
Electronic Notes in Theoretical Computer Science 85 No. 1 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume85.html 25 pages

Formalisms for Mobile Resource Control

David Teller 1,2,3

LIP
ENS Lyon
France

Abstract

Failing to control resources in mobile, concurrent and distributed systems may lead
to important breakdowns or Denial of Service-like attacks. In order to address this
problem, we present enhanced versions of several calculi for mobile and distributed
computing, namely NBA, Seals, Nomadic π and Kells. In each case, we make
the formalism resource-conscious and define a type system in order to guarantee
statically compliance with resource control policies. Comparing the solutions we
proposed for these calculi, we try and define the necessities of resource-control in
mobile and distributed formalisms.

1 Introduction

The latest generations of computer software and hardware make use of nu-
merous new technologies in order to enhance flexibility or performances. Most
current systems may be dynamically reconfigured or extended, allow concur-
rency or use it, and can communicate with other systems. This flexibility,
however, induces the multiplication of subsystems and protocols. In turn,
this multiplication greatly increases the possibility of bugs, the feasibility of
attacks and the sensitivity to possible breakdown of individual subsystems.

Several formalisms attempt to provide mechanisms adapted to mobility
and distribution, as well as to address possible circumstances of bugs, attacks
and sensitivity to failures. One important problem which current formalisms
do not address directly is that of resource control: to guarantee (statically)
some bounds on resources such as memory, so as to remove the risk of Denial
of Service attacks or similar misbehaviors in distributed systems.

1 We would like to thank Daniel Hirschkoff for his time and his insightful suggestions during
this work.
2 This work is partially supported by IST Global Computing Profundis and the Action
spécifique Méthodes formelles pour la mobilité.
3 Email: David.Teller@ens-lyon.fr

c©2004 Published by Elsevier Science B. V.

David Teller

By resource, we mean any entity which may at will be acquired, used, then
released. Thus, this notion encompasses ports, CPUs, computers or RAM, but
not time, or (presumably) money. A resource-controlled system is a system in
which no subsystem will ever require more resources than may be available.
In [16], we introduced Controlled Ambients as an enrichment of Cardelli and
Gordon’s Mobile Ambients (MA) [4] for the specification and static checking of
resource control policies for mobile and distributed systems. The main points
of our approach are:

i The use of cocapabilities to make both the source site and target site of
each movement aware of the mobility, resulting in a 3-way synchronization
which actually corresponds to mechanisms used when implementing MA,
as observed in [9].

ii A resource control policy to define the number of resources occupied
by each site in its parent site, as well as the total amount of resources
available in each site for use by its direct subsites.

iii A type system to enforce resource control policies. Correctness of this
type system guarantees that no evolution of the system will end up in a
situation where more (sub)ambients than allowed are present simultane-
ously in a given ambient.

Recently, a broad range of calculi have been designed for the handling of
localities and process mobility. Some calculi are based on site-subsite rela-
tions, site migrations and “mostly local” communications, such as Seals [18]
or Boxed Ambients [2], later extended to NBA [3]. Some others are based
on migrations of active/passive processes with pattern-based n-way commu-
nications, such as Distributed Join [8], then evolved into the M-Calculus [13]
and later into Kell [14]. Some more are based on site-agents relations, distant
communications and agent migrations, such as Nomadic π [17], the extension
of π which serves as the basis of the Nomadic Pict programming language.
All these formalisms offer a notion which can easily model resource usage
and resource availability. Others, such as Dπ [10], are based on distant com-
munication of names and distant process migration, which makes them more
difficult to control using our definition of resources – see the conclusion for
further discussion on this.

In the present paper, we try to reach a better understanding of the mech-
anisms for resource control in distributed settings, and to determine the set
of primitives necessary to provide such a control. In order to do this, we ex-
tend and adapt the concepts and techniques we have devised for Controlled
Ambients to adapt them to a range of other process calculi, hence presenting
Controlled NBA, Controlled Seals, Controlled Kell and Controlled Nomadic
π. For each calculus, we present the required enrichments to operational se-
mantics and introduce a type system for resource control. Due to lack of
space, we only present the main features of each calculus and type system;
full definitions, as well as proofs, are available in a full version of this re-

2

David Teller

port [15]. The resource control policies that we propose are illustrated on a
simple but sufficiently expressive running example that is common to all for-
malisms. In defining these calculi and type systems, we have tried to keep a
uniform approach, staying faithful to the principles (i)− (iii) outlined above,
while keeping our modifications as minimal as possible. In each case, we moti-
vate our choices and discuss alternative solutions where appropriate, in order
to shed light on the specifics of each calculus.
We successively treat NBA (Sect. 2), Seals (Sect. 3) Nπ (Sect. 4) and Kells
(Sect. 5). The last section sums up the lessons learned from the comparison
of these calculi and type systems, and discusses possible future extensions.

2 Controlling NBA

NBA, introduced in [3], are an evolution of Boxed Ambients (BA) [2] which
allows mobility control and reduces communication interferences. As in BA
and Mobile Ambients, a system is represented by a hierarchy of sites called
ambients. Each ambient may contain concurrent processes. Processes may
spawn new ambients locally, execute capabilities, hence moving their enclosing
ambient upwards (out of their enclosing ambient) or downwards (in a brother
ambient), and they can communicate locally both names and capabilities. As
in BA and as opposed to MA, ambients cannot be opened and processes may
also communicate with their parent ambient or with a subambient.

The main changes between NBA and BA are the semantics of communica-
tion, much less interference-prone, which we will not detail, and the mobility
capabilities enter〈n, k〉, exit〈n, k〉 and cocapabilities enter(x, k), exit(x, k):
while enter〈n, k〉 instructs the enclosing ambient m to enter its brother am-
bient n, using password k, exit(x, k) authorizes this entry and binds x to
m.

This password-based mobility allows a measure of control in the mobility:
as opposed to ambient names, which should change seldom if ever, access keys
may be easily kept secret, canceled and renewed at any time. Additionally,
by typing the keys, one may statically determine the type of entering/exiting
ambients. Using several keys, well-typed complex communication protocols
may be defined. This hierarchical structure of sites and this control of mobility
make this calculus comparable to Controlled Ambients and give a natural
notion of resources: sites are resources, subsites require some space in their
parent sites. Controlling resources means ensuring that no site will have more
subsites than allowed by some resource policy.

2.1 The calculus of Controlled NBA

The (monadic) calculus of Controlled NBA (CNBA) extends NBA with more
control on mobility and resources. Its syntax is identical to that of monadic
NBA with replication replaced by recursion, which is easier to control.

3

David Teller

P,Q ::= 0 | P |Q | recX.P | (νn : T)P | M [P] | M.P | 〈M〉η P | (x)ηP | X

M,N ::= M.N | enter〈M,N〉 | enter(x, N) | exit〈M,N〉 | exit(x,N) | k | a | x

For space constraints, we shall present neither structural congruence nor
the rules for reduction which we left unchanged. Full definitions are available
in a full version of this report [15].

The semantics of rec is

Rec recX.P −→ P{X ← recX.P}
The meaning of capabilities and cocapabilities is slightly modified, along

the lines of Controlled Ambients’ usage of (co)capabilities. Instead of a two-
way synchronization between enter〈n, k〉 and enter(x, k), and of another two-
way synchronization between exit〈n, k〉 and exit(x, k), we introduce three-
way synchronizations, which allow us to account for all types of movements,
with the following rules:

Enter
a [enter〈b, k〉.P | Q] | b [enter(x, k).R | S] | exit(x, k).T

−→ b [a [P | Q] | R{x← a} | S] | T{x← a}

Exit
a

[
b [exit〈a, k〉.P | Q] | exit(x, k).R | S

]
| enter(x, k).T

−→ a [R{x← b} | S] | b [P | Q] | T{x← b}

Do note that we use both exit(x, k) and enter(x, k) in two distinct roles.
We could also have introduced new cocapabilities such as exit(x, k)↓ and
enter(x, k)↑, without any important change to the language or the typing
system.

Also note that, although we focus on mobility, communications influence
resource requirements. In order to make resource control more straightfor-
ward, we could have introduced seals-like communication channels. However,
this is not required since NBA’s communications primitives along with mobil-
ity control allow this kind of monitoring on communications.

2.2 An example: distant request, Denial of Service and garbage collection

Let us consider the following system, which we will use as our main running
example. A server (SERV ER) is ready to receive requests from a requester
(FLOODER), and to send an answer to the site specified in the request. Here,
this destination will always be the trashcan (TRASHCAN). An additional
router process (ROUTER) permits answers to be transmitted to the trashcan.
FLOODER may produce any number of requests, only one will be answered
at a time.

This scenario illustrates simultaneously several important mechanisms: a
(simple) Denial of Service attack by FLOODER on SERV ER, a (simple)

4

David Teller

resource-control policy in SERV ER and a the trashcan component, which
may be used in garbage-collection.

In this version, requests are represented by ambients named r and answers
by ambients named a. After being fulfilled, r goes with a to the destination
t, the trashcan. Since there are no cocapabilities to allow any ambient to
leave t, ambients are effectively isolated from the outside universe and can be
considered garbage-collected.

SERV ER = s [recW.enter(, kr). (a [enter(y, kr).(M : TM)yexit〈s, ka〉.M.0]

| exit(, kr).exit(, ka).W)]

| ROUTER

ROUTER = recY.(Y | exit(, kr) | enter(, ka) | exit(, ka))

FLOODER = recX.(X | r
[
enter〈s, kr〉.enter〈a, kr〉. 〈enter〈t, ka〉〉↑

]
)

TRASHCAN = t [recZ.(Z | enter(, ka))]

UNIV ERSE = SERV ER | FLOODER | TRASHCAN | ROUTER

The resource policy we wish to ensure is that s may contain at most
one subambient named a at any time, which corresponds to the fact that
SERV ER succeeds in protecting itself against the Denial of Service attack.
In other words, the resource is the maximal number of a in each ambient at
any time. In turn, each a occupies exactly one of these resources.

2.3 Typing resource control

This section is devoted to the presentation of a basic type system for resource
control in CNBA. The type system allows one to statically divide available re-
sources between parallel processes, and check that resources will be controlled
along movements and communications. Typing environments are resource-
control policies : each locality has a capacity and a weight. The capacity is its
inner size, i.e. the number of resources the site offers to its subsites, while the
weight is its outer size, i.e. the number of resources the site requires from its
parent site. In turn, keys are typed according to the type of ambients they
may allow to move. Do note that, by changing the affectation of capacities
and weights, we may check several different policies on one system.

A ::= Amb(s, e)[W] s ∈ N ∪ {∞}, e ∈ N K ::= Key(A)

C ::= Cap(m, γ,A) m ∈ Z, γ environment T ::= Proc(t, A)[W] t ∈ N ∪ {∞}

W ::= A | C | K | Ssh

A ranges over type associated to ambients, K over keys, M over capabili-
ties, T over processes and W over topics of conversation. A type Amb(s, e)[W]

5

David Teller

is assigned to an ambient named a to denote that the capacity of a is s, that
its weight is e and that it may communicate with parent processes on topics
of conversation W . A type Key(A) is associated with a key to denote that
it allows movement of ambients with type A. A capability or cocapability is
typed Cap(m, γ, A) when its execution requires m resources, binds variables
to types as specified by γ (thus γ must somehow provide parts of a typing en-
vironment) and must be executed only in an ambient of type A. If a process
P has type Proc(t, A)[W], then P shall not require more than t resources to
be executed, P may be executed only in an ambient of type A and whenever
P contains occurrences of local communication, its topic of conversation is W .

We write Γ `CNBA F : G for “according to environment Γ, expression F
of belonging to the language of Controlled NBA has type G.” The typing
rules are detailed in figure 1 – rules for local and downwards communication
are identical to their counterparts in NBA and were omitted. The expected
properties of the type system, namely resource control and subject reduction,
are valid. Full proofs may be found in a full version of this report [15].

Theorem 2.1 (Resource control) If Γ `CNBA P : Proc(,)[] and if a is an
ambient in P , then the resource allocation of a complies with the resource control
policy specified in Γ.

Lemma 2.2 (Resource increase) If Γ `CNBA P : Proc(t, A)[U], then for any
u ≥ t, Γ `CNBA P : Proc(u, A)[U].

Theorem 2.3 (Subject reduction) If Γ `CNBA P : T and P −→ Q, then Γ `CNBA

Q : T .

Typing the example

Let us return to the running example. As mentioned earlier, the resource
policy we wish to ensure is that s may contain at most one subambient named
a at any time. In other words, the resource is the maximal number of a in each
ambient at any time. In turn, each a occupies exactly one of these resources.
This is specified by environment Γ:

Γ(s) = Amb(1, 0)[Ssh] Γ(t) = Amb(∞, 0)[Ssh]

Γ(a) = TA = Amb(0, 1)[Ssh] Γ(ka) = Key(TA)

TM = Cap(0, ∅, TA) Γ(r) = TR = Amb(0, 0)[TM]

Γ(kr) = Key(TR)

From the rules, we deduce Γ `CNBA UNIV ERSE : Proc()[]. In other
words, we proved that UNIV ERSE complies with our resource policy.

6

David Teller

2.4 Discussion

The main entity in both NBA and CNBA, as in CA, is the ambient. If one of
these calculi is used to describe a system, ambients and their hierarchy may
be used to describe many entities – in our running example, the server, the
trashcan, the requests and the answers. In turn, this flexibility gives a natural
notion of resource: resources are ambients.

Controlling resources is made possible by the structure of capabilities and
cocapabilities, which allow a site to refuse entry dynamically when necessary
and to react to allocation and deallocation. In turn, the structure of three-way
synchronization through typed channels, which is made possible by the use of
typed keys in capabilities and cocapabilities, permits the effective typing of
mobility, which is the core of this resource control.

3 Controlling Seals

As NBA, the Seal calculus, introduced in [18] and then refined in [5], is a
calculus for mobility based on a hierarchy of sites called seals. Each seal
may contain concurrent processes. Processes may spawn new seals locally,
they may communicate either locally, upwards, or downwards. As opposed
to NBA, these communications are channelled. Processes may also move,
copy or rename seals along channels, either locally, upwards or downwards.
The semantics of movement is very close to that of CNBA, although mobility
in Seals is fully objective (two-ways synchronization between the source site
and the destination site) 4 , somewhat polyadic, and has different treatment of
binding.

As in CNBA, this channel-based mobility allows a great measure of control
in the mobility. Similarly, by typing the channels, it is possible to statically
determine the type of entering/exiting seals. Using several keys, well-typed
complex communication protocols may be defined. Finally, notions of re-
sources and resource control as defined in CA and CNBA are also natural in
Seals.

3.1 The calculus of Controlled Seals

The (monadic) calculus of Controlled Seals is identical to the latest version
of monadic Seals, as introduced in [5], with replication replaced by recursion,
easier to control.

4 Actually, before CA, the first version of Seals had a three-way synchronization mechanism
dual to that of CA with fully objective movement. The notion of portal disappeared with
later versions of Seals.

7

David Teller

P, Q ::= 0 | P |Q | recX.P | (νx : T)P | x [P] | α.Q | X

α ::= xη(y) | xη(λy) | xη{y} | xη{−→y } η ::= ↑ | x | ∗

The semantics of recursion is identical to CNBA and the other rules are
unchanged from Seals, as well as the definition of structural congruence. As
in the revisited Seals calculus, the language may be parametrized on an inter-
action pattern, and movements are caused by the synchronization of xη1{y}
and xη2{−→y }, where the actual values of η1 and η2 depend on the interaction
pattern. More details may be found in [5].

3.2 Running example

Let us return to our running example. It is expressed here in the Shared
dialect of Controlled Seals, as per [5] but it could have been expressed in the
Local dialect with minor modifications.

Here, requests are channelled by channel cr and answers by channel ma.
A special channel named cg allows an answer to specify its destination. After
being fulfilled, requests are simply deleted. The trashcan is a seal t, which
effectively deletes any seal which enters it.

SERV ER = s
[
recX.c↑r(λr).(a

[
cg

↑(r)
]
| ma

↑{a}.X)
]

FLOODER = recX.(X | cr
s(t) | (νx : Ta)m

s
a{x}.cx

g(λd).ma
d{x})

TRASHCAN = t
[
recX.(X | m↑

a{}.0)
]

UNIV ERSE = SERV ER | FLOODER | TRASHCAN

3.3 Typing resource control

The type system for Controlled Seals shares its objectives and many concepts
with that of Controlled NBA. Once again, typing environments are resource-
control policies and each locality has a capacity and a weight. Channels are
typed according to the type of entities they may carry.

S ::= Seal(s, e) s ∈ N ∪ {∞}, e ∈ N C ::= IChan(W) W ::= S

T ::= Proc(t) t ∈ N ∪ {∞} | MChan(S) | C

S ranges over types associated to seals, C over channels, T over processes
and W over topics of conversation. A type Seal(s, e) is assigned to a seal
named n to denote that the capacity of n is s and that its weight is e. A type
IChan(W) is associated to channel c to denote that it may carry information
(i.e. names) of type W . A channel has type MChan(S) whenever it may move

8

David Teller

seals of type S. If a process P has type Proc(t), then P shall not require more
than t resources to be executed.

The typing rules are given in figure 2. Rules VarName, New and Seal
are mostly identical to their counterparts in CNBA (see figure 1) and were
not included. As in CNBA, we have Resource control and Subject Reduction.
Full proofs may be found in a full version of this report [15].

Theorem 3.1 (Resource control) If Γ `CSl P : Proc() and if a is a seal in P ,
then the resource allocation of a complies with the resource control policy specified
in Γ.

Lemma 3.2 (Resource increase) If Γ `CSl P : Proc(t), then for any u ≥ t,
Γ `CSl P : Proc(u).

Theorem 3.3 (Subject reduction) If Γ `CSl P : T and P −→ Q, then Γ `CSl

Q : T .

Typing the example

Let us return to the running example. As earlier, the resource policy we
wish to enforce is that s may contain at most one a at any time. In other
words, each a occupies exactly one resource and s offers only one resource, as
per environment Γ:

Γ(s) = Seal(1, 0) Γ(cr) = IChan(Seal(0, 0))

Γ(a) = Seal(0, 1) Γ(ma) = MChan(Seal(0, 1))

Γ(t) = Seal(0, 0) Γ(cg) = IChan(Seal(0, 0))

We then deduce Γ `CSl UNIV ERSE : Proc(). In other words, we proved
that UNIV ERSE complies with our resource policy.

3.4 Discussion

Controlling resources in Controlled Seals is very similar to the same task in
CNBA, only easier. As in CNBA, Seals offer a natural notion of resource:
resource are seals. Controlling is made possible by the structure of movements,
which allow a site to refuse entry dynamically and to react to allocation and
deallocation, and the typing of mobility is made possible by the structure of
objective movements through typed channels.

4 Controlling Nomadic π

The Nomadic π calculus (Nπ), introduced in [17] is a calculus of mobile agents.
A system is represented by a set of concurrent located processes, all of them
located in agents, a set of uniquely named agents, all of them located in sites
and a set of uniquely named, immutable sites. There is only one level of

9

David Teller

sites. Processes may spawn new agents locally, migrate their enclosing agent
to another site and communicate, either locally or to possibly distant agents.
As in Seals, communications are channelled. Migrations, however, are fully
subjective.

As opposed to Seals or CNBA, this free-for-all migrations prevents any
control of mobility, not to mention resources. Similarly, the absence of sites
hierarchy prevents notions of resources from being directly imported from CA,
CNBA or Controlled Seals. Fortunately, as in Controlled Seals, keys on com-
munication allow well-typed complex communication protocols to be defined.
Additionally, this two-level structure of agents in sites may be translated into
another, different yet comparable, notion of resources: sites offer resources,
agents use them. Controlling resources means ensuring that no site will have
more agents than allowed by some resource policy.

4.1 The calculus of Controlled Nomadic π

The (monadic) calculus of Controlled Nomadic π (CNπ) extends synchronous
Nπ with control over migration and agent creation. The syntax we use is quite
different from the classical syntax of Nπ, as presented in [17]. For example,
if agent a is running the set of processes {P1, . . . , Pn}, the original syntax
writes @aP1 | · · · | @aPn, whereas we prefer a[P1 | · · · | Pn]. The reason of
this change is that our syntax is much closer to that of the other calculi we
describe in this work, and easier to type for resource-control.

Universes Sites contents

U, V ::= ε | l[A] | U ;V A,B ::= ∅ | a {P} | A,B

Agents contents

P,Q ::= (π-like constructs)

() | P |Q | new c : T P | c!v.P | c?p→ P

(routed communication)

| 〈a〉 c!v.P | 〈a@s〉 c!v.P | iflocal 〈a〉 c!v then P else Q

(agent spawning and migration)

| agent p as b = P in Q | migrate a to l P |

enter a P | exit a P | create k P

(recursion and exceptions)

| recX.P | X | try c?p = P timeout n→ Q

In CNπ, we add cocapabilities to agent creation and migration. Instead
of an uncontrolled creation by agent a = P in Q, there is now a two-way
synchronization between agent k as a = P in Q and create k , where k is a

10

David Teller

creation key. Similarly, instead of an uncontrolled migration by migrate to s,
there is now a three-way synchronization between migrate a to s , exit a
and enter a , where a is the name of the migrating agent. The operational
semantics rules that are specific to CNπ are the following:

R-Create a {agent k as b = P in Q | R} , c {create k S | T}

−→ a {Q{x← f} | R} , c {S | T} , b {P{x← f}}

(f fresh)

R-Migrate s[a {migrate a to t P} ; b
{
exit a R | S

}
;A],

t[c {enter a T | U} ;B]

−→ s[b {R | S} ;A], t[c {T | U} ; a {P} ;B]

See [15] for a full presentation of the operational semantics.

An important difference between (C)Nπ and other calculi is that there is
no specific “parent” thread to implement the control. The authorization to
exit or create is thus executed from within a brother agent residing at the
same site as the moving agent, while the authorization to enter is executed
from within any agent residing at the target site. This agent may be either an
immobile controller, but it does not have to. We thus need to control resource
authorizations brought by migrating agents.

Do note that we impose the migrating process to be single threaded, which
represents a restriction w.r.t. [17]’s original calculus, where an agent of the
form a {migrate to t P | Q} can perform a migration. This is due to the fact
that processes such as Q = exit b Q′ actually require more resources after
the execution of exit b than before. Without introducing this restriction, we
were not able to enforce any sensible control in presence of migration. The
induced programming discipline is that, as opposed to MA, NBA or Seals, an
agent shall join its concurrent activities before migration.

Also note that, as opposed to Nomadic π, distant communication is a
required low-level primitive, since it must be used to transmit the name of
migrating agents.

4.2 Running example

To handle our running example in CNπ, we use channel cr to carry requests
while answers migrate to the destination. A special key ka is used to allow
the spawning of new answers while a special channel ma allows an answer to
specify its destination and a special channel mt allows the trashcan to receive
the name of incoming agents.

11

David Teller

SERV ER = s{recX.cr?r → agent ka as a = (〈b〉ma!a. in

〈o@r〉mt!a.migrate a to r ())X}

ROUTER = b
{
recX.create ka .ma?a→ exit a X

}
FLOODER = c {recX.(X | 〈s@z〉 cr!t)}

TRASHCAN = o {recX.(X | mt?a→ enter a)}

UNIV ERSE = z[SERV ER | ROUTER] | f [FLOODER] | t[TRASHCAN]

Do note that, as opposed our example given in other calculi, agents sent to
the trashcan may possibly come back from t if helped by an agent also present
in t and another agent present in the destination site.

4.3 Type system

The grammar for types is defined as follows:

A ::= Ag(g, e) g, e ∈ N R ::= Run(e) e ∈ N ∪ {∞}

| Site(s) s ∈ N T ::= Proc(t) t ∈ N ∪ {∞}

C ::= Channel(A)

A ranges over types associated to agent and site names, C over types of
channel names, R over types of agents and T over types of processes (that
are parts of agents). A type Ag(g, e) is assigned to an agent name a to
denote the fact that a requires e resources in the site it’s residing in, and
that at the moment of creation (instruction agent k as a = P in Q) or
migration (instruction migrate a to t), agent a contains a process whose
effect is bounded by g. A process P has type Proc(t), where t is a bound on
the effect of P in terms of resource consumption.

Typing rules are presented on figure 3. We omitted rules Nil, New, Rec,
Par, VarProc, VarName, Receive-Info and Emit-Info, identical to
their counterparts in Seals.

Do note that, in rule Enter, we add the effect t of the process to the
weight e of its containing agent, which shows an important difference w.r.t.
other controlled calculi. This is due to the fact that, in other calculi, the
typing system may find one controller process for each location, whereas in
CNπ, this process is distributed between the agents.

Resource Control and Subject Reduction are different, from the other cal-
culi, since they apply only at the level of Universes and since fresh names are
generated at agent creation.
Theorem 4.1 (Resource control) If Γ `CNπ A and if a is a site in A, then the
resource allocation of a complies with the resource control policy specified in Γ.

12

David Teller

Theorem 4.2 (Subject Reduction) If Γ `CNπ U and U −→ V then either
Γ `CNπ V or, in the case where U −→ V corresponds to the creation of an agent f
with key k, Γ, f : Γ(k) `CNπ V .

The extension of the environment during Subject Reduction may seem
somewhat strange. This is due to the creation of fresh names for new agents.
This phenomenon and the statement of Subject Reduction are reminiscent of
simple types in the π-calculus under a LTS-based operational semantics, in
the case where a name is extruted to the context, as in [11]. Full proofs may
be found in a full version of this report [15].

Typing the example

The resource policy we wish to ensure is that site z will never contain more
than one agent created with ka. In other words, agents created with ka occupy
exactly one resource and z offers exactly one resource.

Γ(z) = Site(1) Γ(f) = Site(0)

Γ(t) = Tt = Site(∞) Γ(ka) = Ta = Ag(1, 0)

Γ(mt) = Γ(ma) = Channel(Ta) Γ(cr) = Channel(Tt)

Γ(s) = Γ(b) = Γ(c) = Γ(o) = Ag(0, 0)

From the rules, we deduce Γ `CNπ UNIV ERSE. In other words, the
system complies with the resource-control policy. Do note, however, that the
example is written with one immobile controller agent per site. If we had, for
instance, distributed permissions between two router agents, one with create

and the other one with exit , we could not have typed the system.

4.4 Discussion

Though comparable, resource-control in CNπ and in CA, CNBA or CSeals are
not identical tasks. In CNπ, resources are offered by sites and used by agents
and only combinations of sites and agents permit the description of entities
such as the server, the trashcan and the answers.

Once again, controlling resources is made possible by the structure of
(co)capabilities, which gives the possibility to refuse entry dynamically when
necessary and to react to allocation and deallocation. The three-way synchro-
nization through named authorizations, close to those of CA, allow the effective
typing of mobility, but its semantics make it stricter and more limited than
the channeled mobility of CNBA or CSeals. The key-based creation of new
agents, on the other hand, is close to other key-based concepts from CNBA
or CSeals.

Presumably, if one were to work on CNπ to enhance Nomadic Pict, a good
first step would be to add keys to migration as well as agent creation, hence

13

David Teller

making the calculus slightly more complicated and the writing of protocols and
programs much easier. Early experiments seem to indicate that the restriction
on migration could also be alleviated, at the cost of a slightly more complicated
type system.

5 Controlling Kells

The Kell calculus, introduced in [14] is a fully asynchronous, explicitly higher-
order formalism for distributed components. Kells represent an evolution of
the M-calculus [13], which in turn builds on the distributed Join Calculus
and borrows ideas from Mobile Ambients. As in MA or Seals, a system is
represented by a hierarchy of kells. Each site may be either active (i.e. a
site) or passive (i.e. a communication channel) and may contain concurrent
processes. Processes may spawn new kells and communicate either locally,
upwards or downwards through the use of higher-order triggers, similar to Join
Patterns in the Join Calculus [8]. Communications are fully asynchronous and
controlled by the target while mobility is a special case of communication. The
actual language for Kell patterns is left as a parameter of the calculus.

As opposed to Nπ, this lack of synchronization does not really hamper
mobility control, since the target is in charge of migration. Adding the hi-
erarchical structure of kells, we find a natural notion of resources: Kells are
resources, subkells, whether they are active or passive, require some resources
from their parent kell. Unfortunately, as in Nπ, the lack of synchronization
prevents reactivity: in the general case, a site will not be aware of a subsite
leaving. Hence, it will not be able to allow new entries as a consequence of
resources being released.

5.1 The calculus of Controlled Kells

The calculus of Controlled Kells (CK) extends Kells with reactivity to move-
ments. As in Kells, the unit of computation is a kell : a〈P 〉 is a passive (frozen)
kell 5 while a[P] is an active (site-like) kell, with process P running at address
a . At some points, we shall write a ∗P (or ai ∗i Pi) for a kell, either active or
passive, named a and containing process P , and

∏
i Pi for parallel composition

of processes.

P, Q ::= 0 | P |Q | a | x | ξ � P | νa.P | a � P | a[P] | a〈P 〉 .
The semantics of triggers is slightly modified to allow reactivity, in a way

comparable to Seals’ two-way synchronization semantics. As in the regular
Kell calculus, ξ � P is a Kell-trigger, comparable to a Join-pattern with the
added possibilities of matching processes and crossing kells boundaries. In
Kells, any expression matched by ξ is consumed from its source site and may

5 We are using recent notations for Kells – in [14], passive kells are written a ◦ P while
active kells are written a • P .

14

David Teller

be reinjected in P through the use of name and processes markers. However,
while the uncontrolled Kell controls mobility from the target site (i.e. the
trigger) only, we add to Controlled Kells the Kell-release a � Q, which allows
any trigger to match a and specifies that Q shall be released whenever a is
matched (and consumed). This Kell-release is similar to cocapability exit a
in CNπ. The formal semantics of Triggers and Releases is given in rules
K.Red↓ (presented below) and K.Redl.

As mentioned earlier, the pattern language used is unspecified. Actu-
ally, Kell is more a family of calculi parametrized by its pattern language and
in [14], three different pattern languages are presented: Simple patterns, Com-
plex patterns and µdK patterns. Despite this lack of specification, we do need
to refer to the names in a pattern that are involved in a reduction step. This
is formalized using the notion of requested names, defined as follow:

Definition 5.1 [Requested names] For a given pattern ξ, we define rn(ξ), the
multiset of requested names of ξ, as follows: let P be the set of positions
corresponding to occurrences of free names in ξ, and let Ptop ⊆ P be the set
of positions that are not underneath an element of P . rn(ξ) is obtained as the
multiset containing the names appearing at the positions defined in Ptop.

If ξ is defined by ξ = (a)〈(b)〈(x)〉 | (b′)〈(y)〉〉 | (a′)[(z)] | m[t] | (a′)[(c)],
then we have rn(ξ) = {a, a′, a′, m}.

The following rule details the semantics of local and upwards communica-
tion (we use t for multiset union):

K.Red↓

rn(ξ) = L tD1 t . . . tDn ξθ ≡
∏
i∈L

bi ∗i Ai |
∏

1≤k≤n

∏
i∈Di

bk,i ∗k,i Ak,i

ξ � P |
∏
i∈L

(bi ∗i Ai | bi � Zi) |
∏

1≤k≤n

ak[Rk |
∏

i∈Dk

(bk,i ∗k,i Ak,i | bk,i � Zk,i)]

−→ Pθ |
∏
i∈L

Zi |
∏

1≤k≤n

ak[Rk |
∏

i∈Dk

Zk,i]

As its counterpart in uncontrolled Kell-calculus, because of the generic
treatment of (possibly very rich) patterns, the rule looks quite complicated.
As specified by ξθ ≡ . . ., it may only be invoked whenever ξ matches some
process, through substitution θ. We first decompose the required names of
ξ into those corresponding to matching kells that will be found locally (L),
and to matching kells that will be found in subkells located at a1, . . . , an

(multisets D1, . . . , Dn). For each of the matching requested names b , we note
the corresponding nature of the kell (active or passive) ∗ , the corresponding
kell body A and the corresponding Kell-release b �Z . Using these notations,
the source process of the reduction is the parallel composition of the involved
Kell-trigger and the reacting agents, both locally and in relevant subkells. The
target process is the parallel composition of the application of substitution θ
and of the agents after reaction, where matching kells have been removed and
releases have been executed.

15

David Teller

Another rule, K.Redl, enriches K.Red↓ to take into account the possibil-
ity for patterns to be triggered by components located in the parent kell. We
do not detail this rule, since it is similar, only more complex. Structural con-
gruence and other rules are defined in a standard way (see [14]). Do note that
the semantics of ν is defined as a rule and not within structural congruence.

Another point of interest is that the addition of Kell-releases may help
with the problem of interferences between triggers. This problem, pointed
out in [14], hampers distributed implementations of Kells, as some difficult
circumstances require some form of distributed consensus across the network.
In Controlled Kells, since no kell may be selected unless a Kell-release allows
this selection, well-programmed components shall present few or none of these
unwanted interferences.

5.2 Running example

Let us return to our running example. It is expressed here in the Simple pat-
tern-language(see [14]) but it could have been expressed using other pattern-
languages.

Let us first introduce the following auxiliary macros:

COREC(X, P, t) = (νu : Tu,X)(t〈(x : Tx,X)〉�

(u〈t〈x〉 | x | t � 0〉 | u � 0) | u〈(X : TX,X)〉� P)

REC(X, P) = (νt : Tt,X)(t〈COREC(X, P, t)〉 | COREC(X, P, T) | t � 0)

(x, u, t free in P)

Due to space limitations, we shall not discuss in detail these macros. Once
again, more details may be found in a full version of this report [15]. Type
annotations shall be discussed later. Note, however, that the existence of these
macros illustrates the power of Controlled Kells.

Here, requests are represented by passive kells named r and answers by
active kells named a. As in Seals, after being fulfilled, requests are simply
deleted. Special passive kells named exit and enter permit routing of the
answer from the server to its destination. The trashcan is a kell t, which ef-
fectively deletes any kell which enters it.

SERV ER = s [REC(X, (r〈(d : Td)〉) � (exit〈carry〈a[]〉 | to〈d〉〉 | exit � X))]

FLOODER = REC(Y, Y | r〈t〉)

ROUTER = REC(Z,Z | (exit〈carry〈(c : Tc)〉 | to〈(d : Td)〉〉)�

enter〈carry〈c〉 | to〈d〉〉)

TRASHCAN = t [REC(W,W | (enter〈carry〈(c : Tc)〉 | to〈t〉〉) � 0)]

UNIV ERSE = SERV ER | FLOODER | ROUTER | TRASHCAN

16

David Teller

5.3 Typing resource control

The type system for Controlled Kells is reminiscent to that of Controlled Seals.
The first main difference is that kells, whether they are active or passive, have
a capacity and a weight. The second main difference is that we cannot type
patterns since we do not know the language they are written in. We must rely
on some types provided by some oracle – or by annotations.

K ::= Kell(s, e) s ∈ N ∪ {∞}, e ∈ N T ::= Proc(t) t ∈ N

H ::= Pat(γ) γ environment

K ranges over types associated to Kells, T over processes and H over
patterns. A type Kell(s, e) is assigned to a kell named n to denote that the
capacity of n is s and that its weight is e, whether n is passive or active. As
usual, if a process P has type Proc(t), then P shall not require more than
t resources to be executed. As for patterns types, ξ has type Pat(γ) if all
process and name markers of ξ may only be bound to expressions with types
as specified in γ. As mentioned earlier, the type of patterns must be given by
some meta-level oracle.

Based on this oracle, the typing rules for resource control in Kells are given
on figure 4. Most rules were identical to their counterparts in Seals (given on
figure 2) and were not included.

Due to the oracle nature of pattern types, we must introduce a notion of
typed reduction to state our Subject Reduction property.

Definition 5.2 [Typed reduction] If Γ `CK P : T , then P −→ Q is a step
of typed reduction for Γ, noted P −→Γ Q, if, for any application of rules
K.Red↓ or K.Redl, noting θ the substitution involved, and for any name
marker or process marker (m) in ξ, we have Γ `CK θ(m) : γ(m).

For unspecified pattern languages, this property is very strong. However,
according to our experiments in languages such as Simple-, Complex- or µdK-
Patterns, Typed Reduction seems to translate to a simple sufficient condition
on patterns at the cost of a slightly more complex type system. Namely,
provided that the system is properly typed and that all markers in each pattern
are labelled by an enclosing kell, it seems that reduction is always typed. In
other words, it seems sufficient that, as in ML languages, pattern matching
must be applied to constructors. Note that this condition is always satisfied in
µdK.

We then have the following properties:

Theorem 5.3 (Resource control) If Γ `CK P : Proc() and if a is a kell in P ,
then the resource allocation of a complies with the resource control policy specified
in Γ.

Lemma 5.4 (Resource increase) If Γ `CK P : Proc(t) then ∀u ≥ t, Γ `CK P :

17

David Teller

Proc(u).

Theorem 5.5 (Subject reduction) If Γ `CK P : T and P −→Γ Q then either
Γ `CK Q : T or, in the case where P −→Γ Q corresponds to the reduction of
(νm : U)R then there exists some n such that Γ, n : U `CNπ Q : T .

This extension of Γ, similar to that of Nomadic Pict, takes into account
the specific treatment of ν in Kells.

Typing the example

For readability reasons, since the type of a pattern is nothing else than the
type of all its markers, instead of writing the full type, we shall write type
annotations on the markers. For example, rather than writing that pattern
(x)|(y) has type Pat({x : Tx, y : Ty}) with some values instead of Tx and Ty,
we shall rewrite the pattern as (x : Tx)|(y : Ty) and give the values of Tx and
Ty later.

We wish to prove that s may contain at most one a at any time. This will
be captured by having each a occupy exactly one resource and s offer only one
resource. Since a is actually nested within carry and carry within exit, we will
also write that both carry and exit offer one resource and occupy one resource.
This, as well as the types of patterns, is specified in the following environment:

Γ(enter) = Γ(s) = Kell(1, 0)

Ta = Tc = Γ(a) = Kell(0, 1)

Γ(r) = Kell(0, 0)

Γ(exit) = Γ(carry) = Kell(1, 1)

Td = Γ(t) = Γ(to) = Kell(0, 0)

Tt,X = Tu,X = Kell(1, 0)

TX,X = Tx,X = Proc(1)

Tx,Y = Tx,Z = Tx,W = Proc(0)

TY,Y = TZ,Z = TW,W = Proc(0)

Tt,Y = Tt,Z = Tt,W = Tu,Y = Tu,Z = Tu,W = Kell(0, 0)

From Γ and the typing rules, we may type UNIV ERSE. In other words,
we proved that UNIV ERSE complies with our resource policy. Also notice
that the typing of our macro REC is actually very similar to the typing of
rec in other resource-controlled calculi.

5.4 Discussion

Controlling resources in Controlled Kells is rather similar to the same task
in Controlled Seals, with the added difficulty of the types being given by an
oracle and the added necessity of typed reduction. As in CSeals, Resources are

18

David Teller

Kells and controlling resources is made possible by the structure of movement
along typed channels, which allows a site to limit entry, and by synchroniza-
tion, which allows a site to notice that resources have been deallocated. Un-
fortunately, the unspecified pattern language does not allow direct typing of
mobility and requires that some types to be provided by an oracle in addition
to a property of typed reduction. However, experiments with test pattern-
languages seem to show that simple properties of “cleanness” of patterns and
type annotations are sufficient to replace the oracle types and ensure typed
reduction.

6 Conclusion

Discussion

The languages of Controlled Ambients, Controlled NBA, Controlled Seals,
Controlled Nomadic π and Controlled Kells have been introduced to allow the
analysis and control of resources in mobile, concurrent and distributed set-
tings, through an accurate programming of movements and synchronizations.
We have also enhanced each of these calculi with a type system for static
resource control. We have illustrated each calculus and type system on an
example which could actually be statically controlled without any rewriting
necessary beyond straightforward adaptation to the language.

Methods developed in [16] were applied successfully to all of these for-
malisms. In CA, CNBA, CSeals and CK, the primitive mobile entity is the
site and sites can be nested, thus creating hierarchies. In CNπ, the primitive
mobile entity is the agent, and agents can be nested within immobile sites. In
each case, the mobile entity can be spawned and moved or destroyed, just as
resources may be allocated and released. These entities are thus close to our
definition of resource, “an entity which may at will be acquired, used, then
released.” In all of these calculi, mechanisms permit to control mobility : both
mobility channels or keys (CNBA, CSeals) and strict entity-specific autho-
rizations (CA, CNπ, CK) result in rich type information about mobility with
synchronization between the source space and the target space, generally in
addition to subjective moves, and give the possibility to react to movements
and refuse entry dynamically.

Future work and related works

We have also thought of adapting our techniques to other calculi, such
as the π-calculus or Dπ. The task is complex, since the structure of these
calculi makes the definition of resources very different from what we have been
working in in other calculi. However, we have been making some progress by
using a new kind of cocapability and taking advantace of structural equivalence
and garbage-collection.

Amongst extensions of this work, we are also working on specifying sets of
conditions on Kell-patterns which would be appropriate for Controlled Kell.

19

David Teller

We have also begun to try and understand what is required to control resources
whenever a calculus contains replication, without resorting to replacing it by
recursion. Another aspect we are working on is that of generalizing our notion
of resources to encompass some (possibly complex) aspects of security as well
as some forms of non-renewable resources such as time or money.

Another point we found to be interesting while adapting our examples
to each calculus is that the adaptation of an expression from a resource-
uncontrolled formalism to its resource-controlled counterpart was akin to some
steps of a compilation process, as could be implemented in resource-conscious
compilers for concurrent languages. This compilation-like process is also close
to [12] which adds to Mobile Ambients many primitives directly related to
resources, as would exist in a compiler’s target language. Note that these
primitives could probably be adapted to other languages as well and that
they permit to control a modified form of replication, but that they seem less
flexible than our additions when it comes to specifying resource policies.

Boxed Ambients with Guardians, as introduced in [7], are another attempt
at controlling resources in Boxed Ambients. Guardians are process-like mo-
bility controllers featuring cocapabilities-like prefixes with synchronizations
similar to those of CNBA. However, the actual nature of controlling entities
in CNBA and in Guardians are orthogonal: where CNBA’s control is featured
through regular processes, control in Guardians involves specific entities with
their own semantics – the Guardians. However, to the best of our knowledge,
no type system has been developped to account for resources statically in
Guardians.

Some other form of accounting has also been introduced for Mobile Ambi-
ents in [6], but with very different objectives: to isolate finite-control fragment
of the calculus with decidable model checking w.r.t. Ambient Logics.

Finally, the problem of bounding both time and space resources is ap-
proached in [1] in the case of lambda-calculus.

References

[1] R. M. Amadio. Max-plus quasi-interpretations. Research report 10-2002, LIF,
Marseille, France, Dec 2002. http://www.lim.univ-mrs.fr/Rapports/10-2002-
Amadio.html.

[2] M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS 2001,
LNCS 2215, pages 38–63. Springer Verlag, 2001.

[3] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication Interference
in Mobile Boxed Ambients. In Proc. of FST-TCS’02, volume 2556 of LNCS.
Springer Verlag, 2002.

[4] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of
Software Science and Computation Structures: First International Conference,

20

David Teller

FOSSACS ’98, volume 1378, pages 140–155. Springer-Verlag, Berlin Germany,
1998.

[5] G. Castagna and F. Zappa. The seal calculus revisited. In Proc. of 22th
FSTTCS, pages 85–96, 2002.

[6] W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile
ambients. In Proc. of ESOP’02, volume 2305 of LNCS, pages 295–313, 2002.

[7] G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring.
In V. Sassone, editor, F-WAN: Foundations of Wide Area Network Computing,
number 66 in ENTCS. Elsevier Science, 2002.

[8] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus
of mobile agents. In Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR’96), pages 406–421. Springer-Verlag, 1996.

[9] C. Fournet, J.-J. Levy, and A. Schmitt. An asynchronous, distributed
implementation of mobile ambients. In IFIP TCS, pages 348–364, 2000.

[10] J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California,
pages 378–390, New York, NY, 1998.

[11] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press, 2001.

[12] V. Sassone, F. Barbanera, M. Bugliesi, and M. Dezani. Capacity bounded
computational ambients (not published yet). 2003.

[13] A. Schmitt and J.-B. Stefani. The M calculus: A Higher-Order Distributed
Process Calculus. In Proc. of POPL’03. ACM Press, 2003.

[14] J.-B. Stefani. A calculus of Higher-Order Distributed Components. Technical
Report 4692, INRIA, 2003.

[15] D. Teller.
Formalisms for mobile resource control. Technical Report (draft), LIP, 2003.
http://www.ens-lyon.fr/~dtelle/recherche/Publications/mobileresourcesrr.ps.gz.

[16] D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Resources.
In Proc. of CONCUR’02, volume 2421 of LNCS. Springer Verlag, 2002.

[17] A. Unyapoth. Nomadic Pi Calculi: Expressing and Verifying Infrastructure
for Mobile Computation. PhD thesis, Computer Laboratory, University of
Cambridge, june 2001.

[18] J. Vitek and G. Castagna. Seal: A framework for secure mobile computations.
In Lecture Notes in Computer Science, volume 1686 of LNCS. Springer Verlag,
1998.

21

David Teller

Nil Γ `CNBA 0 : Proc(,)[W]
VarName

Γ(n) = W

Γ `CNBA n : W

VarProc
Γ(X) = Proc(u, A)[W]

Γ `CNBA X : Proc(t, A)[W]
u ≥ tNew

Γ `CNBA (νx : T)P : U

Γ, x : T `CNBA P : U

Par
Γ `CNBA P : Proc(tP , l)[L] Γ `CNBA Q : Proc(tQ, l)[L]

Γ `CNBA P | Q : Proc(tP + tQ, l)[L]

Amb

Γ `CNBA M : A
P : Proc(t, A)[] Γ `CNBA A = Amb(s, e)[]

Γ `CNBA M [P] : Proc(f,B)[W]
t ≤ s, f ≥ e

Path
Γ `CNBA M : Cap(m, γ, l) Γ `CNBA N : Cap(n, δ, l)

Γ `CNBA M.N : Cap(m + n, (γ, δ), l)

Prefix

Γ `CNBA M : Cap(m, δ, l)
Γ, δ `CNBA P : Proc(t, l)[L]
Γ `CNBA M.P : Proc(u, l)[L]

u ≥ m + t, u ≥ 0

Enter
Γ `CNBA k : Key(A) Γ `CNBA M : Amb(,)[] A = Amb(, ,)[]

Γ `CNBA enter〈M,k〉 : Cap(0, ∅, A)

Coenter
Γ `CNBA k : Key(A) A = Amb(, e)[] δ = {x : A}

Γ `CNBA enter(x, k) : Cap(e, δ,)

Exit
Γ `CNBA k : Key(A) Γ `CNBA M : Amb(,)[]

Γ `CNBA exit〈M,k〉 : Cap(0, ∅, A)

Coexit
Γ `CNBA k : Key(A) A = Amb(s, e)[T] δ = {x : A}

Γ `CNBA exit(x, k) : Cap(−e, δ,)

Snd-Up
Γ `CNBA M : L Γ `CNBA P : T T = Proc(, Amb(,)[L])[]

Γ `CNBA 〈M〉↑ .P : T

Rcv-Up
Γ, x : U `CNBA P : T M : Amb(,)[U]

Γ `CNBA (x : U)MP : T

Rec
Γ, X : Proc(t, A)[U] `CNBA P : Proc(t, A)[U]

Γ `CNBA recX.P : Proc(u, A)[U]
u ≥ t

Fig. 1. Controlled NBA – type system

22

David Teller

Nil Γ `CSl 0 : Proc(t)
Par

Γ `CSl P : Proc(tP) Γ `CSl Q : Proc(tQ)

Γ `CSl P | Q : Proc(tP + tQ)

VarProc
Γ(X) = Proc(t)

Γ `CSl X : Proc(u)
u ≥ t Rec

Γ, X : Proc(t) `CSl P : Proc(t)

Γ `CSl recX.P : Proc(u)
u ≥ t

Receive-Info
Γ, z : W `CSl P : T Γ `CSl c : IChan(W)

Γ `CSl cη(λz).P : T

Emit-Info
Γ `CSl P : T Γ `CSl c : IChan(W) Γ `CSl z : W

Γ `CSl cη(z).P : T

Receive-Move

Γ `CSl P : Proc(t)
Γ `CSl c : MChan(S)

Γ `CSl z1 : S · · · Γ `CSl zn : S

Γ `CSl cη{z1, · · · , zk}.P : Proc(t + k ∗ e)
k ≥ 0,S = Seal(s, e)

Emit-Move

Γ `CSl P : Proc(t)
Γ `CSl c : MChan(S) Γ `CSl z : S

Γ `CSl cη{z}.P : Proc(t− e)
t ≥ e,S = Seal(s, e)

Fig. 2. Controlled Seals – type system

23

David Teller

UnivEps Γ `CNπ ε
UnivPar

Γ `CNπ R1 Γ `CNπ R2

Γ `CNπ R1;R2

Site
Γ `CNπ l : Site(s) Γ `CNπ a : Run(e)

Γ `CNπ l[a]
e ≤ s

RunNil Γ `CNπ ∅ : Run(0)

RunAgent
Γ `CNπ a : Ag(, e) Γ `CNπ P : Proc(t)

Γ `CNπ a {P} : Run(e + t)

RunPar
Γ `CNπ A : Run(eA) Γ `CNπ B : Run(eB)

Γ `CNπ A,B : Run(eA + eB)

Try
Γ `CNπ P : T Γ `CNπ Q : T

Γ `CNπ try c?p = P timeout n→ Q : T

Create
Γ `CNπ a : Ag(g, e) Γ `CNπ P : Proc(t)

Γ `CNπ create a P : Proc(t + e + g)

NewAg

Γ `CNπ k : Ag(g, e) Γ, a : Ag(g, e) `CNπ P : Proc(tP)
Γ, a : Ag(g, e) `CNπ Q : Proc(tQ)

Γ `CNπ agent k as a = P in Q : Proc(tQ)
tP ≤ g

Migrate
Γ `CNπ a : Ag(g, e) Γ `CNπ P : Proc(t) Γ `CNπ t : Site()

Γ `CNπ migrate a to t P : Proc(t′)
t ≤ g

Enter
Γ `CNπ a : Ag(g, e) Γ `CNπ P : Proc(t)

Γ `CNπ enter a P : Proc(t + e + g)

Exit
Γ `CNπ a : Ag(, e) Γ `CNπ P : Proc(t)

Γ `CNπ exit a P : Proc(t− e)
t ≥ e

IfLocal
Γ `CNπ P : T Γ `CNπ Q : T

Γ `CNπ iflocal 〈a〉 c!v then P else Q : T

Fig. 3. Controlled Nomadic π – type system

24

David Teller

K-NameProcess
Γ `CK a : Kell(s, e)
Γ `CK a : Proc(t)

K-Trig
Γ, γ `CK P : T Γ `CK ξ : Pat(γ)

Γ `CK ξ � P : T

K-Rel
Γ `CK a : Kell(sa, ea) Γ `CK P : Proc(tP)

Γ `CK a � P : Proc(tP − ea)
tP ≥ ea

Fig. 4. Controlled Kells – type system

25

