
Coalgebraic Minimisation of HD-Automata

for the π-calculus Using Polymorphic Types ?

Gianluigi Ferrari, Ugo Montanari, Emilio Tuosto

Dipartimento di Informatica, Via F. Buonarroti 2, 56127 Pisa – Italy

Abstract

We introduce finite-state verification techniques for the π-calculus whose design and
correctness are justified coalgebraically. In particular, we formally specify and im-
plement a minimisation algorithm for HD-automata derived from π-calculus agents.
The algorithm is a generalisation of the partition refinement algorithm for classi-
cal automata and is specified as a coalgebraic construction defined using λ→,Π,Σ, a
polymorphic λ-calculus with dependent types. The convergence of the algorithm is
proved; moreover, the correspondence of the specification and the implementation
is shown.

1 Introduction

One of the main advantages of applying formal methods to system design is the
possibility of constructing an abstraction of systems and their computations
that are, at least at a certain extent, amenable of automatic verification. Sev-
eral process-algebraic techniques have been developed for reasoning about con-
current and distributed systems. For instance, it is possible to verify whether
an implementation is “coherent” with its specification by checking a suitable
behavioural equivalence among them. Another example is the information leak
detection; in [1] the analysis of information flow is done by modelling the sys-
tem as a CCS-process P and then verifying that it is equivalent to restr(P),
another process obtained by opportunely restricting the behaviour of P . A
similar idea has been exploited in [2] for analysing cryptographic protocols in
the spi-calculus.

? This work has been supported by EU-FET project PROFUNDIS IST-2001-
33100.

Email addresses: giangi@di.unipi.it (Gianluigi Ferrari), ugo@di.unipi.it
(Ugo Montanari), etuosto@di.unipi.it (Emilio Tuosto).

Preprint submitted to Elsevier Science 3 May 2004

Finite state automata (e.g., labelled transition systems) provide a foundational
model underlying effective verification techniques of process-algebraic theories
of concurrent and distributed systems. From a theoretical point of view, many
behavioural properties of concurrent and distributed systems can be naturally
defined directly as properties over automata. From a practical point of view, ef-
ficient algorithms and verification techniques have been developed and widely
applied to case studies of substantial complexity in several areas of computing
such as hardware, compilers, and communication protocols. We refer to [3] for
a review.

A fundamental property of automata is the possibility, given an automaton, to
construct its canonical form: The minimal automaton. The theoretical foun-
dations guarantee that the minimal automaton is indistinguishable from the
original one with respect to many behavioural properties (e.g., bisimilarity)
and properties expressed in suitable modal or temporal logics. Minimal au-
tomata are very important also in practice. For instance, the problem of decid-
ing bisimilarity is reduced to the problem of computing the minimal transition
system [4–6]. The algorithm yields the minimal realization of the initial au-
tomaton by “grouping” all the equivalent states in a single state. Moreover, it
is often convenient, from a computational point of view, to verify properties on
the minimal automaton rather than on the original one. Indeed, minimisation
algorithms can be used to attack the state explosion: They yield a small state
space, but still retain all the relevant information for the verification.

Global computing, i.e. networks of stationary and mobile components, are be-
coming the prominent example of large scale distributed systems. The primary
features of a global computing systems are that components are autonomous,
software versioning is highly dynamic, the network coverage is variable and
often components reside over the nodes of the network (WEB services), mem-
bership is dynamic and often ad hoc without a centralised authority. Global
computing systems must be made very robust since they are intended to oper-
ate in potentially hostile environments. Moreover, they are hard to construct
correctly and very difficult to test in a controlled way. Although significant
progresses have been made in developing foundational models and effective
techniques to support formal verification of global computing systems, cur-
rent software engineering technologies provide limited solutions to some of
the issues discussed above. As pointed out by Milner [7] a great challenge is
to ”develop calculi, theories and automated tools that allows descriptive and
predicative analysis of global computing systems at each level of abstraction”.

Name passing calculi (e.g. the π-calculus [8–10]) probably are the best known
and acknowledged models which provide a rich set of techniques for reasoning
about global computing systems. History Dependent automata (HD-automata
for short) have been proposed in [11–14] as a new effective automata-based
model for name passing calculi. HD-automata are made out of states and

2

labelled transitions; their peculiarity resides in the fact that states and tran-
sitions are equipped with names which are no longer dealt with as syntactic
components of labels, but become explicit part of the operational model. This
allows one to model explicitly name creation/deallocation or name extrusion:
These are the basic linguistic mechanisms of name passing calculi.

Depending on the level of abstraction, different definitions of HD-automata
have been provided. They have been characterised as automata over permuta-
tion algebras, whose ingredients are sets of names and groups of permutations
(renaming substitutions) on them. This foundational framework is sufficient
to describe and reason about formalisms with name-binding operations. It
includes various kinds of transition systems providing syntax-free models of
name-passing calculi [15,13,16]. At a more concrete level, HD-automata have
been introduced by exploiting the notions of named sets and named func-
tions; elements of a named set are equipped with names that are defined up
to specific groups of name permutations called symmetries. HD-automata are
defined as coalgebra on a category whose objects are named sets and whose
arrows are named functions. The two definitions above are, at the same time,
equivalent [13] and complementary; indeed, the former is more natural, but
yields infinite automata in all but the simplest cases, while the latter generates
finite (actually quite compact) automata in many cases.

General results concerning coalgebras guarantees the existence of the minimal
HD-automaton up to bisimilarity. In [14] two of the authors specify a declar-
ative coalgebraic procedure to perform minimisation of (finite state) HD-au-
tomata according to the second definition. The algorithm is a generalisation
of the partition refinement algorithm for minimising ordinary automata (up
to bisimilarity) [6].

Coalgebraic specifications have been proved very useful to formally describe
the behaviour of process calculi. However, the development of effective ver-
ification techniques based on coalgebraic foundations has had more limited
success. The present paper intends to explore this issue. In particular we will
address the following question:

Can we define effective verification techniques for name passing calculi which
can be justified coalgebraically?

The main results of this paper are

(1) a coalgebraic theory for the π-calculus,
(2) a minimisation algorithm whose design and correctness are justified coal-

gebraically.

In particular, we illustrate the features of the framework in the development
of a toolkit, called Mihda, providing facilities to minimise labelled transition

3

systems for name passing calculi.

A distinguished feature of our approach is the exploitation of a polymorphic
λ-calculus, λ→,Π,Σ [17], for describing data and control components of the min-
imisation procedure. The type system of λ→,Π,Σ encompasses polymorphic and
dependent types. We exploit polymorphism for abstracting from unimportant
features (with respect to the minimisation algorithm); for example, it does
not matter which is the type used for representing the states of HD-autom-
ata, the relevant information being the number of names and the symmetry
of each state. Dependent types are useful for expressing functional dependen-
cies among the components of a given construction. For instance, the type of
the symmetries of a named set element includes those groups of permutations
which act on the names of the element.

The calculus λ→,Π,Σ is also an effective basis:

• to drive the implementation choices; for instance, the specification naturally
suggests an ML-like language (we chose ocaml) since the type system of
λ→,Π,Σ is a generalisation of the ML type system.
• to show the correctness of the implementation.

A pure set-theoretic presentation of HD-automata would have work as well
(see the interpretation of λ→,Π,Σ constructs in Section 2.2). However, in this
case we would have two main drawbacks. First, the sets corresponding to the
models of the types should explicitly appear in all constructions instead of the
more compact type expressions. Second, the connection between the coalge-
braic framework and the implementation Mihda would no longer be explicit.
Indeed, Mihda builds directly on the λ→,Π,Σ specification: the ML-types of the
implementation are in one-to-one correspondence with the λ→,Π,Σ specifica-
tion. In other words, the set-based description would have been heavier and
the correctness of Mihda would have been more obscure than in the λ→,Π,Σ

presentation.

Structure of the paper. Section 2 collects the formal ingredients our work
bases on. More precisely, Section 2.1 introduces the basic definitions of coalge-
bras and shortly discusses their adequacy for representing transition systems.
Section 2.2 describes λ→,Π,Σ. Finally, Section 2.3 briefly reviews π-calculus and
its early semantics.

The main results of the paper are in Section 3. In Section 3.1 the types for
the coalgebraic presentation of HD-automata are given. Section 3.2 introduces
the formal coalgebraic specification of HD-automata for the π-calculus. Sec-
tion 3.2.1 details the types needed by π-calculus coalgebras. Section 3.2.2
specifies in λ→,Π,Σ some auxiliary operations exploited in the definition of the
functor, that is presented in Section 3.2.3. Section 3.2.4 defines how π-agents
can be mapped into HD-automata (preserving early bisimulation). The mini-

4

Set
F +3 Set

A

idA

,,

f

��

//

f ;g

��

F(A)

F(idA) =

idF(A)uu

F(f)
��

F(f ; g) =

F(f);F(g)

��

B

g

��

//F(B)

F(g)
��

C //F(C)

Fig. 1. Functor over Set

mization algorithm is given in Section 3.3 where also its convergence on finite
HD-automata is proved.

Section 4 shows the correspondence between the λ→,Π,Σ specification of the
minimization algorithm and Mihda, its actual implementation in ocaml.

2 Preliminaries

This section collects the three ingredients used in the rest of the paper; namely,
coalgebras, λ→,Π,Σ and the π-calculus.

2.1 Coalgebras

Coalgebras provides a very elegant mathematical machinery to describe the
behaviour of process calculi. This section reviews some elementary notions of
coalgebras. In particular, we will restrict our attention on coalgebras over sets
and functions.

Definition 2.1 (Functor) Let C be a category; an (endo-)functor F over C
maps objects to objects and arrows to arrows as follows:

• for each arrow f : A→ B, F(f) : F(A)→ F(B);
• for each object A, F(idA) = idF(A);
• for all arrows f : A→ B and g : B → C, F(f ; g) = F(f);F(g).

Figure 1 gives a graphical representation of how a functor acts over the cat-
egory of sets and functions. The identity mapping of sets and functions, or
the mapping that associates a constant set L to any set A are functors overs

5

Set. Another functor that will be very important in defining coalgebras is the
powerset functor . Let us consider the operation A 7→ ℘(A), i.e. the function
that associates to a set the set of all its subsets and, for a function f : A→ B,
let us consider

℘(f) : ℘(A)→ ℘(B), ℘(f) : U 7→ {f(u)
∣

∣

∣ u ∈ U}.

Then, by definition,

• ℘(idA)(U) = {idA(u)
∣

∣

∣ u ∈ U}, for any U ⊆ A hence, ℘(idA)(U) = U ;

• ℘(f ; g)(U) = {g(f(u))
∣

∣

∣ u ∈ U}, for any U ⊆ dom(f), hence, by defini-

tion, ℘(f ; g)(U) = ℘(g)(℘(f)(U)), for all U ⊆ dom(f) which amounts to
℘(f ; g) = ℘(f); ℘(g).

This proves that the powerset operation is functorial.

Definition 2.2 (Coalgebras, morphism of coalgebras) Let F be a func-
tor on the category C. A F -coalgebra consists of a pair (A, α) such that
α : A→ F(A).

Let (A, α), (B, β) be F-coalgebras. A function f : A −→ B is called a F-
morphism if α;F(f) = f ; β.

A F -coalgebra is a pair 〈A, α : A→ F(A)〉 where α is a function that, given
an element of A, returns “informations” on the element. For instance let
us consider T (X) = L × X, where L is a fixed set, then the coalgebra
〈Q, α : Q→ L×Q〉 can be though of as a deterministic automaton such that,
for each state q ∈ Q, if α(q) = (l, q′) then q′ is the successor state of q reached
with a transition labelled l. Similarly, let T S(X) = ℘(L×X), then the coal-
gebra 〈Q, α : Q→ ℘(L×Q)〉 defines a labelled transition system over L.

Example 2.1 Let us consider a finite-state automaton and its coalgebraic
formulation via the mapping α.

0
a //

b ��>
>>

>>
1

b����
��

�

a
))

b ��>
>>

>>
2

a
ii

b����
��

�

3

c ��>
>>

>>
4

c����
��

�

5

α(0) = {〈a, 1〉, 〈b, 3〉}

α(1) = {〈a, 2〉, 〈b, 3〉, 〈b, 4〉}

α(2) = {〈a, 1〉, 〈b, 4〉}

α(3) = {〈c, 5〉}

α(4) = {〈c, 5〉}

α(5) = ∅

Notice how, for each state q ∈ {0, ..., 5}, α(q) yields all the immediate suc-
cessor states of q and the corresponding labels. Nonetheless the coalgebraic

6

theory we developed is sufficient to effectively address verification issues. In-

deed, (`, q′) ∈ α(q) if, and only if, q
`
−→ q′.

A F -coalgebra (A, α) is final provided that for any F -coalgebra (B, β) there
exists precisely one coalgebra morphism f : (B, β)→ (A, α). Final coalgebras
enjoy some interesting properties: If (A, α) is a final coalgebra then α is an
isomorphism and A can be regarded as giving the canonical solution of the
equation A = F(A).

Final coalgebras do not always exist. For instance, standard cardinality argu-
ments show that the powerset functor ℘() does not admit final coalgebra. For
many functors over sets, however, the final coalgebra exists. It is well know
that for continuous functors the final coalgebra is obtained as the limit of the
terminal sequence

1
!
←− F(1)

F(!)
←− F2(1)

F2(!)
←− . . .

where ! : F(1) → 1 is the unique morphism from F(1) to the one element
set 1. For instance, polynomial functors are continuous and hence have a final
systems [18].

The class of polynomial functors consists of all the functors that we can build
from the constant functor, the identity functor, sum, product and the function
space functor. Notice that the powerset functor is not polynomial. However,
the functor

℘fin(S) = {S ′
∣

∣

∣ S ′ ⊆ S and S ′ finite}

has a final coalgebra. The powerset functor ℘fin() is the standard example
of bounded functor. It has been proved that bounded functors admit final
coalgebras [18].

Throughout this paper we will exploit standard coalgebraic techniques to de-
fine HD-automata and their finite state verification techniques. In particular,
the iteration of the functor along the terminal sequence will converge in a
finite number of steps and will construct the minimal HD-automaton when
applied to a finite HD-automaton. Since all our coalgebraic constructions live
in the category of finite (named) sets we will not construct the final coalgebra:
The image of the functor along the terminal sequence is not final in such a
category because it still is a finite set. Nonetheless, the coalgebraic theory we
developed is sufficient to effectively address the issues related to the design of
verification techniques. Indeed, the iteration of the functor along the terminal
sequence provides a declarative specification of the minimisation algorithm
and the formal machinery to prove its termination is justified coalgebraically.

7

2.2 Overview of λ→,Π,Σ

This section reviews some basic type-theoretic notions underlying the de-
scription of languages which support the organisation of applications into
autonomous (compilable) modules exploiting explicit type information (e.g.
the ML module language). We refer to [17] for a detailed introduction to these
issues.

In type theory, a polymorphic type describes a structure ”having many types”.
Two powerful constructs to describe polymorphic types are the general product
and sum types. A function type t→ t′ describes the type of a function mapping
elements of t into elements of t′. Sometimes to specify the dependence of the
result type on the value of the argument type (i.e. the type t′ is an expression
with free variable x of type t), the function type is written as

∏

x:t t
′. This

function type is called general product of t′ over the index set t.

A type 〈t, t′〉 describes a pair whose components are elements of type t and
elements of type t′. When the value of the type of the first component de-
termines the value of the type of the second component (i.e. the type t′ is
an expression with free variable x of type t) the pair type is written as

∑

x:t

t′.

This type is called general sum of t′ over the index set t. The elements of this
types are pairs 〈a, b〉 with a : t and b : t′[a/x]. General sums are equipped with
projections to extract their components.

General sum types encompass tuple types, indeed, provided that x does not
occur free in t′,

∑

x:t

t′ is equivalent to t × t′. In these cases, we will sometime

write t× t′ instead of
∑

x:t

t′.

We now introduce a summary of the λ→,Π,Σ predicative calculus with products
and sums as reported in [17]. We let U1 and U2 to denote the universes of non-
polymorphic (basic) and polymorphic types, respectively. We assume that the
universe of non-polymorphic types contains a collection of type constructors
and it is closed under product and function space (notice that U1 does not
belong to U2). This allows us to assume type constructors such as lists, trees
or enumeration types over a type t as basic structures of our calculus. The
universe of polymorphic types can be made as rich as the universe of basic
types.

8

The syntax of (pre-)terms M of λ→,Π,Σ is given by:

M ::= U1

∣

∣

∣ U2

∣

∣

∣ bt
∣

∣

∣ M →M
∣

∣

∣

∏

x:M

M
∣

∣

∣

∑

x:M

M

∣

∣

∣ x
∣

∣

∣ c
∣

∣

∣ λx : M.m
∣

∣

∣ MM

∣

∣

∣ 〈x : M = M, M : M〉
∣

∣

∣ I(M)
∣

∣

∣ II(M)

The first line of the grammar gives the syntax of the type expressions, the third
line describes the structure associated with general sums; expressions I(M) and
II(M) are the projections on the components of a pair (i.e. I(〈M1, M2〉) = M1

and II(〈M1, M2〉) = M2). The second line gives the productions of a (typed)
λ-calculus. We will use τ to denote types

The type system is defined by type judgements Γ�M : τ where Γ is type con-
text of the form {x1 : τ1, . . . , xn : τn}, giving the types of variables x1, . . . , xn.
Any of the types τi can be a basic type or a polymorphic type. Type contexts
have to satisfy some well-formedness constraints. Here, we do not present all
the inference rules which express when a context is well formed. To give the
flavour of the type system we present, instead, a sample of the typing rules.
In particular, we will focus on general products and sums.

The following inference rules describe the conditions for forming and handling
general products.

Γ � τ : U2

∏

x:M

Γ, x : τ � τ ′ : U2

Γ �
∏

x:τ

τ ′ : U2

Γ � M :
∏

x:τ

τ ′ Γ � N : τ

∏

x:M

Γ � MN : τ ′[N/x]

Γ � τ : U2 Γ, x : τ � τ ′ : U2 Γ, x : τ � M : τ ′

Γ � λx : τ.M :
∏

x:τ

τ ′

The notation of general product types is reminiscent of the standard notation
for the cartesian products over a family of sets indexed by an index set A:

∏

a∈A

Ba = {f : A→
⋃

a∈A

Ba|∀a ∈ A.f(a) ∈ Ba}, (1)

where, the elements of this type are functions f such that f(a) : t′[a/x], for
each a : t.

The four inference rules below provide the conditions for forming general sums

9

and for handling the associated terms.

Γ � τ : U2 Γ, x : τ � τ ′ : U2

Γ �
∑

x:τ

τ ′ : U2

Γ � M :
∑

x:τ

τ ′

Γ � I(M) : τ

Γ � M :
∑

x:τ

τ ′

Γ � II(M) : τ ′[I(M)/x]

Γ � M : τ Γ, x : τ � τ ′ : U2 Γ � N [M/x] : τ ′[M/x]

Γ � 〈x : τ = M, N : τ ′〉 :
∑

x:τ

τ ′

Similarly to general products, the type of general sums correspond to the
disjoint union of sets

∑

a∈A

Ba = {〈a, b〉|a ∈ A ∧ b ∈ Ba}. (2)

General products and sums of λ→,Π,Σ can be set-theoretically interpreted ex-
actly as in (1) and (2). For instance Henkin models (see Chapter 9 of [17])
interpret each type as a set and, given the polymorphic type τ =

∏

x:τ1

τ2, if τ1 is

interpreted as A, the interpretation of τ is (1), namely, the elements that in-
habit τ are functions from A to

⋃

a∈A Ba (that is the interpretation of τ2[τ1/x])
such that f(a) ∈ Ba, for any a ∈ A.

2.3 The π-calculus

This section briefly summaries syntax and semantics of the π-calculus [8]. We
refer to [19,10] for more detailed presentations.

Given a denumerable infinite set of names N = {x0, x1, x2, . . .}, the set of
π-calculus processes is defined by the syntax

P ::= 0
∣

∣

∣ α.P
∣

∣

∣ P1 | P2

∣

∣

∣ P1 + P2

∣

∣

∣ ν xP
∣

∣

∣ [x = y]P
∣

∣

∣ A(x1, . . . , xr(A))

α ::= τ
∣

∣

∣ x̄y
∣

∣

∣ xy,

where r(A) is the rank of the process identifier A. The occurrences of y in
x(y).P and ν yP are bound; free names are defined as usual and fn(P) in-
dicates the set of free names of agent P . We assume that, for each identi-

fier A, there is a definition A(y1, . . . , yr(A))
def
= PA (with yi all distinct and

10

Table 1
Early operational semantics.

TAU τ.P
τ
−→ P OUT x̄y.P

x̄y
−→ P IN xy.P

xz
−→ P{z/y}

SUM
P1

µ
−→ P ′

P1 + P2
µ
−→ P ′

PAR
P1

µ
−→ P ′

1

P1 | P2
µ
−→ P ′

1 | P2

if bn(µ) ∩ fn(P2) = ∅

COM
P1

x̄y
−→ P ′

1 P2
xy
−→ P ′

2

P1 | P2
τ
−→ P ′

1 | P
′
2

CLOSE
P1

x(y)
−→ P ′

1 P2
xy
−→ P ′

2

P1 | P2
τ
−→ ν y(P ′

1 | P
′
2)

if y 6∈ fn(P2)

RES
P

µ
−→ P ′

ν xP
µ
−→ ν xP ′

if x 6∈ n(µ) OPEN
P

x̄y
−→ P ′

ν yP
x(z)
−→ P ′{z/y}

if x 6= y, z 6∈ fn(ν yP ′)

MATCH
P

µ
−→ P ′

[x = x]P
µ
−→ P ′

IDE
PA{y1/x1, . . . , yr(A)/xr(A)}

µ
−→ P ′

A(y1, . . . , yr(A))
µ
−→ P ′

STRUCT
P ≡ P ′ µ

−→ Q′ ≡ Q

P
µ
−→ Q

fn(PA) ⊆ {y1 . . . yr(A)}) and we assume that each identifier in PA is in the
scope of a prefix (guarded recursion).

The observable actions that agents can perform are defined by the following
syntax:

µ ::= τ
∣

∣

∣ x̄y
∣

∣

∣ x̄(z)
∣

∣

∣ xy;

where x and y are free names of µ (fn(µ)), whereas z is a bound name (bn(µ));
finally n(µ) = fn(µ) ∪ bn(µ). Usually, x is the subject name whereas y and z
are called object names.

The operational rules for the early operational semantics are defined in Table 1.
As usual, we consider π-agents up-to structural equivalence ≡ defined as the
smallest congruence with respect to

- the monoidal laws for the parallel and choice operators,
- α-conversion of bound names,
- [x = y]0 ≡ 0,
- (ν x)(ν y)P = (ν y)(ν x)P and
- (ν x)(P | Q) ≡ P | (ν x)Q, if x 6∈ fn(P).

Several bisimulation equivalences have been introduced for the π-calculus [10];
they are based on direct comparison of the observable actions π-agents can
perform. They can be strong or weak, early, late [8] or open [20]. In this
paper we consider early bisimilarity since it provides the simplest setting for
presenting the basic results of our framework. However, it is possible to treat
also other behavioural equivalences and other dialects of the π-calculus (e.g.
asynchronous π-calculus) [11].

11

Definition 2.3 (Early bisimulation) A binary relation over a set of agents
B is a strong early bisimulation if it is symmetric and, whenever P B Q, we
have that:

• if P
µ
−→ P ′ and fn(P, Q)∩bn(µ) = ∅, then there exists Q′ such that Q

µ
−→ Q′

and P ′ B Q′.

Two agents are said strong early bisimilar, written P ∼ Q, if there exists a
bisimulation B such that P B Q.

3 A minimisation procedure for HD-Automata

This section introduces the formal definitions for types and operations ex-
ploited in the minimisation algorithm on HD-automata for π-agents. Our ap-
proach consists of formally describing the data and the control components of
the minimisation procedure as λ→,Π,Σ expressions. This provides us with some
benefits. First, it enables us to formally prove termination of the minimisation
algorithm. Second, the λ→,Π,Σ specification has to be considered as an inter-
mediate step toward the actual implementation, Mihda. In Section 4 we will
show the strict correspondence between the λ→,Π,Σ specification and Mihda.

Since our construction consists of several interrelated components the types
of λ→,Π,Σ provide an effective mechanism to deal with and control the de-
pendencies among the various components. Moreover, the formal specification
of each component is rather compact and self contained. The set-theoretic
presentation of HD-automata has been given in previous works [13,11]. The
set-theoretic presentations can be viewed as a “macro expansion” of λ→,Π,Σ

types (see Example 3.1). Indeed, all the types introduced in this paper have
set-theoretic models due to the fact that we stick to the finite case.

Before providing the formal definition, we present an intuitive description of
HD-automata. HD-automata aim at giving a finite representation of otherwise
infinite label transition systems. Similarly to ordinary automata, HD-autom-
ata are made out of states and labelled transitions. Their peculiarity resides
in the fact that states and transitions are equipped with names which are no
longer dealt as syntactic components of labels, but become an explicit part of
the operational model. This permits to model name creation/deallocation or
name extrusion that are typical linguistic mechanisms of name passing calculi.

Names in states of HD-automata have local meaning . For instance, if A(x, y, z)
denotes an agent having three free names x, y and z, then agent A(y, x, z) is
different from A(x, y, z), however, they can be both represented by means of
a single state, say q, of a HD-automaton simply by considering a “swapping”

12

σ ds

1
2

3

4

5

lab 02

Fig. 2. A HD-automaton transition

operation on the local names (corresponding to) x and y of q. More generally,
states that differs only for renaming of their local names are identified.

Local meaning of names requires a mechanism for describing how names cor-
respond each other along transitions. Graphically, we can represent such cor-
respondences using “wires” that connect names of label, source and target
states of transitions. For instance, Figure 2 depicts a transition from source
state s to destination state d. State s has three names, 1, 2 and 3 while d has
two names 4 and 5 which correspond to name 1 of s and to the new name 0,
respectively. The transition is labelled by lab and exposes two names: Name 2
of s and a fresh name 0. Notice that name 3 of s is “deallocated” along such
transition.

It is worth to emphasise that name creation is simply handled by associating
in the target state a name not in the source state, while a name in a state s
can be deallocated when it is not involved in any transition from s.

Remark 3.1 In order to avoid cumbersome details regarding the definitions
of λ→,Π,Σ types, we make some simplifying assumptions. First, we assume as
given the primitive types (e.g. boolean, integers, strings...) and also that the
type expressions include enumeration types. Second, we consider sets and op-
erations on sets as primitive in our type language. This is not problematic
since we will deal with finite collection of elements.

3.1 Types for HD-automata

This section introduces the types of named sets, named functions together
with their main features. We describe HD-automata and their minimisation
algorithm as a coalgebra over a functor defined on the category of named
sets. Such category has named sets as objects and named functions as mor-
phisms. Here, λ→,Π,Σ types will be exploited for specifying both objects and
morphisms of the category of named sets. Clearly, because of the set-theoretic
interpretation of λ→,Π,Σ, the category of named sets is a subcategory of Set.
Moreover, since all our constructions lives in the category of finite named sets,
the minimal automaton can be represented by simply exploiting non recursive
types. Indeed, polymorphism allows us to pass to the functor a different type
at each iteration obtained by applying the finite powerset functor; however, all

13

such types can be casted to the type for named sets because of the finiteness
constraint.

A first choice concerns the representation of names. Names must be totally
ordered because names have a meaning local to the state of HD-automata,
hence, they can be arbitrarily renamed. Instead of considering abstract names
(as done in [13]) we exploit a concrete representation of names in terms of
natural numbers ω (with the usual order). We also need to represent finite
sets of names, hence we let N to be the type defined as

N
4
=

∏

n:ω

1 · ·n.

For instance N(4) is the interval of the natural numbers from 1 to 4. By con-
vention, type N(0) is interpreted as the empty set. It is useful to reserve integer
0 for a special purpose, i.e. it always denotes a newly generated name. Hence,
0 only appears in transition labels, while names local to states start from 1.

A permutation algebra is an algebra whose operations are finite kernel 1 per-
mutations of names. In a permutation algebra, permutations are considered
as operations that transform the elements of the support. In [13] a permuta-
tion algebra for π-calculus has been introduced; the support of the algebra is
the set of π-agents where ρ(P) is interpreted as Pρ, namely the application
of substitution ρ to the agent P . In this context sym(P), the symmetry of

P , is defined to be sym(P)
4
= {ρ|Pρ = ρ} (notice that sym(P) is a group of

permutations).

Named sets represent states of HD-automata.

Definition 3.1 (Named sets) The type of named sets is

NS
4
=

∑

Q:U1

∑

.:Q×Q→bool

∑

| |:Q→ω

∏

q:Q

℘fin(N(|q|)→ N(|q|)).

As a matter of notation, for denoting the component of a named set A, we
write QA, .A, | |A and GA in place of using the unwieldy (and less readable)
notation of λ→,Π,Σ based on projections I() and II(). Given a named set A,
we write a ∈ A instead of a : QA.

A named set A lives in a generalised sum type 2 whose first component is a

1 A permutation of names is a bijective functions ρ on the set of names N . A finite

kernel permutation is a permutation ρ such that ρ(n) 6= n for finitely many names.
2 Formally, A should be written as 〈QA, 〈.A, 〈| |A,GA〉〉〉. When it is clear from
the context, we adopt the compact notation 〈QA,.A, | |A,GA〉 that avoids writing
many brackets. The same notational abuse is adopted throughout this paper.

14

type QA, the second component is again a sum type with a function .A that
represents a total order on QA and will be used for determining the canonical
representative in a set of states; function | |A is called the weight function (of
A) and associates the number of names to elements in QA; the generalised
product type of the last component assigns a set of permutations of names
of q, namely, the symmetry of q. In the following we write q .A q′ (q 6.A q′)
instead of writing .A (q, q′) = true (.A (q, q′) = false).

Example 3.1 Let us consider the π-calculus agent A(x, y) given by:

A(x, y)
4
= (ν z)(x̄z.P + ȳz.P).

The state qA that represents A(x, y) has two local names 1 and 2 (namely,
|qA| = 2); the symmetry of qA is the set containing the identity permutations
(of names 1 and 2) and the permutation that exchanges 1 with 2.

The type NS is the finite counterpart of permutation algebras. In other words,
we do not consider permutations as bijections of the whole set of names,
but only as bijections of the “relevant” names of a state that, according to
Definition 3.1, are finite. Indeed, notice that GA(q) plays the role of a symmetry
and is a list of permutations of N(|q|), the names of q, (the natural numbers
in the interval 1, . . . , |q|).

Lemma 3.1 Let 0 be the empty substitution (i.e., the substitution whose do-
main is the empty set of names), then GA(q) = {0} ⇐⇒ |q| = 0.

Proof. The proof follows by Definition 3.1 and by the fact that if |q| = n > 0
and idn is the identity on N(n) then id(q) = q. 2

Hereafter, we often have to compose functions with sets of functions, hence
we adopt the following notation. Given a set of functions F and a function g
such that it can be composed with all functions in F , we let F ; g to denote
the set of functions given by {f ; g|f ∈ F} (symmetrically for g; F). Similarly,
if G is a set of functions that can be composed with all functions in F , then
F ; G = {f ; g|f ∈ F and g ∈ G}.

Transitions among states are represented by means of named functions:

Definition 3.2 (Named functions) The type of named functions is defined
as follows:

NF
4
=

∑

S:NS

∑

D:NS

∑

h:QS→QD

∏

q:QS

℘fin(N(|h(q)|D)→ N(|q|S))

15

Given a named function H : NF, we use the following shorthands:

• domH = I(H),
• codH = I(II(H)),

• hH = I(II(II(H))),
• ΣH = II(II(II(H))),

which correspond to the projections of the sum type NF.

We implicitly assume that, for all elements q ∈ domH

(1) ∀σ ∈ ΣH(q).GcodH
(hH(q)); σ = ΣH(q),

(2) ∀σ ∈ ΣH(q).σ;GdomH
(q) ⊆ ΣH(q),

(3) any function of ΣH(q) is injective.

The type of named functions is a generalised sum type containing the named
sets for source and destination (notice that the type of the destination does
not depend on the type of the source), a mapping h from the source to the
destination and, for each q in the source, there is a set of functions from the
names of h(q) to names of q.

The intuition behind conditions 1, 2 and 3 naturally emerges from the in-
terpretation of named function H as a coalgebraic description of a HD-au-
tomaton: Elements in hH(q) are the possible transitions out of q and ΣH(q)
are the mappings of names of target states of those transitions to names of
q. Symmetries of hH(q) are those name permutations that when applied do
not change hH(q), the set of transition from q. Condition 1 states that any
permutation belongs to the symmetries of hH(q) if, and only if, when it is
applied to any name correspondence σ from the names of the transitions to
the names of q yields a map in ΣH(q). Condition 2 states that the group of
the starting state q does not generate transitions that are not in ΣH(q). Fi-
nally, condition 3 ensures that any name in |q| has a unique “meaning” along
transitions in hH(q).

Remark 3.2 If hH(q) has no name (i.e., |hH(q)| = 0) then GA(hH(q)) is the
singleton {0} that in turn implies that any σ ∈ ΣH(q) is the empty substitution
0.

An ordinary function f on sets induces a partition on its domain. The relation
=f⊆ domf × domf given by

e =f e′ ⇐⇒ f(e) = f(e′)

is an equivalence relation. The kernel of f (ker f) is the partition induced
on domf by =f , namely domf/=f

. Let f and g be two functions such that
domf = domg, we can define f ' g ⇐⇒ ker f = ker g. Relation ' is an
equivalence relation on functions with common domain.

We can lift the concept of kernel to named functions.

16

Definition 3.3 (Kernel of named functions) The kernel of named func-
tion H is the named set such that:

• The underlying set is ker hH ;
• given A, B ∈ ker hH , A . B if, and only if, for some a ∈ A and some

b ∈ B, hH(a) .codH
hH(b), for a ∈ A and b ∈ B;

• the weight of an element A ∈ ker hH is |hH(a)|codH
, for a ∈ A;

• the group of A ∈ ker hH is GcodH
(hH(a)), for a ∈ A.

The named set ker H is obtained by considering the partition induced by hH

on its domain and by exploiting the named set structure of codH for the order,
weight and group components. Notice that, in Definition 3.3, those components
do not depend on the choice of a or b, since any element in Qker H is a set whose
elements have the same image through hH .

Definition 3.4 (Composition of named functions) Let H, K : NF be two
named functions. We say that H and K can be composed if, and only if,
codH = domK, thence the composition of H and K is the named function
H; K such that domH;K = domH , codH;K = codK, hH;K = hH ; hK and ΣH;K =
λq ∈ domH;K.ΣK(hH(q)); ΣH(q).

Proposition 3.1 Let H and K be two named functions that can be composed.
Then, H; K is a named function.

Proof. Let us consider q ∈ domH;K and σ ∈ ΣH;K(q). First, recall that
ΣH;K(q) = ΣK(hH(q)); ΣH(q), therefore, there are σ1 ∈ ΣK(hH(q)) and σ2 ∈
ΣH(q), such that σ = σ1; σ2. We have to show that the conditions 1, 2 and 3
hold.
Condition 1 We must prove that GcodH;K

(hH;K(q)); σ = ΣH;K(q). We first
consider ⊆:

GcodH;K
(hH;K(q)); σ

= Definition 3.4 and σ = σ1; σ2

GcodK
(hK(hH(q))); (σ1; σ2)

= associativity of composition

(GcodK
(hK(hH(q))); σ1); σ2

= Definition 3.2 (condition 1 on K)

ΣK(hH(q)); σ2

⊆ def. of ΣH;K

ΣH;K(q).

17

For the reverse inclusion, we must prove that σ can be written as composition
of a permutation in GcodH;K

(hH;K(q)) and a σ′ ∈ ΣH;K(q). By Definition 3.2,
σ1 ∈ GcodK

(hK(hH(q))); σ′
1, for a suitable σ′

1 ∈ ΣK(hH(q)); this proves the
inclusion.
Condition 2 We must prove that σ;GdomH;K

(q) ⊆ ΣH;K(q), namely, by Defi-
nition 3.4, σ;GdomH

(q) ⊆ ΣK(hH(q)); ΣH(q):

(σ1; σ2);GdomH
(q)

= associativity of composition

σ1; (σ2;GdomH
(q))

⊆ Definition 3.2 (condition 2 on H)

σ1; (ΣH(q))

that completes the proof.
Condition 3 This trivially holds because injectivity is preserved by composi-
tion and, by definition of named function, both ΣK(hH(q)) and ΣH(q) contains
only injective functions and, for any q, ΣH;K(q) = ΣK(hH(q)); ΣH(q), by Def-
inition 3.4. 2

We conclude this section by emphasising that named functions will provide the
formal mean to describe a generic step of the iterative minimisation algorithm.
Intuitively, named functions map states of the automaton in a minimal repre-
sentative state (at the current iteration). In Section 4 the notion of kernel of
a named function will be exploited for specifying blocks, the main data struc-
ture of Mihda. Basically, a block collects those states considered equivalent
at a generic iteration. Hence, the block intuitively corresponds to an element
of the partition induced by the kernel of the named function associated to a
generic step of the iterative algorithm.

3.2 HD-automata for π-calculus

We now present the coalgebraic specification of HD-automata for the early
semantics of the π-calculus. Even if our constructions are tailored to the π-
calculus they can be extended to handle name passing calculi in general.

3.2.1 Bundles for the π-calculus

We represent π-calculus labels through the enumeration type L given by

L
4
= TAU, IN, OUT, BOUT, BIN.

18

We assume that the position of the elements of L gives the ordering relation.
Let | | be the weight map associating to each π-label l a set having as many
indexes as are the names l refers to. The weight map is defined as follows:

|TAU| = ∅ |IN| = |OUT| = {1, 2} |BOUT| = |BIN| = {1}.

No name is associated to the synchronisation label TAU, two names (the sub-
ject and the object of the transition) are associated to IN and OUT, whereas
one name is associated to BOUT and BIN labels. All but label BIN have a corre-
sponding label in the transition system of π-calculus illustrated in Section 2.3.
Transitions labelled by BIN correspond to π-calculus input transitions whose
object name is fresh, namely, the object name does not appear in the free
names of the agent performing the transition. As usual in the π-calculus liter-
ature, we call bound input such transitions, while bound transitions either are
bound output or bound input transitions. Non bound transitions are called
free transitions. Notice that, according to the early semantics of π-calculus,
there is an infinite number of bound transitions out of a state of the form
xy.P or (ν y)x̄y.P , however, they all are equivalent up to renaming of the
fresh name. Therefore, they can be represented by means of a single BIN or
BOUT transition in the HD-automata for π-calculus.

Since names are local to states, it is necessary to specify how names occurring
in a transition are related to names of source and target states. Therefore, we
have the following definitions.

The type qd of quadruples is given by

qd
4
=

∏

D:NS

∑

q∈D:

∑

l:L

∑

π:|l|→ω

N(|q|D)→ ω.

Let D : NS be a named set and t : qd(D) be a quadruple on D, then to enhance
readability we will adopt the following shorthands:

τ t
4
= I(t), `t

4
= I(II(t)), πt

4
= I(II(II(t))), σt

4
= II(II(II(t))).

A quadruple t over a named set D represents a transition to state τ t with label
`t. Each transition is equipped with two functions: πt and σt that map indexes
of `t and names of τ t to suitable names (of the source state of the transition),
respectively. Both πt and σt are needed to establish a relationship between
indexes in labels and names local to states or between names of different
states.

Example 3.2 (Transitions of HD-automata) Let A(x, y)
4
= (ν z)(x̄z.P +

ȳz.P) the π-agents introduced in Example 3.1 the transitions from the state

19

qA(x,y) corresponding to A(x, y) are described by the quadruples

t1 = 〈qP , `1, π1, σ1〉 t2 = 〈qP , `2, π2, σ2〉

where qP is the state corresponding to P , `1 = `2 = BOUT π1 : 1 7→ x and
π2 : 1 7→ y. Moreover, assuming that z ∈ fn(P), both σ1 and σ2 map z to
the fresh name 0. Finally, if fn(P) = ∅ then both σ1 and σ2 would be the
empty substitution 0 and the symmetry of qP would have been the singleton
containing 0.

Remark 3.3 In the case of BOUT and BIN labels have to deal with name gen-
eration events. The information about new names is given in σt. As shown in
Example 3.3, if t is a transition which refers to a bound name, then σt maps
the bound name (of t) to 0. In this respect, 0 should be properly considered as
a placeholder that signals name generation events, namely that a name of the
target state has been generated during the transition. No name is mapped to 0
by σt when `t is TAU, IN or OUT.

Definition 3.5 (�) Given two totally ordered sets (A1, .1) and (A2, .2), we
define � to be the relation on functions from A1 to A2 such that f � g if, and
only if,

• either, ∀q ∈ A1.f(q) = g(q)
• or, there is q ∈ A1 such that f(q) 6= g(q) and ∀q′ ∈ A1.q

′ .1 q =⇒ f(q′) =
g(q′) ∧ f(q) .2 g(q).

Proposition 3.2 Relation � is a partial order.

Quadruples can be totally ordered. We have that t v t′ if, and only if,

τ t .D τ t′ ∧ (τ t = τ t′ ⇒ `t ≤ `t′ ∧ (`t = `t′ ⇒ πt � πt′ ∧ (πt = πt′ ⇒ σt � σt′))).

The intuition is that v is a lexicographic ordering obtained by taking advan-
tage of the ordering relations on the quadruple components. The relevance of
v will emerge later to define the action of the functor over HD-automata for
π-agents.

Proposition 3.3 Relation v is a total order.

We call bundle the collection of transitions out of a state. Bundles are described
by type B below:

B
4
=

∑

D:NS

℘fin(qd(D)).

A bundle over a named set D is a pair 〈D, S〉 where D is a named set and S is
a finite set of quadruples on D. As usual, we assign names to the components
of a bundle β : B; the support of β is I(β) and is denoted by Dβ, while the step
of β, denoted by Sβ, is II(β).

20

We can lift the total ordering v to bundles (over the same support).

Definition 3.6 (Bundles’ ordering) Let β1, β2 : B be two bundles such that
Dβ1 = Dβ2 and let ti be the minimal quadruple in Sβi

(for i = 1, 2). We say
that β1 is smaller than β2 (and write β1 - β2) if, and only if,

• either Sβ1 is empty,
• or t1 v t2 and t1 6= t2,
• or else t1 = t2 and 〈Dβ1 ,Sβ1 \ {t1}〉 - 〈Dβ1,Sβ2 \ {t2}〉.

Intuitively, - corresponds to the lexicographic order on the second components
of the bundles.

Proposition 3.4 Relation - is a total order.

3.2.2 Auxiliary Operations

We now show how bundles can be casted to named sets. Since Definition 3.6
provides an order on bundles, it suffices to define the names and the group of
a bundle.

The names of a bundle are those names that “appear” in the ranges of πt and
σt of its quadruples t, namely:

{| |}
4
= λβ : B.

⋃

t∈Sβ

⋃

n : |`t|

m : N(|τ t|D)

{πt(n), σt(m)} \ {0};

the weight function on bundles is the cardinality of {|β |} (for any bundle β)
and is denoted by bβc.

In the minimisation algorithm, bundles play the role of states along the itera-
tions of the algorithm. Hence, the names of a bundle obey the same constraints
of names of states and, according to Remark 3.3, the natural number 0 should
not be considered a name of the bundle.

Let β be a bundle and ρ be a permutation of its names (ρ permutes {| β |}).
Then βρ denotes the bundle whose support is Dβ and whose step is given by

{〈τ t, `t, πt; ρ, σt; ρ〉| is a permutation of {|β |} ∧ t ∈ Sβ}.

The symmetry of β, Gr(β), consists of all the bijections of {| β |} that leave
(the step of) β unchanged,

Gr(β) = {ρ|ρ is a permutation of {|β |} ∧ Sβ = Sβρ}.

21

The most important operation on bundles is normalisation. This operation
id needed because (i) we must establish a canonical way of choosing the step
component of a bundle among a number of different equivalent ways; (ii)
more importantly, redundant input transitions must be removed. Redundancy
is strictly connected to the concept of active names. A name n is inactive for
an agent P whenever P is bisimilar to (ν n)P , otherwise it is active for P .
Intuitively, a name is inactive if it will not be used in the future transitions of
the process. In general, deciding whether a name is active or not is as difficult
as deciding the bisimilarity of two processes.

Redundant transitions are free input transitions where the received name is
inactive in the source of the transition.

The importance of redundancy emerges when we try to establish the equiv-
alence of states that have different numbers of free names. For instance, the
following π-agents:

P
4
= x(u).ν v(v̄z + ūy), Q

4
= x(u).ūy,

are bisimilar only if, for any name substituted for u, their continuations remain
bisimilar. However, P has a free input transition which corresponds to choice
of name z in the early semantics, while Q has not. Thus, unless this transition
is recognised as redundant and removed, the automata for P and Q would not
be bisimilar. The transition is redundant since it is dominated by the bound
input transition of P , where a fresh name is considered. Being z inactive in
P , choosing name z is like choosing a fresh name.

Redundant transitions occur when HD-automata are built from π-agents. Dur-
ing this phase, it is not possible to decide which free input transitions are
required, and which transitions are redundant 3 . The solution to this problem
consists of adding all the free input transitions when HD-automata are built,
and to exploit a reduction function (at every step of the partition algorithm)
to remove those that are unnecessary.

Figure 3 illustrates the HD-automata corresponding to P and Q (the formal
construction will be presented in Section 3.2.4) 4 . Transition with label IN x z
(drawn with dashed lines) is redundant in the automata of P . States p0 and q0

in Figure 3 are bisimilar because transition from p0 to p2 is redundant since z
is inactive in p0. Transition 〈p2, IN, xz, σ2〉 expresses exactly the behaviour of

3 In general, to decide whether a free input transition is redundant or not is equiva-
lent to decide whether a name is active or not; therefore, it is as difficult as deciding
bisimilarity.
4 The convention adopted for names in the π-component of transitions in Figure 3
is that the name in the i-th position is π(i). For instance, sequence x y stands for
π(1) = x and π(2) = y.

22

y
z

u

y

z

p2

z y
OUT

y

z

p1

u
y

O
U
T

BIN
x, σ =

8

>

>

>

<

>

>

>

:

z 7→
z

y 7→
y

u 7→
0

x

y

p0

x y, σ
3 =

8

<

:

z
7→

z
y

7→
y

IN
y

y

O
U
T

x x, σ1
=

8

>

>

>

<

>

>

>

:

z 7→
z

y 7→
y

u 7→
x

IN

x z, σ2 =

8

<

:

z 7→ z

y 7→ y

IN

p1

p4

(a) HD-automaton for P

x y, σ ′
3 : y

7→
y

IN

u y

OUT

y
y

O
UT

BIN x, σ′
1 =

8

<

:

y 7→ y

u 7→ 0

x x, σ′
2 =

8

<

:

y 7→ y

u 7→ x
IN

x

y

u

y

y

q0
q1

q2

q3

(b) HD-automaton for Q

Fig. 3. Redundant transitions

the bound input, except that a free redundant input transition is used rather
than a bound one. In other words, when the bisimulation game is played, the
free input transition to p2 from p0 plays the same role as the bound input
that “assigns” a name to u that is “not known” in p1. This means that the
automaton for P is equivalent to the automaton obtained by removing the
redundant input transition which is exactly the automaton for Q.

Intuitively, during the iterations of the minimisation algorithm the sets of
redundant transitions of bundles decrease. When the iterative construction
terminates, only those free inputs that are really redundant will be removed
from the bundles.

Notation 3.1 Given a function f , in the rest of the paper, then:

• f [x 7→ y] abbreviates λu.if u = x then y else f(u).
• f |B is the restriction of f to the set B ⊆ domf .

The normalisation of a bundle is done in different steps. First, the bundle is
reduced by removing all the possibly redundant input transitions by applying
the function reduce:

reduce
4
= λβ : B.〈Dβ, Sβ \ {t ∈ Sβ|dominated(β)(t)}〉

where, dominated expresses the condition for quadruples’ redundancy (for the
early semantics) and it is defined as follows:

dominated
4
= λβ : B.λt : qd(Dβ).

`t = IN ∧ 〈τ t, BIN, πt|{1}, σt[σ
−1
t (πt(2)) 7→ 0]〉 ∈ Sβ.

The underlying intuition is that a transition t is dominated in a bundle β
when it is a free input transition and β contains a bound input transition to
the same target of t (on the same channel) and such that the object name of
t is mapped on to the 0 name in the bound input transition.

23

Notice that not all dominated transition are redundant transitions. Dominated
transitions are only used to compute the active names of a bundle. The active
names are those names of the reduced bundle defined by:

an
4
= λβ : B.{| reduce(β) |}.

We want to point out that the concept of active names of a bundle is different
from the concept of active names of a process. Active names of a bundle do
not involve any notion of “future” behaviour; they are characterised in terms
of a local property of the bundle.

We use function rem in to remove input transitions from a bundle if their
object names are not in a given set of names. Function rem in is defined as
follows:

rem in
4
= λβ : B.λN : ℘fin(ω).Sβ \ {t ∈ Sβ|`t = IN ∧ πt(2) 6∈ N}.

Finally, the normalisation of a bundle is obtained by applying the function
norm.

norm
4
= λβ : B.

let β′ = rem in β (an(β))
in minv(β′θ | θ : an(β)→ N(|an(β)|) is a bijective substitution).

We also define θβ to be the bijective substitution for which the minimal bundle
is achieved, i.e. (rem in β (an(β)))θβ = norm β.

Observation 3.1 The definition of norm requires existence of a minimal (rep-
resentative) bundle. Recalling that, for any bundle β, Sβ is finite (by definition)
and the set of names of β is finite, we conclude that the set

{β ′θ | θ : an(β)→ N(|an(β)|) is a bijective substitution}

is finite as well, therefore, the minimal element exists since v is a total order.

Basically, norm, applied to a bundle β, filters those input transitions that are
dominated in β and whose object names are no longer active names of the
(reduced) bundle. The remaining transitions are collected in a bundle β ′ and
the substitution which makes β ′ minimal is applied to it.

We have the following results.

Lemma 3.2 If β, β ′ : B are such that Sβ ⊆ Sβ′ , and let β1 = norm β and
β ′

1 = norm β ′ then Sβ1 ; θ
−1
β ⊆ Sβ′

1
; θ−1

β′ .

Proof. The thesis easily follows from the definition of application of a sub-
stitution to a bundle. 2

24

Lemma 3.3 For each β : B, Snorm β ⊆ Sβ; θ−1
β .

Proof. By construction, norm β is the bundle obtained by removing domi-
nated quadruples from β and by renaming its names through θ−1

β . 2

Intuitively, Lemma 3.3 states that β “includes” the bundle resulting from
its normalisation. Sometimes we will write β1 ⊆ β2 instead of Sβ1 ⊆ Sβ2 .

3.2.3 The functor for π-calculus

This section describes the functor T for the π-calculus. As usual [21], we
represent T as a pair (T1, T2), where T1 maps objects to objects, while T2

maps morphisms to morphisms. Map T1 is defined in Figure 4. When applied

T1
4
=λA : NS.
〈 B = QA × ℘fin(qd(QA)),

. = λ(β, β ′) : B ×B.
if Sβ = ∅

then tt

else

let t = minv(Sβ) in

let t′ = minv(Sβ′) in

t v t′ ∧ (t = t′ =⇒ Sβ \ {t} . Sβ′ \ {t′}),
| | = λβ : B. bβc,
λβ : B.Gr(β)
〉

Fig. 4. Functor on named sets

to a named set A, it returns a named set whose components are described
below:

• the underlying set is characterised by the type of bundles over A;
• the order relation is the order on bundles induced by the order of A (Defi-

nition 3.6);
• the weight function is the function that gives the number of names appearing

in the quadruples of the bundle;

Notice that T1 requires the existence of a minimal quadruple; this is indeed
the case because Sβ is a finite set of quadruples, for any bundle β.

Figure 5 illustrates the actions of the bundle on named functions through the
map T2. The named function resulting from applying T2 to H is a function
such that

25

T2
4
=λH : NF.

let S = T1(domH)
and D = T1(codH)
and h′ = λβ ∈ S.

〈codH , {〈hH(q), `, π, σ′; σ〉 | 〈q, `, π, σ〉 ∈ Sβ ∧ σ′ ∈ ΣH(q)}〉
and h = λβ ∈ S.norm h′(β)
and Σ = λβ ∈ S.{ρ; θ−1

h′(β)|ρ ∈ Gr(h(β))}

in 〈S, D, h, Σ〉

Fig. 5. Functor on named functions

• the domain is obtained by applying T1 to domH ;
• the codomain is obtained by applying T1 to codH ;
• the function hT2(H) maps each bundle in the domain to a normalised bundle

in the codomain;
• for each bundle β, the set of its name correspondences is obtained by com-

posing symmetry Gr(hT2(H)(β)) with θ−1
β to undo the normalisation of names

performed by computing norm.

We now prove that map T2 is functorial, i.e. it preserves composition and
identity.

Proposition 3.5 Let H : NF, K : NF be two named functions that can be
composed. Then,

T2(H; K) = T2(H); T2(K). (3)

Proof. First, we prove that both sides of equation 3 have the same domain
and codomain.

domT2(H;K) = T1(domH;K) by def. of T2

= T1(domH) by def. of ’;’

domT2(H);T2(K) = domT2(H) by def. of ’;’

= T1(domH) by def. of T2.

A similar proof shows that codT2(H;K) = codT2(H);T2(K).

Second, we show that hT2(H;K) = hT2(H);T2(K). By definition 3.4 and the defini-
tion of T2, we have, for any β ∈ domT2(H),

hT2(H);T2(K)(β) = hT2(K)(hT2(H)(β)) = norm 〈codT2(K), Qβ〉

26

where Qβ is the set of quadruples 〈hK(β ′), `′, π′, σ̄; σ′〉 such that 〈β ′, `′, π′, σ′〉 ∈
ShT2(H)(β) and σ̄ ∈ ΣK(β ′), while the step of hT2(H)(β) is the step of the bundle

norm 〈codT2(H),
⋃

〈q,`,π,σ̂〉∈Sβ

{〈hH(q), `, π, σ̄; σ̂〉|σ̄ ∈ ΣH(q)}〉,

and, by Lemma 3.3,

ShT2(H)(β) ⊆
⋃

〈q,`,π,σ̂〉∈Sβ

{〈hH(q), `, π, σ̄; σ̂〉|σ̄ ∈ ΣH(q)}. (4)

Let us now consider function hT2(H;K):

hT2(H;K)(β) = norm 〈codT2(H;K),
⋃

〈q,`,π,σ̂〉∈Sβ

{〈hH;K(q), `, π, σ̄; σ̂〉|σ̄ ∈ ΣH;K(q)}〉.

Hence, hT2(H;K)(β) = norm 〈codT2(K),S〉 where, S contains all quadruples of
the form 〈hK(hH(q)), `, π, σ̄; σ̂〉 such that

〈q, `, π, σ̂〉 ∈ Sβ and σ̄ ∈ ΣK(hH(q)); ΣH(q).

This, together with (4), implies that (for any β) Qβ ⊆ ShT2(H;K)(β). Moreover,
hT2(H);T2(K) ⊆ hT2(H;K)(β) follows by Lemma 3.2.

In order to prove that hT2(H);T2(K) = hT2(H;K)(β) holds, it remains to show that
hT2(H;K)(β) ⊆ hT2(H);T2(K). If t ∈ ShT2(H;K)

and the label of t is not IN, then
t ∈ ShT2(H);T2(K)

. Since t can be in ShT2(H;K)
\ ShT2(H);T2(K)

only if t is dominated
in ShT2(H);T2(K)

, in this case there is a BIN transition in ShT2(H);T2(K)(β) that
dominates t and, recalling that ShT2(H);T2(K)(β) ⊆ ShT2(H;K)(β), then t would
be dominated also in ShT2(H;K)(β). This contradicts the hypothesis that t ∈
ShT2(H;K)(β).

Finally, we show that ΣT2(H;K) = ΣT2(H);T2(K). By definition of composition of
named functions we have

ΣT2(H);T2(K)(β) = ΣT2(K)(hT2(H)(β)); ΣT2(H)(β),

hence

ΣT2(H);T2(K)(β) = (Gr(hT2(K)(hT2(H)(β))))θ−1
hT2(H)(β); (Gr(hT2(H)(β))θ−1

β).

Moreover, θ−1
hT2(H)(β) is the identity (because hT2(H)(β) is a normalised bundle,

by definition of T2) then we have

ΣT2(H);T2(K)(β)= Gr(hT2(K)(hT2(H)(β))); (Gr(hT2(H)(β)); θ−1
β)

=
⋃

σ∈ΣT2(K)(hT2(H)(β))

Gr(hT2(K)(hT2(H)(β))); σ (5)

27

(equality (5) by associativity of composition). By Definition 3.2, we conclude
from (5) that ΣT2(H);T2(K)(β) = ΣT2H;K(β). 2

Proposition 3.5 shows that T2 preserves composition. It remain to prove that
identities are also preserved.

Proposition 3.6 Map T2 preserves identities.

Proof. Given a named set A : NS, idA : NF is the named functions such that
domidA = A and hidA

is the identity on QA and, ΣidA
(q) only contains the

identity on names of q, for any q : QA. Thence, it is trivial to see that, by
construction, T2(idA) is the identity named function on T1(A). 2

Proposition 3.7 Map T2 is functorial.

3.2.4 From π-calculus to HD-automata

Following [13], we now construct the HD-automaton corresponding to the early
semantics of the π-calculus. We assume existence of a function n that, given
a π-agents P , returns a pair 〈P̄ , θP 〉 = n(P), where P̄ is the representative of
the class of agents differing from P for a bijective substitution, θP , such that
P̄ = PθP and Pρ = P̄ , for any bijective substitution ρ. Hereafter, we consider
N = {x0, x1, . . . , } totally ordered by relation ≤, where xi ≤ xj if, and only
if, i ≤ j.

In order to have a standard way to choose way the canonical transition (up to
permutations of names) we borrow from [11] the definition of representative
transitions.

Definition 3.7 (Representative transition) A transition P
µ
−→ P ′ is a

representative transition if one of the following conditions applies:

• either µ = τ or µ = x̄y;
• µ = x̄(y) and y = min(N \ fn(P));
• µ = xy and y ∈ fn(P) ∪ {min(N \ fn(P))}.

Intuitively, a representative transition is exploited to single out a transition
in a canonical way from a bunch of bound outputs (that differ only for the
extruded name), and from a bunch of input transitions (that differ in the fresh
name that is received from the environment).

We only use representative transitions in HD-automata that correspond to
π-agents. The following lemma ensures that these transitions are enough to

28

capture agents’ behaviour.

Lemma 3.4 (Lemma 7.6 of [11]) If P
xy
−→ P ′ (resp. P

x̄(y)
−→ P ′) is not a

representative transition, then there is a representative transition P
xz
−→ P ′′

(resp. P
x̄(z)
−→ P ′′) such that P ′′ = P ′[z,y/y,z].

Let P be a π-calculus agent and let 〈P̄ , θP 〉 = n(P). The coalgebraic spec-
ification of the corresponding HD-automaton of P is obtained via a named
function K[P] with domK[P] = D[P] and codK[P] = T1(D[P]).

We first determine QD[P], the set of the states, as follows:

QD[P]
4
=

⋃

P ′∈S[P]

QD[P ′] ∪ S[P],

where S[P]
4
= {P̄} ∪ {P ′

∣

∣

∣ P
µ
−→ P ′ is a representative transition ∧ n(P ′) =

〈P ′, θP ′〉}. Intuitively, QD[P] is the set of (the canonical representative) agents
that can be reached from P (through representative transitions). It is straight-
forward to equip QD[P] with a named set structure, Indeed

• the order .D[P] on QD[P] is the lexicographic order on processes;
• for any q ∈ QD[P], the weight function |q|D[P] yields the cardinality of fn(q);
• for any q ∈ QD[P], the group component GD[P](q) is the identity on fn(q) or

is ∅, depending on fn(q) 6= ∅.

Function hK[P] associates to each state the bundle of its outgoing transitions
and is defined as hK[P] = λq.norm βq where

βq = 〈QD[P], {tµ
∣

∣

∣ q
µ
−→ q′ is a representative transition }〉

and, if 〈q′, θq′〉 = n(q′), quadruple tµ is defined as follows:

tµ =











































































〈q′, TAU, ∅, θ−1
q′ 〉, µ = τ

〈q′, OUT, π, θ−1
q′ 〉, µ = x̄y, π(1) = x, π(2) = y

〈q′, IN, π, θ−1
q′ 〉, µ = xy, y ∈ fn(q), π(1) = x, π(2) = y

〈q′, BOUT, π, θ−1
q′ [θq′(y) 7→ 0]〉, µ = x̄(y), π(1) = x

〈q′, BIN, π, θ−1
q′ [θq′(y) 7→ 0]〉, µ = xy, y 6∈ fn(q), π(1) = x.

Finally, we define ΣK[P](q) = {ρ; θ−1
βq
|ρ ∈ GcodK[P]

(hK[P](q))}, for any state q.

29

The HD-automaton obtained by this definition is a T -coalgebra by construc-
tion and it is a valid HD-automaton.

The construction above may yield infinite HD-automata. However, there are
interesting classes of π-agents that generate finite HD-automata: This is the
case of finitary π-agents. The degree of parallelism deg(P) of a π-calculus
agent P is defined as follows:

deg(0) = 0 deg(µ.P) = deg(A(x1, . . . , xn)) = 1

deg((νννx) P) = deg(P) deg(P |Q) = deg(P) + deg(Q)

deg([x=y]P) = deg(P) deg(P+Q) = max(deg(P), deg(Q))

Agent P is finitary if max{deg(P ′)
∣

∣

∣ P
µ1−→ · · ·

µi−→ P ′} <∞.

By taking advantage of the techniques introduced in [13,11] we have:

Theorem 3.1 Let P be a finitary π-agents. Then the HD-automaton K[P] is
finite.

Proof. Easy. It is sufficient to mimic the proof of Theorem 47 of [13]. 2

Example 3.3 We show how the functor acts by constructing the HD-autom-

aton of agent P
4
= x(u).(ν v)(v̄z + ūy) of Section 3.2.2. Let us assume that P

already is the representative element with respect to n, i.e. n(P) = 〈P, id〉.
Then, by definition, P has the following representative transitions:

P1 = ν v(v̄x + ūy)

P ′
1 = ν v(v̄x + x̄y)

P

xu

==zzzzzzzzzzzzzzzzzz

xz

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

xx
22dddddddddddddddddddddddddddddddd

xy

!!DD
DDD

DDD
DD

DD
DDD

DDD

P2 = ν v(v̄x + z̄y)

P3 = ν v(v̄x + ȳy)

Notice that P1 and P ′
1 are the same up-to a bijective substitution; therefore

they have the same canonical representation, namely P1 = P2 and are repre-
sented by means of a unique state in the automaton. Transitions xx and xu
are distinguished by a different σ in the automaton. Finally, the remaining

representative transitions are P1
ūy
−→ 0, P2

z̄y
−→ 0, and P3

ȳy
−→ 0.

30

In the automaton, the information about the freshness of name u is given by
the σ-function on the bound input transition (i.e. σ1(u) = 0), while, here the
new name u is the minimal name not occurring in fn(P), and is used in the
standard representative P1 of P1.

3.3 The minimisation algorithm in λ→,Π,Σ

This section specifies the minimisation algorithm for HD-automata and proves
that it converges on finite HD-automata. The minimisation algorithm builds
the minimal realisation H̄ of (finite) HD-automata by constructing (approxi-
mations of) the final coalgebra morphism. The kernel of H̄ yields the equiva-
lence classes where equivalent states are grouped together. The active names
of each state q are those in the ranges of ΣH̄(q). Let us observe that Condition
1 in Definition 3.2 guarantees that all functions in ΣH̄(q) have the same range.

Given a T -coalgebra K : NF with named set A as source, we let ⊥ : NS =
〈unit , λx, y : unit .tt, λx : unit .0, ∅〉 to be the empty named set (i.e. the named
set on the vacuum type unit having () as its unique element). The minimisation
algorithm is specified in a declarative way by the equations below.

Initial approximation: H0
4
= 〈A, ⊥, λq : A.(), λq : A.∅〉 (6)

Iterative construction: Hi+1
4
= K; T2(Hi). (7)

Intuitively, in the starting phase of the algorithm, all the states of automaton
K are considered equivalent, indeed, ker H0 gives rise to a single equivalence
class containing the whole domK. At the (i+1)-th iteration, the image through
T2 of the i-th iteration is composed with K as prescribed in (7).

At each iteration, two cases can arise: (i) a class is splitted because the states
that it contains are no longer considered equivalent or (ii) a new active name
is discovered. The algorithm terminates when both these two cases do not
occur. This is equivalent to saying that there Hn+1 is equal to Hn, for some n.

Since we model iterations by means of named functions, we need to establish
when two named functions “are the same”.

Definition 3.8 (Equivalence of named functions) Let H1 and H2 be two
named functions such that domH1 = domH2 . We say that H1 and H2 are
equivalent (written H1∼H2) if, and only if, the following conditions hold:

(1) ker hH1 = ker hH2 ;
(2) ∀q ∈ domH1 .|hH1(q)|codH1

= |hH2(q)|codH2
;

(3) ∀q ∈ domH1 .GcodH1
(hH1(q)) = GcodH2

(hH2(q)).

31

The equivalence of named functions imposes constraints both on names and
groups of partitions. Namely, the number of names and the group of the equiv-
alence classes in ker H1 and ker H2 must be the same. Notice that Definition 3.8
does not imply that H1 and H2 are the same named function when H1∼H2

because the underlying functions hH1 and hH2 can differ each other.

Proposition 3.8 ∼ is an equivalence relation.

In Definition 3.8, codomains of H1 and H2 do not play any role, indeed, only
the symmetries of the images of elements q in the domain are required to be
preserved. Intuitively, this means that we do not care of the “structure” of
the elements in the codomains, but only whether H1 and H2 induce the same
partition on their domains (condition 1) and names have the same meaning
(conditions 2 and 3). Equivalence of named functions is the formal device ex-
ploited for expressing the halting condition of the iterative algorithm. Namely,
the algorithm terminates when Hn+1∼Hn, for some n. This amounts to saying
that, at the (n + 1)-th iteration, all the states remain in the same equiva-
lence class they where in at the n-th iteration (i.e., ker Hn+1 = ker Hn, by
Definition 3.8) and that the number of active names and symmetries remain
unchanged (condition 2 and 3 in Definition 3.8).

The proof of the convergence of the algorithm is based on the fact that T2 is
a monotone functor over a partial order set having finite chains only.

Definition 3.9 (Relation �) Let H1 and H2 be two named functions such
that domH1 = domH2. Relation H1 � H2 holds if, and only if,

• partition Qker H1 is coarser than Qker H2 ;
• ∀A ∈ Qker H1 .∀B ∈ Qker H2 .A ∩ B 6= ∅ ⇒ |A|kerH1

≤ |B|kerH2
;

• ∀A ∈ Qker H1 .∀B ∈ Qker H2 .∀q ∈ A ∩ B.ΣH1(q) ⊆ ΣH2(q).

Proposition 3.9 � is a pre-order.

Proof. Straightforward. 2

Proposition 3.10 Let H1 and H2 be two named functions, then

H1 � H2 ∧ H2 � H1 =⇒ H1∼H2 (8)

Proof. The first two conditions of Definition 3.9 and the hypothesis of (8)
implies the first two conditions of Definition 3.8. It remains to prove that the
hypothesis implies the last condition of Definition 3.8.

Assume that there is q ∈ domH1 such that GcodH1
(hH1(q)) 6= GcodH2

(hH2(q)).

32

Then, for all σ ∈ ΣH1(q),

GcodH1
(hH1(q)); σ 6= GcodH2

(hH2(q)); σ. (9)

Notice that H1 � H2 ∧ H2 � H1 and Definition 3.9 imply ΣH1(q) = ΣH2(q);
and conditions on named functions imply that GcodHi

(hHi
(q)); σ = ΣhHi

(q) (for
i = 1, 2), that contradicts (9). 2

Proposition 3.11 (Monotony of T) T2 is monotone.

Proof. Let Hi : NF (i = 1, 2) be such that H1 � H2; we prove that T2(H1) �
T2(H2). Let (for i = 1, 2) Si = domT2(Hi), Di = codT2(Hi), hi = hT2(Hi) and
Σi = ΣT2(Hi):

• By hypothesis, domH1 = domH2 , hence, by definition of T1, D1 = D2 and,
by construction, .D1=.D2 .
• Given β, β ′ ∈ S1 such that h2(β) = h2(β

′), assume, by contradiction, that
h1(β) 6= h1(β

′). Then, by definition of T2, there is a quadruple t in Sβ

(resp. in Sβ′) s.t. for any t′ in Sβ′ (resp. in Sβ) 〈h1(τ(t)), `(t), σ(t); µ〉 6=
〈h1(τ(t′)), `(t′), σ(t′); µ〉. This yields a contradiction, since there is a t′ ∈ Sβ′

such that

〈h2(τ(t)), `(t), σ(t); µ〉 = 〈h2(τ(t′)), `(t′), σ(t′); µ〉

and H1 � H2 implies that h1(τ(t)) = h1(τ(t′)).
• For all β ∈ S1, |hi(β)|Di

= bhi(β)c (i = 1, 2). Hence, |h1(β)|D1
≤ |h2(β)|D2

by construction; indeed, for any quadruple t ∈ Sβ, |τ(t)|codH1
≤ |τ(t)|codH2

(because H1 � H2), hence the domain of the functions in Σ1(τ(t)) is included
in the domain of the functions in Σ2(τ(t)), therefore, also their ranges are
in the same inclusion relations.
• Let β ∈ domH1 be such that bh1(β)c = bh2(β)c and by construction (i =

1, 2)

Σi = map (λρ : N(bhi(β)c)→ N(bhi(β)c).ρ; θ−1
β) Gr(hi(β)).

By hypothesis, ΣH1 ⊆ ΣH2 , hence, by definition of T2, by applying

map (λµ : ΣH(β).〈hH(τ t), `t, πt, σt; µ〉) ΣH(τ t) (10)

to H1 we obtaining a number of quadruples less or equal that the application
of (10) to H2. Therefore, Gr(h1(β)) ⊆ Gr(h2(β)) which imply that Σ1 ⊆ Σ2.

2

Monotony is preserved by composition of named functions, as stated by the
following proposition.

33

Proposition 3.12 (Composition and ordering) Let H1, H2 be two named
functions such that H1 � H2. For any K : NF if codK = domH1 = domH2 then
K; H1 � K; H2.

Proof.

• By definition of composition domK;H1 = domK = domK;H2 and the charac-
teristic functions of K; H1 and K; H2 are obtained by composing the char-
acteristic function of K with those of H1 and H2, respectively.
• For all q, q′ ∈ domK;H1, by definition (K; H2)(q) = (K; H2)(q

′) if, and only
if, H2(K(q)) = H2(K(q′). Hence, H1(K(q)) = H1(K(q′) holds because H1 �
H2 and this implies (K; H1)(q) = (K; H1)(q

′).
• We have that

|q|codK;H1
= |hH1(hK(q))|codH1

by definition of composition

≤ |hH1(hK(q))|codH2
since H1 � H2

= |q|codK;H2
by definition of composition.

• if q ∈ domK;H1, we have ΣK;H1(q) = ΣH1(hK(q)); ΣK(q) (by definition of
composition); since H1 � H2 we have ΣH1(hK(q)) ⊆ ΣH2(hK(q)) hence

ΣH1(hK(q)); ΣK(q) ⊆ ΣH2(hK(q)); ΣK(q),

which is equivalent to ΣK;H1(q) ⊆ ΣK;H2(q).

This concludes the proof. 2

Finally, we can prove the convergence of the iterative algorithm:

Theorem 3.2 (Convergence) The iterative algorithm expressed by Equa-
tions (6) and (7) is convergent on finite state HD-automata.

Proof. First, observe that, by monotony of T and Proposition 3.12, maps
FK(H) = K; T2(H) is monotone. Second, for any H, FK(H) is finite. Finally,
all chains in NF having finite domain are finite, hence, the iterative algorithm
defined in (6) and (7) converges to the maximal fix-point of FK . 2

By definition, for any named function H, T2(H) and H differs each other
because their codomains always differs. However, in Theorem 3.2 we implicitly
refer to the equivalence on NF, i.e. ∼ (Definition 3.8). Relation ∼ is based
on the notion of kernel of named functions, hence, the fix point is a named
functions such that Ĥ∼FK(Ĥ). In other words, Ĥ is an automaton isomorphic
to FK(Ĥ); indeed, despite the representation of the states (i.e. the type of

34

codomains) a bijective correspondence can be established between domĤ and
domFK(Ĥ) such that order, weight and group components are preserved.

We can establish some basic properties of the outcome of the minimisation
algorithm that can be formally characterised.

We first prove the following theorem that the minimisation algorithm does
not “collapse” non bisimilar states.

Theorem 3.3 Let K[P] be the HD-automaton corresponding to a π-calculus
finite control agent P . If Ĥ is the outcome of the minimisation algorithm
applied to K[P] then any two states that are in the same equivalence class of
Qker Ĥ are bisimilar π-calculus agents.

Proof. First, by construction, Ĥ is a named function such that domĤ =
QD[P] (the set of the processes reachable from P up to bijective renaming, as

defined in 3.2.4). Indeed, ker Ĥ induces a partition on QD[P]; two processes,
say Q and R, are in the same class iff hĤ(Q) = hĤ(R). If this is the case, then
Q and R are early bisimilar. Indeed, if we let

R = {〈Q, R〉|Q, R ∈ QD[P] ∧ hĤ(Q) = hĤ(R)}, (11)

then R is an early bisimulation. In order to prove (11), without loss of gener-
ality, we can consider only the representative transitions (see Lemma 3.4).

Let t : Q
α
−→ Q′ be a representative transition. By construction, K[P](Q)

contains a transition representing t, say t̂, built as described in Section 3.2.4.
We distinguish two cases:

(1) If α is not an input transition, then t̂ ∈ Sh
Ĥ

(Q) because, at each iteration,

the functor can only remove input transitions; hence, t̂ ∈ Sh
Ĥ

(R) and,

therefore, t̂ is in K[R], that, by construction, means that R
α
−→ R′, for

some R′

(2) if α is an input transition, then Sh
Ĥ

(Q) either contains a transition corre-
sponding to α or it contains a BIN transition that that cover α. In both
cases, we can apply the same reasoning above to construct R

α
−→ R′.

We still have to prove the transfer property of bisimulation, namely, we must
also guarantee (Q′, R′) ∈ R. Let assume that such a transition does not exist;
hence, hĤ(Q′) 6= hĤ(R′) for all R′ that are α-derivatives of R. By explicitly
expanding the functor definition, at each step, we have

hHi+1
(X) = norm 〈T1(codHi

),
⋃

〈X′,`,π,σ〉∈ShK(X)

{〈hHi
(X ′), `, π, σ′; σ〉

∣

∣

∣ σ′ : ΣHi
(X ′)}〉

then, Sh
Ĥ
(Q) contains a quadruple whose label and mapping correspond to α

35

and whose target state is hĤ(Q′) and since Sh
Ĥ
(Q) = Sh

Ĥ
(R) this quadruple

must also be in hĤ(R) meaning that for some α-derivative R′ of R, hĤ(Q′) =
hĤ(R′), which gives the contradiction. 2

Another property of the algorithm is that it does not distinguishes bisimilar
processes.

Theorem 3.4 Let P and Q be two bisimilar π-calculus agents and Ĥ the
outcome of the minimisation algorithm on K[R], where R = τ.P + τ.Q. Then
hĤ(P̄) = hĤ(Q̄), where n(P) = (P̄ , θP) and n(Q) = (Q̄, θQ).

Proof. First notice that P ∼ Q iff R ∼ τ.P and that P̄ and Q̄ are both in
K[R] since they are τ -derivatives of R. We prove by induction that at each
iteration Hi, hHi

(P̄) = hHi
(Q̄). The proof is trivial for the initial step. Assume

that hHi
(P̄) = hHi

(Q̄) holds at the step i > 0. By expliciting the computation
of the iteration step

hHi+1
(P̄) = norm 〈T1(codHi

),
⋃

〈P̄ ′,`,π,σ〉∈ShK (P̄)

{〈hHi
(P̄ ′), `, π, σ′; σ〉

∣

∣

∣ σ′ : ΣHi
(P̄ ′)}〉,

hHi+1
(Q̄) = norm 〈T1(codHi

),
⋃

〈Q̄′,`,π,σ〉∈ShK (Q̄)

{〈hHi
(Q̄′), `, π, σ′; σ〉

∣

∣

∣ σ′ : ΣHi
(Q̄′)}〉.

Assume that t = 〈hHi
(P ′), `, π, σ〉 ∈ SHi+1(P̄) \ SHi+1(Q̄) and that P

α
−→ P ′′

(where n(P ′′) = (P ′, θP ′′)) is the transition corresponding to the quadruple.
We now reason by case analysis:

• If no quadruple in SHi+1(Q̄) has label corresponding to α then Q 6
α
−→ and this

contradicts the hypothesis P ∼ Q.
• Let hHi

(P ′) 6= hHi
(Q′) hold for any Q′ α-derivative of Q. Since P ∼ Q, there

is Q
α
−→ Q′′ such that P ′′ ∼ Q′′ and n(Q′′) = (Q′, θQ′) that, by induction,

implies hHi
(P ′) = hHi

(Q′), yielding a contradiction.
• The last possibility is that the norm operation removes t from ShHi(Q̄)

while
leaving it in ShH1+i(P̄)

. This is not possible because it would mean that α is a

free input xy and there is a bound input quadruple in ShH1+i(Q̄)
with a name

correspondence function differs from σ just because θQ(x) is mapped on 0.
However, in this case such a bound input quadruple would also belong in
ShHi(P̄)

because P and Q are bisimilar and the target states of the transitions
that bisimulates must have the same set of active names.

This concludes the proof. 2

The proof of Theorem 3.4 builds the automaton for τ.P + τ.Q instead of the
simpler one for P +Q because we need an automaton that has two states that
“syntactically” correspond to P and Q.

36

Theorems 3.3 and 3.4 basically state that, for finite HD-automata, the minimi-
sation algorithm preserves the π-calculus early bisimulation and can be used
for checking bisimilarity between processes.

4 Mihda

The algorithm in Section 3 has been specified by exploiting the parametric
polymorphism of λ→,Π,Σ in a coalgebraic framework. It remains to show that
these elegant theories can be used as a basis for the design and development
of effective and usable verification toolkits.

This section describes our experience in designing and implementing Mihda,
a minimisation toolkit for verifying finite state mobile systems represented in
the π-calculus or in other name passing calculi. The Mihda toolkit 5 cleanly
separates facilities that are language-specific (parsing, transition system cal-
culation) from those that are independent from the calculus notation (bisimu-
lation) in order to facilitate modifications. The type system of ocaml offers all
the necessary features for implementing the λ→,Π,Σ specification of the minimi-
sation algorithm. The main features of ocaml exploited in our implementation
are polymorphism and encapsulation.

Encapsulation is achieved by the module system of ocaml. The module system
of ocaml is similar to the module system of ML [22–24]; its main ingredients
are signatures, structures and functors. The module system separates the sig-
nature, a sort of interface (i.e. definition of abstract data type) from structures,
that are the realizations and roughly are sets of types and values. A structure
satisfying a given signature is said to match that signature and may be pa-
rameterised using functors, that are functions from structures to structures:
An ocaml functor constructs new modules by mapping modules of a given
signature on structures of other signatures.

The following example (borrowed from [17]) defines a structure and its match-
ing signature:

structure S =

struct

type t = nat

val x : t = 7

end;

signature SIG =

sig

type t

val x : t

end;

5 Mihda is available at http://jordie.di.unipi.it:8080/mihda, where also doc-
umentation and examples are provided. A web interface to Mihda can be accesses
via browser at http://jordie.di.unipi.it:8080/pweb.

37

If S.t (resp. S.x) is the type (resp. the value) of S, a functor can be defined
as

functor F (X : SIG) : SIG =

struct

type t = X.t * X.t

val x : t = (X.x,X.x)

end

struct S’ =

struct

type t = nat * nat

val x : nat*nat = (7,7)

end,

where S’ is the structure obtained by applying F to S.

There exists a strong relationships between λ→,Π,Σ and the module system of
ocaml. On the one hand, structure S can be written in λ→,Π,Σ as

S = 〈t : U1 = ω, 7 : t〉 :
∑

t:U1

t,

which amounts to saying that sum types signatures correspond and expression
with that type are the structures matching the signature. For instance, the
ocaml program S.x * 3 becomes II(S) ∗ 3 = II(〈t : U1 = ω, 7 : t〉) ∗ 3; notice
that, since the type of II(S) is I(S), the whole program has type ω. On the
other hand, product types correspond to functors, for instance F can be written
as

λS :
∑

t:U1

t.〈s : U1 = I(S)× I(S), 〈II(S), II(S)〉 : s〉

which has type
∏

S:T

∑

s:U1

s, where T =
∑

t:U1

t. Even though expressive enough for

our purposes, the kind of polymorphism provided by the module system of
ocaml is less powerful than the polymorphism of λ→,Π,Σ; the reason is that sig-
natures, structure and functors can be only used at “top-level” and recursion
is not allowed in their definitions. The reader is referred to [17] for a deeper
discussion on this topic.

Figure 5 illustrates the modules of Mihda and their dependencies. For instance,
State is the module which provides all the structures for handling states and
its main type defines the type of the states of the automata. Domination is the
module containing the structures underlying bundle normalisation. The con-
nections express typing relationships among the modules. For instance, since
states in bundles and transitions must have the same type, then a connection
exists between Bundle and Transitions modules.

The iterative construction of the minimal automaton is parameterised with
respect to the modules of Figure 5. Indeed, the same algorithm can be applied
to different kind of automata and bisimulation, provided that these automata
match the constraints on types imposed by the software architecture. For
instance, the architecture of Mihda has been exploited to provide minimisation
of both HD-automata and ordinary automata (up to strong bisimilarity).

38

Bundle

Block

StatesLabels

Transitions

Automaton

Domination

Fig. 6. Mihda Software Architecture

4.1 Main data structures

We describe the main data structures used in Mihda together with the prop-
erties that are relevant to show adequacy of our implementation to the coal-
gebraic λ→,Π,Σ specification. Moreover, relationships between the “theoretical”
objects and their Mihda counterpart is pointed out.

In the rest of the paper, we will use slanted symbols to denote names for ocaml

functions and variables. A list l is written as [e1; ...; eh] while li denotes its
i-th element (i.e. ei). Finally, we write e ∈ l to indicate that e is an item of
list l. As a general remark, notice that finite sets will be generally represented
as lists. We say that a list x corresponds to a finite set X if, and only if, for
each element e in X there exists e ∈ x such that e corresponds to e.

An automaton is made of three ingredients: Initial state, states and arrows. As
far as finite state automata are concerned, it is possible to represent (finite)
automata by enumerating states and transitions.

Observation 4.1 We assume that 1, .., n are the names of a state having n
names. A permutation over n names may be simply expressed by means of a
list of distinct integers, each belonging to segment 1, ..., n; for instance below
we show how the classical notation for permutations is represented by ρ, a list
of integers







1 ... n

i1 ... in





 , ρ = [i1; ...; in].

With these notations, [2; 1; 3] represents a permutation of 3 elements: Namely,
the permutation that exchanges 1 and 2, and leaves 3 unchanged.

39

We adopt the notation of Observation 4.1 also to represent other functions on
names. In particular, given a quadruple 〈q, `, π, σ〉, π is represented by means
of a list of integers pi whose length is |`| and whose i-th position contains π(i)
(for i = 1, ..., |`|). Finally, σ is a list of integers sigma whose length is m, the
number of names of q and whose i-th element is σ(i), for i = 1, ..., m. We say
that pi (resp. sigma) corresponds to π (resp. σ).

HD-automata are an extension of ordinary automata, since states and labels
have a richer structure carrying information on names. A state may be con-
cretely represented as a triple

type State t =
| State of id : string ∗ names : int list ∗ group: (int list) list

where id is the name of the state; names are the local names of the state and
are represented as a list of integers; the group component is its symmetry, i.e.
the set of those permutations that leave the state unchanged. By the previous
observation, we can represent it as a list of lists of integers.

Definition 4.1 (States correspondence) Let q be a state of a named set
A = 〈Q, ., | |, G〉. An element State(q, names, group) corresponds to q if,
and only if,

• q ∈ Q
• |q| = length names

• group corresponds to G.

Arrows are represented as triples with source and destination states, and label .

type labeltype = string ∗ int list ∗ int list

type Arrow t = Arrow of

source : State t ∗ label : labeltype ∗ destination : State t

Note that type of arrows relies on type for labels. A label for π-agents is a triple
whose first component is an element of Lπ; the second component of a label
is the list of names exposed in the transition; finally, the last component of a
label is a function mapping names in the destination to names of the source
state. An alternative, more simple, definition could have been obtained by
embedding the labeltype in Arrow. Although more adherent to the definition
of bundle given in Section 3.2.1, this solution is less general than the one
adopted, because different transition systems have different labels.

Now we can give the structure which represents automata:

40

type Automaton t =
start : State t ∗ states : State t list ∗ arrows : Arrow t list

The first component is the initial state of the transition system, then the list
of states and arrows are given.

Bundles rely on quadruples over named sets. Essentially, a quadruple is the
transition from a state to another state. Transitions are labelled and, our im-
plementation represents part of information carried by quadruples into labels:

type quadtype = Qd of Arrow.labeltype ∗ State t

type Bundle t = quadtype list

Note that the first component of bundles is not represented. This choice is
possible because implementation always deals with bundles that are obtained
by applying the iterative construction Hi+1 = K;T2(Hi). Therefore, the first
component of these bundles always is SK, the set of states of the initial au-
tomaton.

We can establish a precise connection between quadruples and inhabitants of
quadtype and, therefore, between automata and elements in Automaton t.

Definition 4.2 (Correspondence of quadruples) Let qd be the quadruple
〈q, `, π, σ〉. We say that Qd((lab, pi, sigma), q) corresponds to qd, if, and
only if,

• lab is a string with value `,
• pi corresponds to π,
• sigma corresponds to σ,
• q corresponds to q.

Definition 4.3 (Automata correspondence) The tuple (q, qs, as, S) cor-
responds to the named function K = 〈Q, T (Q), k : Q→ T (Q), Σ〉 iff, qs

corresponds to Q; for each t ∈ k(q) there exists a ∈ as such that, if a =
(s, (lab, pi, sigma), t), then Qd((lab, pi, sigma), t) corresponds to t, and, for
each σ ∈ Σ(q) there is s ∈ S such that s corresponds to σ.

41

4.2 The main cycle

The generic step of the minimization algorithm (Hi+1 = K; T2(Hi)) can be
explicitly written as hHi+1

(q) = norm 〈T1(codHi
), β〉, where

β =
⋃

〈q′,`,π,σ〉∈ShK(q)

{〈hHi
(q′), `, π, σ′; σ〉

∣

∣

∣ σ′ : ΣHi
(q′)}. (12)

Following equation (12), we can compute hHi+1
(q) through the following steps:

(a) determine the bundle of q in the automaton, i.e. hK(q);
(b) for each quadruple 〈q′, `, π, σ〉 in hK(q), apply hHi

to q′, the target state
of the quadruple (yielding the bundle of q′ in the previous iteration of
the algorithm);

(c) compose all σ ∈ Σ(q′) with σ′;
(d) normalise the resulting bundle.

Mihda stores the representation of the minimised automaton at the i-th itera-
tion (i.e. hHi

) in a list of blocks which are the most important data structures
of Mihda. As said, blocks represent the equivalence classes of the kernel of each
iteration and contain all those information for computing the iteration steps
of the algorithm. Indeed, blocks represent both the (finite) named functions
corresponding to the current iteration and its kernel. Hence, at the last iter-
ation a block corresponds to a state of the minimal automaton. A block has
the following structure:

type Block t =
Block of

id : string ∗
states : State t list ∗
norm : Bundle t ∗
names : int list ∗
group : int list list ∗
Σ : (State t → (int ∗ int) list list) ∗
Θ−1 : (State t → (int ∗ int) list)

The fields represent

• the name of the block (id); it is used to identify the block in order to
construct the minimal automaton at the end of the algorithm,
• the states (states) considered equivalent with respect the equivalence rela-

tion used in the algorithm 6 (i.e. early bisimulation),
• the normalised bundle with respect to the block considered as state (norm),

6 We recall that Mihda is parametrised with respect to the equivalence relation.

42

• the list of names of the bundle in norm (names),
• the group of the block (group),
• the functions of the names of the bundle (Σ),
• the function (Θ−1) that maps the names appearing in norm into the name

of q.

Basically, Θ−1 (q) is the function which establishes a correspondence between
the bundle of q and the bundle of the corresponding representative element in
the equivalence class of the minimal automaton.

A graphical representation of a block is reported in Figure 7. The element x

θ

q

q

x

Fig. 7. Graphical representation of a block

is the “representative state”, namely it is the representative element of the
equivalence class corresponding to the block. The names of the block and its
group respectively are the names and the group of x (graphically represented
by the arrow from x to itself in Figure 7 that aims at recording that a block also
has symmetries on its names). All those states of the automaton q mapped on x

are collected in the block. Function θq describes “how” the block approximates
the state q at a given iteration. Bundle norm of block x is computed by
exploiting the ordering relations over names, labels and states.

A graphical representation of steps (a)-(d) above in terms of blocks is illus-
trated in Figure 8. Step (a) is computed by the facility Automaton.bundle

that filters all transitions of the automaton whose source corresponds to q.
Figure 8(a) shows that a state q is taken from a block and its bundle is com-
puted.
Step (b) is obtained by applying facility Block.next to the bundle of q. The
operation Block.next substitutes all target states of the quadruples with
the corresponding current block and computes the new mappings (see Fig-
ure 8(b)).
Step (c) does not seem to correctly adhere to the corresponding step of equa-
tion 12. However, if we consider that θ functions are computed at each step
by composing symmetries σ’s we can easily see that θ functions exactly play
the rôle of σ’s. Finally, step (d) is represented in Figure 8(d) and is obtained
via the function normalise in module Bundle.

43

q1

q2

q3

q1

q2

q3

q

x yIN σ

xBIN σ [*/y]

Tau σ3

BIN x q2;s [*/y]

qq

Tau q3;s3

q2

q3

x

x

x

(a) Step 1

q1

q2

q3

q1

q2

q3

x yIN σ

xBIN σ [*/y]

Tau σ3
qq

Tau q3;s3

BIN q2;s [*/y]x

x

q

x

q3

x

q2

(b) Step 2

q1

q2

q3

q1

q2

q3

Tau σ3

x yIN σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2;σ [*/y]

θ2

x

q

θ1

x

θ3

x

(c) Step 3

q1

q2

q3

Tau σ3

q1

q2

q3
x

q
θ

q

θ1

x

x

θ3

x y σ

xBIN

xBIN σ [*/y]

Tau θ3;σ3

θ2;σ [*/y]

IN θ2

(d) Step 4

Fig. 8. Computing hHi+1

The previous operations are computed by function split 7 that divides the
states among the partitions relative to the current iterations.

let split blocks block =
let minimal =

(Bundle.minimise red
(Block.next (h n blocks) (state of blocks)
(Automaton.bundle aut (List.hd (Block.states block))))) in

Some (Block.split
minimal
(fun q →

let normal =
(Bundle.normalise

red
(Block.next (h n blocks) (state of blocks)

(Automaton.bundle aut q))) in

Bisimulation.bisimilar minimal normal)
block)

7 We exploit two ocaml primitive functions on lists. Function head, List.hd, that
takes a list and returns the first element of the list; Function List.map, is the usual
map function of functional languages; given a function f, List.map f [f(e)1; ...; eh]
is the list [f(e1); ...; f(eh)]).

44

let blocks = ref [(Block.from states states)] in

let stop = ref false in

while not (!stop) do

begin

let oldblocks = !blocks in

let buckets = split iter (split oldblocks) oldblocks in

begin

blocks := (List.map (Block.close block (h n oldblocks)) buckets);
stop :=

(List.length !blocks) = (List.length oldblocks) &&
(List.for all2

(fun x y → (Block.compare x y) == 0)
!blocks
oldblocks)

end

end

done ;
!blocks

Fig. 9. The main cycle of Mihda

Let block be a block in the list blocks, function split computes minimal

by minimising the reduced bundle of the first state of block. The choice of
the state for computing minimal is not important: Without loss of generality,
given two equivalent states q and q’, it is possible to map names of q into
names of q’ preserving their associated normalised bundle if, and only if, a
similar map from names of q’ into names of q exists.

Once minimal has been computed, split invokes Block.split with param-
eters minimal and block, while the second argument of Block.split is a
function that computes the current normalised bundle of each state in block

and checks whether or not it is bisimilar to minimal. This computation is per-
formed by function bisimilar (in the module Bisimulation). If bisimilarity
holds through θq then Some θq is returned, otherwise None is returned.

We are now ready to comment on the main cycle of Mihda reported in Fig-
ure 9. Let k = (start, states, arrows) be an automaton. When the algorithm
starts, blocks is the list that contains a single block collecting all the states
of the automata k.

At each iteration, the list of blocks is splitted, as much as possible, by the
function split iter that returns a list of buckets which have the same fields
of a block apart from the name, symmetries and the functions mapping names
of destination states into names of source states. Basically, the split operation
checks if two states in a block are equivalent or not. States which are no longer
equivalent to the representative element of the block are removed and inserted
into a bucket. Then, by means of Block.close block, all buckets are turned

45

into blocks which are assigned to blocks. Finally, the termination condition
stop is evaluated. This condition is equivalent to say that an isomorphism can
be established between oldblocks (that corresponds to ker Hi) and blocks

(corresponding to ker Hi+1). Moreover, since order of states, names and bun-
dles is always maintained along iterations, both lists of blocks are ordered.
Hence, the condition reduces to test whether blocks and oldblocks have the
same length and that blocks at corresponding positions are equal.

5 Concluding Remarks

This paper develops coalgebraic framework to specify HD-automata and their
finite state verification techniques. The formal devices used in this work are
coalgebras and λ→,Π,Σ, a polymorphic λ-calculus. On the one hand, coalgebras
allow us to express transition systems in an elegant mathematical framework.
On the other hand, λ→,Π,Σ is used as a formal specification language that drives
to a smooth implementation.

This approach has a twofold advantage. First, the coalgebraic mathematical
framework accounts for the convergence proof of the minimisation algorithm
on finite HD-automata. Second, using λ→,Π,Σ as a specification language and
ocaml as the implementation language of Mihda, permits to point out the tight
correspondence between the specification and the implementation.

From a programming perspective, our approach enjoys a high level of mod-
ularisation. Indeed, product types and their ocaml counterpart, i.e. modules,
provide the programming guidelines for adding or changing facilities that are
neatly separated in different modules. For instance, Mihda can be used for min-
imising both HD-automata and traditional automata; or else, automata can
be minimised according to different notions of equivalences. We plan to extend
the Mihda toolkit with facilities to handle other notions of equivalences (e.g.
open bisimilarity) and other foundational calculi for global computing (e.g.
the asynchronous π-calculus, the fusion calculus).

Some preliminary results can be found in [25] while some experimental results
of Mihda can be found in [26,27]; and seem quite promising. The π-calculus
specification of the Handover Protocol (borrowed from [28,29]) has been min-
imised running Mihda on a machine equipped with an AMD AthlonTMXP
1800+ dual processor with 1Giga RAM. The time required for minimising the
automata is very contained (few seconds). The size of the minimal automata
in terms of states and transitions is sensibly smaller than their non-minimised
version. (the number of states and transitions in the minimal automaton are
reduced of a factor 7). In the future, we plan to improve efficiency incorporat-
ing supports for symbolic approaches based on Binary Decision Diagrams.

46

As a final comment, we remark that relying on well-known results in coalgebras
(e.g. [18,30]), different strategies for the convergence theorem (Theorem 3.2,
page 34) can be developed. However, the proofs given in this paper have two
advantages: First, they are conceptually more simple and, second, they are
based on those constructions used in the implementation thus providing hints
for correctness of Mihda.

Acknowledgements

We would like to thank the anonymous referees for their comments and sugges-
tions. We are very grateful to Marco Pistore for many interesting discussions
on HD-automata and the minimisation algorithm. We express our gratitude to
Roberto Raggi who had a great role in the implementation of the algorithm.
Finally, we would like to thank Marcello Bonsangue and Frank de Boer for
the way they handled our submission.

References

[1] R. Focardi, R. Gorrieri, A classification of security properties, Journal of
Computer Security 3 (1).

[2] M. Abadi, A. Gordon, A calculus for cryptographic protocols: The spi calculus,
Information and Computation 148 (1) (1999) 1–70.

[3] E. Clarke, J. Wing, Formal methods: State of the art and future directions,
ACM Computing Surveys 28 (4) (1996) 626–643.

[4] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM Journal on
Computing 16 (6) (1987) 973–989.

[5] J. Fernandez, An implementation of an efficient algorithm for bisimulation
equivalence, Science of Computer Programming 13 (2–3) (1990) 219–236.

[6] P. Kanellakis, S. Smolka, CCS expressions, finite state processes and three
problem of equivalence, Information and Computation 86 (1) (1990) 272–302.

[7] R. Milner, Theories for the global ubiquitous computer, in: Foundations of
Software Science and Computation Structures, Vol. LNCS 2987, Springer
Verlag, 2004, pp. 5–11.

[8] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I and II,
Information and Computation 100 (1) (1992) 1–40,41–77.

[9] R. Milner, Commuticating and Mobile Systems: the π-calculus, Cambridge
University Press, 1999.

47

[10] D. Sangiorgi, D. Walker, The π-calculus: a Theory of Mobile Processes,
Cambridge University Press, 2002.

[11] M. Pistore, History dependent automata, Ph.D. thesis, Computer Science
Department, Università di Pisa (1999).

[12] U. Montanari, M. Pistore, History dependent automata, Tech. rep., Computer
Science Department, Università di Pisa, tR-11-98 (1998).

[13] U. Montanari, M. Pistore, π-calculus, structured coalgebras, and minimal
HD-automata, in: M. Nielsen, B. Roman (Eds.), MFCS: Symposium on
Mathematical Foundations of Computer Science, Vol. 1983 of LNCS, Springer
Verlag, 2000, pp. 569 – 578, an extended version will be published on Theoretical
Computer Science.

[14] G. Ferrari, U. Montanari, M. Pistore, Minimizing transition systems for name
passing calculi: A co-algebraic formulation, in: M. Nielsen, U. Engberg (Eds.),
FOSSACS 2002, Vol. LNCS 2303, Springer Verlag, 2002, pp. 129–143.

[15] M. Gabbay, A. Pitts, A new approach to abstract syntax involving binders,
in: G. Longo (Ed.), Proceedings of the 14th Annual Symposium on Logic in
Computer Science (LICS’99), IEEE Computer Society Press, Trento, Italy,
1999, pp. 214–224.

[16] A. Pitts, M. Gabbay, A metalanguage for programming with bound names
modulo renaming, in: R. Backhouse, J. Oliveira (Eds.), Mathematics of Program
Construction, MPC2000, Proceedings, Ponte de Lima, Portugal, July 2000, Vol.
1837 of Lecture Notes in Computer Science, Springer-Verlag, 2000, pp. 230 –
255.

[17] J. Mitchell, Foundations for Programming Languages, MIT press, 1996.

[18] J. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer
Science 249 (1) (2000) 3–80.

[19] R. Milner, Communication and Concurrency, Printice Hall, 1989.

[20] D. Sangiorgi, A theory of bisimulation for the pi-calculus, Lecture Notes in
Computer Science 715.

[21] D. Rydeheard, R. Burstall, Computational Category Theory, Prentice-Hall,
New York, 1988.

[22] R. Milner, M. Tofte, R. Harper, D. MacQueen, The Definition of Standard ML
(Revised), The MIT Press, 1997.

[23] R. Milner, M. Tofte, Commentary on Standard ML, MIT Press, 1991.

[24] J. Ullman, Elements of ML Programming: (2nd ed)., ML97 Edition, Prentice
Hall, 1997.

[25] G. Ferrari, U. Montanari, E. Tuosto, B. Victor, K. Yemane, Modelling and
minimising the fusion calculus using hd-automata, draft (January 2004).

48

[26] E. Tuosto, Non-functional aspects of wide area network programming,
Ph.D. thesis, Dipartimento di Informatica, Università di Pisa, Pisa - Italy,
http://www.di.unipi.it/phd/tesi/tesi 2003/PhDthesis Tuosto.ps.gz

(May 2003).

[27] G. Ferrari, U. Montanari, E. Tuosto, From co-algebraic specifications to
implementation: The Mihda toolkit, in: F. de Boer, M. Bonsangue, S. Graf,
W. de Roever (Eds.), Second International Symposium on Formal Methods for
Components and Objects, Vol. 2852 of Lecture Notes in Computer Science,
Springer-Verlag, 2002, pp. 319 – 338.

[28] B. Victor, F. Moller, The Mobility Workbench — A Tool for the π-Calculus, in:
D. Dill (Ed.), Proceedings of CAV ’94, Vol. 818 of Lecture Notes in Computer
Science, Springer-Verlag, 1994, pp. 428–440.

[29] F. Orava, J. Parrow, An algebraic verification of a mobile network, Formal
Aspects of Computing 4(5) (1992) 497–543.

[30] J. Worrell, Terminal sequences for accessible endofunctors, in: B. Jacobs,
J. Rutten (Eds.), Electronic Notes in Theoretical Computer Science, Vol. 19,
Elsevier, 1999.

49

