D-Fusion: a Distinctive Fusion Calculus

Michele Borealé, Maria Grazia Buscerfj and Ugo Montanafi

1 Dipartimento di Sistemi e Informatica, Univessidi Firenze, Italy.
2 Dipartimento di Informatica, Universitdi Pisa, Italy.
boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it

Abstract. Fusion calculus is commonly regarded as a generalisation of pi-
calculus. Actually, we prove that there is no uniform fully abstract embedding
of pi-calculus into Fusion. This fact motivates the introduction of a new calcu-
lus, D-Fusion, with two binderg, andv. We show that D-Fusion is strictly more
expressive than both pi-calculus and Fusion. The expressiveness gap is further
clarified by the existence of a fully abstract encoding of mixed guarded choice
into the choice-free fragment of D-Fusion.

1 Introduction

A recent trend in the design of certain distributed applications like Web services [13]
or business-to-business systems [5] based on XML sees the emergence of a message-
passing programming style. Languages like Highwire [4] provide, in a concurrency
setting, sophisticated data structures; these allow programmers to describe and ma-
nipulate complex messages and interaction patterns. If one looks for ‘foundational’
counterparts of these programming languages, both the pi-calculus [6, 7] and the Fu-
sion calculus [11], seem very promising candidates. Both of them, indeed, convey the
idea of message-passing in a distilled form, and come equipped with a rich and elegant
meta-theory.

The main novelty of Fusion when compared to the pi-calculus is the introduction of
fusions A fusion is a name equivalence that, when applied onto a term, has the effect
of a (possibly non-injective) name substitution. Fusions are ideal for representing, e.g.,
forwarders for objects that migrate among locations [2], or forms of pattern matching
between pairs of messages [4]. Computationally, a fusion is generated as a result of a
synchronisation between two complementary actions, and it is atomically propagated
to processes running in parallel with the active one. This happens in much the same
way as, in logic programming, term substitutions resulting from a unification step on a
subgoal can be forced on the other subgoals.

If compared to pi-calculus name-passing, fusions enable a more general name
matching mechanism during synchronisation. However, differently from the pi-
calculus, the binding mechanism of Fusion just ignores the issue of unicity of newly
generated names. One of the goals of this paper is to show that this fact severely limits
the expressiveness of Fusion. Overcoming this limitation calls for co-existence of two
name binders\ andv: the former analogous to the only binder of Fusion, and the latter

Research supported in part by FET Global profeROFUNDIS

imposing unicity. This implies combining, in a consistent way, the somehow conflict-
ing mechanisms of fusions aristinctionsa la open pi-calculus [12]. The resulting
distinctive Fusion calculus, ob-Fusion is at least as expressive as pi-calculus and
Fusion separately, and in fact, we strongly arguere expressive than both. A more
precise account of our work follows.

The binding mechanism of pi-calculus generalises thak-chlculus in several
ways. Input prefix binds liké, and name passing takes place in pi-calculus in a way
typical of functional programming, i.e., formal names are assigned their actual counter-
part. Therestrictionbinderv, however, is very different frork, as a restricted name can
be exported (extruded), with the guarantee that it will never be identified to anything
else. Open pi-calculus [12] takes an important step forward over the original proposal,
allowing for input actions whose formal parameters can be instantiated, hence ‘fused’,
in a ‘lazy’ fashion — at any time when needed for synchronisation. In order to preserve
the intended semantics of restriction, however, newly extruded names are kept distinct
from ‘old’ names, using special relations called distinctions.

Fusion calculus is presented in [11] as a more uniform and more expressive version
of pi-calculus. The main idea is to decompose input prafi into a binder(x) and
a prefixa(x). In the polyadic case, matching between the input list and the output list
of variables induces name unification, i.e. a fusion. The latter is propagated across pro-
cesses, but one or more binders can be used to control the scope (i.e. propagation) of
the fusion. Thus one achieves both a perfect symmetry between input and output and a
more general name passing mechanism.

At first sight, Fusion is more general than pi-calculus. And, indeed, in [11] it is
stated that the pi-calculus transition system can be embedded into Fusion’s, provided
that one identifies restrictiofvx) with the (x) binder of Fusion.

Our first move is to argue that this embedding breaks down if comparing the two
calculi on the basis of abstract semantics. We prove that no ‘uniform’ encoding exists
of pi-calculus into Fusion that preserves any ‘reasonable’ behavioural equivalence (at
least as fine as trace equivalence). Here ‘uniform’ means homomorphic with respect to
parallel composition and name substitution, and mappimg to (x), and preserving (a
subset of) weak traces. As hinted before, the ultimate reason is that in Fusion all names
are like logical variables, i.e., their unification always succeeds.

The above failure motivates the introduction of a new calculus, D-Fusion, with two
binders,A andv: the first generalises input prefix, and the second models restriction.
Also, any issue of symmetry between input and output is preempted, since we have just
one kind of prefix (no polarisation); polarised prefixes can be easily encoded, though.
As in open pi-calculus, in D-Fusion distinctions are employed to constrain possible
fusions. In logical terms, this corresponds to allow unification not only among vari-
ables, but also among variables and dynamically generated constants {treattisided
names). However, unification fails whenever one tries to identify two distinct constants,
or to identify a ‘recent’ constant with an ‘old’ variable. We show that the additional
expressive power achieved in this way is relevant. Both pi-calculus and Fusion can be
uniformly encoded into D-Fusion. Moreover, the combined mechanism of restriction
and unification yields additional expressive power: it allows to express a form of pat-

tern matching which cannot be expressed in the other two calculi. As a consequence, we
prove, D-Fusion cannot be uniformly encoded neither into Fusion, nor into pi-calculus.

Next, the gap between D-Fusion and Fusion/pi-calculus is explored from a more
concrete perspective. First, we exhibit a simple security protocol and a related
lation property that are readily translated into D-Fusion. The property breaks down if
uniformly translating the protocol into Fusion. The failure is illuminating: in Fusion,
one has no way of declaring unique fresh names to correlate different messages of the
protocol.

Palamidessi has shown [9, 10] that nondeterminguiarded choice&annot be sim-
ulated in the choice) -free pi-calculus in a fully abstract way, while preserving any
‘reasonable’ semantics. This is due to the impossibility of atomically performing, in
the absence of, an external synchronisation and an internal exclusive choice among
a number of alternatives. We prove that in D-fusion, under mild typing assumptions,
guarded choice can actually be simulated in a fully abstract way in the choice-free
fragment. The encoding preserves a reasonable semantics in the sense of [9, 10]. Infor-
mally, branches of a choice are represented as concurrent processes. Synchronisation is
performed in the ordinary way, but it forces a fusion between a glbbame and a
v-name local to the chosen branch. Excluded branches are atomically inhibited, since
any progress would lead them to fusing two distmatames.

The rest of the paper is organised as follows. Section 2 contains the proof that the
pi-calculus cannot be uniformly encoded into Fusion. In Section 3 we introduce the
D-Fusion calculus and in Section 4 we give a notion of bisimulation for the calculus,
and characterise it via a more handy symbolic semantics; we also introduce a notion
of sorting and sorted bisimulation. In Section 5 we show that the D-Fusion calculus
is more expressive than both pi-calculus and Fusion. We further explore this expres-
siveness gap in Sections 6 by means of an example and in Section 7 by encoding the
mixed guarded choice into the choice-free calculus. Finally, Section 8 contains a brief
overview of some related work and a few concluding remarks.

2 Fusion and Pi

The aim of this section is illustrating the difference between pi-calculus and Fusion,
and to show that the former cannot be uniformly encoded in the latter.

The crucial difference between the pi-calculus and Fusion shows up in synchronisa-
tions: in Fusion, the effect of a synchronisation is not necessarily local, and is regulated
by the scope of the bindék). For example, an interaction betweanP andux.Q will
result in a fusion of andx. This fusion will also affect any further proceBsunning
in parallel, as illustrated by the example below:

RlovP|uxQ 2% (RIP|Q) VAL

The binding operatofx) can be used to limit the scope of the fusion, e.g.:
R[(X) (AvP|uxQ) = R|(P|Q)[YA.

wheret denotes the identity fusion. For a full treatment of pi-calculus and Fusion we
refer to [7] and to [11], respectively.

Below, we show that there is no ‘reasonably simple’ encoding of the pi-cal€ulus
into Fusion¥ . We focus on encodingg] that have certain compositional properties
and preserve (a subset of) weak traces. As to the latter, we shall only require that moves
of P are reflected irfP], not vice-versa. We also implicitly require that the encoding
preserves arity of 1/0 actions (the length of tuples carried on each channel). This is
sometimes not the case for process calculi encodings; however, it is easy to relax this
condition by allowing names dffP]] to carrylongertuples. We stick to the simpler cor-
respondence just for notational convenience. Note that the encoding presented in [11]
does satisfy our criterion. We shall assume here the standard pi-calculus late operational
semantics [7] and, for the purpose of our comparison, we shall identify the late input
pi-actiona(X) with the Fusion input actiofX) aX.

Definition 1. A translation[-] : M — ¥ is uniformif for each PQ € I it holds that:

— for each trace of actions s not containing bound outputs=P implies[[P] =;

— [PIQ] = [PIIIQI;
— for eachy,[[(vy) P] = (¥)[[P];
— for each substitutiow, [[Po]] = [P]o.

The next proposition generalises an example from [11]. Below, we fix an arbi-
trary MN-equivalence included in trace equivalensg,, and an arbitraryf -equivalence
which is included in trace equivalenesdis preserved by parallel compositiof,r
(like, e.g., hyperequivalence of [11]).

Proposition 1. There is no uniform translatioft] : ' — ¥ such that for each,® € IN:
P ~n Q implies([P] ~ [Q]-

PROOF. Suppose that there exists such a translafinLet P andQ be the following
two pi-agents:

P = (vu,v) (&(u,v) |tjv.w)
Q= (Vu,v) (au,v) | (T.(vW) +v.(u[w))).
Obviously,P ~n Q (e.g. they are strongly late bisimilar). Suppdid ~+ [Q]. Let
R=a(x,y).(txcy) andA andB be as follows:
A= [P]IR= (u,v)([acu,v)] o] [v.w]) IR
B=[Q]IR= (u,v)([au,v)]|[G.(v.w) +v.(TW)]) R
Since~ ¢ is preserved by, éandB are~ g-equivalent. By uniformity of the encoding,

it is easy to check thah ==. On the other hand, a careful case analysis shows that
B 5. This is a contradiction. O

3 The Distinctive Fusion Calculus, D-Fusion

Syntax We consider a countable set of nan®¥¢sanged over by, b, ...,u,v,...,z We
write X for a finite tuplexy, . .., x, of names. The seb ¥ of D-Fusionprocessesanged
over byP,Q, ..., is defined by the syntax:

Pu=0|aP|PP|P+P|[x=yP|IP|AP]| ()P

whereprefixesn are defined as ::= av. The occurrences ofin AxP and (vx) P are

bound thus notions ofree namesandbound namesf a process arise as expected

and are denoted by R) and br{P), respectively. The notion @flpha-equivalencalso

arises as expected. In the rest of the paper we will identify alpha-equivalent processes.
Note that we consider one kind of prefix, thus ignoring polarities. However, a sub-

calculus with polarities can be easily retrieved, as shown at the end of this section.
The main difference from Fusion is the presence of two distinct binding constructs,

A andv. TheA-abstraction operator corresponds to the binding construct of Fusion and

generalises input binding of the pi-calculus. The restriction operajocqrresponds

to the analogous operator of the pi-calculus: it allows a process to create a fresh, new

name that will be kept distinct from other names.

Operational Semanticor R a binary relation over\(, let R* denote the reflexive,
symmetric and transitive closure Bfwith respect ta\. We usea, ¢’ to range over
substitutions, i.e. finite partial functions frofif onto A_. Domain and co-domain af,
denoted dorto), cod o) are defined as expected. We denotédthe result of applying
o onto a ternt. Given a set/tuple of naméswe defineoiy aso N (X x A), ando_x as

0— (Xx N).

Definition 2 (fusions).We letg, ¥, ... range overfusions that is total equivalence re-
lations onA with only finitely many non-singular equivalence classes. We let:

— n(@) denote{x: x@y for some y£ x};

— T denote the identity fusion (i.en(1) = 0);

— @+ Y denote the finest fusion which is coarser thgand Y, that is (U Y)*;
— @z denote(@— ({2} x AU x {z}))*;

— {x=y} denote{(x,y)}";

— @[x] denote the equivalence class of xgn

A fusion@arises as the result of equating two lists of names in a synchronisation. In
general, names in the original lists might be eitheabstracted ov-extruded, or free.
Informally, the effect ofp should be that of a substitution, mapping equivalent names
onto representatives. However, in the presenae df-abstracted and fregequivalent
names, some care is needed to ensure that the representative be chosen appropriately.
This concept is made precise in the next definition.

Definition 3 (induced substitutions).LetX andee two disjoint tuples of names and
¢ be a fusion such that for any two distingt kz € k, not(k; ko). We say that a substi-
tution o is induced byA%, (vk) andg, if dom(a) = n(g) and for each equivalence class
E of ¢, 0 maps all names in E onto one and the same nam&ysuch that:

— if kKNE = {h} then y=h;
— ifknE=0and E—X# 0thenyc E—X.

For example, supposghas only two non-singular equivalence clasgesv, k} and
{y,h}, then a substitutiow induced byAxy, (vk) and@ is the one mapping, w, k to
k andy, h to h. It is important to stress that, by definition, no induceexists if for
distinctks, ko € k it holdsk; @kz. Also note that in general there may be more than one
induced substitution. E.gta = b} (with empty AX and (vk)) induces both&b] and
[b/a]. We introduce the labelled transition system for D-Fusion.

Definition 4 (labelled transition system).The transition relation RE Q, for palabel
of the form(vx) Ay av (action) or of the form(vX) @ (effect), is defined in Table 1.

Some notations for actions and effects. The bound namesif written bigp) and
are defined as expected, while Sghjand objp) denote the subject and object part of
W, if pis an action, otherwise they both denote conventional valteMoreover, r(u)
denotes all the names pf We use abbreviations such aspny) to denote () Un(L)
and(vz) ufor (vX2) @, if p= (vX)@. Furthermore, we shall identify actions and effects
up to reordering of the tuplin (vX) andAX.

The rules in Table 1 deserve some explanation. As mentioned, we have two kinds
of labels, actions and effects. Apart from the absence of polartiti®nsare governed
by rules similar to those found in pi-calculus. The main difference is that on the same
action one can find both- andA-extruded names. On the other haaffectsare sim-
ilar to those found in Fusion. A major difference is that our effects canwalsdrude
names. An effectvX) @ can be created as a result of a communication (culg, and
be propagated across parallel components, untiltiat binds a fused nanweis en-
countered (rule-oren). At that point, the corresponding substitutiog is applied onto
the target process amds discarded from the fusion (the resultgs;). Any v-extruded
namew € X which is equivalent ta must bev-closed back, provided that no free name
is in that equivalence class. In rutem, handling ofA- andv-extruded names can be
explained similarly, but note that thoadeextruded namezthat are not instantiated (by
Ojyyr) must beA-closed (this happens when in some equivalence class all names are
A-abstracted). Finally, note that the side conditigfg'NX = @' in rule v-oren prevent
effects from equating two distingtextruded names.

Let us illustrate the rules with some examples. We shall{udse y}.P as an ab-
breviation for(vc) (cX|cy.P) (for a fresh name) and we writet.P whenX andy are
empty.

Example 1.

1. LetP = (vx) (vc) (cx.Py|cy.P,). The interaction betweearx Py andcy.P, will result
into a fusion{x =y}, that causexs to be extruded:

(V) {(x=y}
) —(

(vX) (ve) (cxPy|cy.P; ve) (PL|P2).

Now consideiQ = Ay P. The effect ofA-abstracting in P is that of removingpand
getting the induced substitutid¥y] applied onto the continuation:

A (VX) (ve) (exPL|cy.P2) = (vX) ((ve) (L] P2)¥¥])

H H
(Act) a.P Lp (MATCH) LQH (Sum) Pli_?
[a=aP—=Q PL+P, —Q
(v-Pass) Pﬁ’iQ z¢ n(p (A-Pass) ﬂ z¢n(p)
(vz)Pi (v2)Q azph AzQ
zen(w
pLao
(v-OPEN) ——————=— pan action impliez # subj)
(vz)P LZ)“ Q
pu= (vX)@implies@zZ NX=10

p (WA 0 ~

(A-OPEN,) L p o ze V- ({ajuxy)
zen(o)
V@ o induced byAz, (VX) and
(A-OPENy) (v;)(p Q _ ¥ (N) ¢
AZP——2 (Wi) (Qo,) | X =XNn(@-z)
W=xX-¥X
U} = V|
H ! I 7 —
o (RWal o P VRN & o o induced byAYY’, (vX'X") and{V =0}
R e -
o R gy . ? z=yy'ncodoy)
1Pz = (W) AZ((Qu[Q2)0lyy') X=XX'0n({V="0}_yy)
W=X%'-X

H H

(PAR) %)7(? (REP) P“Pi“*@
PIR— QIR P=Q

Symmetric rules forsum) and(par) are not shown. Usual conventions about freshness of bound

names apply.

Table 1. Actions and effects transitions in D-Fusion.

It is worth noting that our operational rules are preserved by a form of structural
equivalence. For instance, &= (vx)Ay(vc) (cxPyi|cy.P,). R has the same-
transition axQ above.

2. Another example is as follow® elow is some continuation):

Az(ww) {z.a=w,b}.P 222 (yw)PW/, but

Az(vw){z,z=w,b}.P Low) fw=b}, P[W/z.

Encoding I/O polaritiesWe can encode polarities as follows:
T(V).P = (vx) Ay cuxy P c(V).P = (vx) Ay cvyx P

for some chosen freshandy. The position of they-namex forbids fusions between
actions with the same polarity and, hence, communication. For instance, the process
t(V).P[t(0).Q has nar-transition, since the latter would force the fusion of two distinct
v-names, which is forbidden by the operational rules. We denot® Y, polarised
D-Fusion the subset ofD in which every prefix can be interpreted as an input or
output, in the above sense.

4 Bisimulation

Like in the case of Fusion, a ‘natural’ semantics of D-Fusion is required to be closed
under substitutions. However, one should be careful in keepiextfruded names dis-

tinct from others X-extruded and free). To this purpose, we introduce below a concept
of distinction akin to [12]. Distinctions keep track efextruded names, for which fu-
sions should be forbidden. Differently from [12], however, our distinctions keep track
of A-extruded names as well, and of the order of their extrusion relativeetdruded
names. The idea is to treatextruded names as constants, while allowing a fusion be-
tween twoA-extruded names, or a fusion of a ‘receitextruded name to an ‘old’
v-extruded name. Technically, we find it convenient to model distinctions as sequences.

Definition 5 (distinctions). A distinctionD is a sequence of labelled names of the form
X3t x&, with labels g€ {v,\} and x pairwise distinct, forl <i < n. We letA\(D)
(resp.v(D)) denote the set df-labelled (respv-labelled) names in D and let(D) =
A(D) Uv(D). Given a substitutiors and a distinction D= x3* ---x&, we say thao
respect®, writteno + D, if for each X in D it holds that: xo = x; and moreover for
each % in D, xjo =% implies j> i. We let Do denote the result of applying to D
and then erasing all duplicated (i.e. following the leftmost) occurrences of names in the
sequence.

Given a fusionp and a distinction D, we say thgtand Dinduceao, written, D ~~
o, if 0 is a substitution induced By, (Vk) and @, whereX= A(D) andk = v(D), and
o respects D.

Example 2.ConsideD = x} - X} - x5 - X} - X¢¥ and@= {X1, %2, X4 = X2, X3, Xs}. We have
thatg, D ~ 0, whereo mapsxs, X2, X3 to X, andxs to x4: in fact, we have that + D.

9

Note thatDa = x} - X} - xj. On the other hand, if one considédsand {x4 = Xo} then
there is nao’ induced by this effect anB: indeed,0’ should have to magy to x4, but
this impliesa’ ¥ D.

(VR)AY (01, ¢) (VR) AYa

We use the following abbreviatio, ————— P’ means that eitheP P
andgp=—, orP M P’ anda = — (here— is just a conventional 'null’ value). More-

over, we stipulate that, D ~~ id, whereid is the identity substitution.

Definition 6 (open bisimulation). A set® = {Rp}p of process relations indexed
by distinctions is anindexed simulationif for each D, whenever P RRQ and
p WMD) o and @,D-X’ ~ 0, then a transition QM Q' exists such that
P'6 Ry Qo, where D=Do- % -{.

R is anindexed bisimulatiorif both ® and ® 1 = {R51}D are indexed simula-
tions.Open bisimulation~, is the largest indexed bisimulation preserved by respectful
substitutions, i.e.: for eacti and D, if P~p Q ando respects D then ® ~ps Q0.

When no confusion arises, we wrie~ Q for P ~¢ Q, whereg is the empty dis-
tinction.

Proposition 2 (basic properties of~p). Let P and Q be two processes. Then:

— P~p Qand x¢ n(D) imply AXP ~p AXQ.
— P~p Qimplies(vx) P ~p_x (VX) Q.

Prefix, parallel composition, matching, sum and replication operators presepve
Example 3. 1. An example of ‘expansion’ for parallel composition is as follows:
((vk)akak)|av ~ (vk)ak (akav+avak+{k=v}) + av((vk)akak) + (vk) {k=v}.ak

Note that, after the extrusion &f free namev canstill be fused tok. On the
contrary, if we consider a distinctidd and letv € n(D), no fusion at all is possible:

((vk)akak)|av ~p (VKk)ak (akav+avak) + av((vk)akak).

2. The following two examples show the effect of fusing-abstracted name with a
free name and with anotharabstracted name, respectively:

AW{k=V}.P ~ T.PKA] (Ak,V) {k=V}.P ~ AKT.P[KN].

Symbolic bisimulationThe definition of open bisimulation contains an implicit uni-
versal quantification over substitutions, which makes it not handy. The next definition
and the subsequent theorem provide us with an alternative formulation of this equiva-
lence akin to the ‘efficient characterisation’ of [12]. The new formulation is based on

symbolic transitions of the forrR &X Q, wherey is a logical condition necessary for
the transition to take place. For technical convenience, we shall represent conditions

as fusions. The defining clauses f&rx are obtained from those in Table 1 by simply

10

attaching the appropriate In particular, action prefix is defined asP i% P, while
communication and matching rules are defined as follows:

u (VX)NY at (VX")AY' bV
(MATCH,) P —x Q (Comy) R X Ql Fo X2 Q2
S ra—pp > s (VR) {V=0} g o ’
[2=DbIP =, oy Q PP, ———5 e (VWAZ((QuIQ)0)p9)

where the side condition abw, is the same as in ruleom. The other rules just propa-
gatey, with the proviso thak- andv- extruded names do not occurjnGiven fusions
@andy, we writepE p if Y C @.

Definition 7 (symbolic bisimulation). A set ® = {Rp}p of process relations in-
dexed by distinctions is amdexed symbolic simulationf whenever P B Q and

= <">~<W<°'~‘P)>Xp/ and(@+X), D-X ~~ 0, then a transition QMX, Q exists such

that:
1L xFX,
2. X F {subja) = subjB)} andx F {obj(a) = obj(B)},
3. 9+Xx=Uy+X,

4. PoRy Qo,where D=Do- %’ -y

R is aindexed symbolic bisimulatioif both ® and ® ! = {R,;l}D are indexed
open simulations. The largest indexed symbolic bisimulation is writfRP.

Theorem 1. For each P, Q and D, P-p Q if and only if PNSDyme-

PrROOF. For any@ anda, let @o denote the fusiod (xo,ya)|x@y}*, and let thefusion

induced byo (seen as a binary relation) be definedsasThe proof of the theorem is

based on the following operational correspondences:

1. P MX P’ implies there is a transitioRo
tution o induced byy.

2 Pg (VRAY(B,W)
p (V) AY (0,9)
—_—

WR)AY(@0.40) P'o, for each substi-

P, implies there is a fusiorx induced byc and a transition
y P s.t.x EX,B=0a0candy = @o andP, = P'o.

O

Example 4.Fusions and conditions play pretty different roles in bisimulation seman-
tics. As an example, I®® = [a = b](ca|th) andQ = ca|ch. Both inP andQ the inter-
action betweera andtbresults in a fusiofa = b}, butP % Q sinceP can perform

an action only under the conditign= {a=Db}, i.e.P @»{a:b} O while Q @G 0.

Sorting Sorting systems are used in polyadic pi-calculus to discipline the use of chan-
nels [6]. We adapt the concept of sorting from pi-calculus, and slightly extend it in

order to also control ‘patterns’ that can arise in the object part of actions. In a sort-
ing systemS, the set of names is partitioned into a family of countedwes denoted

as S, S, Moreover, there is a sorting function that maps each Sdd a pattern

11

(X1:S1,..-, %10), written alsoS: S— X: S, with thex;’s not necessarily distinct: the
intended meaning is that names of seshould only carry tupleg of type§s.t.xi =X
impliesv; = v;j.

Like in polyadic pi-calculus, one can devise typing systems which guarantee that
well-typed processes will never perform ‘illegal’ (in the above sense) actions. However,
here we are primarily interested in defining the open bisimilag®ynaturally induced
by a sorting systen®. Let us say that a substitutiam is S-respectfulif, for eachx,
xo andx belong to the same sort. Similarly, we say a fusiis S-respectful if each
equivalence class is entirely included in one sort (hence any substitution induged by
is respectful). In &-sorted D-fusion, for a given sorting systenwe assume that in
every prefixav eachv; belongs to the appropriate sort, and @y consider respectful
substitutions and fusionsora = avan action, whera € S— X: S, the fusion induced
by a, denotedp,, is defined ag . X; €%, % =X; {vi =v;} (here Z' denotes sum of fusions
defined in Def. 2). Furthermore, we shalf denotesbgquivalence over actions induced
by the law:Axp= pif x ¢ n(p).

With the above conventions and notations, the definition-dfis obtained from
Definition 6 by making the clauses of actions and effects explicitly distinct, and chang-
ing the clause foactionsas follows:

it p YV 5 nd @, D-X -y ~~ 0 then a transitiorQ IQLAR Q ex-

ists s.t.quy, D- X’ -Y* ~» 0’ and Ay (aVo) = Y (aV0’), 0_g = ¢’y and

P'o Ry Qd’, whereD' = (D-X'-P)o.

Note that~S is in general more generous than ordinary open bisimilatity
For example, assuming € S+— (x: S, x: S), then(vn)AxaxnP ~S (vn)AxanxP
~S (vn)annP["/x] and(vn) (vm)amnP ~S 0. We will see applications of sorted bisi-
milarity in Section 7.

5 Expressiveness of D-Fusion

Below, we provide the two obvious uniform and fully abstract translations fioamd

F to DF . The definition of uniformity can be extended to the case of encodings from
F /N into DF in the obvious way: in particular, by requiring th@t) and (vx) be
mapped ta\x and(vx), respectively.

Definition 8 ([[-[). The translation]-[;: M — DF is defined by extending in the ex-
pected homomorphic way the following clauses:

[2)-Pln=2a(x).[Pln [aX)Pln=2Axa(x).[Pln [(v¥)Pln= (vX) [Pl

For any distinctiorD = x‘fl ---X& we can generate an equivaléivdistinction Dy
(that is, an irreflexive, symmetric relation o, [12]) by settingx; Dr x; iff: either
(6 =ej=vandi# j)or(e =vande; =Aandj <i)or (g =vandg = A andi < j).
It is reasonable to consider here oflydistinctions that can be generated in this way.
For any suchl-distinction Dy, let us denote by[D,]] a chosenD ¥ -distinction that
generate®r. Let~p denote opely-bisimilarity overr ([12]).

12

Proposition 3.P N%n Q iff [[Pﬂn ~[Dn] [[Q]]T[
We turn now our attention to Fusion.

Definition 9 ([-]). The translation[-]+ : ¥ — D is defined by extending in the ex-
pected homomorphic way the following clauses:

[ac)-Pls =a0.[Pls [a()-Plt =a().[Plr [Pt = Ax[P]s
Let ~" denote hyper-equivalence ovér(see [11]).
Proposition 4. P ~" Q iff [P]+ ~ [Q] +.

Most interesting, we now show that D-Fusion cannot be uniformly encodedlinto
The intuitive reason is that, in D-Fusion, the combined use of fusions and restrictions
allows one to express a form of input with pattern matching. This is not possible in
without breaking atomicity of certain actions (e.g. choice). To show this, we restrict our
attention to polarised D-Fusiom FP.

GivenP e I and a trace of actions let us writeP = if P 5., for some trace’
that has the same sequence of subject names, with the same pola{s.as = a(X) -
Ayb(V) ands’ = a(Z) - b(w)). The reference semantics fidris again the late operational
semantics.

Definition 10. A translation[-] : DFP — M is uniformif for each PQ € DF":

— for each trace s, P> implies|[P]] =S>

- [PIQ] = [PIIIQI;
— for eachy,[[(vy) P] = (vy) [P];
— for each substitutiow, [Po] = [P]o.

Below, we denote by, 4p any fixed equivalence ove ¥ P which is contained in
trace semantics (defined in the obvious way), and-hyany fixed equivalence ovét
which is contained in trace equivalence.

Proposition 5. There is no uniform translatioft]] : 2P — N such that/P,Q € DFP:

P~pge Q= [P] ~n [Q].

PROOF Suppose that there exists such a translafignLet us consider the following
two D FP-processe® andQ:

P = (vc,k h) (c(k)alc(h) blck)) Q=ta

It holds thatP ~ Q in DFP: the reason is that, iR, synchronisation between prefixes
c(h) andt(k), which carry differentrestrictednamesh andk, is forbidden (see rule
v-OPEN). ThusP can only make(k) andc(k) synchronise, and then perfor@nThus,

P ~pgp Q holds too.

13

On the other hand, due to uniformity, it is easily checked I[fFé}}:B>, while

Q] 7§> (the proof of the latter relies dm¢ fn(Q) and on the uniformity with respect
to substitutions). ThuBP]| 4n [Q]. O

Of course, it is also true that D-Fusion cannot be uniformly encodedfintas this
would imply the existence of a uniform fully abstract encoding frinto ¥, which
does not exist (Proposition 1).

The conclusion is that there is some expressiveness gap between D-Fusion on one
side and the other two calculi on the other side, at least, as far as our simple notion of
uniform encoding is concerned. This gap is further explored by means of more elaborate
examples in the next two sections.

6 Example: Correlation

This example aims at illustrating the gap between D-Fusion and Fusion from a more
concrete perspective. Consider the following simple protocol. An ayesks a trusted
serverS for two keys, to be used to access two distinct services femight be a
proxy requiring remote connections on behalf of two different users). Communication
betweenA andStakes place over an insecure public channel, controlled by an adver-
sary, but it is protected by encryption and challenge-response nonces. Informally, the
dialogue betweeA andSis as follows:

1. A—S:n
2. S— A {n K}k
UYA—-S:n
2. S— A {n K}y

Here{-}, is symmetric encryption ankk is a secret master key sharedApndS A
simple property of this protocol is thatshould never receideandk’ in the wrong order
(K and therk), even in cas&accepts new requests before completing old ones. Indeed,
nonces andr’ are intended to help to contrast attackers replying old, compromised
keys or trying to get distinct sessions confused. In other words, noncesrdate
each request t8 with the appropriate reply d&.

Below, we show that the above small protocol and the related ordering property can
be readily translated and verified in D-Fusion. Next, we show that the property breaks
down when (uniformly) translating the protocol into Fusion.

D-Fusion Encryption is not a primitive operation in D-Fusion. However, in the present
case, it is sensible to model an encrypted mes$age . as an output actioks(n, k):

only knowing the master kels, and further specifying a session-specific nonce, it is
possible to acquire the kédy(similarly for {n’, k'}, of course). Thus, assumirgcon-
cludes the protocol with a conventional ‘commit’ action and thét the public chan-
nel, A, Sand the whole protocd® might be specified as follows (below, we abbreviate

14
AX p(X).X asp(X).X):

A = (vn) (p(n) Ay ks(n,y). (i) (B(')]AY ks(rY. y').commity,y')))
S= p(x). (ks(x, k)| p(x) ks(x,K))
P = (vks) (AS).

Let Aspecbe the process defined like except that theommitly,y’) action is replaced by
commitk, k'), and letPspec= (VKs) (AspedS). The property tha# should never receive
k andk' in the wrong order is stated &~ Pspec

Informally, equivalence holds true because the second input actidffige, that
is Ay ks(',y'), can only get synchronised with the second output actiom, ithat is
ks(X,K'). In fact,n’ can be extruded onlgfter x has been received, hence the appro-
priate distinction will forbid fusion ofx andn’. The equivalence is formally shown
by exhibiting the appropriate symbolic indexed bisimulation, composed basically by
all pairs of derivative$® andQ s.t. P = P’ andQ'is obtained fromP’ by replacing
commity,y’) with commitk, k'), with distinctions as given by the bound names.in

Fusion SupposeP’ and Pspecare obtained by some uniform encodingRoand Pspec
above into Fusion. It is not difficult to show thif can be ‘attacked’ by an adversary
Rthat getsn andn’ and fuse them togetheR = p(x). (P(x)|p(y).p(y)). Formally, for
a = commitk’, k),

P"IR== and, thusP'|R 2" P! eJR,

which proves thaPf andPsfpecare not hyper-equivalent.

This example illustrates the difficulty of modelling fresh, indistinguishable quanti-
ties (nonces) in Fusion. This makes apparent that Fusion is not apt to express security
properties based on correlation.

7 Encoding guarded choice

In this section we show how the combined mechanisms of fusions and restrictions can
be used to encode different forms of guarded cheia@arallel composition, in a clean
and uniform way.

Informally, different branches of a guarded choice will be represented as concurrent
processes. The encodings adds pairs of extra names to the object part of each action:
these extra names are used as ‘side-channels’ for atomic coordination among the differ-
ent branches. We start by looking at a simple example.

Example 5.Consider the guarded choide= Ax(vn)a(xn).P + Ax(vm)a(xm).Q. Its
intended ‘parallel’ implementation is the process:

B= }\x((vn)a{xn).P|(vm) a(xm>.Q)

(herex,n,m¢ fn(a, P, Q)). Assume now a sorting discipline by which messages travel-
ling on channeh must carry two identical names (i@c S— (x: S, x: S), according

15

to Section 4). IrB, the parallel component that first consumes any such message, forces
fusion ofx either ton or tom, and consequently inhibits the other component. E.g.:

Aua(uw)|B =~ (vn) (P|(vm)a(mn).Q) ~ P|(vn,m)a(mn).Q.

Under the mentioned sorting assumptiowmm, n) a(mn).Q is equivalent td, because
there is no way of fusingn andn. Thus the process on the rightsfis equivalent td°.
In other words, choice betweé&handQ has been resolved atomically.

The above line of reasoning can be formalised in two ways. One way is considering
bisimilarity induced by the above sorting, say, which only takes into account tran-
sitions that obey the sorting discipline (the rightmost two names in the object part of
ala-actions are the same). The other way is keeping standard bisimiarisshile in-
serting processes inside a ‘firewall’ that filters arnessages not respecting the given
sorting. The latter can be easily defined in D-Fusion relying on ‘non-linear’ inputs:

Faa[]=(va) (Azazﬂ(zz}“-]) .
We state the result in both forms below.

Proposition 6. Let A and B be as in Example 5.

1. A~SB;
2. Let A and B be the processes obtained from A and B, respectively, by replacing
the outermost occurrences of a with a freshTnenF, y [A'] ~ F, 4 [B'].

Note that the result above exploits in a crucial way features of both Fusion (non-
linearity of input actions, in the firewall, and sharing of input variaklén B) and of
D-Fusion (restricted input).

Proposition 6 can be generalised to fully abstract encodings of different forms of
guarded choice. For the sake of simplicity, we will state the results in terms of sorted
bisimilarity. We believe the results can also be stated in terms of untyped bisimilarity, at
the cost of breaking uniformity of the encoding and of introducing more sophisticated
forms of ‘firewalls’. We examine two cases, input-guarded choice and mixed choice.

Input-guarded (ig) choicelLet us fix, as a source language the fragment of polarised
D-Fusion with guarded choic€) 7”9, In this language, input prefix and summatien

are replaced by input-guarded choitg; & (X).P.. We also assume a sorting system on
this source language. The target language is the fragment of polarised D-Fusion with
no form of summation. The relevant clauses of the encoding are:

[> a(X).Rllig = AzMici(vn)AX i (%izn).[Rlig [a(V).Plig = Aza(vz2.[Plig,
1€l
wherelj¢| X; denotes the parallel composition of Ajls. The encoding acts as a ho-
momorphism over the remaining operators. Bel84,indicates the sorting that ex-
tends the sorting syste® of the source language by imposing that thg two extra ob-
ject names introduced by the encoding be the same (i.&, §— X : S, thenSL

16

S— (X:9,y: S,y S), for a freshy and a new sorf) and~S1 is the correspond-
ing open bisimilarity. The proof of the following theorem is straightforward, given that
there is a 1-to-1 correspondence between moveR afid moves of[PJlig, under the
sortingsSandS1

Theorem 2 (full abstraction for ig choice).Let RQ € DFP9. It holds that P~S Q if
and only if[Plig ~5* [Qllig-

Of course, the above theorem also yields a fully abstract encoding of input-guarded
choice for pi-calculus, which may be viewed as a sub-calculug 6'9.

Mixed choice in a sorted pi-calculu8s a source language we fix here a sorted version
of polyadic pi-calculus [6] with ‘mixed’ choicd]]™*. In this language, prefixes and

are replaced by mixed summatidfi¢, & (%).P. + ¥ jesbj (Vj).Qj. The target language

is again the fragment of polarised D-Fusion with no summation at all. The encoding
is a bit more complex than in the previous case, as it implies addiagairs of extra
names to coordinate different branches. The relevant clause is:

[Sicrai (X).P+ ZjeJHj<Vj>~Qj]]mix =
(Az,u) (Mier(vn) A% & (}znuy.[R]mix | Mjea(vn) bj(Vjuuzn. [Q;]mix)-

Note that the relative positions ®fnames correctly forbid communication between
branches of opposite polarities within the same choice (no ‘incestuous’ communication,
according to the terminology of [8]). The encoding acts as a homomorphism over the
remaining operators ™,

Below, ~S indicates sorted open bisimilarity ™. We denote by2the D-Fusion
sorting induced by the above translation of the source sorting (i&.5f X: S, then
S2S— (X:S8,y:S,Y:%,2: S,2:), whereS is a new sort angt andz are fresh).

The corresponding bisimilarity is writteqS2.

Theorem 3 (full abstraction for mixed choice).Let RQ € M™X, |t holds that P~S Q
if and only if [P]mix ~>2 [Q]mix-

In a pi-calculus setting, it is known that mixed choice cannot be encoded into the
choice-free fragment, if one requires the encoding be uniform and preserve a ‘reason-
able semantics’ [9, 10, 8]. The theorem above shows that, under mild typing condi-
tions, pi-calculus mixed choicean be implemented into the choice-free fragment of
D-Fusion. The encoding is uniform, deadlock- and divergence-free, and preserves a
‘reasonable semantics’. This is yet another evidence of the expressiveness gap between
D-Fusion and pi-calculus.

8 Conclusions and Future Work

We have proposed the D-Fusion calculus, an extension of the fusion calculus where two
distinct binders coexist, one analogous to tRebinder in fusion, the other imposing

17

name freshness. We have shown that D-Fusion is more expressive than both Fusion and
pi-calculus.

Our expressiveness results seem to suggest that an efficient distributed implementa-
tion of D-Fusion might be nontrivial to design. This design would certainly involve the
introduction of a distributed model of the calculus, including, e.g., explicit fusions [3]
for broadcasting fusions asynchronously, and primitives for handling explicit localities.
We leave this task for future work. For the time being, we just note that distributed
implementations of pi/fusion-like calculi do exist (e.g., the fusion machine of [2]. One
may expect that, starting from these, building a distributed implementation of D-Fusion
should not be much harder.

In [1] the synchronisation mechanism of the pi-calculus is extended to allow for
polyadic synchronisation, where channels are vectors of names. The expressiveness of
polyadic synchronisation, matching and mixed choice is compared and it is shown how
the degree of synchronisation of a calculus increases its expressive power.

We plan to extend the D-Fusion calculus by generalising name fusions to arbitrary
substitutions over a signature of terms. We believe that the extended D-Fusion would
be strictly more expressive that Logic Programming, the intuition being that restriction
(creation of new fresh names) cannot be modelled in LP.

Finally, it would also be interesting to study a coalgebraic model for D-Fusion.

A coalgebraic framework would present several advantages. For instance, morphisms
between coalgebras enjoy the property of “reflecting behaviours” and thus they allow to
characterise bisimulation equivalences in more abstract terms as kernels of morphisms.

References

1. M. Carbone and S. Maffeis. On the Expressive Power of Polyadic Synchronisation in Pi-
Calculus. To appear iNordic Journal of Computing
2. P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended abstrat)clrof
CONCUR '02 LNCS 2421. Springer-Verlag, 2002.
P. Gardner and L. Wischik. Explicit Fusioriheoretical Computer Sciencto appear.
L. G. Meredith, S. Bjorg, and D. Richter. Highwire Language Specification Version 1.0.
Unpublished manuscript.
5. Microsoft Corp. Biztalk Serverkttp://www.microsoft.com/biztalk.
6. R. Milner. The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Science Dept.,
University of Edinburgh, 1991.
7. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts | ardfdi-
mation and Computatiqri00(1):1-77, 1992.
8. U. Nestmann and B. C. Pierce. Decoding choice encodinfilgmation and Computatign
163(1):1-59, 2000.
9. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
pi-calculus. InConf. Rec. of POPL'971997.
10. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
pi-calculus Mathematical Structures in Computer Scient®(5):685-719, 2003.
11. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Pro-
cesses. IfProc. of LICS'98 IEEE Computer Society Press, 1998.
12. D. Sangiorgi. A Theory of Bisimulation for the pi-Calculég:ta Informatica 33(1): 69-97,
1996.
13. World Wide Web Consortium (W3Chttp://www.w3.0org/TR/wsd112.

pw

