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Università di Pisa, Italy

{baldig,braccia,giangi,etuosto}@di.unipi.it

Abstract. The quest for the formal certification of properties of security protocols is
one of the most challenging research issues in the field of formal methods. It requires
the development of formal models together with effective verification techniques,
methods of detecting malicious behaviour, and so on. In this paper, we describes
a formal methodology for verifying cryptographic protocols based on a symbolic state
space exploration technique. We also present Aspasya, a semi-automatic verification
tool based on our formal framework.

1 Introduction

Protocols based on cryptographic mechanisms play a fundamental role to achieve security
of distributed applications. They are used to provide secure communication services (e.g.
Secure Socket Layer), authentication services for handling and distributing passwords (e.g.
Kerberos), and so on. The design of cryptographic protocols is highly error-prone. Many
formal approaches have been developed and applied to the certification (specification and
verification) of cryptographic protocols. Some of these techniques are based on state space
exploration (e.g. finite-state model checking [12, 15, 7].). The main advantage of state-space
exploration with respect to other approaches is that it provides counterexamples when a
protocol does not satisfy some properties. A major issues is therefore the dimension of the
state space. Due to the rich structure of the messages exchanged inside a protocol session
and to the power of the adversary (the intruder), the state-space may explode thus making
state-space exploration unfeasible.

The standard way of addressing this problem is to assume an upper bound on the size
of messages synthesized by the intruder [12, 15, 7]. Recently, symbolic approaches have been
developed to keep finite the state-space [2, 3, 9]. The basic idea of symbolic approaches is to
adopt constraint systems (e.g. variation of unification) to express the values variables may
assume. Moreover, properties are specified by inserting logical assertions in the specification
of the protocol. TRUST [2] and STA [3, 4] are verification environments which model-check
security properties by a symbolic state-space exploration.

Our research is aimed at further developing verification methodologies based on the no-
tion of symbolic state-space exploration. Indeed, current verification methodologies are not
satisfactory for several reasons. First, they do not clearly separate the specification of pro-
tocol behaviour from the specification of its security properties. Usually, the specification of
the properties is hard-written into the code of the protocol. We argue that the clear distinc-
tion among the two specifications will avoid mis-interpretation of the protocol. Moreover, it
will allow one to analyze a cryptographic protocol by looking at different security properties.
Second, the assumptions underlying the formal notion of correctness are often not sufficiently
formalized. This may lead into difficulties in the verification phase. For instance, it can allow
us to prove correctness of a flawed protocol. Third, the life-cycle of a cryptographic protocol
depends on the adversary: The precise specification of the adversary knowledge becomes a
powerful verification device. It allows one to check correctness of a cryptographic protocol
under different assumptions about the power of the adversary.



In this paper we present a verification methodology that tackles the three issues discussed
above. Our methodology allows the verification of cryptographic protocols by controlling
three different coordinates: The intruder’s knowledge, the property specification and the
specification of implicit assumptions. Users can opportunely mix those three ingredients for
testing the correctness of the protocol without modifying the protocol specification. More-
over, also the definition of the desired property let the verifier abstract away specification
details; for example,thenumber of interleaved execution of the protocol for which the prop-
erty has to be checked. The separation of concerns is the added value of our approach with
respect to other approaches based on symbolic state-space exploration.

The proposed methodology is supported by a verification environment called ASPASyA

(Automated tool for Security Protocol Analysis based on a Symbolic Approach). The front-
end of ASPASyA permits specifying cryptographic protocols by a name passing process
calculus (called cIP). Properties are given with a suitable fragment of first order logic. In
this paper we do not focus on the theoretical development of cIP (we refer to [5, 17] for
details). Instead, we address the issue of the usage of the methodology as a basis for the
design and formal certification of cryptographic protocols. To illustrate the effectiveness and
usability of our approach, we consider some case studies which allows us to deal with some
verification patterns for cryptographic protocols.

Related Work

The cIP calculus and its symbolic model have some similarities with the calculi introduced
in [3, 4, 18]. However, our verification methodology clearly distinguishes specification and
verification concerns. For instance, in TRUST [18], security properties are “embedded” in
the protocol specification and the verification phase just consists of invoking the symbolic
trace generator. Moreover, even though the intruder’s knowledge and the state space can be
controlled, it is necessary to modify the protocol when different verification sessions have
to be activated. There are several analogies between our approach and the one adopted in
the STA [3, 4] verification environment. However, the STA logic is a special purpose logic
specifically designed to deal with certain kinds of security properties. Our logic is more
expressive, and moreover our methodology does not require to rewrite the security property
when different sessions of the same protocol are considered (as it happens in STA).

2 Cryptographic Protocols: An Overview

Cryptographic protocols have been used to avoid lacking/modifying “sensitive” informa-
tion in a scenario where two (or more) partners (sometimes called principals) communicate
through a “public channel”. Usually, the word “sensible” means information that should be
kept secret or non-modifiable (e.g. a credit card number, an encryption key, etc.). Certifica-
tion (specification and verification) of cryptographic protocols requires a careful definition
of the underlying assumptions adopted both in the algorithms used to encrypt/decrypt mes-
sages and in the hypothesis on the capabilities of malicious participants to communications
(usually called intruder or attacker).

This section is devoted to a brief review of some elementary notions on cryptography,
protocols specification, security properties and the attacker model. We refer to [16, 13] for a
comprehensive introduction to this field.

Cryptography An intelligible message m, is referred to as plaintext (or datagram). By
’intelligible’ we mean that the representation of the information denoted by m is public
domain knowledge. An unintelligible form of m is referred to as ciphertext (or cryptogram).

The process of assigning a ciphertext to a plaintext is called encryption; encryption is
parameterised with respect to an encryption key . Hereafter, {m}k denotes the cryptogram
obtained by encrypting message m with key k, while m,n denotes the pair made of messages
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m and n. We assume that keys have no structure, i.e. they are simply names. Given k,
decryption extracts m from {m}k.

Cryptography can be based on either public or private keys: Indeed two principals, say
A and B, can encrypt/decrypt data if they share a key k. It is usually assumed that k is
known only by A and B and other principals may acquire k only if A or B explicitly send
it. Public key cryptography is characterized by the fact that encryption and decryption keys
differs from each other. Each principal A has a private key and a public key, respectively
denoted by A− and A+. For each principal A, its public key A+ is publicly available and
may be used by any other principal to encrypt messages intended for A. Such cryptograms
may be decrypted only using the private key A− that only A owns.

The robustness of a system relies on the security of various levels of its architecture and
their relationships. At the cryptographic level, the standard working assumption is the so-
called perfect encryption hypothesis stating that a cryptogram can be decrypted only using
its decryption key and that secrets cannot be guessed, no matter how much information is
possessed1.

Protocol specification A security protocol may be naively thought of as a finite sequence
of messages between two or more participants. There is a great variety of specifications
mechanisms of protocols and their properties. Some protocols are informally specified mixing
natural language and ad hoc notation (for instance, SSL [10], SSH [19], IKE [11] are specified
in this style). Protocols are usually presented as a list of message exchanges written as in
the following example.

Example 1. We give the informal specification of the Wide Mouthed Frog (WMF) proto-
col [6]. The purpose of WMF protocol is to let A send a fresh session key kab to B through
a trusted server S. Principals A and B each share one private keys with S (kas and kbs,
respectively). The WMF protocol is:

(1) A→ S : A, {T a, B, kab}kas

(2) S → B : {T s, A, kab}kbs .

First, A encrypts for S the identity of B, the session key kab and a fresh time-stamp T a

intended to be used only for a session of the protocol; such names are called nonces. By the
perfect encryption hypothesis, T a and kab cannot be “guessed” by any other participant of
the protocol. Then, S forwards kab and the identity of the initiator to B; timeliness of kab

is witnesses by T s, a nonce generated by S. �

A sequence of message exchanges is not a complete specification for cryptographic pro-
tocols. For instance, the specification in Example 1 does not specify whether or not only
B (and S) must know kab and T s. Furthermore, tests on messages in a security protocol
are important: Type flaws are possible if the shape of the message cannot be recognised or
if a principal implicitly assumes that the received data have a given form. We adopt two
further assumptions: (i) “messages are typed”, namely, they contains enough information
for a principal to recognise their shape and (ii) quoting [6], it is assumed that a protocol
may have multiple simultaneous runs and that principals may play different roles in different
runs.

Security properties Many security properties can be stated for a given protocol. We
mainly focus on integrity, secrecy and authentication. Intuitively, a protocol guarantees in-
tegrity if, once a datum has been provided, it cannot be altered by any intruder. A protocol

1 Such hypothesis is not completely realistic; indeed, under it, cryptanalysis attacks (i.e., those
attacks that are performed by collecting a great number of cryptograms and then analyzing them
for deducing cryptographic keys) cannot be captured. However, realistic keys cannot be deduced
in polynomial time by intruders that have a given computational capacity.
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guarantees secrecy over a set of data if it is not possible that an intruder will get such data.
A protocol guarantees authentication of a user A to a user B if, after running the protocol, B
may safely assume that A was involved in the protocol run. Secrecy and authentication are
closely related. Indeed, before sending secrets to B, A should be sure that (s)he is effectively
“speaking” to B. Authentication is normally achieved through exchange of some data that
the protocol ensure to be created by the intended partner and nobody else.

If secret information must be communicated in an untrusted environment, the protocol
must ensure at least that possible eavesdroppers cannot understand them (secrecy), that
the partner in the communication is really the intended one and that the message are really
generated by the intended participant (message authenticity). Secrecy, authentication and
integrity are the “elementary” properties that protocols aim at guaranteeing.

Example 2. Let us consider again the WMF protocol specification (Example 1). A possible
requirement of the protocol is the secrecy of kab, namely, in every session, the value of
kab must be known only by the principals playing the roles of A and B and S. Another
requirement is that the protocol guarantees the authenticity kab, i.e., in every session where
B receives the message from S, (s)he must be ensured that, in the same session, (i) A has
created kab and (ii) that A asked S to forward the key to B. �

Intruder model A formal framework for protocol analysis must declare which assumptions
are made on the intruder.

The Dolev-Yao model [8] is a widely accepted model. It describes an active intruder as
a “principal” that can

– receive and store any transmitted message;
– hide a message;
– decompose messages into parts;
– forge messages using known data.

The only limitation for intruders imposed by the Dolev-Yao model is the assumption of
the perfect encryption hypothesis. The model also assumes that intruders can have some
private data, namely, information which have not been generated by regular principals.
This amounts to saying that intruders can “remember” data exchanged in previous runs
of the protocols. The model characterizes an intruder in terms of its knowledge about the
exchanged data. In particular, an intruder can record all exchanged messages and use them
later to fake principals or to extract data that must be kept secret.

Since an intruder á la Dolev-Yao can intercept any communication, it can be formalised
as the execution environment which behaves as the “adversary” of “honest” principals. The
environment collects all sent messages and manipulates them when a principal is waiting for
some data.

Let N = No ∪Np be a countable set of names, where No is the set of nonces and Np is
the set of principal names; we assume that No ∩Np = ∅. Let K be a set of keys; K contains
both symmetric and asymmetric keys and that K ∩N = ∅.

Definition 1 (Messages). A message is a term derived as follows:

M ::= N | K | M,M | {M}M .

We let m, n, ... to range over M , while λ ranges over K; λ− denotes the inverse key of λ,
namely, λ− = λ if λ is a symmetric key, while λ− = A− if λ = A+ and λ− = A+ if λ = A−.

A message may be a name (i.e. a nonce or a principal name), a key (symmetric or not), the
pairing of two messages or the encryption of a message.

As usual, we assume that keys are just names (not complex terms) and that messages
encode also their shape; for instance, m1,m2,m3 can be only matched by patterns that are
triples whose i-th component matches mi.
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The Dolev-Yao intruder is characterised by a set of messages κ and the actions the
intruder can perform on the elements of κ. We call it the intruder knowledge. Basically,
an intruder can pair known messages, split pairs and encrypt/decrypt cryptograms if the
corresponding keys can be deduced by κ. We write κ on m to denote that datum m can be
obtained by a finite sequence of such actions from messages in κ.

Example 3. Consider the knowledge κ = {{A−}k, {m}A+ , k}, we show how k on {m}k with
the following deduction tree:

κ on {A−}k κ on k

κ on A− κ on {m}A+

κ on m

and, since κ on k, we can encrypt m with k, obtaining {m}k. �

In [7] decidability of on has been proved for private key cryptography; decidability of on for
public key cryptography has been proved in [5, 17].

3 A Calculus and a Logic for Security

This section presents the main features of the cryptographic interaction pattern (cIP) calculus
and the protocol logic (PL) introduced in [5, 17] to specify and prove properties of security
protocols.

The cIP calculus The cIP calculus is a name-passing process calculus in the style of the
π-calculus [14] with cryptographic primitives.

A cIP processes A
4
= (X̃)[E] is a principal whose name is A, having open variables X̃

and whose sequence of actions is specified by E. We assume that a cIP process can only
perform a finite sequence of in(d) or out(d) actions2. Datum d is a message where variables
can appear; we denote the binding occurrences of a variable x with ?x and assume that, for
any variable x,

– output actions out(d) do not contain any occurrence of ?x in d;

– input actions in(d) have at most one occurrence of ?x in d.

Notions of free and bound occurrence of variables, can be defined in the standard way.
Hereafter we only consider processes where variable occurrences in the actions either are
bound of open variables. It is worth remarking that names and variables are syntactically
distinguished entities. Names should be thought of as being constant terms whereas variables
are placeholders and are amenable to be substituted with terms or opportunely renamed.

To illustrate the main features of cIP we consider the WMF protocol.

Example 4. Principals of the WMF protocol are described by the following cIP terms:

A
4
= (X, xas)[out(A, {T a, xas, kab}xas)],

S
4
= (U, ya, V, yb)[in(U, {?t, V, ?r}ya).out({T s, U, r}yb)],

B
4
= (zbs)[in({?s, ?x, ?w}zbs)].

�

2 We are interested in non-recursive, non-deterministic protocols; in [5, 17] more expressive pro-
cesses have been considered.
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A protocol specification is formalised by defining a cIP term for each protocol principal.
A distinguished feature of cIP is given by the notion of open variables that (together with
the join operation) provide an explicit mechanisms for sharing names/keys. In Example 4
the open variable X parameterises the identity of the responder, while xas and zbs are the
variables deemed to be identified with one of the variables for symmetric keys of S. The
server S has four open variables; U and ya are reserved for the identity and symmetric key
of the initiator, whereas V and yb are used for the identity and the symmetric key of the
responder.

An instance of principal A
4
= (X̃)[E] is a process obtained by indexing all variables

(open or not) and all names in E with a natural number i > 0. Instances run in contexts, i.e.
(possibly empty) sets of instances where computation takes place and new instances may be
dynamically added. Many instances of the same principal may (non-deterministically) join
the context modelling the execution of more sessions of the protocol.

We say that a context C has cardinality n if it contains n instances of principals. We use
ov(C) to indicate the set of open variable of context C.

Definition 2 (Join). Let An
4
= (X̃n)[En] be an instance, C be a context of cardinality n−1

and γ be a partial mapping whose domain is ov(C)∪ X̃n and such that, for each x ∈ ov(C)∪
X̃n, γ(x) is either in K or in Np depending whether x is a variable for a symmetric key or
for a principal. The join operation is defined as:

join(An, γ, C) = (X̃n − dom(γ))[Enγ] ∪
⋃

(Ỹ )[E′]∈C

(Ỹ − dom(γ))[E′
γ].

The join operation defines how a principal instance can enter a (running) context by connect-
ing open variables for asymmetric keys to principal names and open variables for symmetric
keys to keys K so that they are appropriately shared. Connected variables are no longer
open.

The pattern matching mechanism specifies complementarity of outputs and input actions.

Definition 3 (Matching). Let m and n be two messages. We say that m and n match
(m ∼ n) if, and only if,

– if m,n ∈ N ∪K then m = n;
– if m = p, q then n = p′, q′ and p ∼ p′ and q ∼ q′;
– if m = {m′}λ and n = {n′}λ− then m′ ∼ n′.

A datum d matches a message m if, and only if, there exists a substitution γ over the
variables occurring in d such that dγ ∼ m.

The first two clauses of Definition 3 are straightforward. The third clause deals with cryp-
tograms. The intuition is that {m′}λ ∼ {n′}λ′− if m′ ∼ n′ do match and λ′ is the inverse of
the key of λ3. Definition 3 becomes clearer if we consider that, in cIP, encryption and de-
cryption mechanisms are embodied into the in and out actions. For instance, the in action of
principal B in Example 4 waits for a triple encrypted with kbs, the symmetric key B shares
with S and, when such a message arrives the components are assigned to the corresponding
variables.

Binding occurrences of data input actions are patterns that must match data of output
actions. If the matching holds then the synchronization can take place and the binding
variables are substituted with corresponding values in output data.

The semantic model of cIP aims at formalizing the behaviour of the Dolev-Yao intruder.
Hence it records all the exchanged messages and the connections of open variables of prin-
cipal instances. The semantics of cIP is given by means of the reduction relation −7→, the

3 In the case of symmetric keys this simply reduces to require that the encryption keys are equal.
For instance, {B, kab, T a}kas matches itself. In the case of asymmetric keys Definition 3 states
that m matches n when the key of m is the public (private) key of a principal and the key of n

is the private (public) key of the same principal (e.g. {A}B− ∼ {A}B+ ).

6



smallest binary relation between configurations induced by the inference rules in Table 1. A
configuration is a triple 〈C, χ, κ〉 where:

– C is a context,

– χ is a variable binding that keeps track of the associations of the variables due to
communications and join executions

– and κ contains the names of instances that joined the context and the data sent along
the public channel, i.e. κ represents the intruder knowledge.

κ on m : ∃γ ground s.t. dγ ∼ m
(in)

〈(X̃i)[in(d).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[Eiγ] ∪ C, χγ, κ〉

—
(out)

〈(X̃i)[out(m).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[E
′
i] ∪ C, χ, κ ∪ m〉

C′ = join(Ai, γ, C) A
4
= (X̃)[E] i new

(join)
〈C, χ, κ〉 −7→ 〈C′

, χγ, κ ∪ {Ai, A
+
i }〉

Table 1. Context reduction semantics

Relation −7→ models both communications taking place inside contexts and the possible
evolutions of a context due to the joining of new instances.
Rule (in) describes the evolution of a context containing an instance waiting for a datum
d: If the knowledge of the environment can generate a message that matches d via a ground
substitution γ, then the system evolves to a configuration obtained by applying γ to the
continuation of the instance and recording bindings determined by γ.
Rule (out) states that a message sent by an instance is stored in κ. Notice that, the hypothesis
of using only closed principals guarantees that only ground data, i.e. messages, are sent by
principals.
Rule (join) provides a mechanism to express the dynamic composition of components to
a running open context by adding a new instance to the context. Moreover, note that the
intruder is aware of the entering of new instances: Ai and its public key A+

i is added to κ.

Example 5. Let us consider the instances obtained by indexing WMF principals A, S and
B in Example 4 respectively with 3, 2 and 1. According to cIP semantics we join them

using γ0 =







zbs
1 , x

as
3 , y

a
2 , y

b
2 7→ k,

X3, V2 7→ B1,
U2 7→ A3.

in an empty context and obtain the configuration

〈{A3, S2, B1}, ∅, γ0〉, where

A3
4
= ()[out(A3, {T a

3 , B1, k
ab
3 }k)],

S2
4
= ()[in(A3, {?t2, B1, ?r2}k).out({T s

2 , A3, r2}k)],

B1
4
= ()[in({?s1, ?x1, ?w1}k)].

Notice that A3, S2 and B1 share the same key.
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A possible trace of executing the specification of WMF protocol from an empty knowledge
is given below.

〈{A3, S2, B1}, ∅, γ0〉
−7→ 〈{()[], S2, B1}, {A3, {T a

3 , B1, k
ab
3 }k}, γ0〉

−7→ 〈{()[], S′
2, B1}, {A3, {T a

3 , B1, k
ab
3 }k}, γ0[

T a
3 ,kab

3 /t2,r2
]〉

−7→ 〈{()[], ()[], B1}, {A3, {T a
3 , B1, k

ab
3 }k, {T s

2 , A3, k
ab
3 }k}, γ0[

T a
3 ,kab

3 /t2,r2
]〉

−7→ 〈{()[], ()[], ()[]}, κ1, γ1〉,

where κ1 is the set {A3, {T a
3 , B1, k

ab
3 }k, {T s

2 , A3, k
ab
3 }k} and γ1 is the mapping

γ0[
T a
3 ,kab

3 ,T a
3 ,A3,kab

3 /t2,r2,s1,x1,w1
]. The final assignment is obtained when the environment

sends the cryptogram {T a
3 , B1, k

ab
3 }k to B1 (observe that the match holds). �

The cIP calculus offers the possibility of uniformly extending a context with new instances of
principals of the protocol. What is meant here by “uniformly” is the fact that variables and
names occurring in principal expressions are labelled with a unique index when instances
join the context. This linguistic mechanism allows us to determine which are the instances
that originated the names used through the execution of the protocol as well as to distinguish
between different participants playing the same role.

PL logic In our framework security properties are expressed by the PL logic (protocol
logic) that allows one to express properties concerning values that variables are supposed
to assume, membership of messages to the intruder’s knowledge κ and relations among the
values shared by different instances. In this logic, integrity corresponds to the possibility
of fixing some value, generalizing the approach introduced in [1], secrecy is handled by
exploiting intruder knowledge and the values it may or may not contain, and authentication
through relations among principals’ variables. The design of our logic has been driven by
the features of the cIP calculus.

Definition 4 (PL – Syntax). A formula of the logic PL is defined as follows:

φ, ψ ::= δ ∈ K | α = β | x@α = δ
| ∀α : A.φ | ¬φ | φ ∧ ψ

δ ::= d | α | x@α | I

where d is datum that does not contain any binding occurrence.

Operators ¬, ∧ and ∨ are the usual boolean operators4. The symbol K is used to represent
the knowledge that the intruder acquires during a protocol computation.

Definition 4 introduces a new class of variables which are the instance variables α, β,
etc., that are subject to equality check and quantification. Instance variables range over
(indexed) instances of roles and are “typed” by principal names. For instance, proposition
∀α : A.φ reads as “for all instances of A, φ holds”.

Among the possible values that can be expressed in PL formulae there is the distinguished
constant I that denotes the intruder’s identity. This permits expressing propositions where
the identity of the partner is not necessarily a “regular” role.

Example 6. A property that the WMF protocol should satisfy is the secrecy of the session
key kab, unless it is really intended for I:

∀α : A.X@α 6= I → kab
@α ∈ K,

that captures the intuitive secrecy property above. �

4 Derived relations 6= and 6∈, logical connectors → and ∨, or existential quantifier ∃ are defined as
usual and will be used as syntactic sugar.
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Formulae are verified with respect to a given (terminating) context of a computation and
the instances that have taken an active role in the computation. Notation κ |=χ φ indicates
that κ, under the variable assignment χ, is a model of the formula φ.

Definition 5 (Models of PL). Let χ be a ground substitution for variables X. A model
for a closed formula φ is a pair 〈κ, χ〉 such that κ |=χ φ can be proved by the following rules:

i = j
(=1)

κ |=χ Ai = Aj

xiχ = δχ
(=2)

κ |=χ x@Ai = δ

κ on δχ
(∈)

κ |=χ δ ∈ K

κ 6|=χ φ
(¬)

κ |=χ ¬φ

κ |=χ φ κ |=χ ψ
(∧)

κ |=χ φ ∧ ψ

κ |=χ φ[Aj/α] for all Aj : κ on Aj
(∀).

κ |=χ ∀α : A.φ

Rule (=1) says that 〈κ, χ〉 is a model of equality Ai = Aj whether the instances are exactly
the same instance. Rule (=2) says that 〈κ, χ〉 is a model of x@Ai = δ whether the value
associate by χ to variable x of instance Ai, i.e. xiχ equals the valued δχ. Rule (∈) establishes
that κ |=χ δ ∈ K whenever δχ can be constructed from the decomposition set of κ. Rules
(¬) and (∧) are straightforward. In ∀α : A.φ the universal quantifier ranges over the finite
set of instances of role A. Quantifiers are solved by relating variables to actual instances.
In order to prove that 〈κ, χ〉 is a model for a formula ∀α : A.φ, it is necessary to show that
〈κ, χ〉 is a model for any formula obtained by substituting Aj for α in φ, where Aj is any
instance of A deducible from κ.

Since relations on and = are decidable then |= and 6|= are decidable too.
Notice that if χ and χ′ differ only on variables not appearing in φ, then κ |=χ φ ⇔ κ |=χ′

φ. Hence, we can only consider finite assignments over the variables of φ.

Example 7. Let us consider the following authentication property.

φ = ∀β : B.∃σ : S.∃α : A.

(V @σ = β ∧ U@σ = α ∧ X@α = β) → (t@σ = T a
@α ∧ s@β = T s

@σ ∧ r@σ = kab
@α).

The formula states that, whenever B terminates, a server S and an initiator A (that aimed
at interacting with B through S) have also took part to the session. In this case, the nonce
received by S is the one generated by A, while B receives the nonce generated by S. Finally,
the session key received by S must be the key associated to T a by A.

We show that the final configuration 〈{()[], ()[], ()[]}, κ1, γ1〉 in Example 5 does not yield a
model of φ. We have already pointed out that instance variables are quantified over principals
that have been joined the context, hence φ is equivalent to:

(V @S2 = B1 ∧ U@S2 = A3 ∧X@A3 = B1)
→ (t@S2 = T a

@A3 ∧ s@B1 = T s
@S2 ∧ r@S2 = kab

@A3)

where we have substituted instance variables with the corresponding names in κ1. It is easy
to see that under mapping γ1 the antecedent holds while the consequent is false because
γ1(s1) = T a

3 , hence κ1 6|=γ1
φ. �

3.1 Connection Formulae

The join mechanism is the basic building block to connect principals properly within protocol
sessions. It appears hence natural to augment its expressiveness by equipping it with a
mechanism to state invariant properties on protocol principals: Connection formulae. For
instance, the property may state the hypothesis on the usage of keys among principals.

Example 8. A desirable connection of WMF principals in Example 4 is expressed by the
following formula:
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φj = ∀ζ : S.(∃α : A.(U@ζ = α → ya
@ζ = xas

@α) ∧ (V @ζ = α → yb
@ζ = xas

@α))
∧(∃β : B.(U@ζ = β → ya

@ζ = zbs
@β) ∧ (V @ζ = β → yb

@ζ = zbs
@β)).

The formula states that “correct” joins of instances connect symmetric keys of initiator to
ya and those of the responder to yb; notice that A and B can play both roles. �

By taking advantage of such formulae, we can also formalise implicit conditions of the
protocol. For instance, we can add to φj the condition that ya

@ζ 6= yb
@ζ stating that the

key shared by A and B with S must be different.

Notice that the operational semantics now generates all the contexts satisfying the prop-
erty. This significantly reduces the state space.

3.2 Symbolic Semantics

The semantics of cIP prescribes that input actions with binding variables force the intruder
to generate a matching message from its knowledge. Since the number of messages derivable
from a non-empty knowledge is infinite (e.g. if κ on m, then κ on m,m), the operational
semantics generates an infinite state space. Symbolic techniques provide a powerful mecha-
nism to tackle this problem: We introduce the symbolic variable x(κ), whenever an infinite
set of messages can be generated for a binding variable x. This amounts to say that x can
assume any message m such that κ on m. The value of x(κ) will be possibly set by matching
later actions in the trace. Moreover, the evolution of the computation will possibly impose
further constraints which could restrict the set of values for x. As observed in [5, 17], output
of regular principals can be anticipated without any loss of significant traces. The intruder
modelled is eager since he learns as much as possible from messages sent by regular princi-
pals. When all output messages have been collected, the intruder tries to generate messages
for waiting principals. The symbolic semantics enables us to limit, as much as possible, the
dimension of traces. Notice that this is not a trivial task, because we need to avoid cutting
off traces that lead to attacks. Therefore, the symbolic semantics generates only those traces
where output actions are fired in advance with respect to the input ones. More precisely,
whenever we have to generate the successors of a state we check if it contains output actions.
In such a case, we have only one successor which is the state obtained performing all output
actions at once. Otherwise, we have a finite number of successors for each input action.

The symbolic state space can be further reduced by adding “type” information to sym-
bolic variables. For instance, if we know that x stands for a message of type t, we substi-
tute x(κ) with xt(κ), where t ranges on {P,O, pb, pr, sy, ∗} (respectively denoting ‘principal
names’, ‘nonce’, ‘public’, ‘private’, ‘symmetric’). For example, let us consider the principal

A
4
= ()[in(?x).in({na}x)]. Whenever the intruder has to forge a message matching with ?x,

a symbolic variable x(κ) is sent. Afterwords, the second action imposes a constraint on x(κ)
because the intruder ‘learns’ that x is intended to be a key, hence we consider only those
transitions where a key in κ is substituted for x.

4 ASPASyA

The previous sections reviewed the features of our symbolic model for verifying cryptographic
protocols. We now show how the symbolic model has been exploited as a basis for the design
and development of an effective and usable verification toolkit called ASPASyA. ASPASyA

is written in ocaml and has a modular architecture, where each module encapsulates a single
aspect of the symbolic model.
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Fig. 1. ASPASyA architecture

4.1 Architecture

The architecture of ASPASyA is displayed in Figure 1 and it is made of three main groups.
The group configuration-hdl manages cIP configurations (and, therefore, PL models)
and it consists of components:

– context for representing instances,
– knowledge that manages the set of messages in the configurations and,
– assignments handling with variable substitutions.

Group states-hdl implements the state space generation and contains components:

– step that obtains the next state given the current one, and
– join that handles the introduction of new principals inside the context.

Finally, formula-hdl implements checking of security properties and resolution of corre-
sponding constraint systems. The modules of formula-hdl are:

– logic that transforms a PL formula in an equivalent normalised formula;
– verifier that checks whether a formula holds in a given configuration;
– csolver that collects constraints on symbolic variables and resolves equality/inequality

of symbolic messages.

In a verification session, the user provides the cIP specification of the protocol (file
prt.pr) equipped with the connection formula (prt.pj) and the PL formula expressing
the security property (prt.pl). A non-empty initial knowledge (prt.kb) and the maximum
number of instances that can join a context can be specified, as well.

Modules step and join ask to configuration-hdl for the current state. According
to cIP (symbolic) semantics and to prt.pj, a new configuration is produced and returned
back to configuration-hdl. When configuration-hdl receives a final configuration, it
forwards the corresponding PL (symbolic) model to verifier that together with csolver

checks for the validity of (the normalisation of) prt.pl. The verification process is made
on a state that may contain symbolic variables. Resolving symbolic atoms via unification
leads to an infinite number of assignments. To cope with this problem ASPASyA uses a
symbolic constraint solver. Modules verifier and csolver return OK when the formula
holds, otherwise they yield the (possible) attack(s)5. The attacks are reported together with
the conditions they violate.

4.2 Verifying with ASPASyA

Verifying a protocol with ASPASyA is a four-step procedure: (i) Each role is formalised by
a cIP principal, (ii) the security property is specified with a PL formula, (iii) conditions on
connections are specified with a PL formula and, (iv) initial knowledge is tuned.

5 The user can specify if ASPASyA must stop at the first attack found or explore the whole state
space.
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cIP specification Principals of the WMF protocol can be translated in a formal cIP
specification as in Example 4. The basic idea of this step is to provide a cIP process for each
principal corresponding to a role in the protocol. At each step, its behaviour depends on
whether the principal is sending or receiving a message.

Generally speaking, the protocol designer must specify open variables of principal. Even
though it seems that no algorithm exists to (completely) define cIP principals from their
informal specifications, we can give some rule of thumbs:

– Initiator usually needs an open variable which the responder should join;
– if the identity of the partner is acquired in a communication no open variable is required

from that partner (unless checks are required);
– an open variable might be necessary when a principal must interact with a server.

Security Properties An interesting authentication property for the WMF protocol states
that principal B can safely assume that the session key received from the server S has been
generated by an initiator A (and that A intended to use the key with B). This property is
represented by the formula:

φ = ∀β : B.∃σ : S.∃α : A.
(V @σ = β ∧ U@σ = α ∧X@α = β) → (t@σ = T a

@α ∧ s@β = T s
@σ ∧ r@σ = kab

@α).

Given the previous cIP specification and the authentication property, ASPASyA gener-
ates the state space and tries to satisfy φ in any final state. The result is a trace where φ
does not hold and where principals are connected with

γ0 =















zbs
1 , x

as
3 , y

a
2 , y

b
2 7→ k,

X3 7→ X3(κ0),
V2 7→ V2(κ0),
U2 7→ U2(κ0).

Let S′
2 be ()[out({T s

2 , U2(κo), k
ab
3 }k)], then the following trace is found:

〈{A3, S2, B1}, ∅, γ0〉
−7→ 〈{()[], S2, B1}, {A3, {T a

3 , X3(κ0), k
ab
3 }k}, γ0〉

−7→ 〈{()[], S′
2, B1}, {A3, {T

a
3 , X3(κ0), k

ab
3 }k}, γ0[

T a
3 ,X3(κ0),k

ab
3 /t2,V2(κ0),r2

]〉
−7→ 〈{()[], ()[], B1}, κ1, γ0〉
−7→ 〈{()[], ()[], ()[]}, κ1, γ1〉,

where κ1 is the set {A3, {T a
3 , X3(κ0), k

ab
3 }k, {T s

2 , U2(κ0), k
ab
3 }k} and γ1 is the mapping

γ0[
T a
3 ,X3(κ0),k

ab
3 ,T a

3 ,X3(κ0),k
ab
3 /t2,V2(κ0),r2,s1,x1,w1

].
When checking κ1 |=γ1

φ, verifier and csolver instantiate the trace above with the
“concretizing” substitution γ = [B1,B1,A3/X3(κ0),V2(κ0),U2(κ0)]. Since κ1γ 6|=γ1γ φ, an attack
is found and the above trace is returned together with the violated condition of φ, namely
t@σ 6= T a

@α.

Handling Intruder Knowledge Specifying the initial knowledge of the intruder is a
powerful device to test a protocol under weaker conditions. It is used mainly for two purposes:

– the intruder knows some secrets (e.g. compromised keys);
– Let the intruder know something about past interactions between principals (cryp-

tograms exchanged in previous sessions).

The latter is especially useful in finding replay attacks where the intruder makes a principal
accepting a message generated for him in a previous session.
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4.3 The Needham-Schroeder Protocol

This section applies the verification methodology of ASPASyA to the Needham-Schroeder
protocol. The purpose is to emphasize the flexibility and the expressiveness of ASPASyA.
The informal specification together with its corresponding cIP formalisation are given below:

(1) A → B : {na, A}B+

(2) B → A : {na, nb}A+

(3) A → B : {nb}B+ .

A
4
= (y)[out({na,A}y+).in({na, ?u}A−).out({u}y+)]

B
4
= ()[in({?x, ?z}B−).out({x, nb}z+).in({nb}B−)].

The protocol has been designed to achieve reciprocal authentication of A and B by
exchanging secret nonces na and nb. At step (3), B receives the last message and assumes
that A has been its partner in the protocol session where nonce nb was generated: A desirable
property can be formalised with the following PL formula:

∀α : A.(na@α ∈ K → x@α = I)
∧
∀β : B.((nb@β ∈ K → z@β = I) ∨ (∃α : A.z@β = α→ x@α = β)).

The first condition states that nonces na generated by instances of A must remain secret,
unless they were intended for I. The second condition states that, for each instance β of B,
either the intruder obtains nb@β because he initiated the protocol session with β as responder
(z@β = I) or, if β assumes that he communicated with an instance of A, α, (z@B = α) then
instance α wanted to communicate with β (z@α = β). (For simplicity, we do not impose any
constraint on connections and assume the empty initial knowledge.)

ASPASyA returns two attacks that violate the security property above: One is the
well-known Lowe attack [12], the other is a subtle type flaw. We report only the informal
description of the type flaw attack6. Since no constraints are imposed to connections, the
context made only of two instances of B (B1 and B2) is generated by join. A possible trace
of this context is:

(1) I → B1 : {I, B2}B
+

1

(2) B1 → I : {I, nb1}B
+

2

(3) I → B2 : {I, nb1}B
+

2

(4) B2 → I : {nb1, nb2}I+

(5) I → B2 : {nb2}B
+

2

(6) I → B1 : {nb1}B
+

1

where the intruder interleaves two sessions with B1 and B2 where he plays as initiator.
Step (1) contains a type flaw, since the I exploits its own identity as a nonce so that B1

“thinks” B2 started a protocol session as initiator. Thence, B1 replies the nonce challenge
with message (2), that I forwards to B2 to make him/her generate message (4). The intruder
can now decrypt message (4), therefore secrecy of nb1 is violated (nb1 6∈ K) even though
z@B1 6= I. Notice that STA and TRUST would have required two different verification
sessions to discover the two attacks, changing protocol specification.

5 Discussion

The attack of the WMF protocol is based on the fact that A and B share the same key
with S. Of course, in symmetric cryptography it is assumed that this cannot happen. Our
aim, however, is to show that this assumption can be expressed in our framework without
changing neither cIP principals nor security formulae. Indeed, we can simply add to the

6 We refer the reader to http://www.di.unipi.it/~etuosto/aspasya.html for the details.
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connection invariant the condition ya
@σ 6= yb

@σ. This shows that the PL formula that
drives conditions can also be used for stating implicit assumptions on protocols.

The type flaw attack to the Needham-Schroeder protocol is more subtle; however, we
want just remark that ASPASyA can find different attacks by checking only one security
property. Hence, it is also useful that indications on the conditions that are violated by the
reported attacks are pinpointed.

The most computationally expensive tasks in ASPASyA are state space generation and
checking of formulae. We adopted some programming tricks to tune our algorithms with
respect to the time spent in computation and memory usage. The main problems related to
the handling of (very large) transition systems are memory consumption and trace pruning.
These problems have been considered by other authors [18, 3, 4] as well. Our framework ex-
tends these approaches by taking advantages of the join mechanism and the implementation
of symbolic variable to reduce the state space. Notice that since we are interested in checking
a formula when we reach a terminal trace, it is not necessary to maintain in memory all
the state space but only the current trace. This has been accomplished using a depth-first
search strategy that coupled with the efficient ocaml garbage collector enables us to use a
little amount of memory (this also has impact on time efficiency since we gain speed for the
lack of page swapping)
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