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Abstract

We settle the complexity bounds of the model checking problem for
the ambient calculus with public names against the ambient logic. We
show that if either the calculus contains replication or the logic contains
the guarantee operator, the problem is undecidable. In the case of the
replication-free calculus and guarantee-free logic we prove that the prob-
lem is PSPACE-complete. For the complexity upper-bound, we devise a
new representation of processes that remains of polynomial size during
process execution; this allows us to keep the model checking procedure in
polynomial space. Moreover, we prove PSPACE-hardness of the problem
for several quite simple fragments of the calculus and the logic; this sug-
gests that there are no interesting fragments with polynomial-time model
checking algorithms.

Keywords: ambient calculus, model checking, ambient logic, mobile
computation, verification.

1 Introduction

The ambient calculus of Cardelli and Gordon [8, 18, 10] is a formalism for
describing the mobility of both software and hardware. An ambient is a bounded
place where computation happens; it is a named cluster of running processes
and nested sub-ambients. Each computation state has a spatial structure, the
tree induced by the nesting of ambients. Mobility is abstractly represented
by re-arrangement of this tree: an ambient may move inside or outside other
ambients. The names are used to control access to ambients.
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The ambient calculus can be viewed as a language for programming the
web. In order to ensure the correctness of programs written in this language,
we need a language for formally describing their properties and reasoning about
them. To this end, Cardelli and Gordon propose the ambient logic [9], a modal
logic designed to specify properties of distributed and mobile computations pro-
grammed in the ambient calculus. As well as standard temporal modalities for
describing the evolution of ambient processes, the logic includes novel spatial
modalities for describing the tree structure of ambient processes. Serendipi-
tously, these spatial modalities can also usefully describe the tree structure of
semistructured databases [6]. Other work on the ambient logic includes a study
of the process equivalence induced by the satisfaction relation [26] and a study
of the logic extended with constructs for describing private names [7].

Given a program written in the ambient calculus (an ambient process) and
its properties specified as an ambient logic formula, one would like to determine
automatically whether the process satisfies the specification. This problem is
called model checking. In general, the model checking problem is to decide
whether a given object satisfies (that is, is a model of) a given formula. This
paper is concerned with model checking for mobile ambient processes against
specifications described as formulas in the ambient logic.

Cardelli and Gordon [9] give a model checking algorithm for the fragment of
the calculus in which processes contain neither replications nor dynamic name
generations against a fragment of the logic in which formulas contain no guaran-
tee operators. They raise the question whether their algorithm can be extended
to include replication or guarantee. Both are sources of infinity: a replicated
process is equivalent to an infinite array of replicas of a process; a guarantee for-
mula is equivalent to a certain infinite quantification over processes. In Section 3
we answer this question negatively: it is not possible to extend the algorithm,
because each of these extensions leads to undecidability.

Cardelli and Gordon do not give any complexity analysis for their algorithm.
In fact, a naive analysis of the algorithm gives only a doubly exponential bound
on its use of time and space. A more sophisticated analysis based on results
in this paper shows that their algorithm works in single-exponential time on
single-exponential space.

In Sections 4 and 5 we settle the complexity bounds of the model checking
problem for the finite-state ambient calculus (that is, the full calculus apart from
replication and name generation) against the logic without guarantee. Our main
result (embodied in Theorems 4.11 and 5.2) is that the problem is PSPACE-
complete.

As we discuss in Section 4.1, there are two reasons why Cardelli and Gordon’s
algorithm uses exponential space. One of them is that a process may grow
exponentially during its execution; the other is that there may be exponentially
many processes reachable from a given one.

In Section 4, we present a new model checking algorithm that avoids these
problems as follows.

• We avoid the first problem by devising a new representation of processes
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using a form of closure. The main feature of this representation is that sub-
stitutions that occur when communications take place within an ambient
are not applied directly, but are kept explicit. These explicit substitu-
tions prevent the representation blowing up exponentially in the size of
the original process. The idea of using closures comes from DAG represen-
tations used in unification for avoiding exponential blow-up. A sequential
substitution that we use here can be seen as a DAG representation of the
substitution.

• To avoid the second problem, we first devise a non-deterministic algorithm
for testing reachability that does not have to store all the reachable pro-
cesses, but instead tests it on-the-fly, and then remove nondeterminism
using Savitch’s theorem [27].

Hence we prove Theorem 4.11, that the model checking problem is solvable
in PSPACE. We show this upper bound to be tight in Section 5; Theorem 5.2
asserts that the model checking problem is PSPACE-hard. Actually, we give
PSPACE-hardness results for various fragments of the logic and of the calculus.
For instance, by Theorem 5.4, even for a calculus of purely mobile ambients (that
is, a calculus without communication or the capability to dissolve ambients)
and the logic without quantifiers, the problem is PSPACE-hard. Moreover,
by Theorem 5.6, for a calculus of purely communicative ambients (that is, a
calculus without the capabilities to move or to dissolve ambients) and the logic
without quantifiers, the problem is also PSPACE-hard.

Usually in model checking, the main bottleneck is the size of the process
(which can be very large) since the size of the specification is typically small.
Thus a more accurate measure of the complexity of model checking is its pro-
gram complexity, where we fix the specification and only the program may vary.
Often the combined complexity of model checking (that is, the case where both
the model and the formula vary) is one exponential higher than the program
complexity; this happens for example for finite transition systems against the
logic LTL. Here this is not the case—even if we fix the process to be the con-
stant 0, the model checking problem remains PSPACE-hard. Although we do
not prove PSPACE-hardness for fixed arbitrary formulas, our result is not much
weaker: Theorem 5.7 asserts that for any level of the polynomial-time hierarchy
we can find a fixed formula such that the model checking problem is hard for
that level.

We end the main part of the paper with conclusions in Section 6. Ap-
pendixes A and B contain missing details of the encodings and proofs for unde-
cidability results from Section 3. Appendixes C and D contain proofs of prop-
erties concerning complexity results stated without proof in Sections 4 and 5,
respectively.

Portions of this article appear in two conference papers [11, 13].
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2 Review of the Ambient Calculus and Logic

We present the ambient calculus with public names (that is, the full calculus [10]
apart from name restriction) and the ambient logic. This is the calculus and
logic used by Cardelli and Gordon in [9].

2.1 The Ambient Calculus with Public Names

The following table describes the expressions and processes of our calculus.

Expressions and Processes:

M,N ::= expressions P,Q,R ::= processes
n name 0 inactivity
inM can enter M P | Q composition
outM can exit M M [P ] ambient
openM can open M M.P action
ε null (n).P input
M.M ′ path 〈M〉 output

!P replication

In the following we will often refer to replication-free or finite-state fragment
of this calculus, which we obtain by removing the replication symbol from the
table above.

A name n is said to be bound in a process P if it occurs within an input prefix
(n). A name is said to be free in a process P if there is an occurrence of n outside
the scope of any input (n). We write bn(P ) and fn(P ) for respectively the set
of bound names and the set of free names in P . We say two processes are α-
equivalent if they are identical apart from the choice of bound names. We write
M{n←N} and P{n←N} for the outcomes of capture-avoiding substitutions
of the expression N for the name n in the expression M and the process P ,
respectively.

The semantics of the calculus is given by the relations P ≡ Q and P → Q.
The reduction relation, P → Q, defines the evolution of processes over time.
The structural congruence relation, P ≡ Q, is an auxiliary relation used in the
definition of reduction. When we define the satisfaction relation of the modal
logic in the next section, we use an auxiliary relation, the sublocation relation,
P ↓ Q, which defines the spatial distribution of processes and holds when Q
is the whole interior of a top-level ambient in P . We write →∗ and ↓∗ for the
reflexive and transitive closure of → and ↓, respectively.

Structural Congruence P ≡ Q

P , Q are α-equivalent⇒ P ≡ Q (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
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P ≡ Q⇒M [P ] ≡M [Q] (Struct Amb)
P ≡ Q⇒M.P ≡M.Q (Struct Action)
P ≡ Q⇒ (n).P ≡ (n).Q (Struct Input)

P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
P | 0 ≡ P (Struct Zero Par)
ε.P ≡ P (Struct ε)
(M.M ′).P ≡M.M ′.P (Struct .)

P ≡ Q⇒ !P ≡ !Q (Struct Repl)
!0 ≡ 0 (Struct Repl Zero)
!(P | Q) ≡ !P | !Q (Struct Repl Par)
!P ≡ P | !P (Struct Repl Copy)
!P ≡ !!P (Struct Repl Repl)

Reduction P → Q and Sublocation P ↓ Q:

n[inm.P | Q] | m[R]→ m[n[P | Q] | R] (Red In)
m[n[outm.P | Q] | R]→ n[P | Q] | m[R] (Red Out)
open n.P | n[Q]→ P | Q (Red Open)
〈M〉 | (n).P → P{n←M} (Red I/O)

P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ n[P ]→ n[Q] (Red Amb)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

P ≡ n[P ′] | P ′′ ⇒ P ↓ P ′ (Loc)

2.2 The Logic (for Public Names)

We describe the formulas and satisfaction relation of the logic.

Logical Formulas:

η a name n or a variable x
A,B ::= formula

T true
¬A negation
A ∨ B disjunction
0 void
η[A] location
A | B composition
A@η placement
∃x.A existential quantification
♦A sometime modality
✧A somewhere modality
A . B guarantee
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We assume that names and variables belong to two disjoint vocabularies.
We write A{x←m} for the outcome of substituting each free occurrence of the
variable x in the formula A with the name m. We say a formula A is closed if
and only if it has no free variables (though it may contain free names).

Intuitively, we interpret closed formulas as follows. The formulas T, ¬A,
and A ∨ B embed propositional logic. The formulas 0, η[A], and A | B are
spatial modalities. A process satisfies 0 if it is structurally congruent to the
empty process 0. It satisfies n[A] if it is structurally congruent to an ambient
n[P ] where P satisfies A. A process P satisfies A | B if it can be decomposed
into two subprocesses, P ≡ Q | R, where Q satisfies A, and R satisfies B. The
formula ∃x.A is an existential quantification over names. The formulas ♦A
(sometime) and ✧A (somewhere) quantify over time and space, respectively. A
process satisfies ♦A if it has a temporal successor, that is, a process into which
it evolves, that satisfies A. A process satisfies ✧A if it has a spatial successor,
that is, a sublocation, that satisfies A. A process P satisfies the formula A@n
if the ambient n[P ] satisfies A. Finally, a process P satisfies A . B if for all P ′,
the process P | P ′ guarantees B assuming that P ′ satisfies A.

The satisfaction relation P |= A formalizes these intuitions.

Satisfaction P |= A (for A closed):

P |= T
P |= ¬A ∆= ¬(P |= A)
P |= A ∨ B ∆= P |= A ∨ P |= B
P |= 0 ∆= P ≡ 0
P |= n[A] ∆= ∃P ′.P ≡ n[P ′] ∧ P ′ |= A
P |= A | B ∆= ∃P ′, P ′′.P ≡ P ′ | P ′′ ∧ P ′ |= A ∧ P ′′ |= B
P |= ∃x.A ∆= ∃m.P |= A{x←m}
P |= ♦A ∆= ∃P ′.P →∗ P ′ ∧ P ′ |= A
P |= ✧A ∆= ∃P ′.P ↓∗ P ′ ∧ P ′ |= A
P |= A@n ∆= n[P ] |= A
P |= A . B ∆= ∀P ′.P ′ |= A ⇒ P | P ′ |= B

We use �A (everytime modality), ❏A (everywhere modality) and ∀x.A (uni-
versal quantification) as abbreviations for ¬(♦¬A), ¬(✧¬A) and ¬(∃x.¬A),
respectively.

3 Undecidability Results

In this section we show that if either the calculus contains replication or the
logic contains guarantee, the problem is undecidable.
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3.1 Calculus with Replication

We start by showing that model checking for the ambient calculus with public
names against the ambient logic without guarantee is undecidable. We use
here α, β, γ for words in {a, b}∗, σ for letters in {a, b} and ε for the empty
word. Lower-case strings (possibly with subscripts) like ci, ni, wi, start i, word i,
compare denote ambient names, while upper-case strings such as Concatenate,
Compare or Word i denote processes.

Encoding of PCP. The undecidability proof is done by a reduction of the
Post correspondence problem (PCP). An instance of the problem is a set of
pairs of words {〈α1, β1〉, . . . , 〈αn, βn〉} over the two-letter alphabet {a, b} (that
is, αi, βi ∈ {a, b}∗). The question is whether there exists a sequence of numbers
1 ≤ i0, i1, . . . , ik ≤ n such that αi0 · . . . · αik = βi0 · . . . · βik , where · denotes
word concatenation. It is well known that Post correspondence problem is
undecidable [24].

The idea of the reduction is to construct for a given instance of PCP a process
P whose reduction simulates all possible concatenations of pairs of words in the
instance. Then we have to only check if a process representing two equal words
is reachable.

The process P is defined as the parallel composition

P
∆= start1[] | start2[] |Word1(ε) |Word2(ε) | Concatenate | Compare,

where start1 and start2 are two different ambient names and Word i(γ) is a pro-
cess representing the word γ (we start with the empty word). Before we give
the precise definition of the processes Word i(γ),Concatenate and Compare,
we briefly describe the intuition behind them. Concatenate is a process re-
sponsible for concatenating pairs of words from the given instance of PCP: it
chooses nondeterministically a pair 〈αi, βi〉 and rewrites Word1(α) | Word2(β)
to Word1(αi · α) |Word2(βi · β); this is done again and again. At some nonde-
terministically chosen point of time the process Compare activates — it stops
Concatenate and starts comparing the two words represented by Word1 and
Word2 by nondeterministically choosing the letter a or b and trying to delete
it simultaneously from both words; this is repeated until both words are empty
or they start with a different letter. Clearly, the instance of PCP has a solution
if and only if there exists a (nonempty) execution of the process that ends with
the representation of two empty words.

Concatenate ∆= !(open start1.open start2.open pair) |
!pair [Concatenate1(α1) | Concatenate2(β1)] |
. . . |
!pair [Concatenate1(αn) | Concatenate2(βn)]

The two ambients start1[] and start2[] are used for synchronization — the
only possible reduction is to open start1[] and then start2[]; after this the two
ambients disappear and they will appear again only after Concatenate1 and
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Concatenate2 finish their jobs. In this way we avoid processing two different
pairs at the same time (and thus confusing different pairs during computation).

Thus, in every iteration of Concatenate, we rewrite in several steps a process
of the form start1[] | start2[] | Word1(α) | Word2(β) | Concatenate | Compare
to

Word1(α) |Word2(β)| Concatenate1(α′) | Concatenate2(β′)
| Concatenate | Compare

for some words α, β and some pair 〈α′, β′〉 from the instance of PCP. Intuitively,
two words γ = σ1 . . . σk and γ′ = σ′1 . . . σ

′
k′ in {a, b}∗ are represented by ambients

σ1[σ2[. . . σk[]] . . . ] and σ′1[σ′2[. . . σ′k′ []] . . . ] and the process Concatenatei(γ′) leads
the process Word i(γ) inside σ′k′ [] and generates an ambient start i[] so that

Word i(γ) | Concatenatei(γ′) →∗ Word i(γ′ · γ) | start i[].

The details are quite technical and are presented in the appendix. Then the
initial process rewrites to

start1[] | start2[] |Word1(α′ · α) |Word2(β′ · β) | Concatenate | Compare.

The process Compare works in a similar way.

Compare ∆= compare[] | Initialize.(!(open compare.Consume(a)) |
!(open compare.Consume(b)))

The initialization essentially opens start1 and start2 so that Concatenate is
blocked. The process Consume(a) replaces the representation of the two words
α, β by α′, β′ if α = aα′ and β = aβ′ by simply opening the leading ambi-
ents a[. . . ] in the representation of both words, similarly Consume(b) opens the
leading b[. . . ] if both words start with b. The ambient compare[] is used for syn-
chronization to avoid deleting different letters from the two words. The details
are presented in the appendix.

We have the following theorem.

Theorem 3.1 The model checking problem for the ambient calculus with repli-
cation against the ambient logic is undecidable.

Proof Let P be the process defined above (note that the definition of P de-
pends on the instance of PCP). We have already seen that the instance has a
solution if and only if there exists an execution of P starting with the concate-
nation of at least one pair and ending in a configuration representing the pair
of empty words. This can be expressed by the formula

A ∆= ♦(nonempty(w1) ∧ ♦(empty(w1) ∧ empty(w2)))

where

nonempty(wi)
∆= ✧wi[(a[T] ∨ b[T]) | T]

empty(wi)
∆= ¬nonempty(wi).
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Here, wi is an ambient name used in the encoding of the process Word i(γ)
(see the appendix for details), and the formula a[T] ∨ b[T] is matched by (the
encoding of) the first letter in the word γ. Then P |= A if and only if the
instance of PCP has a solution. �

It should be noticed that our proof of undecidability of model checking the
ambient calculus with replication but without private names implies that reacha-
bility via reduction for ambient processes with public names and with replication
is undecidable.

Recently, in two independant works [1, 19], it has been shown that the
ambient calculus with replication but without private names and communication
is actually Turing-complete.

3.2 Logic with Guarantee

We investigate in this section the problem of model checking finite-state ambient
calculus against formulas that may contain guarantee. First we observe that the
model checking problem of such formulas subsumes the satisfiability problem of
formulas without guarantee.

Observation 3.2 The process 0 satisfies the formula ¬(T . ¬A) if and only if
the formula A is satisfiable.

Proof By definition, 0 |= T . ¬A if and only if for all processes P that
satisfy T, the process P | 0 satisfies ¬A. Since all processes satisfy T and P | 0
is equivalent to P , by the definition of satisfaction for negation we have that
0 |= ¬(T . ¬A) if and only if there exists P that satisfies A. �

We show now that the satisfiability problem for ambient formulas (even
without guarantee) is an undecidable problem.1 Thus, it implies:

Theorem 3.3 The model checking problem of ambient processes without repli-
cation and name restriction against formulas with guarantee is undecidable.

Let us consider the set F of first-order formulas defined over a countable set
of variables x, y, z, . . . and some relational symbols {R1, . . . , Rk}, each of those
symbols having strictly positive arity. The set of formulas F is the least set
such that (i) for any Ri with arity l, F contains Ri(x1, . . . , xl), and (ii) for all
ϕ and ϕ′ in F , ϕ ∧ ϕ′, ¬ϕ and ∃xϕ belong to F .

Formulas from F are interpreted over structures; a structure S over some
domain D is simply a set of objects of the form Ri(a1, . . . , al) where Ri is an l-
ary relational symbol and a1, . . . , al are elements of D. We say that a structure
S is finite whenever its domain D is finite.

A formula is said to be closed if it has no free variables. We assume wlog.
that in formulas bound variables are pairwise distinct. For a formula ϕ and a

1Actually we consider a very small fragment of the logic, in particular without temporal
modalities.
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structure S with domain D, a valuation σ is a mapping from the free variables
of ϕ to D. A structure S is a model of a formula ϕ under a valuation σ (written
S, σ |= ϕ) if

• Ri(x1, . . . , xl)σ ∈ S for ϕ = Ri(x1, . . . , xl),

• S, σ |= ϕ′ and S, σ |= ϕ′′ for ϕ = ϕ′ ∧ ϕ′′,

• S, σ 6|= ϕ′ for ϕ = ¬ϕ′,

• and there exists a in D such that S, σ{x←a} |= ϕ′ for ϕ = ∃xϕ′.

Theorem 3.4 (Trakhtenbrot [29]) Given a closed first-order formula ϕ, it
is undecidable to know whether ϕ admits a finite model.

With a formula ϕ from F we associate a formula [[ϕ]] from the ambient logic
inductively defined as follows:

• [[Ri(x1, . . . , xl)]] = ri[x1[x2[. . . [xl[0]] . . . ]]] | T,

• [[ϕ ∧ ϕ′]] = [[ϕ]] ∧ [[ϕ′]]

• [[¬ϕ]] = ¬[[ϕ]],

• [[∃xϕ]] = ∃x((d[x[0]] | T) ∧ [[ϕ]]).

We identify first-order variables in formulas from F with variables of the
ambient logic. Therefore, free variables of ϕ and [[ϕ]] coincide.

The key idea of this encoding is to consider the parallel operator of the
ambient calculus as a (multi-)set constructor. Then, the finite domain D as well
as the structure S are encoded in a straightforward way using simply ambient
name d for elements from D and ambient names ri for the relational symbols
Ri in S.

A formula ϕ has a finite model if there exists a finite structure that is a
model of ϕ.

Lemma 3.5 A closed formula ϕ from F admits a finite model iff there exists
an ambient process P without replication and without name restriction such that
P |= [[ϕ]].

The proof of Lemma 3.5 can be found in the appendix. It is straightforward
that Lemma 3.5 and Theorem 3.4 yield the undecidability of the satisfiability
problem of the logic without guarantee over ambient processes without replica-
tion and name restriction. Hence, Theorem 3.3 follows.
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4 A Model Checking Algorithm

From now on we restrict ourselves to the finite-state fragment of the calculus
and logic without guarantee. In this section we show that the model checking
problem for this fragment of the calculus and logic can be decided in polynomial
space.

We start by giving an example (Section 4.1) that requires exponential time
and space in the Cardelli and Gordon’s algorithm. Then we devise a new rep-
resentation of processes (Section 4.2) that remains polynomial in the size of the
initial process (Section 4.3). In Section 4.4 we present a new model checking
algorithm based on this representation.

4.1 A Motivating Example

The following example shows that in the finite-state calculus the size of reachable
processes may grow exponentially, and that there may be a reduction path of
exponential length. The algorithm given in [9] uses exponential space to check
properties of this example.

Consider the family of processes (Pk)k≥0, recursively defined by the equa-
tions P0 = (n).(p[n] | q[0]) and Pk+1 = (nk+1).(〈nk+1.nk+1〉 | Pk). Intuitively,
the process Pk+1 inputs a capability, calls it nk+1, doubles it, and outputs
the result to the process Pk. We have the following, where M1 = M and
Mk+1 = M.Mk.

〈in q.out q〉 | P0 →1 p[in q.out q] | q[0]
〈in q.out q〉 | P1 →2 p[(in q.out q)2] | q[0]
〈in q.out q〉 | P2 →3 p[(in q.out q)4] | q[0]
〈in q.out q〉 | Pk →k+1 p[(in q.out q)2k ] | q[0]

Since (in q.out q)2k is a sequence of 2k copies of in q.out q, the process
p[(in q.out q)2k ] | q[0] reduces in 2k+1 steps to p[0] | q[0]. Therefore, we have
〈in q.out q〉 | Pk →(k+1)+2k+1

p[0] | q[0].
This example points out two facts. First, using a simple representation of

processes (such as the one proposed in [9]), it may be that the size of a process
considered during model checking grows exponentially bigger than the size of
the initial process. Second, during the model checking procedure, there may be
an exponential number of reachable processes to consider. Therefore, a direct
implementation of the algorithm proposed in [9] may use space exponential in
the size of the input process.

These remarks motivate the approach taken in this paper. First, we devise a
new representation for ambient processes that remains of polynomial size with
respect to to the input process. Second, we give a non-deterministic algorithm
for testing reachability that uses only polynomial space in the combined size of
the problem; then by an application of Savitch’s theorem [27] we remove non-
determinism and obtain a deterministic version that itself uses only polynomial
space.
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4.2 A Polynomial-Space Representation

We give in this section a new representation for ambient processes based on
normal closures (It is different from the normal form of processes introduced
in [9]). We also present basic operations on closures and prove that closures
indeed simulate the processes they represent. All proofs not in this section (in
particular, proofs of Propositions 4.1–4.4) can be found in the appendix.

Since the reduction relation is defined up to α-equivalence, we may assume
for the purposes of computing reachable processes that the free and bound names
of every ambient process are distinct, and moreover that the bound names are
pairwise distinct.

Annotated Processes, Substitutions, Closures:

P̃ ::= annotated process∏
i∈I πi multiset of primes

π ::= prime
M [P̃ ] ambient
M(o).P̃ action, with offset o ≥ 0
(n).P̃ input
〈M〉 output

σ ::= {n1←M1} · · · {nk←Mk} sequential substitution, k ≥ 0
〈P̃ ;σ〉 closure

In a sequential substitution {n1←M1} · · · {nk←Mk}, the expression Mi lies
in the scope of the bindings for the remaining names ni+1, . . . , nk. We denote
by ι the empty sequence of substitutions and treat it as the identity substitution.
A sequential substitution σ is said to be acyclic if either σ = ι or σ = {x←M}σ′,
where x does not occur in σ′ and σ′ is an acyclic substitution.

For an annotated process P̃ , we define free and bound names in the same
way as for ambient processes. Let names(σ) be the set of all names occurring
in σ.

We define a partial mapping U from closures to the set of ambient processes.
Intuitively, it unfolds a closure to the process it represents by applying the
substitution and cutting off the prefix defined by the offset. Roughly speaking,
the expression U(P̃ , σ) is defined if the offsets within the annotated process do
not exceed the length of the expression they are associated with. The unfolding
U(P̃ , σ) is defined as follows.

The Unfolding U(P̃ , σ) of a Closure 〈P̃ ;σ〉:

U(
∏
i∈I πi, σ) =

{
U(π1, σ) | . . . | U(πn, σ) if I = {1, . . . , n} 6= ∅

0 otherwise

U(M [P̃ ], σ) = Mσ[U(P̃ , σ)]
U((n).P̃ , σ) = (n).U(P̃ , σ)
U(〈M〉, σ) = 〈Mσ〉
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U(M(o).P̃ , σ) =


No+1. · · · .Nl.U(P̃ , σ) if Mσ = N1. · · · .Nl, o < l and Ni

being either a name or of the form
capN ′ with cap ∈ {in, out, open}

undefined otherwise

We are only interested in a particular kind of closure, which we refer to as
normal. Let a closure 〈P̃ ;σ〉 be normal if U(P̃ , σ) is defined and if it meets some
technical conditions about free and bound names.

Definition 1 A closure 〈P̃ ;σ〉 is normal if:

(1) U(P̃ , σ) is defined,

(2) bn(P̃ ) ∩ (fn(P̃ ) ∪ names(σ)) = ∅,

(3) names occuring in inputs are pairwise different,

(4) every offset o occurring in the scope of an input in P̃ is equal to 0, and

(5) σ is acyclic.

The next proposition says that our representation of ambient processes with
normal closures preserves their basic properties.

Proposition 4.1 (Structural Equivalences) Let 〈
∏
i∈I πi;σ〉 be a normal

closure. Then

(1) U(
∏
i∈I πi, σ) ≡ 0 iff I = ∅.

(2) U(
∏
i∈I πi, σ) ≡ M [Q] iff ∃M ′, Q̃ : I is a singleton {i}, πi = M ′[Q̃],

M ′σ = M , U(Q̃, σ) ≡ Q.

(3) U(
∏
i∈I πi, σ) ≡ P ′ | P ′′ iff ∃J,K : J ∪ K = I, J ∩ K = ∅, P ′ ≡

U(
∏
j∈J πj , σ), P ′′ ≡ U(

∏
k∈K πk, σ).

(4) U(
∏
i∈I πi, σ) ≡ 〈M〉 iff ∃M ′ : I is a singleton {i}, πi = 〈M ′〉 and

M ′σ = M .

(5) U(
∏
i∈I πi, σ) ≡ (n).P iff ∃P̃ : I is a singleton {i}, πi = (n).P̃ and

U(P̃ , σ) ≡ P .

Next, we present how the reduction and sublocation transitions →, ↓ can
be defined on closures. Due to this particular representation and the fact that
some part of the ambient process is contained in the sequential substitution,
some auxiliary subroutines are needed.

One can see in the definition of U that only expressions M in the anno-
tated process are affected by the sequential substitution. For the sublocation
transition, it is important to extract the name represented by the expression M
under the substitution σ. So, one of those subroutines, nam(M,σ), consists in
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recovering from an expression M the name it effectively represents within the
substitution σ.

The reduction transition for a closure 〈P̃ ;σ〉 requires some other auxiliary
subroutines, which are more specifically dedicated to the case where the substi-
tution applied on the expression M leads to a sequence of capabilities inM ′,
outM ′, openM ′. Intuitively, the outcome of applying the substitution σ to an
expression M contained within P̃ is a finite sequence of either capabilities of the
form inM ′, outM ′, openM ′, or names not bound by the substitution. We need
a subroutine to compute the length of this sequence in terms of capabilities. To
keep the algorithm in polynomial space, we must simply be able to compute
this length without applying explicitly σ on M ; this is the role of len(M,σ).

Now, from the definition of the reduction on ambient processes, one can
see that the reduction consumes one capability: once the reduction is done,
the involved capability disappears from the resulting process. This is slightly
different for the representation we have proposed: a sequence of capabilities can
be partially contained in a sequential substitution σ. This substitution remains
fixed during the execution of capabilities and the offset attached to this sequence
plays the role of a program counter. Therefore, to perform a reduction step one
has to extract the first capability to execute from a sequence of capabilities, M ,
a substitution, σ, and an offset, o. This is computed by fst(M,o, σ).

The next subroutine introduced here, split(M(o).P̃ , σ), computes a pair from
a prime, M(o).P̃ , and a sequential substitution, σ. The first component of this
result is the first capability to be executed in 〈{M(o).P̃};σ〉 (the one in head
position). The second component is the remaining annotated process once this
first capability has been executed.

The Auxiliary Functions nam, len, fst and split:

nam(n, {m←M}σ) =
{

nam(M,σ) if n = m
nam(n, σ) otherwise

nam(n, ι) = n

len(ε, σ) = 0
len(M.N, σ) = len(M,σ) + len(N,σ)
len(M,σ) = 1 if M ∈ {inN, outN, openN}

len(n, {m←M}σ) =
{

len(M,σ) if n = m
len(n, σ) otherwise

len(n, ι) = 1

fst(M.N, o, σ) =
{

fst(M,o, σ) if len(M,σ) > o
fst(N, o− len(M,σ), σ) otherwise

fst(capN, 0, σ) = cap (nam(N,σ)) for cap in {in, out, open}

fst(n, o, {m←M}σ) =
{

fst(M,o, σ) if n = m
fst(n, o, σ) otherwise

split(M(o).P̃ , σ) =
{

(fst(M,o, σ), {M(o+ 1).P̃}) if len(M,σ) > o+ 1
(fst(M,o, σ), P̃ ) otherwise

14



Notice that nam(M,σ) is undefined if M is of the form ε, N.N ′, in N ,
out N , or open N . Therefore, the expression nam(M,σ) is either undefined
or is evaluated to a name. Moreover, we can compute the name returned by
nam(M,σ), or whether it is undefined, in linear time. The number returned
by len(M,σ) can be computed in polynomial space.2 We can compute the
capability returned by fst(M,o, σ) and the pair returned by split(M(o).P̃ , σ),
or whether they are undefined, in polynomial space.

Suppose 〈P̃ ;σ〉 is a normal closure containing an action M(o).Q̃. From
the definition of a normal closure, len(M,σ) > o, and if the action occurs
under an input variable n, then the offset o = 0. If n occurs in M and gets
bound to ε by an I/O step, it may be that len(M, {n←ε}σ) = 0. So, in the
transition rule for I/O, we need to re-normalize the closure representing the
outcome of the transition. We do so using the following subroutines, norm(P̃ , σ)
and norm(π, σ), that return the annotated process obtained by removing from
P̃ and π, respectively, any prefix M(o) such that len(M,σ) = 0. We write {}
and ++ for the empty multiset and the multiset union operation, respectively.

The Auxiliary Function norm:

norm(
∏
i∈1..k πi, σ) =

{
{} if k = 0
norm(π1, σ) ++ · · · ++ norm(πk, σ) otherwise

norm(M [P̃ ], σ) = {M [norm(P̃ , σ)]}

norm(M(o).P̃ , σ) =
{

norm(P̃ , σ) if len(M,σ) = 0
{M(o).norm(P̃ , σ)} otherwise

norm((n).P̃ , σ) = {(n).norm(P̃ , σ)}
norm(〈M〉, σ) = {〈M〉}

Next, we define a transition relation, 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉, and a sublocation
relation, 〈P̃ ;σ〉 ↓ 〈P̃ ′;σ〉, on closures. These relations simulate the reduction
and the sublocation relations on processes defined in Section 2.1.

Transitions and Sublocations of Closures:

(Trans In)
split(π, σ) = (inm, P̃ ) nam(M,σ) = m nam(N,σ) = n

〈{N [{π} ++ Q̃],M [R̃]};σ〉 → 〈{M [{N [P̃ ++ Q̃]} ++ R̃]};σ〉

(Trans Out)
split(π, σ) = (outm, P̃ ) nam(M,σ) = m nam(N,σ) = n

〈{M [{N [{π} ++ Q̃]} ++ R̃]};σ〉 → 〈{N [P̃ ++ Q̃],M [R̃]};σ〉

(Trans Open)
split(π, σ) = (open n, P̃ ) nam(M,σ) = n

〈π, {M [Q̃]};σ〉 → 〈P̃ ++ Q̃;σ〉
2We are not concerned here with time complexity; a naive algorithm for computing

len(M,σ), as presented here, runs in exponential time in the worst case. However, it is
quite easy to provide a version of this function that runs in polynomial time.
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(Trans I/O)
P̃ ′ = norm(P̃ , {n←M}σ)

〈{(n).P̃ , 〈M〉};σ〉 → 〈P̃ ′; {n←M}σ〉

(Trans Par)
〈P̃ ;σ〉 → 〈P̃ ′;σ′〉

〈P̃ ++ Q̃;σ〉 → 〈P̃ ′ ++ Q̃;σ′〉

(Trans Amb)
〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 nam(M,σ) = n

〈{M [P̃ ]};σ〉 → 〈{M [P̃ ′]};σ′〉

(Loc)
nam(M,σ) = m

〈Q̃ ++ {M [P̃ ]};σ〉 ↓ 〈P̃ ;σ〉

The condition for (Loc) ensures simply that the expression M together with
σ is a name. For two normal closures 〈P ;σ〉, 〈P ′;σ′〉, deciding whether 〈P ;σ〉 ↓
〈P ′;σ′〉 can be achieved in polynomial space. There is no rule corresponding to
(Red ≡) since we always keep closures in normal form. The two rules (Trans
Par) and (Trans Amb) correspond to the congruence rules (Red Par) and (Red
Amb) for reduction.

In the same way as for ambient processes, we define the relations→∗ and ↓∗
(on closures) as the reflexive and transitive closures of → and ↓, respectively.

Proposition 4.2

(1) If 〈P̃ ;σ〉 is normal and 〈P̃ ;σ〉 ↓∗ 〈P̃ ′;σ〉 then 〈P̃ ′;σ〉 is normal.

(2) If 〈P̃ ;σ〉 is normal and 〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉 then 〈P̃ ′;σ′〉 is normal.

The next proposition says that the representation of processes as closures
preserves sublocations and reductions.

Proposition 4.3 (Sublocation Equivalences) Assume 〈P̃ ;σ〉 is a normal
closure. If 〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 then U(P̃ , σ) ↓ U(Q̃, σ). If U(P̃ , σ) ↓ Q then there
exists Q̃ such that 〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 and U(Q̃, σ) ≡ Q.

The following proposition is a counterpart of Proposition 4.3. It refers to
time in the same way as Proposition 4.3 refers to space.

Proposition 4.4 (Reduction Equivalences) Assume 〈P̃ ;σ〉 is a normal
closure. If 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 then U(P̃ , σ) → U(P̃ ′, σ′). If U(P̃ , σ) → P ′ then
there exists 〈P̃ ′;σ′〉 such that 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 and U(P̃ ′, σ′) ≡ P ′.

Propositions 4.1–4.4 are enough to prove that normal closures indeed simu-
late the processes they represent.

4.3 Size of the Representation

We show that closures indeed give a polynomial representation of processes. To
do this, we have to bound the size of offsets that occur in closures.

For a given object (a closure or a process) O, by |O| we mean the length
of its string representation and by ‖O‖ the number of nodes in its tree repre-
sentation. We assume that an offset is represented by a single node in the tree
representation.
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Lemma 4.5 Suppose that 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. Then ‖〈P̃ ′;σ′〉‖ ≤ ‖〈P̃ ;σ〉‖.

Proof By a simple case analysis on the derivation of 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. In
cases (Trans In), (Trans Out) and (Trans Open), the transition either does
not change or decreases the representation’s size. In case (Trans I/O), the three
nodes representing input, output and process composition ((), 〈〉, .) together with
the representation of x and M are replaced with two nodes representing assign-
ment and substitution composition (←, {}) together with the representation of
x and M . Thus the tree decreases by one node. �

Proposition 4.6 Assume 〈P̃ ;σ〉 is normal and 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉. Then all off-
sets used in P̃ and P̃ ′ can be represented by the same number of bits, polynomial
in |〈P̃ ;σ〉| and, with such a representation, |〈P̃ ′;σ′〉| ≤ |〈P̃ ;σ〉|.

Proof A simple induction on the length of the substitution σ′ proves that the
offsets in P̃ ′ are bounded by the value ‖〈P̃ ′;σ′〉‖‖〈P̃ ′;σ′〉‖. By Lemma 4.5, they
are also bounded by ‖〈P̃ ;σ〉‖‖〈P̃ ;σ〉‖ and then all offsets used in P̃ and P̃ ′ are
bounded by this value, which can be represented on ‖〈P̃ ;σ〉‖ ·(blog(‖〈P̃ ;σ〉‖)c+
1) bits. With this representation of offsets, incrementing an offset does not
increase the size of its string representation. Thus no transitions can increase
the length of the string representations of closures. �

The following proposition is a key fact in the proof that our model check-
ing algorithm and also the algorithm of Cardelli and Gordon [9] terminate
in exponential time. It implies that the computation tree of a given process
might be very deep and very narrow (as in our example in Section 2) or not
so deep and wider; in any case the number of nodes in the tree remains ex-
ponentially bounded. A naive argument (without using closures) gives only a
doubly exponential bound on the number of reachable processes: one can prove
that the computation tree of a given process is at most exponentially deep
(as our example in Section 2 shows, this bound is tight) and that the number
of successors for every node is at most polynomial. For example, the closure
〈{n[inn(0).P̃0], . . . , n[inn(0).P̃k]};σ〉 has at most k2 different successors. These
two facts do not give, however, the exponential bound on the number of nodes
in the tree, which is given by the following proposition.

Proposition 4.7 Let 〈P̃ ;σ〉 be a normal closure. Then there exist at most
exponentially many 〈P̃ ′;σ′〉 such that 〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉.

Proof This is a direct consequence of Proposition 4.6 and the observation
that there are only exponentially many strings of polynomial length. �

Proposition 4.8 The reachability problem for normal closures is decidable in
PSPACE.

Proof Take any instance 〈P̃ ;σ〉, 〈P̃ ′;σ′〉 of the reachability problem. To de-
cide whether 〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉, we first define a nondeterministic algorithm
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that starting from 〈P̃ ;σ〉 guesses an immediate successor of the current clo-
sure until it reaches 〈P̃ ′;σ′〉 or there are no further successors. By Proposi-
tion 4.6 the algorithm requires only polynomial space (we have to store only
the current closure and its one immediate successor); Proposition 4.7 implies
termination. Finally, using the general statement of Savitch’s theorem [27]
(NPSPACE(S(n)) ⊆ PSPACE(S(n)2)), this non-deterministic algorithm can
be turned into a deterministic one. �

4.4 A New Algorithm

We propose a new algorithm, Check(P̃ , σ,A), to check whether the ambient
process simulated by 〈P̃ ;σ〉 satisfies the closed formula A. For each ambient
process, P , we only consider the closure, F(P ), obtained using the folding func-
tion defined as follows. We prove (Proposition 4.10), that P |= A if and only if
Check(F(P ), ι,A) returns the Boolean value T.

The Folding F(P ) of a Process P :

F(0) = {}
F(P | Q) = F(P ) ++ F(Q)
F(M [P ]) = {M [F(P )]}
F((n).P ) = {(n).F(P )}
F(〈M〉) = {〈M〉}

F(M.P ) =
{
F(P ) if len(M, ι) = 0
{M(0).F(P )} otherwise

For any process P , the closure 〈F(P ); ι〉 is normal and U(F(P ), ι) is struc-
turally congruent to P . Furthermore, F(P ) can be computed in linear time in
the size of P .

For the model checking problem, P |= A, we may assume without loss of
generality that the free names of A are disjoint from the bound names of P . We
denote by fn(P̃ , σ) the set (fn(P̃ ) ∪ names(σ))r dom(σ).

Computing Whether a Process Satisfies a Closed Formula:

Check(P̃ , σ,T) = T
Check(P̃ , σ,¬A) = ¬Check(P̃ , σ,A)
Check(P̃ , σ,A ∨ B) = Check(P̃ , σ,A) ∨ Check(P̃ , σ,B)

Check(
∏
i∈I πi, σ,0) =

{
T if I = ∅

F otherwise
Check(

∏
i∈I πi, σ, n[A]) ={

Check(Q̃, σ,A) if I = {i}, πi = M [Q̃], nam(M,σ) = n
F otherwise

Check(
∏
i∈I πi, σ,A | B) =

∨
J⊆I(Check(

∏
j∈J πj , σ,A) ∧

Check(
∏
k∈I−J πk, σ,B))
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Check(P̃ , σ,∃x.A) = let {m1, . . . ,mk} = fn(P̃ , σ) ∪ fn(A) in
let m0 /∈ {m1, . . . ,mk} ∪ bn(P̃ ) ∪ dom(σ) be fresh in∨
i∈0..k Check(P̃ , σ,A{x←mi})

Check(P̃ , σ,♦A) =
∨
〈P̃ ;σ〉→∗〈P̃ ′;σ′〉 Check(P̃ ′, σ′,A)

Check(P̃ , σ,✧A) =
∨
〈P̃ ;σ〉↓∗〈P̃ ′;σ〉 Check(P̃ ′, σ,A)

Check(P̃ , σ,A@n) = Check(n[P̃ ], σ,A)

An expression Check(P̃ , σ,A) is said to be normal if and only if the closure
〈P̃ ;σ〉 is normal, A is a closed formula, and fn(A) ∩ (bn(P̃ ) ∪ dom(σ)) = ∅.
Hence, for the model checking problem P |= A where A is a closed formula, the
expression Check(F(P ), ι,A) is normal and moreover we have:

Proposition 4.9 The model checking algorithm described above preserves the
normality of Check(P̃ , σ,A).

Proposition 4.10 For all processes P and closed formulas A, we have P |= A
if and only if Check(F(P ), ι,A) = T.

Theorem 4.11 Model checking the ambient calculus and logic of this paper is
decidable in PSPACE.

Proof To test for a given process P and formula A whether P |= A we simply
compute the value of Check(F(P ), ι,A). The only problem is to implement
Check in such a way that it works in polynomial space.

In the case of T,0, n[A],A@n,¬A, the algorithm can directly check whether
the respective conditions hold. In the case of A ∨ B,A | B,∃x.A,♦A,✧A, we
have to be more careful about the space used to compute the value of disjunc-
tions. In a loop we iteratively compute the value of each disjunct, reusing the
same space in every iteration. In the case of ♦A the subroutine computing∨
〈P̃ ;σ〉→∗〈P̃ ′;σ′〉 Check(P̃ ′, σ′,A) could look as follows.

result ← F
for all 〈P̃ ′;σ′〉 such that 〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉

if Check(P̃ ′, σ′,A) = T then result ← T
return(result)

By Propositions 4.6 and 4.8, every iteration requires only polynomial space.
The cases of A∨B,A | B,∃x.A,✧A are similar. Thus, the space S(k, |P̃ |+ |σ|)
used by the algorithm to compute Check(P̃ , σ,A) for formulas A of depth not
exceeding k satisfies the inequality

S(k + 1, |P̃ |+ |σ|) ≤ S(k, |P̃ |+ c+ |σ|) + p(|P̃ |+ |σ|)

for some constant c and some polynomial p (the constant c comes from the fact
that in the case of A = B@n the size of n[P̃ ] is greater than the size of P̃ ; the
polynomial p estimates the space needed for testing reachability etc). Therefore,
S(k, |P̃ |+ |σ|) ≤ k · p(|P̃ |+ k · c+ |σ|).

Finally, the fact that F(P ) is polynomial in the size of P and the statement
of Proposition 4.10 complete the proof. �
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4.5 Extension to Name Restriction

Name restriction allows declarations of private (local) names for processes in
the same way as in the π-calculus; in the process (νn)P , the name n is made
local to P .

Recently, Cardelli and Gordon [7] have presented an extended version of
the logic that allows reasoning about restricted names; intuitively, a process
P satisfies the formula nA (read “reveal n then A”) if it is possible to pull
a restricted name from P to the top and rename it n and then strip off the
restriction to leave a residual process that satisfies A. The inverse of revelation
is hiding: a process P satisfies A �n (read “hide n then A”) if it is possible to
hide n in P and then satisfy A.

In [13] we adapt the algorithm from the previous section to the case with
name restriction. To do this, we first bring the processes to a kind of prenex
normal form by using α-renaming of restricted names and the scope extrusion
rules of the (extended) congruence relation [10]. In this way we obtain a process
of the form (νn1) . . . (νnk)P where P essentially does not contain name restric-
tion. Then we extend the algorithm by adding two lines implementing directly
the intuitive meaning of the operators  and � described above.

Although the correctness proof in this case is not very difficult, it is much
longer and much more tedious than the one in Section 4 and Appendix C and
we do not include it in the present paper. The difficulty lies in the fact that
to decide if (νn)P |= A | B one has to compute all processes Q,R such that
(νn)P ≡ Q | R (and similarly for other logical constructs); computationally it is
not a problem, but the correctness proof is very close to the proof of decidability
of structural congruence, which goes beyond the scope of the current paper and
can be found in [14].

5 Complexity Lower Bounds

Below we present lower bounds on the space complexity of model checking finite-
state ambient calculus against our modal logic (without guarantee), and also
for two significant fragments. Without further qualification, throughout this
section, we only consider fragments of the ambient calculus without replication,
and fragments of the ambient logic without guarantee.

The results given here are based on known results about the complexity of
decision problems for Quantified Boolean Formulas (QBF). We can assume with-
out loss of generality that these Boolean formulas are in prenex and conjunctive
normal form. The alternation depth of a formula is the number of alternations
between existential and universal quantifiers in its prenex quantification.

Those known results are: (1) deciding the validity problem for a closed
quantified Boolean formula ϕ is PSPACE-complete; (2) deciding the validity
problem for a closed quantified Boolean formula ϕ of alternation depth k whose
outermost quantifier is ∃ is ΣPk -complete [28], where ΣPk denotes the k-th level
of the polynomial-time hierarchy. In particular, ΣP0 = P and ΣP1 = NP.
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We will use the following formula as a running example of a valid closed
QBF formula:

∀v1.∃v2.∃v3.(v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3) ∧ v3

5.1 The Full Calculus and Logic

We define an encoding of QBF formulas into ambient formulas. This encod-
ing is then used to prove Theorem 5.2, that the complexity of model checking
the (finite-state) ambient calculus against the guarantee-free ambient logic is
PSPACE-hard.

In our encoding, we assume that the truth values tt and ff used in the
definition of QBF satisfaction are distinct ambient calculus names.

We also use a derived operator for name equality in the ambient logic first
defined by Cardelli and Gordon [9]:

η = µ
∆= η[T]@µ

Then 0 |= η = µ if and only if the names η and µ are equal. We encode the ∀
and ∃ quantifiers over truth values as follows.

∀x ∈ {ff , tt}.A ∆= ∀x.(x = ff ∨ x = tt)⇒ A
∃x ∈ {ff , tt}.A ∆= ∃x.(x = ff ∨ x = tt) ∧ A

Encoding QBF Formulas as Ambient Logic Formulas:

[[v]] ∆= (v = tt)
[[v]] ∆= (v = ff )
[[`1 ∨ · · · ∨ `k]] ∆= [[`1]] ∨ · · · ∨ [[`k]]
[[C1 ∧ · · · ∧ Ck]] ∆= [[C1]] ∧ · · · ∧ [[Ck]]
[[∀v.ϕ]] ∆= ∀v ∈ {ff , tt}.[[ϕ]]
[[∃v.ϕ]] ∆= ∃v ∈ {ff , tt}.[[ϕ]]

The following properties are proved in the appendix. The proof of Lemma 5.1
is by induction on the number of variables quantified in ϕ.

Lemma 5.1 Consider a closed quantified boolean formula ϕ and its encoding
[[ϕ]] in the ambient logic. The formula ϕ is valid if and only if the model checking
problem 0 |= [[ϕ]] holds.

Theorem 5.2 The complexity of model checking the full logic (including name
quantification) is PSPACE-hard.

Proof Straightforward from Lemma 5.1 since for the fixed ambient process
0 solving the model checking problem 0 |= ϕ is PSPACE-hard. So in fact the
expression complexity, that is, the complexity of checking formulas against a
fixed process, is PSPACE-hard. �
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The theorem above holds for any fragment of the logic including boolean
connectives, name quantification, and the location and placement modalities,
and for any fragment of the calculus including ambients. This might suggest that
the complexity of the model checking problem comes from the quantification in
the logic. Below we show that it is not the case: the problem remains so
complex even if we remove quantification from the logic and communication
or mobility from the calculus. This suggests there is little chance of finding
interesting fragments of the calculus and the logic that would admit a faster
model checking algorithm.

5.2 Mobile Ambients Without I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for the
fragment of the finite-state ambient calculus without I/O and the fragment of
the logic without quantification or guarantee.

For every QBF variable, v, we assume that v, v′ and v′′ are distinct ambient
calculus names; η is a meta variable ranging over names.

Encoding QBF Formulas as Ambient Processes and Formulas:

[[v]] = v[pos[0] | v′[0]] | T
[[v]] = v[neg [0] | v′[0]] | T
[[`1 ∨ · · · ∨ `k]] = [[`1]] ∨ · · · ∨ [[`k]]

[[C1 ∧ · · · ∧ Ck]] = (end [0], [[C1]] ∧ · · · ∧ [[Ck]])

[[∀v.ϕ]] = (v′[in v.η[out v′.out v.P ]],�((η[T] | T)⇒ A)) where (η[P ],A) = [[ϕ]]
[[∃v.ϕ]] = (v′[in v.η[out v′.out v.P ]],♦((η[T] | T) ∧ A)) where (η[P ],A) = [[ϕ]]

enc(ϕ) = (v1[pos[0]] | v1[neg [0]] | · · · | vn[pos[0]] | vn[neg [0]] | P,A)
where (P,A) = [[ϕ]] and ϕ = Q1v1. . . . .Qnvn.C1 ∧ · · · ∧ Ck

where each Qi ∈ {∃,∀}.

Brief explanation. In the encoding enc(ϕ) above, the parallel composition
v1[pos[0]] | . . . | vn[neg [0]] represents the sequence v1, . . . vn of (uninstantiated)
boolean variables and P is a process that instantiates them. An instantiated
variable vi is represented by a subprocess vi[pos[0] | v′i[0]] | vi[neg [0]] (if its
value is tt) or vi[pos[0]] | vi[neg [0] | v′i[0]] (if its value is ff ). The process
P first instantiates v1 by choosing one of the ambients v1[pos[0]] or v1[neg [0]]
nondeterministically, going inside it, leaving the token v′1[0] inside the chosen
ambient and then returning to the top level. It then iteratively instantiates the
variables v2, . . . , vn in the same way. The formula η[T] | T in the context of the
encoding for a quantified variable vi above (where η is vi+1 or end for i = n)
expresses that the instantiation of vi has finished but that the instantiation of η
has yet to start; thus �(η[T] | T . . . ) and ♦(η[T] | T . . . ) express, respectively,
universal and existential quantifications over instantiations of vi.
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v1

pos[] |
v1

neg [] |
v2

pos[] |
v2

neg [] |
v3

pos[] |
v3

neg [] |

v′1

in v1.

v′2

out v′1.out v1.in v2.

v′3

out v′2.out v2.in v3.
end

out v′3.out v3.0

(a) The process P in enc(ϕ) = (P,A)

v1

pos[] | v′1[] |
v1

neg [] |
v2

pos[] | v′2[] |
v2

neg [] |

v3

pos[] |
v3

neg [] | v′3[] | end
0

(b) The irreducible process for the interpretation v1 7→ tt , v2 7→ tt , v3 7→ ff

Figure 1: Encoding for mobile ambients without I/O, no quantifiers

In the case where ϕ is the formula defined previously as an example, one
would obtain enc(ϕ) = (P,A), where P is the process depicted in Figure 1(a)
and where the formula A is of the form:

�((v′2[T] | T)⇒ ♦((v′3[T] | T) ∧ ♦((end [T] | T) ∧ B)))

where B is the formula given by [[v1 ∨ v2 ∨ v3]] ∧ [[v1 ∨ v2 ∨ v3]] ∧ [[v3]].

More detailed explanation. We explain this encoding with reference to the
ambient process depicted in Figure 1(a). The ambients whose names range over
vi describe an interpretation for the Boolean variables vi whereas the ambients
named v′i are the “material” to extend this interpretation. In the initial ambi-
ent, the ambients vi encode the empty interpretation and the material is in an
ambient named v′1 marking the fact that v1 is the first variable to treat. The
first step of reduction will move the ambient v′1 non-deterministically either in-
side v1[pos[]] (the Boolean variable v1 takes the value tt) or inside v1[neg []] (the
Boolean variable v1 takes the value ff ). The next two steps of reduction are
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deterministic. They aim to leave a mark in one of the ambients v1 according to
the first non-deterministic choice and to reach a situation in which the Boolean
variable v2 is considered. For instance, if the first choice was to instantiate
v1 with tt then, one would obtain a parallel composition of v1[pos[] | v′1[]] and
v1[neg []]. The ambients named v2, v3 are kept unchanged and the ambient con-
taining the rest of the interpretation would be of the form v′2[in v2.v

′
3[Q]] where

Q is the internal of v′3 in the initial process. This computation, consisting of
one non-deterministic step followed by two deterministic ones, can be carried
on for the variables v2 and v3. Then, when no more reduction step is possi-
ble, the resulting process is a parallel composition of the empty ambient end []
and, for each i, of vi[η[] | v′i[]] and vi[η′[]] where η, η′ are distinct elements from
{pos,neg}. For instance, the irreducible process given in Figure 1(b) represents
the interpretation v1 7→ tt , v2 7→ tt , v3 7→ ff .

We said that the ambient processes encode interpretations. The Boolean
formula itself is encoded in the ambient formula A. Once no more reduction
step is possible on the ambient process, this latter represents an interpretation
whose domain is the set of all variables in ϕ: this interpretation is given by the
places where the marks v′i have been put. It is easy with an ambient formula to
test whether this interpretation renders true the quantifier-free part of ϕ. This
role is played by the ambient formula B whereas the remaining part of A aims
to encode the quantifiers of ϕ.

Let us first consider the outermost quantifier ∀v1 in ϕ: this quantification
stands for “for all possible interpretations of the variable v1”. We have described
above the mechanism for the instantiation of the Boolean variable v1 in the am-
bient process. It consists of first a non-deterministic step, then two deterministic
steps. Whatever the first step is, those three steps lead to a situation where
the ambient process is of the form R | v′2[R′]. It should be noticed that those
two processes (one for each possibility of the first step) are the only processes
of this form reachable from the initial process. Therefore, the statement “for
all possible interpretations of the variable v1” can be translated as “for all pro-
cesses of the form R | v′2[R′] reachable from the initial process”. This rephrased
statement can be expressed in the ambient logic as �((v′2[T] | T)⇒ . . . ).

A dual reasoning can be applied then for ∃v2, the following quantification of
the formula ϕ. In that case, the statement “there exists an interpretation for
the variable v2” is translated into “there exists an ambient process of the form
T | v′3[T ′] reachable from the current process”. This current process is one of
the two processes after the instantiation of the variable v2, that is of the form
S | v′3[S′]. This statement can be expressed by means of the ambient logic by
the formula ♦((v′3[T] | T)∧ . . . ). Finally, the quantification ∃v3 is expressed by
♦((end [T] | T) ∧ . . . ).

Lemma 5.3 Assume ϕ is a closed quantified Boolean formula, and (P,A) =
enc(ϕ). Then P |= A if and only if ϕ is valid.

Theorem 5.4 The complexity of model checking mobile ambients without I/O
against the quantifier-free logic is PSPACE-hard.
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Proof Straightforward from the PSPACE-completeness of the validity for
QBF and from Lemma 5.3, taking into account that for enc(ϕ) = (P,A), both
P and A are of polynomial size with respect to ϕ. �

5.3 Immobile Ambients With I/O, No Quantifiers

In this section, we study the complexity of the model checking problem for
the fragment of the finite-state ambient calculus without action prefix and the
fragment of the logic without quantification or guarantee.

We consider fixed names end , C, and D. For any QBF variable ambient
name v′i, let

Inst(v′i)
∆= v′i[T] | T Inst+(v′i)

∆= v′i[v
′′
i [T] | T] | T

and for the name end ,

Inst(end) ∆= end [T] | T Inst+(end) ∆= end [end ′[T] | T] | T

Encoding QBF Formulas as Ambient Processes and Formulas:

[[v]] = v[0]
[[v]] = v[0]
[[`1 ∨ . . . ∨ `k]] = D[0] | [[`1]] | . . . | [[`k]]

enc(C1 ∧ . . . ∧ Ck) = (end [C[ [[C1]] ] | . . . | C[ [[Ck]] ]],
❏((D[0] | T)⇒ (tt [0] | T)))

enc(∃v.ϕ) = (v′[〈tt〉 | 〈ff 〉 | (v).(v′′[] | (v).η[P ])],
T | v′[♦( (Inst(η) ∧ ¬Inst+(η)) ∧ A )])

where enc(ϕ) = (η[P ],A)
enc(∀v.ϕ) = (v′[〈tt〉 | 〈ff 〉 | (v).(v′′[] | (v).η[P ])],

T | v′[�( (Inst(η) ∧ ¬Inst+(η)) ⇒ A )])
where enc(ϕ) = (η[P ],A)

Brief explanation. The idea of the encoding here is quite similar to that
from the previous section. A boolean variable v is represented here by two
ambients v[] and v[], which after the instantiation are named tt [] and ff []. We
exploit here the nondeterminism of communication: the variable v reads either
the message 〈tt〉 or 〈ff 〉; then its dual v has to read the other one. The names
v′i and v′′i (similar to v′i in the previous section) are used for distinguishing
the moment when the variable vi is already instantiated but vi+1 is not. The
formula ❏((D[0] | T)⇒ (tt [0] | T)) requires that in the final state, each ambient
representing a clause (that is, an ambient containing D[0]) contains at least one
true literal (that is, an ambient tt [0]).

For the formula ϕ used in our example, one would have enc(ϕ) = (P,A),
where P is depicted in Figure 2(a).
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v′1

〈tt〉 | 〈ff 〉 |

(v1).(v′′1 [] | (v1)).

v′2

〈tt〉 | 〈ff 〉 |

(v2).(v′′2 [] | (v2)).

v′3

〈tt〉 | 〈ff 〉 |

(v3).(v′′3 [] | (v3)).

end

C

D[] | v1[] | v2[] | v3[] |

C

D[] | v1[] | v2[] | v3[] |

C

D[] | v3[]

(a) The process P in enc(ϕ) = (P,A)

end

C

D[] | tt [] | ff [] | ff [] |
C

D[] | ff [] | tt [] | ff [] |
C

D[] | tt []

(b) The process representing the instantiation of C1 ∧ C2 ∧ C3 by v1 7→ tt , v2 7→
tt , v3 7→ ff

Figure 2: Encoding for immobile ambients with I/O, no quantifiers

More detailed explanation. The key idea of this encoding is to use (reduc-
tions of) communications for performing the instantiation of the quantifier-free
part of ϕ with respect to some interpretation. Therefore, the quantifier-free
formula C1 ∧ . . . ∧ Ck is encoded in the ambient process itself, inside an am-
bient named end . For instance, in Figure 2(a) for our example, the ambient
end [C[D[] | v1[] | v2[] | v3[]] | C[D[] | v1[] | v2[] | v3[]] | C[D[] | v3[]]] encodes the
quantifier-free part of ϕ: the ambient end contains a sub-ambient called C for
each clause Ci in ϕ and the ambient corresponding to Ci contains an ambient
`j [] for each literal `j from Ci.

Starting from P described in Figure 2(a), let us inspect the behaviour of
processes through reductions. Two reductions can be performed on P : one
establishes a communication between 〈tt〉 and (v1) and the other one between
〈ff 〉 and (v1). Once this reduction step is performed the name v1 has been
replaced by either tt or ff uniformly at every position and in particular in the
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ambient named end . Hence, the first step of computation is non-deterministic
and instantiates the literal v1. It has also a side-effect: it reveals an ambient
process v′′1 [] within the ambient v′1; this process is a marker for the control
of computations. Its precise role will be explained later on. The second step
is deterministic: for each first step, only one second step is possible. This
second step aims to instantiate the literal v1 according to the instantiation of
v1. Indeed, if the first communication has consumed the output 〈tt〉 then for
the second one only the output 〈ff 〉 remains and vice-versa. So, after the second
step, the name v1 is globally replaced by a Boolean value. Moreover, at this
point there are no more actions prefixing the ambient named v′2 and so this
ambient can be now reduced using the rules (Red Par) and (Red Amb). The
next reduction steps are performed in a similar way: a non-deterministic step
follows by a deterministic one. This leads finally to replace in the ambient end
all the names corresponding to literals by Boolean values tt and ff . As an
example, in Figure 2(b), we have depicted the ambient end once the reductions
corresponding to the interpretation M = v1 7→ tt , v2 7→ tt , v3 7→ ff have been
performed.

Now, using an ambient formula it is not difficult to test whether the inter-
pretation induced from the process in Figure 2(b) is a model for C1 ∧ C2 ∧ C3:
as C1 ∧ C2 ∧ C3 is in conjunctive normal form, M is a model for it if and
only if M renders at least one literal true in every clause Ci. According to
the way reductions are performed and correspond to instantiations, this is
equivalent to the claim that in the process from Figure 2(b), every ambient
named C contains a sub-ambient tt []. This can be tested with the formula
B = ❏((D[0] | T) ⇒ (tt [0] | T)), which is exactly the formula given by
enc(C1 ∧ C2 ∧ C3).

In the encoding enc(ϕ) = (P,A), one part of A aims to test whether the
interpretation corresponding to the reductions is a model of ϕ. The other part
of A is used to encode the quantification of ϕ. Let us illustrate on our example
the ideas of this encoding: for the formula ϕ from our example, the formula A
is equal to

T | v′1[�( (Inst(v′2) ∧ ¬Inst+(v′2)) ⇒
(T | v′2[♦( (Inst(v′3) ∧ ¬Inst+(v′3)) ∧

(T | v′3[♦(Inst(end) ∧ ¬Inst+(end) ∧ B)]) )]) )]
where B is the result of the encoding of the quantifier-free part of ϕ. For the
variable vi, the intuitive reading of Inst(v′i) is “the next variable to consider
is vi”, that is, the instantiation of the variable vi−1 has been completed. The
reading of Inst+(v′i) is “the variable vi has been partially treated”, that is,
the instantiation has been performed for the positive literal vi. For the ambient
name end , Inst(end) refers to the completion of the instantiation of the variable
vn.

The first quantification ∀v1 stands for “for all possible interpretations of the
variable v1” and the part of ϕ related with this quantification is

T | v′1[�( (Inst(v′2) ∧ ¬Inst+(v′2)) ⇒ . . . )]
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This formula is model checked against the process P given in Figure 2(a).
As P ≡ 0 | P , the model checking problem is reduced to checking the interior
of v′1 against the sub-formula of the form �A1: all processes reachable from
the interior of v′1 must satisfy A1. Let us have a look at the form of those
reachable processes: the interior of v′1 is itself reachable as well as the two
processes corresponding to the instantiation of the literal v1 (reachable in one
step). In those processes v1 has been replaced by a Boolean value but none
of them satisfies v′2[T] | T, that is, Inst(v′2). Now, the processes reachable in
two steps or more indeed satisfy the formula Inst(v′2); but the ones reachable in
exactly two steps can be distinguished from the others since these former are the
only ones which do not satisfy v′2[v′′2 [T] | T] | T, that is, Inst+(v′2). Indeed, steps
beyond the second one reveal the marker v′′2 [] inside the ambient v′2. We have
already mentioned the fact that the two steps of computation correspond exactly
to the complete treatment of the variable v1 which is the intended meaning of
Inst(v′2)∧¬Inst+(v′2). Therefore, model checking continues by checking the two
processes (the second step of computation being deterministic), defined as the
interior of v′1 in which the literals v1 and v1 have been replaced by Boolean
values, against the formula

T | v′2[♦( (Inst(v′3) ∧ ¬Inst+(v′3)) ∧ ...)]

from the encoding of the quantification ∃v2. It stands for “there exists an
interpretation for v2”. The process that is checked against this formula is of the
form v′′1 [] | v′2[R]. Therefore, it amounts to check whether the process R, which
is the interior of v′2 in which names v1, v1 have been replaced with Boolean
values, is a model for the sub-formula of the form ♦A2. Equivalently, there
must exist a process reachable from R which satisfies A2. Let us inspect the
processes reachable from R. Of course, R itself is reachable as well as the two
processes reachable in one step of computation performing the instantiation for
the literal v2. None of these processes satisfies the formula v′3[T] | T, that
is, Inst(v′3). Processes that are obtained with two steps or more from R do
satisfy Inst(v′3) but only those obtained by strictly more than two steps reveal
the marker v′′3 [] inside v′3 and thus, satisfy v′3[v′′3 [T] | T] | T, that is Inst+(v′3).
Those computations from R of exactly two steps correspond to the complete
treatment of the variable v2 and satisfy Inst(v′3) ∧ ¬(Inst+(v′3)). So, model
checking carries on by checking that one of these two processes reachable from
R in two steps and defined as the interior of v2 in which the literals v1, v1, v2,
v2 have been replaced by Boolean values, is a model for the remaining part of
the encoding of the formula.

Finally, the quantification ∃v3 is encoded as

T | v′3[♦( ((T | end [T]) ∧ ¬(T | end [end ′[T] | T])) ∧ ...)]

and its treatment is similar to that of ∃v2. It leads to model checking the process
named end given in Figure 2(b) against the formula B.

Lemma 5.5 Assume ϕ is a closed quantified Boolean formula, and (P,A) =
enc(ϕ). Then P |= A if and only if ϕ is valid.
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Theorem 5.6 The complexity of model checking immobile ambients with I/O
against the quantifier-free logic is PSPACE-hard.

Proof This follows from the PSPACE-completeness of validity for QBF, from
Lemma 5.5 taking into account that for enc(ϕ) = (P,A), both P and A are of
polynomial size with respect to ϕ. �

We can strengthen this result by slightly modifying our encoding. Our pre-
vious encoding is based on an individual treatment for the variables in the
quantification. The improved encoding will be based on the alternation of quan-
tifiers: roughly, ∃v2∃v3 can be grouped together by saying that “there exists an
interpretation for v2 and v3”. As far as the previous encoding is concerned, the
ambient formula resulting from the encoding of ∃v2∃v3 will perform two suc-
cessive tests for reachability; this can be modified in such a way that only one
test of reachability is performed. This will imply for the new encoding that the
markers used to control the model checking (namely, the ambients v′) will no
longer be associated with the variables but with the alternation of quantifiers.
Those ambient names will range over ai where i is an integer. We define for
those ai’s:

Inst(ai)
∆= ai[T] | T Inst+(ai)

∆= ai[ai[] | T] | T

The Revised Encoding:

enc(∀v.ϕ) = enc(∀v.ϕ, 1)
enc(∃v.ϕ) = enc(∃v.ϕ, 1)

enc(∀v.ϕ, i) = (ai[〈tt〉 | 〈ff 〉 | (v).(ai[] | (v)).P,
T | ai[�( Inst(ai+1) ∧ Inst+(ai+1) ⇒ A )])

where enc∀(ϕ, i) = (P,A)
enc(∃v.ϕ, i) = (ai[〈tt〉 | 〈ff 〉 | (v).(ai[] | (v)).P,

T | ai[♦( Inst(ai+1) ∧ Inst+(ai+1) ∧ A )])
where enc∃(ϕ, i) = (P,A)

enc∀(∃v.ϕ, i) = enc(∃v.ϕ, i+ 1)
enc∀(∀v.ϕ, i) = (〈tt〉 | 〈ff 〉 | (v).(v).P,A) where enc∀(ϕ, i) = (P,A)

enc∃(∀v.ϕ) = enc(∀v.ϕ, i+ 1)
enc∃(∀v.ϕ, i) = (〈tt〉 | 〈ff 〉 | (v).(v).P,A) where enc∃(ϕ, i) = (P,A)

enc(C1 ∧ . . . ∧ Ck, i) = (ai[C[ [[C1]] ] | . . . | C[ [[Ck]] ]],❏((D[0] | T)⇒ tt [0] | T))

[[`1 ∨ . . . ∨ `k]] = D[0] | [[`1]] | . . . | [[`k]]
[[v]] = v[]
[[v]] = v[]

The statement of Lemma 5.5 still holds for this new encoding. Furthermore,
in the encoding (P,A) of the Boolean formula ϕ, the ambient logic formula A
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depends only on the alternation depth and the outermost quantifier of ϕ; for
any two Boolean formulas ϕ,ϕ′ having the same alternation depth k and the
same outermost quantifier Q, if enc(ϕ) = (P,A) and enc(ϕ′) = (P ′,A′) then
A = A′.

Theorem 5.7 For every integer k there exists a formula A∃k such that the com-
plexity of model checking processes against A∃k is ΣPk -hard.

Proof Let A∃k be the formula such that for any closed quantified Boolean
formula ϕ of alternation depth k whose outermost quantifier is ∃, enc(ϕ) =
(Pϕ,A∃k). Due to the remark above, we know that this formula exists and
furthermore, is of size polynomial in k.

Now, by Lemma 5.5, every instance of the validity problem for a closed
quantified Boolean formula ϕ of alternation depth k whose outermost quantifier
is ∃ can be reduced to the model checking problem Pϕ |= A∃k for enc(ϕ) =
(Pϕ,A∃k). Thus, since the size of Pϕ is polynomial in the size of ϕ, the theorem
follows. �

6 Conclusion

We study in this paper the model checking problem for the ambient calculus
with public names against the ambient logic. We show that if either the cal-
culus contains replication or the logic contains guarantee then the problem is
undecidable, which answers a question stated in [9]. In the decidable case of
the replication-free ambient calculus with public names and the guarantee-free
ambient logic we prove that the problem is PSPACE-complete. In order to
prove this complexity bound, we have proposed a new representation for pro-
cesses, called closures, that prevents the exponential blow-up of the size. We
use this representation together with a new algorithm to prove the PSPACE
upper bound.

We also show that there is little chance to find polynomial algorithms for
interesting subproblems: model checking remains PSPACE-hard even for quite
simple fragments of the calculus and the logic.

Possible directions for future work include investigations of the model check-
ing problem for extensions of the logic and the calculus in the decidable case.

As discussed in Section 4.5, Cardelli and Gordon [7] present an extended
version of the logic that allows reasoning about restricted names, and another
paper [13] shows that the algorithm presented here can be directly extended to
deal with name restriction. A subsequent paper [12] shows that model checking a
finite-control version of the ambient calculus with restricted names is PSPACE-
complete.

Cardelli and Gordon [9] discuss connections between the ambient logic and
several substructural logics [30, 17, 16, 23]. We are aware of no prior stud-
ies of model checking a logic with spatial operators against a process calculus.
Dam [15] proposes such a logic for the CCS process calculus; he obtains var-
ious axiomatisations but does not consider model checking. His logic is more
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extensional than the ambient logic: satisfaction is preserved by bisimulation
equivalence, which is not the case for the ambient logic.

The ambient logic is one of several spatial logics that have attracted atten-
tion recently. In a spatial logic, the truth of a formula depends on a spatial
structure, such as a system of ambients. Apart from the ambient logic, other
examples include logics for concurrent objects [4], heaps [25, 20, 22], trees [6],
graphs [5], and the π-calculus [2, 3]. Spatial logics are being applied as notations
for specifying and verifying programs, and as query languages for semistructured
data. The results of this paper apply directly only to the ambient logic, but we
hope they may be instructive in the study of other spatial logics.

Acknowledgements The anonymous referees made useful comments.

A Encoding of PCP: Concatenation and Com-
parison of Words

A.1 Concatenation

Here we show how to rewrite Word i(γ) | Concatenatei(γ′) to Word i(γ′ · γ) |
start i[]. For this, we need precise definition of Word i and Concatenatei. For
i = 1, 2 we introduce fresh ambient names word i, ci, ni, si, vi, wi; similarly, we
introduce fresh names a, b corresponding to the two letters of the alphabet. Let
γ = σ1 . . . σk and γ′ = σ′1 . . . σ

′
k′ be two words in {a, b}∗. We define

Word i(γ) ∆= word i[!open ci |
wi[open ni | String(γ)]]

Concatenatei(γ′)
∆= ci[in word i.MvIni(γ′) | String ′(γ′,Continuei)]

where

String(σ1 . . . σk) ∆= σ1[σ2[. . . σk[] . . . ]]

String ′(σ′1 . . . σ
′
k′ , P ) ∆= si[in vi.in wi | σ′1[. . . σ′k[P ] . . . ]]

MvIni(σ′1 . . . σ
′
k) ∆= ni[in wi.in si.in σ′1 . . . in σ

′
k]

MvOut(σ′1 . . . σ
′
k) ∆= out σ′k . . . out σ

′
1.out si

Continuei
∆= open wi.vi[MvOut(γ′).Tinuei]

Tinuei
∆= in wi | wi[open ni | open si.out vi.Nuei]

Nuei
∆= open vi.start[out wi.out word i].

Then Word i(γ) | Concatenatei(γ′) reduces by moving the ambient ci[. . . ]
inside word i[. . . ] and opening it to

word i[!open ci | MvIni(γ′) | String ′(γ′,Continuei) |
wi[open ni | String(γ)]],
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the ambient ni[. . . ] goes inside wi[. . . ] and gets opened there

word i[!open ci | String ′(γ′,Continuei) |
wi[in si.in σ′1 . . . in σ

′
k | String(γ)]],

wi[. . . ] goes inside String ′(. . . )

word i[!open ci |
String ′(γ′, (wi[String(γ)] | Continuei))],

Continuei opens wi and vi moves out of si[γ′]

word i[!open ci |
String ′(γ′γ,0) | vi[Tinuei]],

si[. . . ] goes inside vi, then inside wi and gets opened there

word i[!open ci |
vi[in wi | wi[open ni | out vi.Nuei | String(γ′γ)]]],

wi gets out of vi and vi gets into wi

word i[!open ci |
wi[open ni | vi[] | Nuei | String(γ′γ)]],

Nuei opens vi; start i goes out of wi and out of wordi

Word i(γ′γ) | start i[]

which is the desired process. Note that since guarded processes cannot be
reduced, this was the only possible execution of Word i(γ) | Concatenatei(γ′).

A.2 Comparing the Words

First we recall the definition of Compare and define the two missing processes.

Compare ∆= compare[] | Initialize.(!(open compare.Consume(a)) |
!(open compare.Consume(b)))

Initialize ∆= open start1.open start2.open word1.open word2

Consume(σ) ∆= n1[in w1.open σ.(open n1 | Nsume(σ))]

where

Nsume(σ) ∆= n2[out w1.in w2.open σ.(open n2 | compare[out w2])].

Then

start1[] | start2[] |Word1(α) |Word2(β) | Compare
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reduces to

!open c1 | !open c2 |
w1[open n1 | String(α)] | w2[open n2 | String(β)] |
compare[] | !(open compare.Consume(a)) | !(open compare.Consume(b))).

The two processes !open ci remain inactive, since the names ci will never occur
again. The only possibility of executing the process is to choose one of the
two subprocesses consuming a or b; each of them opens compare, so the desired
property now is that

w1[open n1 | String(σα)] | w2[open n2 | String(σβ)] | Consume(σ)

reduces to

w1[open n1 | String(α)] | w2[open n2 | String(β)] | compare[].

This can be easily checked by the reader. The process Consume(σ) is an ambient
named n1, it goes inside w1, gets opened there, opens σ thus deleting the leading
letter from σu, leaves the capability open n1 for the next iteration, and as
Nsume(σ) goes out of w1; then it repeats the same thing with w2 and leaves
the ambient compare[] at the top level. Note that if the two words u and v start
with two different letters a and b then the process w1[open n1 | String(α)] |
w2[openn2 | String(β)] | Consume(σ) deadlocks after reaching a configuration
where it tries to open σ but there is no ambient named σ at the respective place.
If this happens, no further reduction of the whole process is possible.

B Satisfiability of the Ambient Logic

We give here the proof of Lemma 3.5. We consider the relation ;Proc between
finite structures and ambient processes without replication and name restriction.
For a process P and a structure S whose domain is D, we have S ;Proc P if:

• there exists P ′ such that P ≡ d[a[0]] | P ′ iff a belongs to D,

• whenever a1, . . . , al belong to D, there exists P ′′ such that P is struc-
turally congruent to ri[a1[a2[. . . [al[0]] . . . ]]] | P ′′ iff Ri(a1, . . . , al) belongs
to S.

We denote ;Struct the symmetric relation of ;Proc . Notice that ;Proc

◦ ;Struct is the identity relation over structures and ;Struct ◦ ;Proc simply
contains the identity relation.

We prove the following proposition which implies Lemma 3.5 in case where
the formula ϕ is closed.

Proposition B.1 Let ϕ be a formula from F . Then,

(i) let S be a finite structure over a domain D and α be a valuation for the
free variables of ϕ. If S, α |= ϕ and S ;Proc P then P |= [[ϕ]]α,
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(ii) let P be an ambient process without replication and name restriction and α
be a mapping from variables of ϕ to names. If P |= [[ϕ]]α and P ;Struct S
then S, α |= ϕ.

Proof The proof goes by induction over the structure of ϕ.

• For ϕ = Ri(x1, . . . , xl):

Case (i): S, α |= Ri(x1, . . . , xl). Therefore, for the valuation α equal to
{x1←a1, . . . , xl←al}, Ri(a1, . . . , al) belongs to S. Therefore, by definition
of S ;Proc P , P is structurally congruent to ri[a1[. . . [al[0]] . . . ]] | P ′
for some P ′. So, P is a model of (ri[x1[. . . [xl[0]] . . . ]] | T)α, that is
P |= [[Ri(x1, . . . , xl)]]α.

Case (ii): P |= [[Ri(x1, . . . , xl)]]α. Then, for α = {x1←a1, . . . , xl←al},
P |= ri[a1[. . . [al[0]] . . . ]] | T. Hence, by definition of the satisfaction
relation, there exists P ′ such that P ≡ ri[a1[. . . [al[0]] . . . ]] | P ′. Since
P ;Struct S, we have that a1, . . . , al belong to D and Ri(a1, . . . , al)
belongs to S. Thus, S, α |= Ri(x1, . . . , xl).

• For ϕ = ϕ′ ∧ ϕ′′:
Case (i): as S, α |= ϕ, S, α |= ϕ′ and S, α |= ϕ′′. So, by induction
hypothesis, P |= ϕ′α and P |= ϕ′′α. Thus, P |= ϕ.

Case (ii): dual to the previous case.

• For ϕ = ¬ϕ′:
Case (i): S, α |= ¬ϕ′. So, S, α 6|= ϕ′. Hence, by induction hypothesis for
Case (ii), either P 6|= [[ϕ′]]α or P 6;Struct S. Furthermore, we know by
assumption that S ;Proc P , and so, P ;Struct S. Hence, P 6|= [[ϕ′]]α
holds. Therefore, P |= ¬([[ϕ′]]α). Finally, P |= [[ϕ]]α.

Case (ii): P |= [[¬ϕ′]]α. So, P 6|= [[ϕ′]]α. Hence, by induction hypothesis for
Case (i), either S, α 6|= ϕ′ or S 6;Proc P . As by assumption, P ;Struct S,
we have S ;Proc P . So, S, α 6|= ϕ′ holds. Hence, S, α |= ¬ϕ′.

• ϕ = ∃xϕ′:
Case (i): S, α |= ∃xϕ′. By definition, there exists a ∈ D such that
S, α{x←a} |= ϕ′. By assumption S ;Proc P , so there exists P ′ such that
P ≡ d[a[0]] | P ′. Moreover, by induction hypothesis, P |= [[ϕ′]]α{x←a}.
Hence, P |= (d[a[0]] | T) ∧ ([[ϕ′]]α{x←a}). Hence, P |= ((d[x[0]] |
T) ∧ [[ϕ′]])α{x←a}. So, P |= ∃x.((d[x[0]] | T) ∧ [[ϕ′]])α.

Case (ii): P |= [[∃xϕ′]]α, that is by definition P |= (∃x.((d[x[0]] | T) ∧
[[ϕ′]]))α. Therefore, by definition of satisfiability, there exists a name a
such that P |= ((d[x[0]] | T) ∧ [[ϕ′]])α{x←a}. This implies that

– there exists P ′ such that P ≡ d[a[0]] | P ′,
– P |= [[ϕ′]]α{x←a}.
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As P ;Struct S, the first point implies that a ∈ D. This latter to-
gether with the second point and the induction hypothesis implies that
S, α{x←a} |= ϕ′. So, S, α |= ∃xϕ′. �

C Correctness Proofs

This appendix contains proofs of results stated in Section 4.

C.1 Proof of Proposition 4.1

Proposition 4.1 concerns the relationship between normal closures and struc-
tural congruence. In this appendix we develop enough facts about closures and
structural congruence to prove it.

We begin with a proposition that normality is preserved by decomposition
with ambient or parallel composition.

Proposition C.1

• 〈P̃ ;σ〉 and 〈Q̃;σ〉 are normal and fn(P̃ ) ∩ bn(Q̃) = bn(P̃ ) ∩ fn(Q̃) =
bn(P̃ ) ∩ bn(Q̃) = ∅ iff 〈P̃ ++ Q̃;σ〉 is normal.

• for all expressions M such that M does not contain names from bn(P̃ ),
〈{M [P̃ ]};σ〉 is normal iff 〈P̃ ;σ〉 is normal.

Proof For the first point: from right to left, it is straightforward from the
definition of U that if U(P̃ ++ Q̃, σ) is defined then both U(P̃ , σ) and U(Q̃, σ)
are so. As fn(P̃ ++ Q̃) = fn(P̃ ) ∪ fn(Q̃) and bn(P̃ ++ Q̃) = bn(P̃ ) ∪ bn(Q̃), if
bn(P̃ ++ Q̃)∩(fn(P̃ ++ Q̃)∪names(σ)) = ∅ then bn(P̃ )∩(fn(P̃ )∪names(σ)) =
bn(Q̃)∩ (fn(Q̃)∪ names(σ)) = ∅. If for P̃ ++ Q̃ bound variables occur at most
once within an input and offsets in the scope of an input are equal to 0, then it
is so for P̃ and Q̃. The last condition for normality on sequential substitution
is obvious. The three other conditions follow directly from the normality of
〈P̃ ++ Q̃;σ〉. From left to right, the definition of U implies that if 〈P̃ ;σ〉 and
〈Q̃;σ〉 are defined then 〈P̃ ++ Q̃;σ〉 is defined. Now, fn(P̃ ++ Q̃)∩bn(P̃ ++ Q̃) =
(fn(P̃ )∪fn(Q̃))∩(bn(P̃ )∪bn(Q̃)). We have fn(P̃ )∩bn(Q̃) = bn(P̃ )∩fn(Q̃) = ∅

by assumption and fn(P̃ )∩bn(P̃ ) = fn(Q̃)∩bn(Q̃) = ∅ as 〈P̃ ;σ〉 and 〈Q̃;σ〉 are
normal. So, fn(P̃ ++ Q̃)∩ bn(P̃ ++ Q̃) = ∅. By normality of 〈P̃ ;σ〉 and 〈Q̃;σ〉,
names(σ)∩bn(R̃) = ∅ for R̃ ∈ {P̃ , Q̃}. So, names(σ)∩bn(P̃ ++ Q̃) = ∅. 〈P̃ ;σ〉
and 〈Q̃;σ〉 being normal and as by assumption bn(P̃ )∩ bn(Q̃) = ∅, every input
variable occurs at most once within an input in P̃ ++ Q̃. The last conditions
on offsets in the scope of an input and on sequential substitution is obvious.

For the second point: It is easy to see that U({M [P̃ ]}, σ) is defined iff U(P̃ , σ)
is so. The set of names occurring free in M is exactly the set fn({M [0]}). Now,
as bn({M [P̃ ]}) = bn(P̃ ) and fn({M [P̃ ]}) = fn(P̃ ) ∪ fn({M [0]}), fn({M [P̃ ]}) ∩
bn({M [P̃ ]}) is empty iff fn(P̃ ) ∩ bn(P̃ ) is empty (taking into account the
assumption that bn(P̃ ) ∩ fn({M [0]}) = ∅) and bn({M [P̃ ]}) ∩ names(σ) =
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bn(P̃ )∩ names(σ) = ∅. Finally, the last three statements are obvious to check.
�

In the proof of Proposition 4.1 we will have to show that some processes
are equivalent if and only if some conditions hold. In particular, we will have
to show that if these conditions do not hold, the processes are not equivalent.
Although it is relatively easy to prove equivalence of processes, it is not so
easy to prove their inequivalence (which requires showing that no equivalence
proof exists). We use Theorem C.2 and Propositions C.3–C.5 below as tools for
proving inequivalences needed in Proposition 4.1.

Let us consider Σ the signature used to build processes from the ambient
calculus with public names. The signature Σ contains an infinite number of
constants used as names. It contains moreover 0 and ε as constant symbols, the
capabilities in, out, open and 〈〉 as unary function symbols. Finally, the binary
function symbols |, [], ., () belong to Σ.

Let us denote TΣ the set of all terms over Σ. Any ambient process from
the ambient calculus with public names can be written as a term over this
vocabulary. And of course, some terms from TΣ are not ambient process, as for
instance, 〈0 | 0〉.

The set TΣ induces a canonical algebra that we denote TΣ: the algebra
TΣ has for carrier the set TΣ and each function symbols from Σ is interpreted
syntactically in TΣ.

The structural congruence relation ≡ defined in Section 2.1 over pairs of
ambient processes can be viewed as a relation defined over TΣ×TΣ. One should
notice that the set of axioms defining ≡ is a set of definite Horn clauses, and
thus, (TΣ,≡) is a Herbrand model for this set of axioms. Moreover, as we
consider the least relation satisfying these axioms, the structure (TΣ,≡) is the
least Herbrand model for this set of axioms. This implies that two processes P,Q
are structurally equivalent if and only if P ≡ Q belongs to the least Herbrand
model of these axioms.

If ≡ is not assumed to be the least relation satisfying the axioms but for
instance the greatest one, then one would have P ≡ Q whatever P,Q are.

The following theorem is a direct consequence of two well known facts [21],
that (1) every model of a set of Horn clauses can be translated to a Herbrand
model, and (2) that every Herbrand model contains the least Herbrand model.
Essentially, the theorem says that anything that does not belong to some model
cannot belong to the least model.

Theorem C.2 Let S be a set of definite Horn clauses defining a relation symbol
≡. Then for all algebras A, for all structures R defined over A and giving an
interpretation for ≡ such that R |= S,

R |= s ≡ t if (TΣ,≡) |= s ≡ t

That is, if there exists a structure R such that R |= S and R |= s 6≡ t, then
(TΣ,≡) |= s 6≡ t.

36



Let us consider now the algebra Â defined over Σ; the carrier DÂ is the least
set such that

• the constants from Σ except ε and 0 belong to DÂ,

• the empty string and the empty multiset belong to DÂ,

• for any d1, d2 ∈ DÂ, the items in d1, out d1, open d1, 〈d1〉, (d1)d2 and
d1[d2] belong to DÂ,

• for any d1, . . . , dn ∈ DÂ, the string d1 . . . dn and the multiset {d1, . . . , dn}
belong to DÂ.

The function symbols from Σ are interpreted in Â as follows.

• The constants from Σ except ε and 0 are interpreted syntactically.

• The constants ε and 0 are interpreted respectively as the empty string and
as the empty multiset.

• The function symbols in, out, open, 〈〉, () and [] are interpreted syntacti-
cally.

• For the function symbol .: d1.d2 is the string obtained by concatenation of
d1 and d2 if both d1 and d2 are strings. Otherwise, elements from {d1, d2}
that are not strings are transformed into a string of length one and then,
the concatenation is performed.

• For the function symbol |: d1 | d2 is the multiset obtained by union of d1

and d2 if both d1 and d2 are multisets. Otherwise, elements from {d1, d2}
that are not multisets are transformed into a singleton multiset and then,
the union is performed.

The algebra Â is extended into a structure R̂ in which ≡ is interpreted as
the binary relation $ over DÂ × DÂ. The relation $ is defined recursively as
follows: d $ d′ iff

• d and d′ are both the empty string.

• d and d′ are both composed strings such that dh and d′h, the first two
elements of d, d′ satisfy dh $ d′h and dt and d′t the two strings obtained by
removing the first element in respectively d and d′ satisfy dt $ d′t.

• d and d′ are both the empty multiset.

• d and d′ are both non-empty multiset and there exists de and d′e respec-
tively in d and d′ such that de $ d′e and dr de $ d′ r d′e.

• d and d′ are respectively of the form 〈d1〉 and 〈d′1〉 and d1 $ d′1.

• d and d′ are respectively of the form cap d1 and cap d′1 and d1 $ d′1 where
cap belongs to {in, out, open}.
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• d and d′ are respectively of the form d1[d2] and d′1[d′2] and d1 $ d′1, d2 $ d′2.

• d and d′ are respectively of the form (d1)d2 and (d′1)d′2 and d1 $ d′1,
d2 $ d′2.

Proposition C.3 R̂ is a model of the axioms for ≡.

Proof By case inspection. �

Proposition C.4 For any process P , for any M , for any name n, for any
cap ∈ {in, out, open}:

• For any process Q, we have 0 6≡M [P ], 0 6≡ (n).P , 0 6≡ 〈M〉, 0 6≡ capM.P
and 0 6≡ P | Q if P 6≡ 0.

• If P 6≡ 0, then for any processes Q,P ′ such that Q 6≡ 0, we have P | Q 6≡
M [P ′], P | Q 6≡ (n).P ′, P | Q 6≡ 〈M〉, P | Q 6≡ capM.P ′.

• For any processes Q,P ′ and for any M ′, we have M [P ] 6≡ (n).Q, M [P ] 6≡
〈M ′〉, M [P ] 6≡ capM ′.P ′ and M [P ] 6≡ M ′[P ′] if M,M ′ are two different
sequences or if P 6≡ P ′.

• For any M ′, we have 〈M〉 6≡ capM ′.P , 〈M〉 6≡ (n).P and 〈M〉 6≡ 〈M ′〉 if
M,M ′ are two different sequences.

• For any process Q, for any names n,m, we have (n).P 6≡ capM.Q and
(n).P 6≡ (m).Q if n,m are two different names or if P 6≡ Q.

• For any process Q, for any M ′ and for any capability cap′ ∈ {in, out, open},
we have capM.P 6≡ cap′M ′.Q if either cap 6= cap′ or M,M ′ are two dif-
ferent sequences or if Q 6≡ Q.

Proof It is easy to check that all the statements above holds for R̂. Using
Proposition C.3 with Theorem C.2, those statements hold for ambient processes
and ≡. �

Proposition C.5 For any sequential substitution σ, for any prime π such that
〈{π};σ〉 is normal, U(π, σ) 6≡ 0.

Proof Straightforward from the definition of U and Proposition C.3 �

Restatement of Proposition 4.1 Let 〈
∏
i∈I πi;σ〉 be a normal closure.

Then

(1) U(
∏
i∈I πi, σ) ≡ 0 iff I = ∅.

(2) U(
∏
i∈I πi, σ) ≡ M [Q] iff ∃M ′, Q̃ : I is a singleton {i}, πi = M ′[Q̃],

M ′σ = M , U(Q̃, σ) ≡ Q.

(3) U(
∏
i∈I πi, σ) ≡ P ′ | P ′′ iff ∃J,K : J ∪ K = I, J ∩ K = ∅, P ′ ≡

U(
∏
j∈J πj , σ), P ′′ ≡ U(

∏
k∈K πk, σ).
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(4) U(
∏
i∈I πi, σ) ≡ 〈M〉 iff ∃M ′ : I is a singleton {i}, πi = 〈M ′〉 and

M ′σ = M .

(5) U(
∏
i∈I πi, σ) ≡ (n).P iff ∃P̃ : I is a singleton {i}, πi = (n).P̃ and

U(P̃ , σ) ≡ P .

Proof For the first point, if I = ∅ then P̃ = {}; so, by definition for U ,
U(P̃ , σ) ≡ 0. Now for the other direction, the closure 〈P̃ ;σ〉 being normal, if I
is not empty, then by Proposition C.4 and the definition for U , U(

∏
∈I π, σ) 6≡ 0.

For the second point, for the direction from right to left: U(
∏
i∈I πi, σ) ≡

U({πi}, σ) ≡ U({M ′[Q̃]}, σ) since I is a singleton {i} and πi = M ′[Q̃]. Now,
by definition for U , U(

∏
i∈I πi, σ) ≡ M ′σ[U(Q̃, σ)] ≡ M [U(Q̃, σ)] since M ′σ =

M . So, U(
∏
i∈I πi, σ) ≡ M [Q]. From left to right: let us assume that I is

not a singleton. For I = ∅, according to the first point, U(
∏
i∈I πi, σ) ≡ 0

and thus, by Proposition C.4, U(
∏
i∈I πi, σ) 6≡ M [Q] for any M,Q. Now, the

closure 〈P̃ ;σ〉 being normal, if I contains at least two elements then by definition
of U , U(P̃ , σ) ≡ R′ | R′′ for some R,R′ 6≡ 0 by Propositions C.5 and C.4 .
Thus, still by Proposition C.4, U(P̃ , σ) 6≡ M [Q] whatever M , Q are. So, I is
a singleton. Now, if πi 6= M ′[Q̃] or M ′σ,M are two different sequences, once
again from the definition of U and Proposition C.4, U(P̃ , σ) 6≡ M [Q]. Finally,
since U(

∏
i∈I πi, σ) = M [U(Q̃, σ)], we have U(Q̃, σ) ≡ Q.

For the third point, from right to left: we have P ′ | P ′′ ≡ U(
∏
j∈J πj , σ) |

U(
∏
k∈K πk, σ). By definition of U , since J,K are disjoint and J ∪ K = I,

P ′ | P ′′ ≡ U(
∏
i∈I πi, σ). From left to right: by definition, U(

∏
i∈I πi, σ) =

U(π1, σ) | . . . | U(πk, σ) where I is assumed to be {1, . . . , k} and the πi’s are
primes. Since U(

∏
i∈I πi, σ) = P ′ | P ′′, there must exist I, J two disjoint sets of

indices such that I ∪ J = 1..k, P ′ ≡ U(
∏
i∈I πi, σ) and P ′′ ≡ U(

∏
j∈J πj , σ).

For the fourth point, from right to left: from the definition of U , we have
U(
∏
i∈I πi, σ) = U(πi, σ) = 〈M ′σ〉. So, using the hypothesis, U(

∏
i∈I πi, σ) ≡

〈M〉. From left to right: similar to the second point.
For the fifth point, from right to left: from the definition of U , we have

U(
∏
i∈I πi, σ) = U(πi, σ) = (n).U(P̃ , σ). Using the hypothesis, U(

∏
i∈I πi, σ) ≡

(n).P . From left to right: similar to the second point. �

C.2 Properties of the Auxiliary Functions

Here, we state and prove correctness properties needed in subsequent sections
of the auxiliary functions nam, len, fst , and split .

First, the function nam is correct in the following sense.

Proposition C.6 nam(M,σ) = n iff Mσ = n.

Proof Straightforward by induction over the length of the sequential substi-
tution σ. �

Second, the function len has the following property.
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Proposition C.7 len(M,σ) = l iff Mσ = N1. . . . .Nl with Ni being either a
name or of the form capN ′ with cap ∈ {in, out, open}.

Proof The proof goes by induction on the length of the sequential substitu-
tion σ.

For σ being the empty sequence ι: Mι = M = N1. . . . .Nl. By definition,
len(N1. . . . .Nl, ι) =

∑l
i=1 len(Ni, ι). Since each Ni is either a name n or of the

form in N ′, out N ′ or open N ′, we have len(Ni, ι) = 1. This is equivalent to
len(N1. . . . .Nl, ι) = l.

For σ being the sequence {x←M ′}σ′ of length at least 1:
let M = N ′1. . . . .N

′
k. By induction over k:

- k = 0: in this case, M = ε and M{x←M ′}σ = ε. So, l = 0 and by definition
len(M,σ) = 0.

- k = 1: in this case M = N ′1 and we have three cases:

• N ′1 is of the form cap N ′ for some cap ∈ {in, out, open}: in this case,
M{x←M ′}σ is of the form capN ′′ and by definition, len(M,σ{x←M}) =
1.

• N ′1 is a name different from x: in this case, M{x←M ′}σ = Mσ and
len(M, {x←M ′}σ) = len(M,σ). Using the induction hypothesis, Mσ =
N ′′1 . . . . .N

′′
l iff len(M,σ) = l, therefore M{x←M ′}σ = N ′′1 . . . . .N

′′
l iff

len(M, {x←M ′}σ) = l.

• N ′1 = x: in this case, M{x←M ′}σ = M ′σ and len(M, {x←M ′}σ) =
len(M ′, σ). By induction hypothesis M ′σ = N ′′1 . . . . .N

′′
l iff len(M ′, σ) =

l, so M{x←M ′}σ = N ′′1 . . . . .N
′′
l iff len(M, {x←M ′}σ) = l.

- k > 1: using the induction hypothesis, len(N ′1. . . . .N
′
k−1, {x←M ′}σ) = l′

iff N ′1{x←M ′}σ. . . . .N ′k−1{x←M ′}σ = N ′′1 . . . . .N
′′
l′ and for the expression

Nk, len(Nk, {x←M ′}σ) = l′′ iff N ′k{x←M ′}σ = N ′′l′+1. . . . .N
′′
l′+l′′ . By defi-

nition, len(M, {x←M ′}σ) is the sum of len(N ′1. . . . .N
′
k−1, {x←M ′}σ) and of

len(N ′k, {x←M ′}σ). So, we can conclude that M{x←M ′}σ = N ′′1 . . . . .N
′′
l′+l′′

iff len(M, {x←M ′}σ) = l′ + l′′. �

Third, we state the correctness of fst in Proposition C.9. To prove it, we
need the following lemma.

Lemma C.8 Let 〈P̃ ; {x←N}σ〉 be a normal closure. Then 〈P̃{x←N};σ〉 is
normal and U(P̃ , {x←N}σ) ≡ U(P̃{x←N}, σ).

Proof For the normality of 〈P̃{x←N};σ〉: we can show that U(P̃{x←N}, σ)
is defined by induction over the structure of processes and primes. The only non-
trivial case is for P̃ = M(o).P̃ ′: then, P̃{x←N} = M{x←N}(o).P̃ ′{x←N}.
Since U(P̃ , {x←N}σ) by assumption and U(P̃ ′{x←N}, σ) by induction hypoth-
esis are defined and (M{x←N})σ = M({x←N}σ), U(P̃{x←N}, σ) is defined.
For the second statement, since 〈P̃ ; {x←N}σ〉 is normal, x and names from
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N are not bound in P̃ , so bn(P̃{x←N}) = bn(P̃ ) and fn(P̃{x←N}) con-
tains fn(P̃ ) and some possibly other names that do not belong to bn(P̃ ). So,
fn(P̃{x←N}) ∩ bn(P̃{x←N}) = ∅. Moreover, as the bound names from P̃ do
not occur in {x←N}σ and bn(P̃{x←N}) = bn(P̃ ), bn(P̃{x←N})∩names(σ) =
∅. Since x is not bound in P̃ , occurrences of bound variables in P̃ are not
affected by the substitution {x←N}. The requirement on offsets is trivially
preserved and finally, as {x←N}σ is acyclic, σ is so.

We show that U(P̃ , {x←N}σ) ≡ U(P̃{x←N}, σ) by induction over the struc-
tures of processes and primes taking into account that x in not a bound variable
in P̃ . �

Proposition C.9 Let N be a capability of the form inn, outn or openn. Then
for all normal closures 〈Q̃;σ〉, there exists Q such that U(M(o).Q̃, σ) ≡ N.Q iff
fst(M,o, σ) = N .

Proof Let us assume that M = N1. . . . Nl and that N = cap n where cap
ranges over in, out, open. The proof goes by induction over the offset o.

Case where o = 0: we have fst(M, 0, σ) = cap n. We follow by induction
over the length of the sequential substitution σ.

- Case where the length of σ is 0: σ = ι and fst(M, 0, ι) = cap n. By definition
of fst , this is equivalent to fst(N1, 0, ι) = cap n and to N1 = cap n. Further-
more, as U(M(0).Q̃, ι) = N1. . . . .Nl.U(Q̃), this is equivalent to U(M(0).Q̃, ι) ≡
cap n.Q for some Q.

- Case where σ is of the form {x←M ′}σ′ and the proposition holds for σ′: by
definition of fst , fst(M, 0, σ) = fst(N1, 0, σ) = cap n. Now, according to the
value of N1:

• N1 is of the form cap L: so, nam(L, σ) = n which is equivalent due to
Proposition C.6, to Lσ = n. As U(M(0).Q̃, σ) = N1σ. . . . .Nlσ.U(Q̃, σ),
U(M(0).Q̃, σ) = capn.N2σ . . . .Nlσ.U(Q̃, σ). Therefore, this is equivalent
to that U(M(0).Q̃, σ) ≡ cap n.Q for some Q.

• N1 is a name m: for each of the two cases in the definition of fst .
Case where m = x: we have fst(N1, 0, σ) = fst(m, 0, {x←M ′}σ′) =
fst(M ′, 0, σ′) = capn. By induction hypothesis, it is equivalent to that for
any Q̃, U(M ′(0).Q̃, σ′) ≡ cap n.Q for some Q. In particular for some P ,
cap n.P ≡ U(M ′(0).N2{x←M ′}. . . . .Nl{x←M ′}(0).P̃{x←N ′}, σ′), that
is capn.P ≡M ′σ′.N2{x←M ′}σ′. . . . .Nl{x←M ′}σ′.U(P̃{x←N ′}, σ′). So
cap n.P ≡ m{x←M ′}σ′.N2σ. . . . .Nlσ.U(P̃ , {x←N ′}σ′) by Lemma C.8.
And thus, by definition of U , this is equivalent to that for some P ,
cap n.P ≡ U(M(0).P̃ , σ).
Case where m 6= x: in this case, fst(M, 0, σ) = fst(m, 0, σ′) = cap n. By
induction hypothesis, this is equivalent to that for any Q̃, U(m(0).Q̃, σ′) ≡
capn.Q for some Q. The rest of the proof is similar to the previous case,
using the fact that mσ′ = m{x←M ′}σ′ since m 6= x.
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Case where the proposition holds for any o′ < o: we have fst(M,o, σ) =
cap n. By induction over the length of the sequential substitution σ.

- Case where the length of σ is 0: σ = ι and fst(M,o, ι) = cap n. Since
len(N1. . . . .No, ι) = o, cap n = fst(No+1. . . . .Nl, 0, ι). Using the base case,
this latter is equivalent to that for any P̃ , U(No+1. . . . .Nl(0).P̃ , ι) ≡ cap n.P
for some P . Now, this is equivalent to cap n.P ≡ No+1. . . . .Nl.U(P̃ , ι) by
definition of U . Finally, as Mι = N1. . . . .Nl, by definition of U , it is equivalent
to that cap n.P ≡ U(M(o).P̃ , ι) for some P .

- Case where σ is of the form {x←M ′}σ′ and the proposition holds for σ′:
since fst(M,o, σ) is defined, o < len(M,σ). Let i be the unique integer
such that len(N1. . . . .Ni−1, σ) ≤ o and len(N1. . . . .Ni, σ) > o and p be o −
len(N1. . . . .Ni−1, σ). Then we have capn = fst(M,o, σ) = fst(Ni. . . . .Nl, p, σ).
Now, according to the value of Ni:

• Ni is of the form cap L: so, nam(L, σ) = n which is equivalent due
to Proposition C.6, to Lσ = n. Furthermore, since len(Ni, σ) = 1,
we have o = len(N1. . . . .Ni−1, σ) and thus, p = 0. Hence, cap n =
fst(Ni. . . . .Nl, 0, σ). According to the base case, this is equivalent to
that for any P̃ , U(Ni. . . . .Nl(0).P̃ , σ) ≡ cap n.P for some P . Let Mσ be
N ′1. . . . .N

′
k. So by definition of U , U(M(o).P̃ , σ) = N ′o+1. . . . .N

′
k.U(P̃ , σ).

Now, as o = len(N1. . . . .Ni−1, σ), Niσ. . . . .Nlσ = N ′o+1. . . . .N
′
k. Hence,

U(M(o).P̃ , σ) = Niσ. . . . .Nlσ.U(P̃ , σ). Equivalently, U(M(o).P̃ , σ) =
U(Ni. . . . .Nl(0).P̃ , σ) and so, U(M(o).P̃ , σ) ≡ cap n.P for some P .
• Ni is a name m: in this case, we have len(Ni, σ) > p. Hence, by definition

of fst , cap n = fst(M,o, σ) = fst(Ni, p, {x←M ′}σ′). For each of the two
cases in the definition of fst :
Case where m = x: we have cap n = fst(M ′, p, σ′). By induction hy-
pothesis, this is equivalent to that for any Q̃, U(M ′(p).Q̃, σ′) ≡ cap n.Q
for some Q. As a particular case, this latter holds for Q = P and for
Q̃ = Ni+1{x←M ′}. . . . .Nl{x←M ′}(0).P̃{x←M ′}. Now, from the defi-
nition of U and using that M ′ = Ni{x←M ′}, this is equivalent to that
U(Ni{x←M ′}. . . . .Nl{x←M ′}(p).P̃{x←M ′}, σ′) = cap n.P for some P .
Let N ′1. . . . .N

′
k be Niσ. Then, still by definition of U , it is equivalent

to that N ′p+1. . . . .N
′
k.Ni+1σ. . . . .Nlσ.U(P{x←M ′}, σ′) = cap n.P . By

Lemma C.8, it is equivalent to N ′p+1. . . . .N
′
k.Ni+1σ. . . . .Nlσ.U(P, σ) =

capn.P . Once again, by definition of U , we have U(Ni. . . . .Nl(p).P̃ , σ) =
cap n.P . Let p′ be len(N1. . . . .Ni−1, σ). By definition of U , we have
U(N1. . . . Ni−1(p′).Ni. . . . .Nl(p).P̃ , σ) = cap n.P . By definition of U ,
U(N1. . . . Ni−1.Ni. . . . .Nl(p+ p′).P̃ , σ) = cap n.P . Finally, as p+ p′ = o,
this latter is equivalent to that U(M(o).P̃ , σ) = cap n.P for some P .
Case where m 6= x: by definition of fst , cap n = fst(m, p, {x←M ′}σ′)=
fst(m, p, σ′). By induction hypothesis, this is equivalent to that for all Q̃,
there exists Q̃ such that U(m(p).Q̃, σ) ≡ cap n.Q̃. The rest of the proof
is similar to the previous case, using the fact that mσ′ = m{x←M ′}σ′
since m 6= x. �
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Fourth, we prove that split is correct in the following sense.

Proposition C.10 Let 〈
∏
i∈I πi;σ〉 be a normal closure, and let L be of the

form in n, out n or open n. Then U(
∏
i∈I πi, σ) ≡ L.P iff ∃L′, o, P̃ , P̃ ′ : I is a

singleton {i}, πi = L′(o).P̃ ′, split(πi, σ) = (L, P̃ ) and U(P̃ , σ) ≡ P .

Proof From right to left: we have U(
∏
i∈I πi, σ) = U(πi, σ), πi = L′(o).P̃ ′,

split(πi, σ) = (L, P̃ ). By Proposition C.9, U(πi, σ) ≡ L.P for some P . More-
over, for L′σ being of the form L′1. . . . .L

′
l, U(πi, σ) = L′o+1. . . . .L

′
l.U(P̃ , σ) and

L′o+1 = L. Note that U(πi, σ) being defined, we have o < len(L′, σ) = l. Now,
by the definition of split , according to the values of o and len(L′, σ):

- len(L′, σ) > o + 1: in this case, P̃ = {L′(o+ 1).P̃ ′}. So, by definition of
U , U({L′(o+ 1).P̃ ′}, σ) = L′o+2. . . . .L

′
l.U(P̃ ′, σ) and thus, U(

∏
i∈I πi, σ) ≡

L′o+1.U({L′(o+ 1).P̃ ′}, σ) ≡ L.P for P ≡ U({L′(o+ 1).P̃ ′}, σ) ≡ U(P̃ , σ).

- len(L′, σ) = o + 1: in this case, P̃ = P̃ ′. Therefore, U({L′(o+ 1).P̃ ′}, σ) =
L′l.U(P̃ ′, σ) = L′o+1.U(P̃ ′, σ) = L.U(P̃ ′, σ). Thus, U(

∏
i∈I πi, σ) ≡ L.P for

P ≡ U(P̃ ′, σ) ≡ U(P̃ , σ).

From left to right: let us assume that U(
∏
i∈I πi, σ) ≡ L.P . Using Proposi-

tion C.4, the set I has to be a singleton and πi has to be of the form L′(o).P̃ ′.
Now, by Proposition C.9, we know that fst(L′, o, σ) = L. Thus, it is sufficient to
prove that P ≡ U(P̃ , σ) for split(πi, σ) = (L, P̃ ). From the definitions of U and
split and from Proposition C.4, it is straightforward to see that P 6≡ U(P̃ , σ)
implies U(

∏
i∈I πi, σ) 6≡ L.P . �

C.3 Proof of Proposition 4.2

Using Lemma C.11 below, we show Proposition 4.2(1), that ↓∗, the reflexive and
transitive closure of the sublocation relation ↓, preserves normality of closures.

Lemma C.11 If 〈P̃ ;σ〉 is normal, then for any 〈P̃ ′;σ〉 such that 〈P̃ ;σ〉 ↓
〈P̃ ′;σ〉, the closure 〈P̃ ′;σ〉 is normal.

Proof From the definition of ↓, we have P̃ = Q̃ ++ {M [P̃ ′]} for some Q̃, M .
Thus, by the first point of Proposition C.1, the closure 〈{M [P̃ ′]};σ〉 is normal.
Now, the names fromM occur freely in {M [P̃ ′]}. So, 〈{M [P̃ ′]};σ〉 being normal,
none of the names from M is in bn({M [P̃ ′]}) and thus, in bn(P̃ ′). Therefore,
by the second point of Proposition C.1, 〈P̃ ′;σ〉 is normal. �

Restatement of Proposition 4.2(1) If 〈P̃ ;σ〉 is normal and 〈P̃ ;σ〉 ↓∗
〈P̃ ′;σ〉 then 〈P̃ ′;σ〉 is normal.

Proof A simple induction using Lemma C.11. �

Using Lemmas C.12 and C.13 below, we show Proposition 4.2(2), that →∗,
the reflexive and transitive closure of the reduction relation →, preserves nor-
mality of closures.
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Lemma C.12 If 〈{π};σ〉 is normal and split(π, σ) = (N, S̃) then 〈S̃;σ〉 is
normal.

Proof Since split(π, σ) = (N, S̃), π = M(o).S̃′ for some expression M and
some annotated process S̃′. Furthermore, U({π}, σ) being defined, U(S̃′, σ) is
defined. Now, according to the value of S̃: if S̃ = M(o + 1).S̃′ then, from the
definition of split , o + 1 < len(M,σ). So, from the definition of U , U(S̃′, σ)
being defined, U(M(o+ 1).S̃′, σ)= U(S̃, σ) is defined. If S̃ = S̃′ then U(S̃, σ) is
defined.

Let us first notice that bn({π}) = bn({M(o+ 1).S̃′}) = bn(S̃′) and that
fn({π}) = fn({M(o+ 1).S̃′}) ⊇ fn(S̃′). Therefore, since by normality bn({π})∩
(fn({π}) ∪ names(σ)) = ∅, we have bn(S̃) ∩ (fn(S̃) ∪ names(σ) = ∅.

The last three statements are obvious to check. �

Lemma C.13 If 〈P̃ ;σ〉 is normal, then for any 〈P̃ ′;σ〉 such that 〈P̃ ;σ〉 →
〈P̃ ′;σ〉, the closure 〈P̃ ′;σ〉 is normal, and moreover

• either σ′ = σ, bn(P̃ ) = bn(P̃ ′) and fn(P̃ ′) ⊆ fn(P̃ ),

• or for some x,M , σ′ = {x←M}σ, bn(P̃ ) = bn(P̃ ′) ∪ {x} and fn(P̃ ′) ⊆
fn(P̃ ) ∪ {x}.

Proof The proof goes by induction over the structure of the context under
which the reduction takes place.

If the context is empty, then the applied reduction corresponds to one of
the rules (Trans In), (Trans Out), (Trans Open) and (Trans I/O). For (Trans
In), (Trans Out) and (Trans Open) respectively, 〈{N [Q̃ ++ {π}],M [R̃]};σ〉,
〈{M [{N [Q̃ ++ π]} ++ R̃]};σ〉 and 〈{M [P̃ ], π};σ〉 are normal by assumption.

Concerning the second claim of the lemma: obviously, σ′ = σ, bn(P̃ ) =
bn(P̃ ′). For the rules (Trans In) and (Trans Out), fn(P̃ ) = fn(P̃ ′) and for
(Trans Open) fn(P̃ ′) ⊆ fn(P̃ ) (the execution of open may let an ambient name
disappeared).

Now for the first claim, by using Proposition C.1, 〈π;σ〉 is normal. Then,
from Lemma C.12 together with the transition rules on closures, 〈P̃ ;σ〉 is normal
(where split(π, σ) = (N, P̃ ) and N being respectively inm, outm and openm).
Finally, using the fact that bn({π}) = bn(P̃ ) and that fn({π}) ⊆ fn(P̃ ) and by
applying once more Proposition C.1, the closures 〈{M [{N [Q̃ ++ π]} ++ R̃]};σ〉,
〈{N [Q̃ ++ {π}],M [R̃]};σ〉 and 〈P̃ ++ Q̃;σ〉 are normal.

For (Trans I/O), 〈{〈M〉, (x).P̃};σ〉 is normal by assumption. Let us start
with the second claim of the lemma. We have σ′ = {x←M}σ. Due to the
assumption of normality, x occurs at most once within an input in P̃ and bound
and free names are disjoint in P̃ . So, bn({〈M〉, (x).P̃}) = bn(P̃ ) ∪ {x} and
fn(P̃ ) ⊆ fn({〈M〉, (x).P̃}) ∪ {x}. Now, for the first claim, let us first prove
that U(norm(P̃ , {x←M}σ), {x←M}σ) is defined by induction over the struc-
ture of P̃ : this is obvious for P̃ being the empty multiset or the singleton
{〈M ′〉}. For the induction step, this is also straightforward for P̃ being a multi-
set of primes or a singleton {(x′).Q̃} or {M ′[Q̃]}. Now, for P̃ = {M ′(o).Q̃}.

44



By hypothesis, U(M ′(o).Q̃, σ) is defined and o = 0. So, 0 < len(M ′, σ).
If len(M ′, {x←M}σ) = 0, then norm(P̃ , {x←M}σ) = norm(Q̃, {x←M}σ)
and so U(norm(P̃ , {x←M}σ), {x←M}σ) is defined by induction hypothesis.
Otherwise, len(M ′, {x←M}σ) > 0. So U(norm(P̃ , {x←M}σ), {x←M}σ)=
U(M ′(0).norm(Q̃, {x←M}σ), {x←M}σ) is defined. Since every variable oc-
curs at most once within an input in the annotated process of a normal closure,
bn(P̃ ) = bn({(x).P̃ , 〈M〉}) r {x}; Moreover, since fn(P̃ ) ⊆ fn({〈M〉, (x).P̃}) ∪
{x}, bn({〈M〉, (x).P̃}) ∩ fn({〈M〉, (x).P̃}) = ∅. Let us show that names from
bn(P̃ ) do not occur in σ′ = {x←M}σ. As bn(P̃ ) ⊆ bn({〈M〉, (x).P̃}), because
of the hypothesis of normality, names from bn(P̃ ) do not occur in σ. Moreover,
we know that x 6∈ bn(P̃ ) and names occurring in M are free in {〈M〉, (x).P̃} and
so, in P̃ . It is straightforward that the property of the uniqueness of variable
within an input and the fact that offsets are equal to 0 in the scope of an input
are preserved. Finally, since 〈{〈M〉, (x).P̃};σ〉 is normal, σ is acyclic and as x
is bound, x does not occur in σ; so the last point holds for 〈P̃ ; {x←M}σ〉.

Now, we investigate the case where the context of reduction is non-empty,
that is the rule used for reduction is either (Trans Par) or (Trans Amb). We show
in this case that the second claim of the lemma holds and then that normality
is preserved.

For (Trans Amb): we assume the closure 〈M [P̃ ];σ〉 to be normal. For any S̃,
we have bn(M [S̃]) = bn(S̃), fn(M [S̃]) = fn(S̃)∪ fn(M [0]). Let us first consider
the case where σ = σ′: by induction hypothesis bn(P̃ ) = bn(P̃ ′), fn(P̃ ′) ⊆
fn(P̃ ). So, bn(M [P̃ ]) = bn(M [P̃ ′]) and fn(M [P̃ ′]) ⊆ fn(M [P̃ ]). Now, for the
case where σ′ = {x←M}σ: By induction hypothesis, bn(P̃ ) = bn(P̃ ′) ∪ {x},
fn(P̃ ′) = fn(P̃ ) ∪ {x}. So, bn(M [P̃ ]) = bn(M [P̃ ′]) ∪ {x} and fn(M [P̃ ′]) =
fn(M [P̃ ]) ∪ {x}.

Let us show now that 〈M [P̃ ′];σ′〉 is normal: since 〈M [P̃ ];σ〉 is normal, by
Proposition C.1, 〈P̃ ;σ〉 is normal. Then, since 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉, by induction
hypothesis, 〈P̃ ′;σ′〉 is normal. So, as bn(P̃ ′) ⊆ bn(P̃ ), by Proposition C.1,
〈M [P̃ ′];σ′〉 is normal.

For (Trans Par): we assume the closure 〈P̃ ++ Q̃;σ〉 to be normal. For
any S̃, S̃′, we have bn(S̃ ++ S̃′) = bn(S̃) ∪ bn(S̃′) and fn(S̃ ++ S̃′) = fn(S̃) ∪
fn(S̃′). Let us first consider the case where σ = σ′: as by induction hypothesis
bn(P̃ ) = bn(P̃ ′) and fn(P̃ ′) ⊆ fn(P̃ ), we have bn(P̃ ++ Q̃) = bn(P̃ ′ ++ Q̃) and
fn(P̃ ′ ++ Q̃) ⊆ fn(P̃ ++ Q̃). Now, for the case where σ′ = {x←M}σ: as by
induction hypothesis bn(P̃ ) = bn(P̃ ′) ∪ {x} and fn(P̃ ′) ⊆ fn(P̃ ) ∪ {x}, we have
bn(P̃ ++ Q̃) = bn(P̃ ′ ++ Q̃) ∪ {x} and fn(P̃ ′ ++ Q̃) ⊆ fn(P̃ ++ Q̃) ∪ {x}.

Let us show now that 〈P̃ ++ Q̃;σ′〉 is normal: 〈P̃ ++ Q̃;σ′〉 being normal,
by Proposition C.1, both 〈P̃ ;σ〉 and 〈Q̃;σ〉 are normal. Now, since 〈P̃ ;σ〉 →
〈P̃ ′;σ′〉, by induction hypothesis, 〈P̃ ′;σ′〉 is normal. Let us now prove that
〈Q̃;σ′〉 is normal: we know that x ∈ bn(P̃ ); so, by normality of 〈P̃ ++ Q̃;σ〉, x
does not occur in Q̃, so U(Q̃, σ′) ≡ U(Q̃, σ) and thus, U(Q̃, σ′) is defined. The
other points are obviously implied by the normality of 〈Q̃;σ〉 and 〈P̃ ′;σ′〉. Fi-
nally, the fact that 〈P̃ ++ Q̃;σ〉 and 〈Q̃;σ′〉 are normal together with Proposition
C.1 implies that 〈P̃ ′ ++ Q̃;σ′〉 is normal. �
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Restatement of Proposition 4.2(2) If 〈P̃ ;σ〉 is normal and 〈P̃ ;σ〉 →∗
〈P̃ ′;σ′〉 then 〈P̃ ′;σ′〉 is normal.

Proof An induction with appeal to Lemma C.13. �

C.4 Proof of Proposition 4.3

We prove now that the sublocation relation defined on closures simulates the
sublocation relation defined on processes.

Restatement of Proposition 4.3 Assume 〈P̃ ;σ〉 is a normal closure. If
〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 then U(P̃ , σ) ↓ U(Q̃, σ). If U(P̃ , σ) ↓ Q then there exists Q̃ such
that 〈P̃ ;σ〉 ↓ 〈Q̃;σ〉 and U(Q̃, σ) ≡ Q.

Proof For the first point, by definition for ↓ on closures, we have P̃ = Q̃ ++
{M [P̃ ′]} for some Q̃, M , n such that nam(M,σ) = n. Therefore, by definition
of U , U(P̃ , σ) = U(Q̃, σ) | Mσ[U(P̃ ′, σ)]. Note that 〈P̃ ;σ〉 being normal, both
〈Q̃;σ〉, 〈P̃ ′;σ〉 are defined and thus, processes. Now, for the two processes
U(P̃ , σ), U(P̃ ′, σ), there exists a process Q (namely U(Q̃, σ)) and a name n (n =
Mσ by Proposition C.6) such that U(P̃ , σ) ≡ Q | n[U(P̃ ′, σ)]. So, U(P̃ , σ) ↓
U(P̃ ′, σ).

For the second point, by definition of ↓ on processes, U(P̃ , σ) ↓ P ′ iff there
exists Q,n such that U(P̃ , σ) ≡ Q | n[P ′]. The annotated process P̃ being of
the form

∏
k∈K πk, by Proposition 4.1, there exists I, J such that I∪J = K, I∩

J = ∅ and U(
∏
i∈I πi, σ) ≡ Q, U(

∏
j∈J πj , σ) ≡ n[P ′]. From U(

∏
j∈J πj , σ) ≡

n[P ′], by Proposition 4.1, there exists M ′, P̃ ′ such that J is a singleton {j},
πj = M ′[P̃ ′], M ′σ = n and U(P̃ ′, σ) ≡ P ′. Since M ′σ = n, by Proposition
C.6, nam(M ′, σ) = n. Furthermore, P̃ is equal to

∏
i∈I πi ++ {M ′[P̃ ′]}. So,

〈P̃ ;σ〉 ↓ 〈P̃ ′;σ〉 and U(P̃ ′, σ) ≡ P ′. �

C.5 Proof of Proposition 4.4

Given Lemmas C.14, C.15, and C.16 below, we prove Proposition 4.4, that the
reduction relation defined on closures simulates the reduction relation defined
on processes.

Lemma C.14 Let 〈P̃ ;σ{x←M}〉 be a normal closure such that all the offsets
o occurring in P̃ are set to 0. Then U(P̃ , σ{x←M}) ≡ U(P̃ , σ){x←M}.

Proof The proof goes by induction over the structures of processes and
primes. Most of the cases simply uses the definition of U and the application of
a substitution. We detail here the only two cases that are not straightforward.

For primes π:

- Case where π = (y).P̃ ′:
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U((y).P̃ ′, σ){x←M} ≡ ((y).U(P̃ ′, σ)){x←M}
≡ ((y){x←M}).(U(P̃ ′, σ){x←M})
≡ (y).(U(P̃ ′, σ){x←M})
≡ (y).(U(P̃ ′, σ{x←M}))
≡ U((y).P̃ ′, σ{x←M})

The first and the last equivalences follow from the definition of U ; the second
one corresponds simply to the application of the substitution {x←M}. For
the third one, the closure 〈P̃ ;σ{x←M}〉 being normal, by Proposition C.1,
the closure 〈{π};σ{x←M}〉 is normal too. Therefore, as y is a bound variable
and bn(P̃ ) ∩ dom(σ{x←M}) = ∅, x and y are different. So, y{x←M} = y.
The fourth equivalence appeals to the induction hypothesis.

- Case where π = M ′(o).P̃ ′:

U(M ′(o).P̃ ′, σ){x←M} ≡ (M ′σ.U(P̃ ′, σ)){x←M}
≡ M ′σ{x←M}.U(P̃ ′, σ){x←M}
≡ M ′σ{x←M}.U(P̃ ′, σ{x←M})
≡ U(M ′(o).P̃ ′, σ{x←M})

The first equivalence uses the definition of U and the fact that by hypothesis,
o is equal to 0; the second one is simply the application of the substitution
{x←M}. The third equivalence is due to the induction hypothesis. Finally,
the last equivalence is a direct consequence of the definition of U and of o = 0.

�

Lemma C.15 Let 〈P̃ ; {x←M}σ〉 be a normal closure such that all the offsets
o occurring in P̃ are set to 0. Then U(P̃ , {x←M}σ) ≡ U(P̃ , σ){x←Mσ}.

Proof The proof goes by induction on the length of the sequential substitu-
tion σ.

For σ being the empty substitution ι: U(P̃ , {x←M}ι) ≡ U(P̃ , ι{x←M})
since ι corresponds to the identity. So, by Lemma C.14, U(P̃ , {x←M}ι) ≡
U(P̃ , ι){x←M}.

For σ being of the form σ′{y←M ′}:

U(P̃ , {x←M}σ′{y←M ′}) ≡ U(P̃ , {x←M}σ′){y←M ′}
≡ (U(P̃ , σ′){x←Mσ′}){y←M ′}

The first equivalence follows from Lemma C.14 and the second one from the
induction hypothesis.

Now, the fact that 〈P̃ ; {x←M}σ′{y←M ′}〉 is normal implies that x 6= y and
that x does not occur inM ′. Let us consider now the process U(P̃ , σ′){x←Mσ′}.
As x 6= y, the occurrences of y in U(P̃ , σ′) are preserved in U(P̃ , σ′){x←Mσ′}
and some new occurrences of y may appear in this latter, due to the possible
occurrences of y in Mσ′. As x does not occur in M ′, we can first replace U(P̃ , σ′)
the occurrences of y with M ′ and then, replace the occurrences of x with an
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expression L; this expression L is the expression Mσ in which the occurrences
of y are replaced by M ′. Hence:

(U(P̃ , σ′){x←Mσ′}){y←M ′} ≡ (U(P̃ , σ′){y←M ′}){x←Mσ′{y←M ′}}

By Lemma C.14, this latter is equivalent to U(P̃ , σ′{y←M ′}){x←Mσ′{y←M ′}}
and so, to U(P̃ , σ){x←Mσ}. �

Lemma C.16 Suppose 〈P̃ ;σ〉 is a normal closure such that all the offsets o
occurring in P̃ are set to 0 and x occurs neither in σ nor in bn(P̃ ). Then
U(norm(P̃ , {x←M}σ), {x←M}σ) ≡ U(P̃ , σ){x←Mσ}.

Proof First, observe that normality of 〈P̃ ;σ〉 and the assumption about x im-
ply normality of 〈norm(P̃ , {x←M}σ); {x←M}σ〉. Therefore, by Lemma C.15,
U(norm(P̃ , {x←M}σ), {x←M}σ) ≡ U(norm(P̃ , {x←M}σ), σ){x←Mσ}. So,
it is enough to prove that

U(norm(P̃ , {x←M}σ), σ){x←Mσ} ≡ U(P̃ , σ){x←Mσ}.

Let us consider two cases: len(M,σ) 6= 0 and len(M,σ) = 0. In the first case,
norm(P̃ , {x←M}σ) = P̃ and there is nothing to prove. In the second case, nor-
mality of 〈P̃ ;σ〉 implies that norm(P̃ , {x←M}σ) differs from P̃ only by some
occurrences of x(0). The equivalence U(norm(P̃ , {x←M}σ), σ){x←Mσ} ≡
U(P̃ , σ){x←Mσ} follows then by induction on the structure of Mσ using the
congruence rule (Struct ε). �

Restatement of Proposition 4.4 Assume 〈P̃ ;σ〉 is a normal closure. If
〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 then U(P̃ , σ) → U(P̃ ′, σ′). If U(P̃ , σ) → P ′ then there exists
〈P̃ ′;σ′〉 such that 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 and U(P̃ ′, σ′) ≡ P ′.

Proof The proof goes by induction over the structure of the context under
which the reduction takes place.

If the context is empty, then for the first point, the reduction applied cor-
responds to one of the rules (Trans In), (Trans Out), (Trans Open) and (Trans
I/O).

For the first point and the rule (Trans In):

U({N [Q̃ ++ {π}],M [R̃]}, σ) ≡ Nσ[U(Q̃, σ) | U({π}, σ)] |Mσ[U(R̃, σ)]
≡ n[U(Q̃, σ) | U({π}, σ)] | m[U(R̃, σ)]
≡ n[U(Q̃, σ) | inm.U(P̃ , σ)] | m[U(R̃, σ)]

The first equivalence follows from the definition of U . The second one is a
consequence of the conditions of the rule (Trans In) and of Proposition C.6. The
third equivalence follows from the conditions of the rule (Trans In) and from
Proposition C.10.

On the other hand:
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U(M [N [Q̃ ++ P̃ ] ++ R̃], σ) ≡ Mσ[Nσ[U(Q̃, σ) | U(P̃ , σ)] | U(R̃, σ)]
≡ m[n[U(Q̃, σ) | U(P̃ , σ)] | U(R̃, σ)]

The first equivalence follows from the definition of U and the second one
from the conditions of the rule (Trans In) and from Proposition C.6. Therefore,
U(N [Q̃ ++ {π}] ++ M [R̃], σ)→ U(M [N [Q̃ ++ P̃ ] ++ R̃], σ).

The proof is similar for the rules (Trans Out) and (Trans Open). Now,
for the first point and the rule (Trans I/O): by the definition of U , we have
U({〈M〉, (x).P̃}, σ) ≡ 〈Mσ〉 | (x).U(P̃ , σ). Let P̃ ′ be norm(P̃ , {x←M}σ). By
Lemma C.15, the closure 〈{〈M〉, (x).P̃};σ〉 being normal, U(P̃ ′, {x←M}σ) ≡
U(P̃ ′, σ){x←Mσ}. Therefore, U({〈M〉, (x).P̃}, σ)→ U(P̃ ′, {x←M}σ).

Let us consider now the second point with the assumption that the context
is empty, that is the reduction is made by (Red In), (Red Out), (Red Open) or
(Red I/O).

For the second point and the rule (Red In): let us assume that U(S̃, σ)→ S′

by the rule (Red In). Therefore, S′ ≡ m[n[Q | P ] | R] for some m,n, P,Q,R and
U(S̃, σ) ≡ n[Q | inm.P ] | m[R]. So, by Proposition 4.1 and Proposition C.10,
there exists N,M,L′, P̃ , P̃ ′, Q̃, R̃ such that S̃ = {N [Q̃ ++ {L′(o).P̃ ′}],M [R̃]},
Nσ = n, Mσ = m, U(Q̃, σ) ≡ Q, U(R̃, σ) ≡ R, split(L′(o).P̃ ′) = (inm, P̃ ) and
U(P̃ , σ) ≡ P . Using Proposition C.6, we have nam(M,σ) = m and nam(N,σ) =
n. So, by definition for (Red In),

〈S̃;σ〉 → 〈{M [{N [P̃ ++ Q̃]} ++ R̃]};σ〉

and furthermore,

U(M [N [Q̃ ++ P̃ ] ++ R̃], σ) ≡ m[n[U(Q̃, σ) | U(P̃ , σ)] | U(R̃, σ)]
≡ m[n[Q | P ] | R] ≡ S′

The proof is similar for the rules (Red Out) and (Red Open). Now, for
the second point and the rule (Red I/O): let us assume that U(S̃, σ) → S′

by the rule (Red I/O). Therefore, S′ ≡ P{x←M} and U(S̃, σ) ≡ (x).P |
〈M〉. So, by Proposition 4.1, there exists M ′, P̃ such that S̃ = {〈M ′〉, (x).P̃},
M ′σ = M and U(P̃ , σ) ≡ P . Therefore, 〈S̃;σ〉 → 〈P̃ ′; {x←M ′}σ〉 where
P̃ ′ = norm(P̃ , {x←M}σ). Furthermore, 〈{〈M ′〉, (x).P̃};σ〉 being normal, by
Lemma C.16

U(P̃ ′, {x←M ′}σ) ≡ U(P̃ , σ){x←M ′σ}
≡ P{x←M}.

Now, we investigate the case where the context of reduction is non-empty:
for the first point, the rule used for reduction is either (Trans Par) or (Trans
Amb).

For the rule (Trans Amb): if 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 then 〈M [P̃ ];σ〉 → 〈M [P̃ ′];σ′〉.
In this case, U(M [P̃ ], σ) = Mσ[U(P̃ , σ)] and U(M [P̃ ′], σ′) = Mσ′[U(P̃ ′, σ′)]. By
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C.13, either σ′ = σ or σ′ = {x←L}σ. In this last case, x is bound in P̃ and thus,
by normality, x does not occur in M . So in both cases, Mσ′ = Mσ. Moreover,
by the rule (Red Amb), Mσ[U(P̃ , σ)] → Mσ[U(P̃ ′, σ′)]. So, U(M [P̃ ], σ) →
U(M [P̃ ′], σ′)

For the rule (Trans Par): if 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 then 〈P̃ ++ Q̃;σ〉 → 〈P̃ ′ ++
Q̃;σ′〉. In this case, U(P̃ ++ Q̃, σ) ≡ U(P̃ , σ) | U(Q̃, σ) and U(P̃ ′ ++ Q̃, σ′) ≡
U(P̃ ′, σ′) | U(Q̃, σ′). By C.13, either σ′ = σ or σ′ = {x←M}σ. In this last
case, x is bound in P̃ and thus, by normality does not occur in Q̃. So, in
both cases, we have U(Q̃, σ′) ≡ U(Q̃, σ). Moreover, by the rule (Red Par),
U(P̃ , σ) | U(Q̃, σ)→ U(P̃ ′, σ′) | U(Q̃, σ). So, U(P̃ ++ Q̃, σ)→ U(P̃ ′ ++ Q̃, σ).

For the second point, the rule used for reduction is either (Red Par) or (Red
Amb).

For (Red Amb): let us assume that U(S̃, σ) → S′ by (Red Amb). We
have S′ = n[P ′] and U(S̃, σ) ≡ n[P ]. So, by Proposition 4.1, there exists
N,σ such that S̃ is a singleton {π}, π = N [P̃ ], Nσ = n and U(P̃ , σ) ≡ P .
By hypothesis P → P ′, so U(P̃ , σ) → P ′. By induction hypothesis, there
exists P̃ ′, σ′ such that 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 and U(P̃ ′, σ′) ≡ P ′. Then by the
rule (Trans Amb), 〈{N [P̃ ]};σ〉 → 〈{N [P̃ ′]};σ′〉; so, 〈S̃;σ〉 → 〈{N [P̃ ′]};σ′〉.
Finally, U({N [P̃ ′]}, σ′) ≡ Nσ′[U(P̃ ′, σ′)]. By Lemma C.13, either σ = σ′ or
σ′ = {x←M}σ with x a bound variable in P̃ . By normality x does not belong
to N , so Nσ′ = Nσ = n. Therefore, Nσ′[U(P̃ ′, σ′)] ≡ n[U(P̃ ′, σ′)] ≡ n[P ′] ≡ S′.

For (Red Par): let us assume that U(S̃, σ) → S′ by (Red Par). We have
S′ = P ′ | Q and U(S̃, σ) ≡ P | Q. So, by Proposition 4.1, there exists P̃ , Q̃
such that S̃ = P̃ ++ Q̃, U(P̃ , σ) ≡ P and U(Q̃, σ) ≡ Q. By hypothesis,
P → P ′, so U(P̃ , σ) → P ′. By induction hypothesis, there exists P̃ ′, σ′ such
that 〈P̃ ;σ〉 → 〈P̃ ′;σ′〉 and U(P̃ ′, σ′) ≡ P ′. Then by the rule (Trans Par),
〈P̃ ++ Q̃;σ〉 → 〈P̃ ′ ++ Q̃;σ′〉; so, 〈S̃;σ〉 → 〈P̃ ′ ++ Q̃;σ′〉. Finally, U(P̃ ′ ++
Q̃, σ′) ≡ U(P̃ ′, σ′) | U(Q̃, σ′). Now, by Lemma C.13, either σ = σ′ or σ′ =
{x←M}σ with x a bound variable in P̃ . By normality x does not occur in Q̃;
so, U(Q̃, σ′) ≡ U(Q̃, σ). Therefore, U(P̃ ′ ++ Q̃, σ′) ≡ P ′ | Q ≡ S′. �

C.6 Proof of Proposition 4.9

Restatement of Proposition 4.9 The model checking algorithm described
in Section 4.4 preserves the normality of Check(P̃ , σ,A).

Proof By case inspection of the algorithm, we show that if Check(P̃ , σ,A)
is normal in the left-hand side of equality then any expression Check(P̃ ′, σ′,A′)
occurring in the right-hand side is also normal.

- For the Boolean connectives ¬,∨: since in any case, P̃ ′ = P̃ and σ = σ′ and
A′ is a closed formula such that and fn(A′) ⊆ fn(A), this is straightforward.

- For location A = n[A′]: in this case, P̃ = {n[Q̃]} and σ = σ′. By Proposition
C.1 the closure 〈Q̃;σ〉 is normal. The remaining conditions are fulfilled since
bn(P ′) = bn(P ), σ′ = σ and for the closed formula A′ fn(A′) ⊆ fn(A).
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- For composition A = A′ | A′′: this proof is similar to the previous case.

- For existential quantification ∃x.A: in this case, P̃ ′ = P̃ and σ = σ′ and the
fact that A{x←mi} is closed is straightforward. So, it is sufficient to show that
whatever the ambient name mi is, fn(A{x←mi})∩ (bn(P̃ )∪dom(σ)) = ∅. By
noticing that fn(A{x←mi}) is either equal to fn(∃x.A) or to fn(∃x.A)∪{mi}
and using the normality for Check(P̃ , σ,∃x.A), this amounts to prove that
mi /∈ bn(P̃ ) ∪ dom(σ). According to the value of mi:

• For mi = m0: straightforward.

• mi ∈ fn(P̃ , σ) ∪ fn(A): let us assume that mi ∈ fn(A). Then, mi ∈
fn(∃x.A). So, by normality of Check(P̃ , σ,∃x.A), mi /∈ bn(P̃ ) ∪ dom(σ).
Let us assume now that mi ∈ fn(P̃ , σ): by definition, mi /∈ dom(σ). Now,
by normality of 〈P̃ ;σ〉, since mi ∈ fn(P̃ ) or mi ∈ names(σ), mi /∈ bn(P̃ ).

- For sometime ♦A: we have to prove that for any closure 〈P̃ ′;σ′〉 such that
〈P̃ ;σ〉 →∗ 〈P̃ ′;σ′〉, Check(P̃ ′, σ′,A) is normal. This follows directly from
Proposition 4.2(2) and Lemma C.13 by induction on the length of the deriva-
tion.

- For somewhere ✧A: we have to prove that for any closure 〈P̃ ′;σ′〉 such that
〈P̃ ;σ〉 ↓∗ 〈P̃ ′;σ′〉, Check(P̃ ′, σ′,A) is normal. This follows directly by induc-
tion on the length of the derivation using Proposition 4.2(1) and the fact that
σ′ = σ and fn(P̃ ′) ⊆ fn(P̃ ).

- For placement A@n: from the hypothesis of normality for Check(P̃ , σ,A@n),
since n ∈ fn(A), n /∈ bn(P̃ ). Therefore, by Proposition C.1, 〈n[P ];σ〉 is
normal. Moreover, A is a closed formula. Finally, by hypothesis, fn(A@n) ∩
(bn(P̃ )∪dom(σ)) = ∅, and bn(P̃ ) = bn(n[P̃ ]), fn(A) ⊆ fn(A@n). So, fn(A)∩
(bn(n[P̃ ]) ∪ dom(σ)) = ∅. �

C.7 Proof of Proposition 4.10

The correctness of our algorithm, Proposition 4.10, is a corollary of Lemma C.18
below, which itself depends on the following fact.

Lemma C.17 (Cardelli and Gordon [9]) For any ambient process P and
any ambient formula A, let {m1, . . . ,mk} = fn(P ) ∪ fn(A) and suppose m0 6∈
{m1, . . . ,mk}. Then P |= ∃x.A iff P |= A{x←mi} for some i in 0 . . . k.

Lemma C.18 For any normal closure 〈P̃ ;σ〉, U(P̃ , σ) |= A if and only if
Check(P̃ , σ,A) = T.

Proof The proof is by induction on the structure of the formula A.

- The base case A = T is trivial. The other base case A = 0 is a consequence
of Proposition 4.1.
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- For Boolean connectives ¬,∧, this is obvious from the induction hypothesis
and the algorithm.

- For locationA = n[A′]: according to the algorithm, we have Check(
∏
i∈1...k πi,

σ, n[A′]) = T iff there exists Q̃ and M with k = 1, π1 = M [Q̃], nam(M,σ) =
n and Check(Q̃, σ,A′) = T. Then, by Proposition 4.1, U(

∏
i∈1...k πi, σ) ≡

n[U(Q̃, σ)]. By induction hypothesis, Check(Q̃, σ,A′) = T is equivalent to
U(Q̃, σ) |= A′. So, it is equivalent to U(

∏
i∈1...k πi, σ) |= n[A′].

- For composition A = A′ | A′′: according to the algorithm, we have that
Check(

∏
i∈1...k πi, σ,A′ | A′′) = T iff there exists I, J such that I ∪ J =

1 . . . k, I ∩ J = ∅, Check(
∏
i∈I πi, σ,A′) = T and Check(

∏
j∈J πj , σ,A′′) =

T. Now, using the induction hypothesis, Check(
∏
i∈I πi, σ,A′) = T and

Check(
∏
j∈J πj , σ,A′′) = T are equivalent respectively to U(

∏
i∈I πi, σ) |= A′

and to U(
∏
j∈J πj , σ) |= A′′. Finally, by Proposition 4.1, it is equivalent to

U(
∏
i∈1...k πi, σ) |= A′ | A′′.

- For existential quantification ∃x.A: let us assume Check(P̃ , σ,∃x.A) = T.
Let {m1, . . . ,mk} = fn(P̃ , σ) ∪ fn(A) and m0, an ambient name such that
m0 /∈ {m1, . . . ,mk} ∪ bn(P̃ ) ∪ dom(σ). From the algorithm, this implies that
there exists i such that Check(P̃ , σ,A{x←mi}) = T. So, by the induction
hypothesis, U(P̃ , σ) |= A{x←mi}. Now, according to the value of mi:

• mi ∈ {m1, . . . ,mk} ∩ (fn(A) ∪ fn(U(P̃ , σ))): by Lemma C.17, we have
U(P̃ , σ) |= ∃x.A.

• mi ∈ {m1, . . . ,mk} and mi /∈ (fn(A)∪ fn(U(P̃ , σ))): by Lemma C.17, we
have U(P̃ , σ) |= ∃x.A.

• mi /∈ {m1, . . . ,mk}: it is obvious then that mi /∈ fn(A) ∪ fn(U(P̃ , σ)).
So, by Lemma C.17, we have U(P̃ , σ) |= ∃x.A.

Conversely, let us assume that U(P̃ , σ) |= ∃x.A. From Lemma C.17, this
is equivalent to that for {m1, . . . ,mk} = fn(U(P̃ , σ)) ∪ fn(A) and for any
arbitrary m0 such that m0 /∈ {m1, . . . ,mk}, there exists i such that U(P̃ , σ) |=
A{x←mi}. This latter is equivalent to that Check(P̃ , σ,A{x←mi}) = T by
induction hypothesis. Now according to the value of mi:

• mi ∈ fn(U(P̃ , σ)) ∪ fn(A): in this case mi ∈ fn(P̃ , σ) ∪ fn(A). So, by the
algorithm, Check(P̃ , σ,∃x.A) = T.

• mi /∈ fn(U(P̃ , σ)) ∪ fn(A) and mi ∈ fn(P̃ , σ) ∪ fn(A): once again, by the
algorithm, Check(P̃ , σ,∃x.A) = T.

• mi /∈ fn(P̃ , σ) ∪ fn(A): so, mi = m0. Since m0 can be chosen arbitrar-
ily, one can assume moreover that mi /∈ bn(P̃ ) ∪ dom(σ). So, by the
algorithm, Check(P̃ , σ,∃x.A) = T.

- For sometime ♦A: U(P̃ , σ) |= ♦A is by definition equivalent to the fact that
there exists P ′ such that U(P̃ , σ)→∗ P ′ and P ′ |= A.
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By Proposition 4.4, this latter is equivalent to that there exists P̃ ′, σ′ such that
U(P̃ , σ)→∗ U(P̃ ′, σ′) and U(P̃ ′, σ′) ≡ P ′ and thus, U(P̃ ′, σ′) |= A. Therefore,
by induction hypothesis, Check(P̃ ′, σ′,A) = T.

- For somewhere ✧A: the proof is similar to the previous case using Proposition
4.3 instead of Proposition 4.4.

- For placement A@n: by definition, U(P̃ , σ) |= A@n iff n[U(P̃ , σ)] |= A.
By assumption n does not belong to dom(σ). So, from the definition for U ,
n[U(P̃ , σ)] = U(n[P̃ ], σ). So, n[U(P̃ , σ)] |= A is equivalent to that U(n[P̃ ], σ) |=
A. Using the induction hypothesis, this latter is equivalent to Check(n[P̃ ], σ,A) =
T, and thus by the algorithm to Check(P̃ , σ,A@n) = T. �

Restatement of Proposition 4.10 For all processes P and closed formulas
A, we have P |= A if and only if Check(F(P ), ι,A) = T.

Proof As the closure 〈F(P ); ι〉 is normal, this follows from Lemma C.18. �

D Hardness Proofs

This appendix contains proofs of results stated in Section 5.

D.1 Proof of Lemma 5.1

Lemma 5.1 is the crux of correctness for the encoding from Section 5.1 of QBF
satisfaction in the full calculus and logic.

Restatement of Lemma 5.1 Consider a closed quantified boolean formula
ϕ and its encoding [[ϕ]] in the ambient logic. The formula ϕ is valid if and only
if the model checking problem 0 |= [[ϕ]] holds.

Proof Let us denote C1 ∧ . . . ∧Ck by ψ. We consider a closed QBF formula
Q1v1 . . . Qnvnψ. We are going to show that for any 0 ≤ m ≤ n, denoting ϕ′ the
formula Qm+1vm+1 . . . Qnvn ψ,

v1 7→ t1, . . . , vm 7→ tm |= ϕ′ iff 0 |= [[ϕ′]]{v1←t1, . . . , vm←tm}

Note that this statement obviously implies Lemma 5.1.
The proof of this statement goes by induction on the number l of variables

that are quantified in ϕ′.
For the base case l = 0: v1 7→ t1, . . . , vn 7→ tn |= ψ iff for each Ci, there

exists `j in Ci such that tj = tt iff lj = vj and tj = ff iff `j = vj . This
is equivalent to saying that for each Ci, there exists `j in Ci such that 0 |=
[[lj ]]{v1←t1, . . . , vn←tn}, which is equivalent to 0 |= ψ{v1←t1, . . . , vn←tn}.

For the induction step 0 < l ≤ n: let us denote M the interpretation v1 7→
t1, . . . , vn−l 7→ tn−l, σ the corresponding substitution {v1←t1, . . . , vn−l←tn−l}
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and ϕ′ the formula Qn−l+2vn−l+2 . . . Qnvn ψ. Assuming that the statement
holds for l − 1, let us consider M |= Qn−l+1vn−l+1ϕ

′.
By case distinction over Qn−l+1:
Case where Qn−l+1 = ∃: in this case, either M, vn−l+1 7→ tt |= ϕ′ or

M, vn−l+1 7→ ff |= ϕ′. By induction hypothesis, this is equivalent to that either
0 |= [[ϕ′]]σ{vn−l+1←tt} or 0 |= [[ϕ′]]σ{vn−l+1←ff }. This latter is equivalent to
0 |= ∃vn−l+1 ∈ {tt ,ff }.[[ϕ′]]σ which is equivalent by definition of the encoding
to 0 |= [[Qn−l+1vn−l+1ϕ

′]]σ.
Case where Qn−l+1 = ∀: this case is similar to the previous one. �

D.2 Proof of Lemma 5.3

Lemma 5.3 is the crux of correctness for the encoding from Section 5.2 of QBF
satisfaction in the calculus of mobile ambients without I/O.

To prove Lemma 5.3, let us first fix some notations and prove some auxiliary
lemmas.

For a given closed QBF formula ϕ = Q1v1 . . . Qnvnψ in prenex and conjunc-
tive normal form, we denote ψ by C1 ∧ . . . ∧ Ck and define for all 0 ≤ i ≤ n

Vi
∆= vi[pos[]] | vi[neg []]

V tt
i

∆= vi[pos[] | v′i[]] | vi[neg []]
V ff
i

∆= vi[pos[]] | vi[neg [] | v′i[]]

For all 0 ≤ m ≤ n, M being equal to v1 7→ t1, . . . , vm 7→ tm,

ϕm
∆= Qm+1vm+1 . . . Qnvnψ

PM
∆= V t11 | . . . | V tmm | Vm+1 | . . . | Vn | Pϕm

assuming that [[ϕm]] = (Pϕm ,Aϕm).
It should be noticed that due to the definition of [[ ]], for all 0 ≤ m < n,

Pϕm |= v′m+1[T] and Pϕn |= end [T].

Lemma D.1 For all 0 ≤ m < n, PM →3 PM,vm+1 7→tt and PM →3 PM,vm+1 7→ff .
Moreover, there does not exist P ′ such that P ′ 6≡ PM,vm+1 7→tt , P ′ 6≡ PM,vm+1 7→ff

and PM →3 P ′.

Proof For m < n − 1, we consider M to be v1 7→ t1, . . . , vm 7→ tm and we
have ϕm = Qm+1vm+1 . . . Qnvnψ. Whatever Qm+1 is, by definition of enc,

Pϕm = v′m+1[in vm+1.vm+2[out v′m+1.out vm+1.R
ϕm+1 ]]

for Pϕm+1 = v′m+1[Rϕm+1 ]. Now the only thing the process PM can do is to
nondeterministically choose one of the occurrences of vm+1 and to go inside
it. In the further two deterministic steps the whole process reduces to either
PM,vm+1 7→tt or PM,vm+1 7→ff . The case where m = n− 1 is similar. �

Lemma D.2 For all m in {0, . . . , n − 1}, M being the interpretation v1 7→
t1, . . . , vm 7→ tm, we have
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• for 0 ≤ m < n − 1, PM,vm+1 7→tt and PM,vm+1 7→ff are the two unique
processes reachable from PM that satisfy the ambient formula v′m+2[T] | T.

• for m = n− 1, PM,vm+1 7→tt and PM,vm+1 7→ff are the two unique processes
reachable from PM that satisfy the ambient formula end [T] | T.

Proof For 0 ≤ m < n− 1, we know from the proof of Lemma D.1 that both
PM,vm+1 7→tt and PM,vm+1 7→ff satisfy the ambient formula v′m+2[T] | T and do
not satisfy formulas v′[T] | T where v′ is a primed ambient name different from
v′m+2. Now, still from the proof of Lemma D.1, we know that any reachable
process from PM is either PM′ for some extensionM′ ofM or an “intermediate”
process reachable from PM′ in one or two steps. It is easy to see that none of
these “intermediate” processes satisfies an ambient formula v′[T] | T whatever
the primed name v′ is. Finally, as M′ is different from M, PM′ will satisfy a
formula v′[T] | T for some v′ 6= v′m+2, but not the formula v′m+2[T] | T.

The proof goes in a similar way for the case where m = n− 1. �

Restatement of Lemma 5.3 Assume ϕ is a closed quantified Boolean for-
mula, and that (P,A) = enc(ϕ). Then P |= A if and only if ϕ is valid.

Proof We are going to show for any 0 ≤ m ≤ n that for the interpretation
M equal to v1 7→ t1, . . . , vm 7→ tm

M |= ϕm iff PM |= Aϕm

Note that for m = 0, M is the empty interpretation, ϕm = ϕ, PM = P and
Aϕm = A, so this statement obviously implies Lemma 5.3. The proof of this
statement goes by induction on the number l = n−m of quantifiers in ϕm.

For the base case l = 0: ϕm = C1 ∧ . . . ∧ Ck is an unquantified formula and
M = v1 7→ t1, . . . vn 7→ tn. The interpretation M is a model for the formula
ϕm if and only ifM renders true at least one literal `i in each of the clauses Ci.
Now, depending on whether `i occurs positively or negatively in Ci, we have
two cases:

• `i = vi: by the encoding and the definition of PM, this is equivalent to
that [[`i]] = vi[pos[0] | v′i[0]] | T and PM = vi[pos[0] | v′i[0]] | P ′ for
some ambient process P ′ which does not contain the ambient name v′i.
Therefore, it is equivalent to that PM |= [[`i]].

• `i = vi: this case is dual to the previous one.

Now, in both cases we have PM |= [[`i]], which means that PM is a model
for at least one literal in each of the [[Ci]]’s, and thus it is equivalent to that
PM |= Aϕm .

For the induction step 1 < l ≤ n (the particular base case where l = 1 differs
only in the use of the ambient name end instead of v′n+1 and can be proved in
the same way) we assume that the statement holds for l−1 (that is, it holds for
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m+ 1). The formula ϕm has the form Qm+1vm+1ϕm+1, so we have to consider
two cases depending on whether Qm+1 is ∃ or ∀.

In the case of ∃, we have that M |= ϕm is equivalent to the disjunction
M, vm+1 7→ tt |= ϕm+1 or M, vm+1 7→ ff |= ϕm+1. By induction hypothesis,
this is equivalent to that either PM,vm+1 7→tt |= Aϕm+1 or PM,vm+1 7→ff |= Aϕm+1 .
By Lemma D.2, we know that PM,vm+1 7→tt and PM,vm+1 7→ff are the two unique
processes reachable from PM satisfying the ambient formula v′m+2[T] | T.
Therefore, the last statement is equivalent to that

PM |= ♦(v′m+2[T] | T) ∧ Aϕm+1 .

The case where Qn−l+1 = ∀ is dual to the previous one and leads to the
equivalence with

PM |= �(vm+2[T] | T) ⇒ Aϕm+1 .

In both cases, by definition of enc, we have the equivalence with PM |= Aϕm .
�

D.3 Proof of Lemma 5.5

Lemma 5.5 is the crux of correctness for the encoding from Section 5.3 of QBF
satisfaction in the calculus of immobile ambients with I/O. To prove it, let us
first fix some notations and then prove some auxiliary lemmas.

We use notations similar to the previous section. For a given closed QBF
formula ϕ = Q1v1 . . . Qnvnψ in prenex and conjunctive normal form, we denote
ψ by C1 ∧ . . . ∧ Ck. Let M be an interpretation v1 7→ t1, . . . , vm 7→ tm. We
denote σM the substitution {v1←t1, v1←t1, . . . , vm←tm, vm←tm} where ti is
the negated value of ti. If M is the empty interpretation, we let σM to be the
identity.

For 0 ≤ m ≤ n, let ϕm be the formula Qm+1vm+1 . . . Qnvnψ and enc(ϕm) =
(Pϕm ,Aϕm). For M = v1 7→ t1, . . . , vm 7→ tm, let us denote PM the process
QϕmσM such that Pϕm ≡ v′m+1[Qϕm ]. Note that in this notation PϕmσM =
v′m+1[PM]. By M+ and M− we denote respectively M, vm+1←tt , vm+1←ff
and M, vm+1←ff , vm+1←tt .

Lemma D.3 For all 0 ≤ m < n,

PM → (〈ff 〉 | v′′m+1[] | (vm+1).Pϕm+1)σM,vm+1←tt

and
PM → (〈tt〉 | v′′m+1[] | (vm+1).Pϕm+1)σM,vm+1←ff

and there is no other P ′ such that P → P ′.

Proof Straightforward from the encoding. �

Lemma D.4 For all 0 ≤ m < n, PM →2 (v′′m+1[] | Pϕm+1)σM+ and PM →2

(v′′m+1[] | Pϕm+1)σM− and there is no other P ′ such that P →2 P ′.
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Proof Straightforward from the encoding, Lemma D.3 and the definition of
PM. �

Restatement of Lemma 5.5 Assume ϕ is a closed quantified Boolean for-
mula, and that (P,A) = enc(ϕ). Then P |= A if and only if ϕ is valid.

Proof Let V0 = 0 and for all 1 ≤ m ≤ n let Vm = v′′m[]. We are going to show
for any 0 ≤ m ≤ n that for the interpretationM equal to v1 7→ t1, . . . , vm 7→ tm,

M |= ϕm iff Vm | PϕmσM |= Aϕm .

The particular case of this statement with m = 0 is equivalent to Lemma 5.5.
Its proof goes by induction over the number l = n −m of quantified variables
in ϕm.

Case where l = 0: the formula ϕm is equal to C1 ∧ . . .∧Ck,M has the form
v1 7→ t1, . . . , vn 7→ tn andM |= C1 ∧ . . .∧Ck. As C1 ∧ . . .∧Ck is in conjunctive
normal form, for at least one literal `i in each Ci,M(`i) = tt . This is equivalent
to that for each Ci, there exists at least one literal `i in Ci such that

• vj←tt , vj←ff belongs to σM if `i = vj and

• vj←ff , vj←tt belongs to σM if `i = vj .

By the definition of enc(C1 ∧ . . .∧Ck), this is equivalent to that the interior of
each C ambient (each marked by a D ambient) in the process PϕmσM contains
a tt sub-ambient. This again is equivalent to PϕmσM |= ❏((D[0] | T)⇒ (tt [0] |
T)) that is, to PϕmσM |= Aϕm . Since Vm does not contain any subambient
D[0], the statement follows.

Case where l = 1 (that is, m = n − 1): the formula ϕm is equal to Qnvnψ,
M is a the form v1 7→ t1, . . . , vn−1 7→ tn−1. We follow according to the value
of Qn:

• Case where Qn = ∃: M |= ϕm is equivalent to either M, vn←tt |= ψ or
M, vn←ff |= ψ. Using the case where l = 0, this is equivalent to that
either PϕnσM+ |= Aϕn or PϕnσM− |= Aϕn .

By Lemma D.4, the processes v′′n[] | PϕnσM+ and v′′n[] | PϕnσM− are
the two unique ones reachable from PM in two steps. Moreover, as Pϕn
can not be reduced, there is no process reachable from PM in strictly
more than two steps. It should be noticed that PϕnσM+ and PϕnσM−
both satisfy the formula Inst(end)∧¬Inst+(end) whereas by Lemma D.3
the two unique successors of PM as well as PM itself do not satisfy the
formula Inst(end). Therefore, PϕnσM+ |= Aϕn or PϕnσM− |= Aϕn holds
iff PM |= ♦((Inst(end)∧¬Inst+(end))∧Aϕn). And thus, this is equivalent
to v′′n−1[] | vn[PM] |= T | vn[♦((Inst(end) ∧ ¬Inst+(end)) ∧Aϕn)], that is
v′′n−1[] | Pϕn−1 |= Aϕn−1 .

• Case where Qn = ∀: this case is dual to the previous one.
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Case where 1 < l ≤ n: the formula ϕm is equal to Qm+1vm+1ϕm+1, M has
the form v1 7→ t1, . . . , vm 7→ tm and we assume that the statement holds for
l − 1 (that is, it holds for m+ 1). We follow according to the value of Qm+1:

• Case where Qm+1 = ∃: M |= ϕm is equivalent to either M, vm+1←tt |=
ϕm+1 or M, vm+1←ff |= ϕm+1. By induction hypothesis, this is equiva-
lent to that either v′′m+1[] | Pϕm+1σM+ |= Aϕm+1 or v′′m+1[] | Pϕm+1σM− |=
Aϕm+1 .

Let us have a look now at processes reachable from PM: of course,
PM itself is reachable, but by construction it does not satisfy the for-
mula Inst(v′m+2). By Lemma D.3, two processes are reachable in one
step from PM, but they do not satisfy the formula Inst(v′m+2). By
Lemma D.4, two processes are reachable from PM in two steps, namely
(v′′m+1[] | Pϕm+1)σM+ and (v′′m+1[] | Pϕm+1)σM− and they both satisfy
the formulas Inst(v′m+2) and ¬Inst+(v′m+2) (by construction). Now, by
using once again Lemma D.3 for the internal of v′m+2 in Pϕm+1σM+ and
Pϕm+1σM− , all the processes reachable from one of those latter satisfy
Inst+(v′m+2).

Therefore, the last statement is equivalent to that PM |= ♦(Inst(v′m+2) ∧
¬Inst+(v′m+2)) ∧Aϕm+1 . Thus, it is equivalent to Vm[] | v′m+1[PM] |= T |
v′m+1[♦(Inst(v′m+2)∧¬Inst+(v′m+2))∧Aϕm+1 ], that is Vm[] | Pϕm |= Aϕm .

• The case where Qm+1 = ∀ is dual to the previous one. �
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