculus Side

The extraction relation on spi calculus agents is defined as
follows:

XM
(ν)M−−−−→x 0

P
(ν em)M−−−−−→x P

′

P |Q (ν em)M−−−−−→x P ′ |Q
m̃ ∩ fn(Q) = ∅

P
(ν em)M−−−−−→x P

′

(ν n)P
(ν em)M−−−−−→x (ν n)P ′

n 6∈ n(M)

P
(ν em)M−−−−−→x P

′

(ν n)P
(ν n, em)M−−−−−−−→x P ′

n ∈ n(M) \ m̃

Whenever P
(ν em)M−−−−−→x P ′, then we fix a P ′ with this

property, denoting it by fx(P ).

Lemma 20 Let P be a spi calculus agent. Then:

1. i. Whenever P
m(x)−−−→cp′ P

′, then P
m(x)−−−→ P ′.

ii. Whenever P
m〈X〉−−−→cp′ P

′, where P ′
(ν en)M−−−−−→x

fx(P ′), then P
(ν en)m〈M〉−−−−−−−→ fx(P ′), where

P ′[X :=ho (λx)Q] ≡ fx(P ′)[X :=ho (λx)Q]
for every closed abstractions (λx)Q.

iii. Whenever P τ−→cp′ P
′ then P τ−→≡ P ′.

2. i. Whenever P
m(x)−−−→ P ′, then P

m(x)−−−→cp′ P
′.

ii. Whenever P
(ν en)m〈M〉−−−−−−−→ P ′, then P

m〈X〉−−−→
(ν n)(XM | P ′), where P ′[X :=ho (λx)Q] ≡
(ν n)(XM |P ′)[X :=ho (λx)Q] for every closed
abstractions (λx)Q.

iii. Whenever P τ−→cp′ P
′ then P τ−→∼cxt P

′.

Proof. Straightforward transition induction.

Lemma 21 Let P and E be a spi calculus agent or ex-
periment, respectively. Then P maycp′ E if and only if
P maycp E.

Proof. Straightforward from Lemma 20.

20



A.2.2 The π-Calculus Side

The extraction relation on π-calculus agents is defined as
follows:

Xã
(ν)ea−−−→x 0

P
(ν ea′)ea−−−−→x P

′

P |Q (ν ea′)ea−−−−→x P ′ |Q
ã′ ∩ fn(Q) = ∅

P
(ν ea′)ea−−−−→x P

′

(ν b)P
(ν ea′)ea−−−−→x (ν b)P ′

b 6∈ ã

P
(ν ea′)ea−−−−→x P

′

(ν b)P
(ν b,ea′)ea−−−−−−→x P ′

b ∈ ã \ ã′

Analogously to the situation in subsection A.2.2, when-

ever P
(ν ea′)ea−−−−→x P ′, then we fix a P ′ with this property,

denoting it by fx(P ).

Lemma 22 Let P be a π-calculus agent. Then:

1. i. Whenever P
a(b)−−→cp P

′, then P
a(b)−−→ P ′.

ii. Whenever P
a〈X〉−−−→cp P ′, where P ′

(νeb′)eb−−−−→x

fx(P ′), then P
(νeb′) a〈eb〉−−−−−−→ fx(P ′), where

P ′[X :=ho (λ c̃)Q] ≡ fx(P ′)[X :=ho (λ c̃)Q]

for all closed abstractions (λ c̃)Q with |b̃| = |c̃|.
iii. Whenever P τ−→cp P

′ then P τ−→≡ P ′.

2. i. Whenever P
a(b)−−→ P ′, then P

a(b)−−→cp P
′.

ii. Whenever P
(νeb′) a〈eb〉−−−−−−→ P ′, then P

a〈X〉−−−→
(ν b̃’)(Xb̃ | P ′), where P ′[X :=ho (λx)Q] ≡
(ν b̃’)(Xb̃ |P ′)[X :=ho (λx)Q] for all closed ab-
stractions (λx)Q with |̃b| = |c̃|.

iii. Whenever P τ−→cp P
′ then P τ−→∼cxt P

′.

Proof. Straightforward transition induction.

Lemma 23 Let P and E be π-calculus agent or experi-
ment, respectively. Then P may E if and only if P maycp

Q.

Proof. Straightforward from Lemma 22.

A.3 Concluding the Proof of Theorem 2

Proof of Theorem 2. As a direct consequence of Lem-
mas 17, 19, 21 and 23.

21



Recent technical reports from the Department of Information Technology

2003-045 Sven-Olof Nyström: A Polyvariant Type Analysis for Erlang

2003-046 Martin Karlsson: A Power-Efficient Alternative to Highly Associative Caches

2003-047 Jimmy Flink: Simuleringsmotor för tågtrafik med stöd för experimentell konfiguration

2003-048 Timour Katchaounov and Tore Risch: Interface Capabilities for Query Processing in
Peer Mediator Systems

2003-049 Martin Nilsson: A Parallel Shared Memory Implementation of the Fast Multipole
Method for Electromagnetics

2003-050 Alexandre David: Hierarchical Modeling and Analysis of Timed Systems

2003-051 Pavel Krcal and Wang Yi: Decidable and Undecidable Problems in Schedulability
Analysis Using Timed Automata

2003-052 Magnus Svärd and Jan Nordström: Well Posed Boundary Conditions for the Navier-
Stokes Equations

2003-053 Erik Bängtsson and Maya Neytcheva: Approaches to Reduce the Computational Cost
when Solving Linear Systems of Equations Arising in Boundary Element Method Dis-
cretizations

2003-054 Martin Nilsson: Stability of the Fast Multipole Method for Helmholtz Equation in Three
Dimensions

2003-055 Martin Nilsson: Rapid Solution of Parameter-Dependent Linear Systems for Electro-
magnetic Problems in the Frequency Domain

2003-056 Parosh Aziz Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén: Forward
Reachability Analysis of Timed Petri Nets

2003-057 Erik Berg: Low-Overhead Spatial and Temporal Data Locality Analysis

2003-058 Erik Berg: StatCache: A Probabilistic Approach to Efficient and Accurate Data Locality
Analysis

2003-059 Jonas Persson and Lina von Sydow: Pricing European Multi-asset Options Using a
Space-time Adaptive FD-method

2003-060 Pierre Flener: Realism in Project-Based Software Engineering Courses: Rewards,
Risks, and Recommendations

2003-061 Lars Ferm and Per Lötstedt: Space-Time Adaptive Solution of First Order PDEs

2003-062 Emilio Tuosto, Björn Victor, and Kidane Yemane: Polyadic History-Dependent Au-
tomata for the Fusion Calculus

December 2003
ISSN 1404-3203

http://www.it.uu.se/


