
D-Fusion: a Distinctive Fusion Calculus

Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
2 Dipartimento di Informatica, Università di Pisa, Italy.

boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it

Abstract. Fusion calculus is commonly regarded as a generalisation of pi-
calculus. Actually, we prove that there is no uniform fully abstract embedding
of pi-calculus into Fusion. This fact motivates the introduction of a new calcu-
lus, D-Fusion, with two binders,λ andν. We show that D-Fusion is strictly more
expressive than both pi-calculus and Fusion. The expressiveness gap is further
clarified by the existence of a fully abstract encoding of mixed guarded choice
into the choice-free fragment of D-Fusion.

1 Introduction

A recent trend in the design of certain distributed applications like Web services [13]
or business-to-business systems [5] based on XML sees the emergence of a message-
passing programming style. Languages like Highwire [4] provide, in a concurrency
setting, sophisticated data structures; these allow programmers to describe and ma-
nipulate complex messages and interaction patterns. If one looks for ‘foundational’
counterparts of these programming languages, both the pi-calculus [6, 7] and the Fu-
sion calculus [11], seem very promising candidates. Both of them, indeed, convey the
idea of message-passing in a distilled form, and come equipped with a rich and elegant
meta-theory.

The main novelty of Fusion when compared to the pi-calculus is the introduction of
fusions. A fusion is a name equivalence that, when applied onto a term, has the effect
of a (possibly non-injective) name substitution. Fusions are ideal for representing, e.g.,
forwarders for objects that migrate among locations [2], or forms of pattern matching
between pairs of messages [4]. Computationally, a fusion is generated as a result of a
synchronisation between two complementary actions, and it is atomically propagated
to processes running in parallel with the active one. This happens in much the same
way as, in logic programming, term substitutions resulting from a unification step on a
subgoal can be forced on the other subgoals.

If compared to pi-calculus name-passing, fusions enable a more general name
matching mechanism during synchronisation. However, differently from the pi-
calculus, the binding mechanism of Fusion just ignores the issue of unicity of newly
generated names. One of the goals of this paper is to show that this fact severely limits
the expressiveness of Fusion. Overcoming this limitation calls for co-existence of two
name binders,λ andν: the former analogous to the only binder of Fusion, and the latter

Research supported in part by FET Global projectPROFUNDIS.

2

imposing unicity. This implies combining, in a consistent way, the somehow conflict-
ing mechanisms of fusions anddistinctionsà la open pi-calculus [12]. The resulting
distinctiveFusion calculus, orD-Fusion, is at least as expressive as pi-calculus and
Fusion separately, and in fact, we strongly argue,moreexpressive than both. A more
precise account of our work follows.

The binding mechanism of pi-calculus generalises that ofλ-calculus in several
ways. Input prefix binds likeλ, and name passing takes place in pi-calculus in a way
typical of functional programming, i.e., formal names are assigned their actual counter-
part. Therestrictionbinderν, however, is very different fromλ, as a restricted name can
be exported (extruded), with the guarantee that it will never be identified to anything
else. Open pi-calculus [12] takes an important step forward over the original proposal,
allowing for input actions whose formal parameters can be instantiated, hence ‘fused’,
in a ‘lazy’ fashion – at any time when needed for synchronisation. In order to preserve
the intended semantics of restriction, however, newly extruded names are kept distinct
from ‘old’ names, using special relations called distinctions.

Fusion calculus is presented in [11] as a more uniform and more expressive version
of pi-calculus. The main idea is to decompose input prefixa(x) into a binder(x) and
a prefixa〈x〉. In the polyadic case, matching between the input list and the output list
of variables induces name unification, i.e. a fusion. The latter is propagated across pro-
cesses, but one or more binders can be used to control the scope (i.e. propagation) of
the fusion. Thus one achieves both a perfect symmetry between input and output and a
more general name passing mechanism.

At first sight, Fusion is more general than pi-calculus. And, indeed, in [11] it is
stated that the pi-calculus transition system can be embedded into Fusion’s, provided
that one identifies restriction(νx) with the(x) binder of Fusion.

Our first move is to argue that this embedding breaks down if comparing the two
calculi on the basis of abstract semantics. We prove that no ‘uniform’ encoding exists
of pi-calculus into Fusion that preserves any ‘reasonable’ behavioural equivalence (at
least as fine as trace equivalence). Here ‘uniform’ means homomorphic with respect to
parallel composition and name substitution, and mapping(νx) to (x), and preserving (a
subset of) weak traces. As hinted before, the ultimate reason is that in Fusion all names
are like logical variables, i.e., their unification always succeeds.

The above failure motivates the introduction of a new calculus, D-Fusion, with two
binders,λ andν: the first generalises input prefix, and the second models restriction.
Also, any issue of symmetry between input and output is preempted, since we have just
one kind of prefix (no polarisation); polarised prefixes can be easily encoded, though.
As in open pi-calculus, in D-Fusion distinctions are employed to constrain possible
fusions. In logical terms, this corresponds to allow unification not only among vari-
ables, but also among variables and dynamically generated constants (that is,ν-extruded
names). However, unification fails whenever one tries to identify two distinct constants,
or to identify a ‘recent’ constant with an ‘old’ variable. We show that the additional
expressive power achieved in this way is relevant. Both pi-calculus and Fusion can be
uniformly encoded into D-Fusion. Moreover, the combined mechanism of restriction
and unification yields additional expressive power: it allows to express a form of pat-

3

tern matching which cannot be expressed in the other two calculi. As a consequence, we
prove, D-Fusion cannot be uniformly encoded neither into Fusion, nor into pi-calculus.

Next, the gap between D-Fusion and Fusion/pi-calculus is explored from a more
concrete perspective. First, we exhibit a simple security protocol and a relatedcorre-
lation property that are readily translated into D-Fusion. The property breaks down if
uniformly translating the protocol into Fusion. The failure is illuminating: in Fusion,
one has no way of declaring unique fresh names to correlate different messages of the
protocol.

Palamidessi has shown [9, 10] that nondeterministicguarded choicecannot be sim-
ulated in the choice (+) -free pi-calculus in a fully abstract way, while preserving any
‘reasonable’ semantics. This is due to the impossibility of atomically performing, in
the absence of+, an external synchronisation and an internal exclusive choice among
a number of alternatives. We prove that in D-fusion, under mild typing assumptions,
guarded choice can actually be simulated in a fully abstract way in the choice-free
fragment. The encoding preserves a reasonable semantics in the sense of [9, 10]. Infor-
mally, branches of a choice are represented as concurrent processes. Synchronisation is
performed in the ordinary way, but it forces a fusion between a globalλ-name and a
ν-name local to the chosen branch. Excluded branches are atomically inhibited, since
any progress would lead them to fusing two distinctν-names.

The rest of the paper is organised as follows. Section 2 contains the proof that the
pi-calculus cannot be uniformly encoded into Fusion. In Section 3 we introduce the
D-Fusion calculus and in Section 4 we give a notion of bisimulation for the calculus,
and characterise it via a more handy symbolic semantics; we also introduce a notion
of sorting and sorted bisimulation. In Section 5 we show that the D-Fusion calculus
is more expressive than both pi-calculus and Fusion. We further explore this expres-
siveness gap in Sections 6 by means of an example and in Section 7 by encoding the
mixed guarded choice into the choice-free calculus. Finally, Section 8 contains a brief
overview of some related work and a few concluding remarks.

2 Fusion and Pi

The aim of this section is illustrating the difference between pi-calculus and Fusion,
and to show that the former cannot be uniformly encoded in the latter.

The crucial difference between the pi-calculus and Fusion shows up in synchronisa-
tions: in Fusion, the effect of a synchronisation is not necessarily local, and is regulated
by the scope of the binder(x). For example, an interaction betweenuv.P andux.Q will
result in a fusion ofv andx. This fusion will also affect any further processR running
in parallel, as illustrated by the example below:

R|uv.P|ux.Q
{x=v}−−−→ (R|P|Q)[v/x].

The binding operator(x) can be used to limit the scope of the fusion, e.g.:

R|(x)
(
uv.P|ux.Q

) τ−→ R|(P|Q)[v/x].

whereτ denotes the identity fusion. For a full treatment of pi-calculus and Fusion we
refer to [7] and to [11], respectively.

4

Below, we show that there is no ‘reasonably simple’ encoding of the pi-calculusΠ
into FusionF . We focus on encodings[[·]] that have certain compositional properties
and preserve (a subset of) weak traces. As to the latter, we shall only require that moves
of P are reflected in[[P]], not vice-versa. We also implicitly require that the encoding
preserves arity of I/O actions (the length of tuples carried on each channel). This is
sometimes not the case for process calculi encodings; however, it is easy to relax this
condition by allowing names of[[P]] to carrylonger tuples. We stick to the simpler cor-
respondence just for notational convenience. Note that the encoding presented in [11]
does satisfy our criterion. We shall assume here the standard pi-calculus late operational
semantics [7] and, for the purpose of our comparison, we shall identify the late input
pi-actiona(x̃) with the Fusion input action(x̃)ax̃.

Definition 1. A translation[[·]] : Π → F is uniform if for each P,Q∈ Π it holds that:

– for each trace of actions s not containing bound outputs, P
s=⇒ implies[[P]] s=⇒;

– [[P|Q]] = [[P]]|[[Q]];
– for each y,[[(νy)P]] = (y)[[P]];
– for each substitutionσ, [[Pσ]] = [[P]]σ.

The next proposition generalises an example from [11]. Below, we fix an arbi-
traryΠ-equivalence included in trace equivalence,∼Π, and an arbitraryF -equivalence
which is included in trace equivalenceand is preserved by parallel composition,∼F
(like, e.g., hyperequivalence of [11]).

Proposition 1. There is no uniform translation[[·]] : Π→F such that for each P,Q∈Π:

P∼Π Q implies[[P]]∼F [[Q]] .

PROOF: Suppose that there exists such a translation[[·]]. Let P andQ be the following
two pi-agents:

P = (νu,v) (a〈u,v〉 |u|v.w)

Q = (νu,v)
(

a〈u,v〉 |(u.(v.w)+v.(u|w))
)
.

Obviously,P∼Π Q (e.g. they are strongly late bisimilar). Suppose[[P]] ∼F [[Q]]. Let
R= a(x,y).(cx|cy) andA andB be as follows:

A= [[P]]|R=(u,v)([[a〈u,v〉]]|[[u]]|[[v.w]]) |R

B=[[Q]]|R=(u,v)([[a〈u,v〉]]|[[u.(v.w)+v.(u|w)]]) |R.

Since∼F is preserved by|, A andB are∼F -equivalent. By uniformity of the encoding,

it is easy to check thatA
w=⇒. On the other hand, a careful case analysis shows that

B 6 w=⇒. This is a contradiction. �

5

3 The Distinctive Fusion Calculus, D-Fusion

Syntax We consider a countable set of namesN ranged over bya,b, . . . ,u,v, ...,z. We
write x̃ for a finite tuplex1, . . . ,xn of names. The setDF of D-Fusionprocesses, ranged
over byP,Q, . . ., is defined by the syntax:

P ::= 0
∣∣ α.P

∣∣ P|P
∣∣ P+P

∣∣ [x = y]P
∣∣ !P

∣∣ λxP
∣∣ (νx)P

whereprefixesα are defined asα ::= aṽ. The occurrences ofx in λxP and(νx)P are
bound, thus notions offree namesandbound namesof a processP arise as expected
and are denoted by fn(P) and bn(P), respectively. The notion ofalpha-equivalencealso
arises as expected. In the rest of the paper we will identify alpha-equivalent processes.

Note that we consider one kind of prefix, thus ignoring polarities. However, a sub-
calculus with polarities can be easily retrieved, as shown at the end of this section.

The main difference from Fusion is the presence of two distinct binding constructs,
λ andν. Theλ-abstraction operator corresponds to the binding construct of Fusion and
generalises input binding of the pi-calculus. The restriction operator (ν) corresponds
to the analogous operator of the pi-calculus: it allows a process to create a fresh, new
name that will be kept distinct from other names.

Operational SemanticsFor R a binary relation overN , let R? denote the reflexive,
symmetric and transitive closure ofR with respect toN . We useσ, σ′ to range over
substitutions, i.e. finite partial functions fromN ontoN . Domain and co-domain ofσ,
denoted dom(σ), cod(σ) are defined as expected. We denote bytσ the result of applying
σ onto a termt. Given a set/tuple of names̃x, we defineσ|x̃ asσ∩ (x̃×N), andσ−x̃ as
σ− (x̃×N).

Definition 2 (fusions).We letφ,χ, . . . range overfusions, that is total equivalence re-
lations onN with only finitely many non-singular equivalence classes. We let:

– n(φ) denote{x : xφy for some y6= x};
– τ denote the identity fusion (i.e.,n(τ) = /0);
– φ+ψ denote the finest fusion which is coarser thanφ andψ, that is(φ∪ψ)?;
– φ−z denote(φ− ({z}×N ∪N ×{z}))?;
– {x = y} denote{(x,y)}?;
– φ[x] denote the equivalence class of x inφ.

A fusionφ arises as the result of equating two lists of names in a synchronisation. In
general, names in the original lists might be eitherλ-abstracted orν-extruded, or free.
Informally, the effect ofφ should be that of a substitution, mapping equivalent names
onto representatives. However, in the presence ofν-, λ-abstracted and freeφ-equivalent
names, some care is needed to ensure that the representative be chosen appropriately.
This concept is made precise in the next definition.

Definition 3 (induced substitutions).Let x̃ andk̃ be two disjoint tuples of names and
φ be a fusion such that for any two distinct k1,k2 ∈ k̃, not(k1 φk2). We say that a substi-
tutionσ is induced byλx̃, (νk̃) andφ, if dom(σ) = n(φ) and for each equivalence class
E of φ, σ maps all names in E onto one and the same name y∈ E such that:

6

– if k̃∩E = {h} then y= h;
– if k̃∩E = /0 and E− x̃ 6= /0 then y∈ E− x̃.

For example, supposeφ has only two non-singular equivalence classes{x,w,k} and
{y,h}, then a substitutionσ induced byλxy, (νk) andφ is the one mappingx, w, k to
k andy, h to h. It is important to stress that, by definition, no inducedσ exists if for
distinctk1,k2 ∈ k̃ it holdsk1 φk2. Also note that in general there may be more than one
induced substitution. E.g.{a = b} (with empty λx̃ and (νk̃)) induces both[a/b] and
[b/a]. We introduce the labelled transition system for D-Fusion.

Definition 4 (labelled transition system).The transition relation P
µ−→Q, for µ a label

of the form(νx̃)λỹ ãv (action) or of the form(νx̃)φ (effect), is defined in Table 1.

Some notations for actions and effects. The bound names ofµ are written bn(µ) and
are defined as expected, while subj(µ) and obj(µ) denote the subject and object part of
µ, if µ is an action, otherwise they both denote conventional value ‘−’. Moreover, n(µ)
denotes all the names ofµ. We use abbreviations such as n(φ,µ) to denote n(φ)∪n(µ)
and(νz)µ for (νx̃z)φ, if µ = (νx̃)φ. Furthermore, we shall identify actions and effects
up to reordering of the tuplẽx in (νx̃) andλx̃.

The rules in Table 1 deserve some explanation. As mentioned, we have two kinds
of labels, actions and effects. Apart from the absence of polarities,actionsare governed
by rules similar to those found in pi-calculus. The main difference is that on the same
action one can find bothν- andλ-extruded names. On the other hand,effectsare sim-
ilar to those found in Fusion. A major difference is that our effects can alsoν-extrude
names. An effect(νx̃)φ can be created as a result of a communication (ruleCOM), and
be propagated across parallel components, until aλ that binds a fused namez is en-
countered (ruleλ-OPENf). At that point, the corresponding substitutionσ|z is applied onto
the target process andz is discarded from the fusion (the result isφ−z). Any ν-extruded
namew∈ x̃ which is equivalent tozmust beν-closed back, provided that no free name
is in that equivalence class. In ruleCOM, handling ofλ- andν-extruded names can be
explained similarly, but note that thoseλ-extruded names̃z that are not instantiated (by
σ|ỹ′ỹ′′) must beλ-closed (this happens when in some equivalence class all names are
λ-abstracted). Finally, note that the side condition ‘φ[z]∩ x̃ = /0’ in rule ν-OPEN prevent
effects from equating two distinctν-extruded names.

Let us illustrate the rules with some examples. We shall use{x̃ = ỹ}.P as an ab-
breviation for(νc)(cx̃|cỹ.P) (for a fresh namec) and we writeτ.P when x̃ and ỹ are
empty.

Example 1.

1. LetP= (νx)(νc)(cx.P1 |cy.P2). The interaction betweencx.P1 andcy.P2 will result
into a fusion{x = y}, that causesx to be extruded:

(νx)(νc)(cx.P1 |cy.P2)
(νx){x=y}−−−−−→ (νc)(P1 |P2).

Now considerQ= λyP. The effect ofλ-abstractingy in P is that of removingφ and
getting the induced substitution[x/y] applied onto the continuation:

λy(νx)(νc)(cx.P1 |cy.P2)
τ−→ (νx)((νc)(P1 |P2)[x/y]) .

7

(ACT) α.P
α−→ P (MATCH)

P
µ−→Q

[a = a]P
µ−→Q

(SUM)
P1

µ−→Q

P1 +P2
µ−→Q

(ν-PASS)
P

µ−→Q

(νz)P
µ−→ (νz)Q

z /∈ n(µ) (λ-PASS)
P

µ−→Q

λzP
µ−→ λzQ

z /∈ n(µ)

(ν-OPEN)
P

µ−→Q

(νz)P
(νz)µ−−−→Q


z∈ n(µ)

µ an action impliesz 6= subj(µ)

µ= (νx̃)φ impliesφ[z]∩ x̃ = /0

(λ-OPENa)
P

(νx̃)λỹ ãv−−−−−→Q

λzP
(νx̃)λỹz ãv−−−−−→Q

z∈ ṽ− ({a}∪ x̃ỹ)

(λ-OPENf)
P

(νx̃)φ−−−→Q

λzP
(νx̃′)φ−z−−−−→ (νŵ)(Qσ|z)



z∈ n(φ)

σ induced byλz, (νx̃) andφ

x̃′ = x̃∩n(φ−z)

ŵ = x̃− x̃′

(COM)
P1

(νx̃′)λỹ′ aũ−−−−−−→Q1 P2
(νx̃′′)λỹ′′ aṽ−−−−−−→Q2

P1|P2
(νx̃){ṽ=ũ}−ỹ′ ỹ′′−−−−−−−−−→ (νw̃)λz̃((Q1|Q2)σ|ỹ′ỹ′′)



|ũ|= |ṽ|

σ induced byλỹ′ỹ′′, (νx̃′x̃′′) and{ṽ = ũ}

z̃= ỹ′ỹ′′∩cod(σ|ỹ′ỹ′′)

x̃ = x̃′x̃′′∩n({ṽ = ũ}−ỹ′ỹ′′)

w̃ = x̃′x̃′′− x̃

(PAR)
P

µ−→Q

P|R µ−→Q|R
(REP)

P|!P µ−→Q

!P
µ−→Q

Symmetric rules for(SUM) and(PAR) are not shown. Usual conventions about freshness of bound

names apply.

Table 1.Actions and effects transitions in D-Fusion.

8

It is worth noting that our operational rules are preserved by a form of structural
equivalence. For instance, letR = (νx)λy(νc)(cx.P1 |cy.P2). R has the sameτ-
transition asQ above.

2. Another example is as follows (P below is some continuation):

λz(νw){z,a = w,b}.P {a=b}−−−→ (νw)P[w/z], but

λz(νw){z,z= w,b}.P (νw){w=b}−−−−−−→ P[w/z].

Encoding I/O polaritiesWe can encode polarities as follows:

c〈ṽ〉.P = (νx)λyc̃vxy.P c〈ṽ〉.P = (νx)λyc̃vyx.P

for some chosen freshx andy. The position of theν-namex forbids fusions between
actions with the same polarity and, hence, communication. For instance, the process
c〈ṽ〉.P|c〈ũ〉.Q has noτ-transition, since the latter would force the fusion of two distinct
ν-names, which is forbidden by the operational rules. We denote byDF p, polarised
D-Fusion, the subset ofDF in which every prefix can be interpreted as an input or
output, in the above sense.

4 Bisimulation

Like in the case of Fusion, a ‘natural’ semantics of D-Fusion is required to be closed
under substitutions. However, one should be careful in keepingν-extruded names dis-
tinct from others (λ-extruded and free). To this purpose, we introduce below a concept
of distinction, akin to [12]. Distinctions keep track ofν-extruded names, for which fu-
sions should be forbidden. Differently from [12], however, our distinctions keep track
of λ-extruded names as well, and of the order of their extrusion relative toν-extruded
names. The idea is to treatν-extruded names as constants, while allowing a fusion be-
tween twoλ-extruded names, or a fusion of a ‘recent’λ-extruded name to an ‘old’
ν-extruded name. Technically, we find it convenient to model distinctions as sequences.

Definition 5 (distinctions).A distinctionD is a sequence of labelled names of the form
xe1

1 · · ·xen
n , with labels ei ∈ {ν,λ} and xi pairwise distinct, for1≤ i ≤ n. We letλ(D)

(resp.ν(D)) denote the set ofλ-labelled (resp.ν-labelled) names in D and letn(D) =
λ(D)∪ ν(D). Given a substitutionσ and a distinction D= xe1

1 · · ·xen
n , we say thatσ

respectsD, written σ ` D, if for each xνi in D it holds that: xiσ = xi and moreover for
each xλj in D, xjσ = xi implies j> i. We let Dσ denote the result of applyingσ to D
and then erasing all duplicated (i.e. following the leftmost) occurrences of names in the
sequence.

Given a fusionφ and a distinction D, we say thatφ and D induceσ, writtenφ, D
σ, if σ is a substitution induced byλx̃, (νk̃) andφ, wherex̃ = λ(D) andk̃ = ν(D), and
σ respects D.

Example 2.ConsiderD = xλ
0 ·xν

1 ·xλ
2 ·xλ

3 ·x4
ν andφ = {x1,x2,x4 = x2,x3,x5}. We have

thatφ, D σ, whereσ mapsx1, x2, x3 to x1, andx5 to x4: in fact, we have thatσ ` D.

9

Note thatDσ = xλ
0 · xν

1 · xν
4. On the other hand, if one considersD and{x4 = x0} then

there is noσ′ induced by this effect andD: indeed,σ′ should have to mapx0 to x4, but
this impliesσ′ 6 ` D.

We use the following abbreviation:P
(νx̃)λỹ(α,φ)−−−−−−→ P′ means that eitherP

(νx̃)λỹα−−−−→ P′

andφ =−, or P
(νx̃)φ−−−→ P′ andα =− (here− is just a conventional ’null’ value). More-

over, we stipulate that−, D id, whereid is the identity substitution.

Definition 6 (open bisimulation). A set R = {RD}D of process relations indexed
by distinctions is anindexed simulationif for each D, whenever P RD Q and

P
(νx̃)λỹ(α,φ)−−−−−−→ P′ and φ ,D · x̃ν σ, then a transition Q

(νx̃)λỹ(α,φ)−−−−−−→Q′ exists such that
P′σ RD′ Q′σ, where D′= Dσ · x̃ν · ỹλ.

R is an indexed bisimulationif both R and R −1 = {R−1
D }D are indexed simula-

tions.Open bisimulation,∼, is the largest indexed bisimulation preserved by respectful
substitutions, i.e.: for eachσ and D, if P∼D Q andσ respects D then Pσ ∼Dσ Qσ.

When no confusion arises, we writeP∼ Q for P∼ε Q, whereε is the empty dis-
tinction.

Proposition 2 (basic properties of∼D). Let P and Q be two processes. Then:

– P∼D Q and x/∈ n(D) imply λxP∼D λxQ.
– P∼D Q implies(νx)P∼D−x (νx)Q.

Prefix, parallel composition, matching, sum and replication operators preserve∼D.

Example 3. 1. An example of ‘expansion’ for parallel composition is as follows:

((νk)ak.ak)|av ∼ (νk)ak.(ak.av+av.ak+{k = v}) + av.((νk)ak.ak) + (νk){k = v}.ak.

Note that, after the extrusion ofk, free namev can still be fused tok. On the
contrary, if we consider a distinctionD and letv∈ n(D), no fusion at all is possible:

((νk)ak.ak)|av ∼D (νk)ak.(ak.av+av.ak) + av.((νk)ak.ak).

2. The following two examples show the effect of fusing aλ-abstracted name with a
free name and with anotherλ-abstracted name, respectively:

λv{k = v}.P ∼ τ.P[k/v] (λk,v) {k = v}.P ∼ λk τ.P[k/v].

Symbolic bisimulationThe definition of open bisimulation contains an implicit uni-
versal quantification over substitutions, which makes it not handy. The next definition
and the subsequent theorem provide us with an alternative formulation of this equiva-
lence akin to the ‘efficient characterisation’ of [12]. The new formulation is based on
symbolic transitions of the formP

µ−→χ Q, whereχ is a logical condition necessary for
the transition to take place. For technical convenience, we shall represent conditions
as fusions. The defining clauses for

µ−→χ are obtained from those in Table 1 by simply

10

attaching the appropriateχ. In particular, action prefix is defined asα.P
α−→τ P, while

communication and matching rules are defined as follows:

(MATCHS)
P

µ−→χ Q

[a = b]P
µ−→χ+{a=b} Q

(COMS)
P1

(νx̃′)λỹ′ aũ−−−−−−→χ1
Q1 P2

(νx̃′′)λỹ′′ bṽ−−−−−−→χ2
Q2

P1|P2
(νx̃){ṽ=ũ}−ỹ′ ỹ′′−−−−−−−−−→χ1+χ2+{a=b} (νw̃)λz̃((Q1|Q2)σ|ỹ′ỹ′′)

,

where the side condition ofCOMS is the same as in ruleCOM. The other rules just propa-
gateχ, with the proviso thatλ- andν- extruded names do not occur inχ. Given fusions
φ andψ, we writeφ � ψ if ψ ⊆ φ.

Definition 7 (symbolic bisimulation). A set R = {RD}D of process relations in-
dexed by distinctions is anindexed symbolic simulationif whenever P RD Q and

P
(νx̃)λỹ(α,φ)−−−−−−→χP′ and(φ+χ), D · x̃ν σ, then a transition Q

(νx̃)λỹ(β,ψ)−−−−−−→
χ′ Q′ exists such

that:

1. χ � χ′,
2. χ � {subj(α) = subj(β)} andχ � {obj(α) = obj(β)},
3. φ+χ = ψ+χ,
4. P′σ RD′ Q′σ, where D′ = Dσ · x̃ν · ỹλ.

R is a indexed symbolic bisimulationif both R and R −1 = {R−1
D }D are indexed

open simulations. The largest indexed symbolic bisimulation is written∼symb.

Theorem 1. For each P, Q and D, P∼D Q if and only if P∼symb
D Q.

PROOF: For anyφ andσ, let φσ denote the fusion{(xσ,yσ)|xφy}?, and let thefusion
induced byσ (seen as a binary relation) be defined asσ?. The proof of the theorem is
based on the following operational correspondences:

1. P
(νx̃)λỹ(α,φ)−−−−−−→χ P′ implies there is a transitionPσ

(νx̃)λỹ(ασ,φσ)−−−−−−−−→ P′σ, for each substi-
tution σ induced byχ.

2. Pσ
(νx̃)λỹ(β,ψ)−−−−−−→ P1 implies there is a fusionχ induced by σ and a transition

P
(νx̃)λỹ(α,φ)−−−−−−→

χ′ P′ s.t.χ � χ′, β = ασ andψ = φσ andP1 = P′σ.

�

Example 4.Fusions and conditions play pretty different roles in bisimulation seman-
tics. As an example, letP = [a = b](ca|cb) andQ = ca|cb. Both inP andQ the inter-
action betweenca andcb results in a fusion{a = b}, butP 6∼ Q sinceP can perform

an action only under the conditionχ = {a = b}, i.e.P
{a=b}−−−→{a=b} 0 while Q

{a=b}−−−→τ 0.

Sorting Sorting systems are used in polyadic pi-calculus to discipline the use of chan-
nels [6]. We adapt the concept of sorting from pi-calculus, and slightly extend it in
order to also control ‘patterns’ that can arise in the object part of actions. In a sort-
ing systemS, the set of names is partitioned into a family of countablesorts, denoted
as S,S′, Moreover, there is a sorting function that maps each sortS to a pattern

11

(x1 : S1, . . . ,xn : Sn), written alsoS : S 7→ x̃ : S̃, with thexi ’s not necessarily distinct: the
intended meaning is that names of sortSshould only carry tuples̃v of typeS̃s.t.xi = x j

impliesvi = v j .
Like in polyadic pi-calculus, one can devise typing systems which guarantee that

well-typed processes will never perform ‘illegal’ (in the above sense) actions. However,
here we are primarily interested in defining the open bisimilarity∼S naturally induced
by a sorting systemS. Let us say that a substitutionσ is S-respectfulif, for eachx,
xσ andx belong to the same sort. Similarly, we say a fusionφ is S-respectful if each
equivalence class is entirely included in one sort (hence any substitution induced byφ
is respectful). In aS-sorted D-fusion, for a given sorting systemS, we assume that in
every prefixaṽ eachvi belongs to the appropriate sort, and weonly consider respectful
substitutions and fusions. Forα = aṽ an action, wherea∈S 7→ x̃ : S̃′, the fusion induced
by α, denotedφα, is defined as∑xi , x j∈x̃,xi=x j

{vi = v j} (here ‘Σ’ denotes sum of fusions
defined in Def. 2). Furthermore, we shall denote by≡ equivalence over actions induced
by the law:λxµ≡ µ if x /∈ n(µ).

With the above conventions and notations, the definition of∼S is obtained from
Definition 6 by making the clauses of actions and effects explicitly distinct, and chang-
ing the clause foractionsas follows:

if P
(νx̃)λỹ ãv−−−−−→ P′ andφaṽ, D · x̃ν · ỹλ σ then a transitionQ

(νx̃)λỹ′ aṽ′−−−−−→ Q′ ex-
ists s.t. φaṽ′ , D · x̃ν · ỹ′λ σ′ and λỹ(aṽσ) ≡ λỹ′ (aṽ′σ′), σ−ỹ = σ′−ỹ′ and
P′σ RD′ Q′σ′, whereD′ = (D · x̃ν · ỹλ)σ.

Note that∼S is in general more generous than ordinary open bisimilarity∼.
For example, assuminga ∈ S 7→ (x : S′, x : S′), then (νn)λxaxn.P ∼S (νn)λxanx.P
∼S (νn)ann.P[n/x] and(νn)(νm)amn.P ∼S 0. We will see applications of sorted bisi-
milarity in Section 7.

5 Expressiveness of D-Fusion

Below, we provide the two obvious uniform and fully abstract translations fromΠ and
F to DF . The definition of uniformity can be extended to the case of encodings from
F /Π into DF in the obvious way: in particular, by requiring that(x) and (νx) be
mapped toλx and(νx) , respectively.

Definition 8 ([[·]]π). The translation[[·]]π : Π → DF is defined by extending in the ex-
pected homomorphic way the following clauses:

[[a〈x〉.P]]π = a〈x〉.[[P]]π [[a(x).P]]π = λx a〈x〉.[[P]]π [[(νx)P]]π = (νx) [[P]]π .

For any distinctionD = xe1
1 · · ·xen

n , we can generate an equivalentΠ-distinctionDπ
(that is, an irreflexive, symmetric relation onN , [12]) by settingxi Dπ x j iff: either
(ei = ej = ν andi 6= j) or (ei = ν andej = λ and j < i) or (ej = ν andei = λ andi < j).
It is reasonable to consider here onlyΠ-distinctions that can be generated in this way.
For any suchΠ-distinctionDπ, let us denote by[[Dπ]] a chosenDF -distinction that
generatesDπ. Let∼o

Dπ
denote openDπ-bisimilarity overΠ ([12]).

12

Proposition 3. P∼o
Dπ

Q iff [[P]]π ∼[[Dπ]] [[Q]]π.

We turn now our attention to Fusion.

Definition 9 ([[·]] f). The translation[[·]] f : F → DF is defined by extending in the ex-
pected homomorphic way the following clauses:

[[a〈x〉.P]] f = a〈x〉.[[P]] f [[a〈x〉.P]] f = a〈x〉.[[P]] f [[(x)P]] f = λx [[P]] f

Let∼he denote hyper-equivalence overF (see [11]).

Proposition 4. P∼he Q iff [[P]] f ∼ [[Q]] f .

Most interesting, we now show that D-Fusion cannot be uniformly encoded intoΠ.
The intuitive reason is that, in D-Fusion, the combined use of fusions and restrictions
allows one to express a form of input with pattern matching. This is not possible inΠ
without breaking atomicity of certain actions (e.g. choice). To show this, we restrict our
attention to polarised D-Fusion,DF p.

GivenP∈ Π and a trace of actionss, let us writeP
ŝ=⇒ if P

s′=⇒ for some traces′

that has the same sequence of subject names, with the same polarity, ass (e.g.,s= a〈x̃〉 ·
λỹb〈ṽ〉 ands′ = a〈z̃〉 ·b〈w̃〉). The reference semantics forΠ is again the late operational
semantics.

Definition 10. A translation[[·]] : DF p → Π is uniform if for each P,Q∈ DF p:

– for each trace s, P
s=⇒ implies[[P]] ŝ=⇒;

– [[P|Q]] = [[P]]|[[Q]];
– for each y,[[(νy)P]] = (νy) [[P]];
– for each substitutionσ, [[Pσ]] = [[P]]σ.

Below, we denote by∼DF p any fixed equivalence overDF p which is contained in
trace semantics (defined in the obvious way), and by∼Π any fixed equivalence overΠ
which is contained in trace equivalence.

Proposition 5. There is no uniform translation[[·]] : DF p→Π such that∀P,Q∈DF p:

P∼DF p Q⇒ [[P]]∼Π [[Q]].

PROOF: Suppose that there exists such a translation[[·]]. Let us consider the following
two DF p-processesP andQ:

P = (νc,k,h)(c〈k〉.a|c〈h〉.b|c〈k〉) Q = τ.a.

It holds thatP∼ Q in DF p: the reason is that, inP, synchronisation between prefixes
c〈h〉 andc〈k〉, which carry differentrestrictednamesh andk, is forbidden (see rule
ν-OPEN). ThusP can only makec〈k〉 andc〈k〉 synchronise, and then performa. Thus,
P∼DF p Q holds too.

13

On the other hand, due to uniformity, it is easily checked that[[P]] b=⇒, while

[[Q]] 6 b=⇒ (the proof of the latter relies onb 6∈ fn(Q) and on the uniformity with respect
to substitutions). Thus[[P]] 6∼Π [[Q]]. �

Of course, it is also true that D-Fusion cannot be uniformly encoded intoF , as this
would imply the existence of a uniform fully abstract encoding fromΠ to F , which
does not exist (Proposition 1).

The conclusion is that there is some expressiveness gap between D-Fusion on one
side and the other two calculi on the other side, at least, as far as our simple notion of
uniform encoding is concerned. This gap is further explored by means of more elaborate
examples in the next two sections.

6 Example: Correlation

This example aims at illustrating the gap between D-Fusion and Fusion from a more
concrete perspective. Consider the following simple protocol. An agentA asks a trusted
serverS for two keys, to be used to access two distinct services (e.g.A might be a
proxy requiring remote connections on behalf of two different users). Communication
betweenA andS takes place over an insecure public channel, controlled by an adver-
sary, but it is protected by encryption and challenge-response nonces. Informally, the
dialogue betweenA andS is as follows:

1. A→ S : n

2. S→ A : {n,k}kS

1′. A→ S : n′

2′. S→ A : {n′,k′}kS

Here{·}(·) is symmetric encryption andkS is a secret master key shared byA andS. A
simple property of this protocol is thatAshould never receivek andk′ in the wrong order
(k′ and thenk), even in caseSaccepts new requests before completing old ones. Indeed,
noncesn andn′ are intended to helpA to contrast attackers replying old, compromised
keys or trying to get distinct sessions confused. In other words, nonces docorrelate
each request toSwith the appropriate reply ofS.

Below, we show that the above small protocol and the related ordering property can
be readily translated and verified in D-Fusion. Next, we show that the property breaks
down when (uniformly) translating the protocol into Fusion.

D-Fusion Encryption is not a primitive operation in D-Fusion. However, in the present
case, it is sensible to model an encrypted message{n,k}kS as an output actionkS〈n,k〉:
only knowing the master keykS, and further specifying a session-specific nonce, it is
possible to acquire the keyk (similarly for {n′,k′}kS, of course). Thus, assumingA con-
cludes the protocol with a conventional ‘commit’ action and thatp is the public chan-
nel,A, Sand the whole protocolP might be specified as follows (below, we abbreviate

14

λx̃ p〈x̃〉.X asp(x̃).X):

A = (νn)(p〈n〉|λykS〈n,y〉.(νn′)(p〈n′〉|λy′ kS〈n′,y′〉.commit〈y,y′〉))
S= p(x).(kS〈x,k〉|p(x′).kS〈x′,k′〉)
P = (νkS)(A|S).

LetAspecbe the process defined likeA, except that thecommit〈y,y′〉 action is replaced by
commit〈k,k′〉, and letPspec= (νkS)(Aspec|S). The property thatA should never receive
k andk′ in the wrong order is stated as:P∼ Pspec.

Informally, equivalence holds true because the second input action inA/Aspec, that
is λy′ kS〈n′,y′〉, can only get synchronised with the second output action inP, that is
kS〈x′,k′〉. In fact, n′ can be extruded onlyafter x has been received, hence the appro-
priate distinction will forbid fusion ofx and n′. The equivalence is formally shown
by exhibiting the appropriate symbolic indexed bisimulation, composed basically by
all pairs of derivativesP′ andQ′ s.t. P

s=⇒ P′ andQ′is obtained fromP′ by replacing
commit〈y,y′〉 with commit〈k,k′〉, with distinctions as given by the bound names ins.

Fusion SupposePf andPf
specare obtained by some uniform encoding ofP andPspec

above into Fusion. It is not difficult to show thatPf can be ‘attacked’ by an adversary
R that getsn andn′ and fuse them together,R= p(x).

(
p〈x〉|p(y).p〈y〉

)
. Formally, for

α = commit〈k′,k〉,
Pf |R α=⇒ and, thus,Pf |R 6∼he Pf

spec|R,

which proves thatPf andPf
specare not hyper-equivalent.

This example illustrates the difficulty of modelling fresh, indistinguishable quanti-
ties (nonces) in Fusion. This makes apparent that Fusion is not apt to express security
properties based on correlation.

7 Encoding guarded choice

In this section we show how the combined mechanisms of fusions and restrictions can
be used to encode different forms of guarded choicevia parallel composition, in a clean
and uniform way.

Informally, different branches of a guarded choice will be represented as concurrent
processes. The encodings adds pairs of extra names to the object part of each action:
these extra names are used as ‘side-channels’ for atomic coordination among the differ-
ent branches. We start by looking at a simple example.

Example 5.Consider the guarded choiceA = λx(νn)a〈xn〉.P+ λx(νm)a〈xm〉.Q. Its
intended ‘parallel’ implementation is the process:

B = λx((νn)a〈xn〉.P|(νm)a〈xm〉.Q)
(here,x,n,m /∈ fn(a,P,Q)). Assume now a sorting discipline by which messages travel-
ling on channela must carry two identical names (i.e.a∈ S 7→ (x : S′, x : S′), according

15

to Section 4). InB, the parallel component that first consumes any such message, forces
fusion ofx either ton or tom, and consequently inhibits the other component. E.g.:

λua〈uu〉|B τ−→∼ (νn)(P|(νm)a〈mn〉.Q) ∼ P|(νn,m)a〈mn〉.Q.

Under the mentioned sorting assumption,(νm,n)a〈mn〉.Q is equivalent to0, because
there is no way of fusingmandn. Thus the process on the right of∼ is equivalent toP.
In other words, choice betweenP andQ has been resolved atomically.

The above line of reasoning can be formalised in two ways. One way is considering
bisimilarity induced by the above sorting, say∼S, which only takes into account tran-
sitions that obey the sorting discipline (the rightmost two names in the object part of
a/a-actions are the same). The other way is keeping standard bisimilarity∼, while in-
serting processes inside a ‘firewall’ that filters outa-messages not respecting the given
sorting. The latter can be easily defined in D-Fusion relying on ‘non-linear’ inputs:

Fa,a′ [·] = (νa′)(λzazz.a′〈zz〉|[·]) .

We state the result in both forms below.

Proposition 6. Let A and B be as in Example 5.

1. A∼S B;
2. Let A′ and B′ be the processes obtained from A and B, respectively, by replacing

the outermost occurrences of a with a fresh a′. ThenFa,a′ [A′]∼ Fa,a′ [B′].

Note that the result above exploits in a crucial way features of both Fusion (non-
linearity of input actions, in the firewall, and sharing of input variablex, in B) and of
D-Fusion (restricted input).

Proposition 6 can be generalised to fully abstract encodings of different forms of
guarded choice. For the sake of simplicity, we will state the results in terms of sorted
bisimilarity. We believe the results can also be stated in terms of untyped bisimilarity, at
the cost of breaking uniformity of the encoding and of introducing more sophisticated
forms of ‘firewalls’. We examine two cases, input-guarded choice and mixed choice.

Input-guarded (ig) choiceLet us fix, as a source language the fragment of polarised
D-Fusion with guarded choice,DF p,ig. In this language, input prefix and summation+
are replaced by input-guarded choice∑i∈i ai〈x̃i〉.Pi . We also assume a sorting system on
this source language. The target language is the fragment of polarised D-Fusion with
no form of summation. The relevant clauses of the encoding are:

[[∑
i∈i

ai〈x̃i〉.Pi]]ig = λzΠi∈I (νn)λx̃i ai〈x̃izn〉.[[Pi]]ig [[a〈ṽ〉.P]]ig = λza〈ṽzz〉.[[P]]ig ,

whereΠi∈I Xi denotes the parallel composition of allXi ’s. The encoding acts as a ho-
momorphism over the remaining operators. Below,S1 indicates the sorting that ex-
tends the sorting systemS of the source language by imposing that the two extra ob-
ject names introduced by the encoding be the same (i.e., ifS: S 7→ x̃ : S̃′, then S1:

16

S 7→ (x̃ : S̃′,y : S0,y : S0), for a freshy and a new sortS0) and∼S1 is the correspond-
ing open bisimilarity. The proof of the following theorem is straightforward, given that
there is a 1-to-1 correspondence between moves ofP and moves of[[P]]ig, under the
sortingsSandS1.

Theorem 2 (full abstraction for ig choice).Let P,Q∈DF p,ig. It holds that P∼S Q if
and only if[[P]]ig ∼S1 [[Q]]ig.

Of course, the above theorem also yields a fully abstract encoding of input-guarded
choice for pi-calculus, which may be viewed as a sub-calculus ofDF p,ig.

Mixed choice in a sorted pi-calculusAs a source language we fix here a sorted version
of polyadic pi-calculus [6] with ‘mixed’ choice,Πmix. In this language, prefixes and+
are replaced by mixed summation,∑i∈I ai (x̃i).Pi +∑ j∈J b j〈ṽ j〉.Q j . The target language
is again the fragment of polarised D-Fusion with no summation at all. The encoding
is a bit more complex than in the previous case, as it implies addingtwo pairs of extra
names to coordinate different branches. The relevant clause is:

[[∑i∈I ai (x̃i).Pi +∑ j∈J b j〈v j〉.Q j]]mix =

(λz,u)(Πi∈I (νn)λx̃i ai〈x̃iznuu〉.[[Pi]]mix | Π j∈J(νn)b j〈ṽ juuzn〉.[[Q j]]mix).

Note that the relative positions ofν-names correctly forbid communication between
branches of opposite polarities within the same choice (no ‘incestuous’ communication,
according to the terminology of [8]). The encoding acts as a homomorphism over the
remaining operators ofΠmix.

Below,∼S indicates sorted open bisimilarity inΠmix. We denote byS2the D-Fusion
sorting induced by the above translation of the source sorting (i.e., ifS: S 7→ x̃ : S̃′, then
S2: S 7→ (x̃ : S̃′,y : S0,y : S0,z : S0,z : S0), whereS0 is a new sort andy andz are fresh).
The corresponding bisimilarity is written∼S2.

Theorem 3 (full abstraction for mixed choice).Let P,Q∈Πmix. It holds that P∼S Q
if and only if[[P]]mix ∼S2 [[Q]]mix.

In a pi-calculus setting, it is known that mixed choice cannot be encoded into the
choice-free fragment, if one requires the encoding be uniform and preserve a ‘reason-
able semantics’ [9, 10, 8]. The theorem above shows that, under mild typing condi-
tions, pi-calculus mixed choicecan be implemented into the choice-free fragment of
D-Fusion. The encoding is uniform, deadlock- and divergence-free, and preserves a
‘reasonable semantics’. This is yet another evidence of the expressiveness gap between
D-Fusion and pi-calculus.

8 Conclusions and Future Work

We have proposed the D-Fusion calculus, an extension of the fusion calculus where two
distinct binders coexist, one analogous to the(x) binder in fusion, the other imposing

17

name freshness. We have shown that D-Fusion is more expressive than both Fusion and
pi-calculus.

Our expressiveness results seem to suggest that an efficient distributed implementa-
tion of D-Fusion might be nontrivial to design. This design would certainly involve the
introduction of a distributed model of the calculus, including, e.g., explicit fusions [3]
for broadcasting fusions asynchronously, and primitives for handling explicit localities.
We leave this task for future work. For the time being, we just note that distributed
implementations of pi/fusion-like calculi do exist (e.g., the fusion machine of [2]. One
may expect that, starting from these, building a distributed implementation of D-Fusion
should not be much harder.

In [1] the synchronisation mechanism of the pi-calculus is extended to allow for
polyadic synchronisation, where channels are vectors of names. The expressiveness of
polyadic synchronisation, matching and mixed choice is compared and it is shown how
the degree of synchronisation of a calculus increases its expressive power.

We plan to extend the D-Fusion calculus by generalising name fusions to arbitrary
substitutions over a signature of terms. We believe that the extended D-Fusion would
be strictly more expressive that Logic Programming, the intuition being that restriction
(creation of new fresh names) cannot be modelled in LP.

Finally, it would also be interesting to study a coalgebraic model for D-Fusion.
A coalgebraic framework would present several advantages. For instance, morphisms
between coalgebras enjoy the property of “reflecting behaviours” and thus they allow to
characterise bisimulation equivalences in more abstract terms as kernels of morphisms.

References

1. M. Carbone and S. Maffeis. On the Expressive Power of Polyadic Synchronisation in Pi-
Calculus. To appear inNordic Journal of Computing.

2. P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended abstract). InProc. of
CONCUR ’02, LNCS 2421. Springer-Verlag, 2002.

3. P. Gardner and L. Wischik. Explicit Fusions.Theoretical Computer Science. To appear.
4. L. G. Meredith, S. Bjorg, and D. Richter. Highwire Language Specification Version 1.0.

Unpublished manuscript.
5. Microsoft Corp. Biztalk Server -http://www.microsoft.com/biztalk.
6. R. Milner. The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Science Dept.,

University of Edinburgh, 1991.
7. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).Infor-

mation and Computation, 100(1):1–77, 1992.
8. U. Nestmann and B. C. Pierce. Decoding choice encodings.Information and Computation,

163(1):1–59, 2000.
9. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous

pi-calculus. InConf. Rec. of POPL’97, 1997.
10. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous

pi-calculus.Mathematical Structures in Computer Science, 13(5):685–719, 2003.
11. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Pro-

cesses. InProc. of LICS’98. IEEE Computer Society Press, 1998.
12. D. Sangiorgi. A Theory of Bisimulation for the pi-Calculus.Acta Informatica, 33(1): 69-97,

1996.
13. World Wide Web Consortium (W3C) -http://www.w3.org/TR/wsdl12.

