Spi Calculus Translated to 7-Calculus Preserving May-Tests *

Michael Baldamus

Joachim Parrow

Bjorn Victor

Department of Information Technology, Uppsala University, Sweden
{Michael.Baldamus,Joachim.Parrow,Bjorn.Victor} @it.uu.se

Abstract

We present a concise and natural encoding of the spi-
calculus into the more basic w-calculus and establish its
correctness with respect to a formal notion of testing. This
is particularly relevant for security protocols modelled in
spi since the tests can be viewed as adversaries. The trans-
lation has been implemented in a prototype tool. As a con-
sequence, protocols can be described in the spi calculus and
analysed with the emerging flora of tools already available
for m. The translation also entails a more detailed opera-
tional understanding of spi since high level constructs like
encryption are encoded in a well known lower level. The
formal correctness proof is nontrivial and interesting in its
own; so called context bisimulations and new techniques for
compositionality make the proof simpler and more concise.

1 Introduction

The current proliferation of computer communication
services and technologies is accompanied by an equally
bewildering plethora of different formal description tech-
niques. There are many different families with different
purposes. Some of them, like the w-calculus [16], aim at
a basic formalism with few and low-level primitives, appli-
cable as a springboard for more high-level and specialised
techniques. As an example the spi calculus [2, 4] is de-
veloped as an extension of it with high-level primitives for
among other things encryption and decryption. This makes
the spi calculus especially appropriate to describe authen-
tication protocols and services. It is natural to ask if the
added complexity of the spi calculus is necessary in a for-
mal sense, or if there is a natural encoding in terms of the
more basic m-calculus. The contribution of this paper is
to exhibit such an encoding together with new proof tech-
niques to establish its properties.

Our encoding is surprisingly natural and concise. The

*Work supported by European Union project PROFUNDIS, Contract
No. IST-2001-33100.

main idea is to represent spi calculus terms as objects with
a number of predefined methods. Encryption corresponds to
creating an object with a special method for decryption; the
object will perform this only when the correct encryption
key is presented. This entails a distributed view of encryp-
tions and avoids a global repository of cleartexts and keys
in the formal model. In other words, we establish that cryp-
tography can be encoded into the 7-calculus along standard
lines of encoding functions and data structures.

The spi calculus is expressively powerful enough to
model not only a large class of authentication protocols but
also a large class of potential adversaries trying to break
them. Thus a formal notion of correctness of a protocol
is that it satisfies tests which themselves are spi calculus
terms. Granted, these tests will not be able to model at-
tacks on the fundamental assumptions (for example that ci-
phertexts can never be decrypted without access to the en-
cryption key and that it is impossible to interfere with the
execution of principals), but they do capture the fact that a
protocol is correct under those assumptions. Our main tech-
nical result of the encoding is that it is faithful to such tests
in a formal sense. Let P be a protocol and E a test, both
formulated in the spi calculus, and let [-] be our encoding
from the spi calculus to the w-calculus. We prove that

P satisfies E iff [P] satisfies [E].

Thus, analyses carried out on the encodings are relevant
for the original spi calculus descriptions. As expected the
formal proof of this is nontrivial. We develop techniques
based on so called context bisimulations previously defined
in higher-order calculi, and new techniques for composi-
tionality make the proof simpler and more concise. To our
knowledge, no equally complicated term-enriched variant
of the 7-calculus has been analysed in this way, with a trans-
lation into 7 that is formally proved adequate.

One implication of our work is that automated analysis
of spi calculus descriptions can be conducted by first trans-
lating them to the 7-calculus. There is today an emerging
flora of automatic tools for the 7-calculus, and we have im-
plemented the translation in a prototype that works with
some of these tools. This opens the opportunity to formally

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)

1043-6871/04 $ 20.00 IEEE

YF]',F.

COMPUTER

SOCIETY

connect the efforts on tools and algorithms related to the
calculi. Of course much work remains to determine exactly
what analyses can be performed effectively and where the
translational approach holds advantages. Existing tools for
calculi like spi (see e.g. [7, 9, 5]) can verify individual prop-
erties, often by analysing traces. There has been progress
also with regard to the more global, equivalence-based ap-
proach (see [10] for a good overview), but to date no tool
seems to exist for that. As equivalence-checking tools ex-
ist for the mw-calculus, we hope that our spi-to-m encoding
might ultimately help in developing such tools.

It has to be pointed out that our translation only pre-
serves may-fests in the way indicated above but not may-
testing equivalence. To be more precise, an easy corollary
of our result is that if the 7-calculus agents [P] and [Q] are
may-equivalent (meaning they pass the same tests) then also
the spi-calculus agents P and () are may-equivalent. How-
ever the converse does not hold: may-equivalence on the
spi side does not imply may-equivalence on the 7-side (cf.
Section 5). In other words, our translation does not solve the
well-known full abstraction problem for may-testing equiv-
alence over the spi calculus.

In the next section we give the formal syntax and seman-
tics of the spi- and w-calculi; the paper is formally self con-
tained although a reader completely unfamiliar with these
calculi will probably have difficulty in appreciating the pa-
per. In Section 3 we present and explain the encoding in
detail, and the following section contains a detailed sketch
of the main technical result. The final section comments on
related and future work.

2 The 7- and the Spi-Calculus

In this section we present the syntax and operational se-
mantics of the versions of the w-calculus and spi calculus
used.

2.1 The Polyadic w-Calculus

We assume an infinite enumerable set N, of names,
ranged over by a,b,.... Names represent communication
channels, and are also the values passed in communication.

m-calculus agents are ranged over by P, (), R, and are
formed by the following grammar:

P =0 | aP | PIQ | P+Q
| wa)P | [a=0bP | P

0 is the deadlocked process which can perform no actions.
a. P can perform the action « and continue as P; P | Q) acts
as P and @ in parallel; (v a) P binds the name ¢ in P and
no process outside P knows about a unless P reveals it by
communication; [a = b] P can proceed as P only if @ and b

are the same; ! P represents any number of copies of P in
parallel. We write (va) P for (vay) - - - (v ag) P where a is
the vector aq - - - ag, k > 0. _

Prefixes, ranged over by «, are outputs a(b) which send
the vector of names b on the channel a, and inputs a(g),
where all names in b are distinct, which receive names on
the channel a and substitute them for b in the prefixed agent.

The v operator and the input prefix are name binders.
We write bn(P) and fn(P) for the bound and free names of
P, respectively. We assume, from now on, that all bound
names are distinct from each other and from all free names.
Also, we identify agents that can be alpha-converted into
each other. The result of substituting a name a for (all free
occurrences of) a name b in an agent P is denoted by P[b :=
a], with the expected extension to equal-length vectors a
and b of names, where all names in b are mutually distinct.

The operational semantics is given in Table 1 (cf. also
[19]), where transition labels, ranged over by u, are inputs
a(b), outputs (v b') @(b) (where b’ C b are extruded by the
output), and the internal action 7.

2.2 The Spi Calculus

The spi calculus extends the 7-calculus with primitives
for encryption, decryption and hashcodes, and pairs and the
natural numbers as basic datatypes. Encryption is assumed
to be perfect, i.e., the possibility to break a cipher by crypto-
analysis, chance, or brute force is ignored. The focus is not
on cryptographic algorithms but on protocols using them.

We assume infinite enumerable sets N,,;, ranged over by
m, n, ..., and V,p;, ranged over by z, y, Ny, repre-
sents communication channels and atomic encryption keys;
Vspi represents variables to be instantiated by communica-
tion.

In the spi calculus, the values sent and received are terms,
ranged over by M, N, K. These are defined by

M ::=n | T name, variable
0 | suc(M) ZEr0, successor
(M,N) pair
{M}n symmetric encryption
{M} N asymmetric encryption
Mt | M- private, public key
hashc(M) hashcode

and the spi calculus agents Ag,;, ranged over by P, @,
R, are defined by

P:=0 | aP | P|Q | (vn)P
|[MisNP | P
| let (z,y) = M in P (pair splitting)

| case M of 0: P suc(z) : Q (integer case)

| case M of [z]y in P (decryption)

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

P+0=P P+Q=Q+P

P|0o=P P|Q=Q|P

(va)P =P ifa ¢ fn(P)

(va)(vb)P=(vdb)(va)P

(P+Q+R=P+(Q+R)
(PIQ)IR=P|(@Q|R)
(va)(P|Q) = ((va) P)|Q ifa ¢ n(Q)

P=Q5Q=P -~ _ @ ~ _ a{ P Lsp P Lsp
© TQ a).P “? p a@y.p X _p i _— bn(x) N (Q) = 0
P Lp P+@Q —P PlQ—P|Q

Pl Pty b= PP gy PR e
P1Q @h)(PQE=0) VNi@ =0 (wa)P “s(va) P weyp LeDIO _p GEONY
“pr i pr G20 _p p 9@ _pr 5

P —p P —p bn(p) A fn(P) = PT - — P N—Pg |~IZ| = |¢|

la=alP P 1P LsP|1P LP To((wb')(P] | Py[c:=b)) | ! P b Nin(P) =0

Table 1. Structural congruence and SOS clauses for late semantics for r-calculus.

The first few agent constructions are familiar from the 7-
calculus. The let and case constructions are used for pro-
jection: pair splitting binds x and y, which must be distinct,
to the first and second component of M and proceeds as P
(if M is a pair); integer case proceeds as P if M is 0 or
binds z to its predecessor and proceeds as) (if M is a pos-
itive natural number); decryption binds x and proceeds as
P if M is a term encrypted with a key matching N.

Prefixes in spi calculus are outputs, N (M), which sends
the term M on the channel N, and inputs, N (z), which re-
ceives a term on N and substitutes it for z in the prefixed
agent. Here the term N must evaluate to a name of a com-
munication channel.

Names are bound by the v operator, while variables are
bound by input prefixes and case constructions. We ex-
tend bn(P) and fn(P) as expected, and write fv(P) for the
free variables of P. We still assume that all bound names
and variables are distinct from each other and from all free
names and variables, and we identify agents that can be
alpha-converted into each other. Substitutions are extended
to terms for variables, P[Z := M]

The operational semantics of the closed agents of our spi
calculus are given by the structural axioms and rules listed
in Table 2 (cf. also [4]).

This semantics is modelled on the one for 7-calculus in
Table 1, where transition labels, ranged over by u, are n(x),
(vm)m(M) and 7. The only essential new ingredient is
that an auxiliary commitment relation is used, intuitively
representing evaluation of terms.

3 The Translation

The main idea of the translation from the spi calculus to
the 7-calculus is to represent spi calculus terms as objects
with a number of predefined methods. Encryption, e.g., cor-

responds to creating an object with a special method for de-
cryption; the object will perform this only when the correct
encryption key is presented.

The main complication turns out to lie in representing
equality. In the spi calculus checking equality of terms is a
primitive operation whereas the 7-calculus only has equal-
ity of atomic names. Therefore each term needs a particular
method to determine if another term is equal; such methods
actually make up the bulk of the encoding.

In the translation N,p; and V,,; are both represented
by N. Spi-calculus agents and terms are translated to 7-
calculus agents where some names (called reserved names)
are used to signal operations on the encodings of terms. Let
P be a spi-calculus agent containing a spi-calculus term M.
In the translation [P] of P there will then occur, for some
name / restricted in [P], the translation [M], of M located
at £, meaning that other parts of [P] will be able to access
the translation of M by using the link £. Over this link a
challenge-response protocol is used to perform operations
on the term. Three names are passed to the term encoding
in the challenge:

¢ representing the operation to perform, e.g., id to get the
identity of an encoded name, or match to check for
equality to another term.

m representing a parameter to the operation, e.g., the loca-
tion of the term to compare with in a match operation;

r being the name of the channel to send a response or re-
sult on. The type of response depends on the operation,
e.g., for id the name being encoded is passed over r,
while for match no object is needed — the synchro-
nization on r in itself means the terms did match.

The names of operations are reserved, i.e. we assume
they do not appear anywhere in the source term or agent.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

P|0o=P P|Q=Q|P
(va)P=P ifa & fn(P)

[Mis M]|P > P

let (z,y) = (M, N) in P > Pl(z,y) i= (M, N)]
case 0 of 0: P suc(z) : Q@ > P

case suc(M) of 0: P suc(z) : Q > Q[z := M]

(P|Q)|R=P[(Q|R)
(va) (wb) P =(vb)(va)P (va)(P|Q)=(ra)P)|Q ifagn(Q)
case {M}y of [z]y in P > Plz := M]

case {{M[}n of [z]y-1 in P > Pz := M]
N =Kt or N = K~ for some K,
where (K~) ' =K*tand (KT) ! =K~

P=QQ=P P>P PP pep2tlp plUPT p g @) g Q) =

P sp P Lspn
P Lsp!
PlQLP|Q (vm)P Es(ym)P

P Lsp P
b

m(M).p 7 _py P1Q i) (P Qz = M)

NmM) p_p ™) gy

pUPT pry g

m(z

nN(Q) =10

'p Lspr|ip

P To((vi)(P] | Pyle := M) |1 P

Table 2. Structural congruence, commitment and SOS clauses for late semantics for spi calculus.

They are described in Table 3. The names private and
public are reserved for the types of asymmetric keys, and
in addition, the reserved name void is used as the parame-
ter m for operations which need no parameter, e.g., the id
operation. There is a standard way of getting rid of such
reserved names: Each time a reserved name is to be sent
in the original encoding, first a number of fresh names are
transmitted, namely exactly one for each reserved name in
the original encoding. Then the actual communication takes
place, using the fresh name that corresponds to the replaced
reserved name. We stick to using reserved names since we
feel that the essence of our encoding can be better presented
in this way.

An agent (or term) operating on an encoded term typi-
cally generates a new name for the result channel, in order to
avoid interference from concurrent accesses. For example,
to check whether two terms located at ¢ and m are equal,
the construction (v) £(match, m, r).r().P could be used,
which will continue as P if the terms match. As a shorthand
for (vr) €(c, m,r).P we often write £{c,m, v r).P.

The type-orthodox reader may notice that our transla-
tion does not properly type the response channel r, which is
sometimes nullary and sometimes unary. Types are out of
the scope of this paper, but introducing a dummy name as
object in the nullary case would remedy the situation.

In the presentation of the translation, we use m-calculus
abstractions of the form (Az) P (ranged over by F') and
applications, defined by ((Az) P)(m) = Pz := m];
we write (Am,n) P for (Am)(An)P and F(m,n) for
F(m)(n). The translation also involves a case analysis on
the terms occurring in the outermost operator of spi agents,
and subterms occurring in terms. Each term (or subterm)

which is not a variable must be recursively translated. (Vari-
ables are represented directly by names, which get substi-
tuted by term locations in inputs.) We write M = F' and
M, N = F for the translated spi calculus term(s) M (and
N) being used by the m-calculus abstraction F'. This is for-
mally defined as follows, where different cases are obtained
depending on whether the parameter(s) of F' be variable(s)
or not.
(vm)([M]pm | F(m))
if M is not a variable

if M 1is a variable

(vm) (vn)([M]m | [N]n | F(m,n))

if M and N are not variables
(vm)([M]m | F(m,N))

if N is a variable but not M
(vn)(F(M,n) | [N].)

if M is a variable but not N
F(M,N)

if both are variables

M,N=F=

This notation will be used both in the following section
which describes the translation of spi-calculus agents, and
the the next which describes the translations of the terms
occurring in agents.

3.1 Translating Agents

The parallel composition, replication, and restriction op-
erators involve no terms, and the translation is homomor-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

return the name n being encoded

— or second component

Name |Term Name [Term Name |Term

Description Description Description

match | all fst |pairs splain | symmetric ciphertexts
synchronize on r if m matches this term ||return the location of the first component || return location of plaintext

id |names scd |pairs sk ey | symmetric ciphertexts

return location of key

zero |O
synchronize on r if O is the encoded term

type | asymmetric keys
return the type of key, private or public

pplain |asymmetric ciphertexts

return location of plaintext

pred [suc(n)
return the location of n

base | asymmetric keys
return the location of k in the key k™ or k™~

pkey
return location of key

| asymmetric ciphertexts

text |hashcodes
return the location of the text hashed

k_match|asymmetric keys
match k against k' for k™ and k'~

decrypt |ciphertexts
if m matches the encryption key,

return the location of plaintext

Table 3. Reserved names for operations on translated terms

phic: [(vn) P] = (vn)[P], [P | Q] = [P] | [Q]. and
[' P] ='[P].

Outputs and inputs use the original subject name as com-
munication channel, but the communicated objects are links
to encodings of terms.

[M(N).P]=M,N = (Am,n)m(id, void,vr). (1)

r(i). @
i(n). 3)
[P] @)

Notes: On line 1, ask the output subject for its identity;
line 2, wait for a reply (carrying the identity, i.e., the name
encoded); line 3, output the link to the output object, and on
line 4, continue.

For the input prefix, note that the bound variable z in
the spi input is syntactically the same as the name « in the
m-calculus input.

[M(z).P] =M = (Am) m({)id,void, vr).
i(z).
[7]

The remaining operators are dealt with using the appropri-
ate operations on the terms involved. Note that for the in-
teger case operator, the two parallel agents in the encod-
ing are mutually exclusive: a term encoding never responds
both on zero and pred operations. Again, the spi variables
z and y bound in let and case are syntactically the same as
the names z and y in the 7-calculus translations.

[[M is N] P] =
M,N = (Am,n) m{match,n,vr). (1)
7()- 2
[]

Notes: On line 1, tell the first term object to match against

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)

1043-6871/04 $ 20.00 IEEE

the second, and on line 2, wait for a reply (indicating that
they did match).

[let (z,y) = M in P] =
M = (Am)m(fst,voidvr).r(z). (1)
m(scd,voidvr).r(y). (2)
[F]

Notes: On line 1, ask for the first sub-object and wait for
a link in return, and on line 2, do the same for the second
sub-object.

[case M of O : Psuc(z) : Q] =

M = (Am) (m(zero,voidvr).r(). (1)
| [7]
m(pred, void v r).r(z).
) [Q]

Notes: Ask the object if it is zero (line 1), and in parallel ask
for a link to a predecessor object. Only one of the challenges
will get a reply.

The decryption operator simply asks the encrypted term
M to decrypt using the key N, binding z to the plaintext
received:

[case M of [z]y in P] =
M,N = (Am,n)m(decrypt,n,vr).

r(z).
[F]

3.2 Translating Terms

In spi calculus ferms are the values sent and received. As
mentioned earlier, their translation into 7r-calculus, [M], is

YF]',F.

COMPUTER
SOCIETY

parameterised by £, which is a link for accessing the encod-
ing of M. We continue to use the M = Fand M,N = F
notations to handle the case analysis on subterms.

Different types of terms handle different operations. If
a term encoding is given an operation it does not handle,
it will simply ignore the challenge and (possibly) let the
“caller” deadlock. This corresponds to a type error in the
source term/agent; again, typing is not in the scope of this
paper. All term translations are replications, which handle
concurrent accesses.

We start by giving the encodings of the two simplest
terms: names n and the constant O, which have no subterms.

[n]e = (e, m,r). 1
([c = id]7(n) ©)

+ [¢c = match] 3)

m(id, void v s). “)

s(z). (5)

[z =n]7() (6)

)

Notes: On line 1, replicate in order to handle concurrent
requests; on line 2, handle an identity request by returning
your true name; on line 3, handle a match request by asking
the other end for its identity (line 4), await a reply (line 5),
and if it’s our identity then reply (line 6).

The encoding of zero is similar but simpler:

[0]c = 14(c,m,T).
([c = zero] 7()
+ [¢c = match]
m(zero, void, r)

The successor, hash code and asymmetric key terms have
a single subterm, and use M =- F' notation.

[suc(M)], =

M = (Am) Unary (¢, pred, m)
[hashc(M)], =

M = (Am) Unary(¢, text,m)
[M*]e =

M = (Am) PKey({, private, m, public)
[M~]e =

M = (Am) PKey({, public, m, private)

The agent Unary handles the simplest unary terms, and
is parameterised by the name of the subterm field; it han-
dles requests for the subterm (line 1 below), and uses the
agent Unary_Match which handles match operations
for unary terms. To handle match, it asks the other ob-
ject for its corresponding subobject (line 2 below) and tells

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)

1043-6871/04 $ 20.00 IEEE

the subobjects to match (line 3).

Unary (¢, sub,n) =
(c,m,r).
([c = sub]7(n) (D
+ [c = match]
Unary_Match(m, sub,n, r)
)

Unary_Match(m, sub,n,r) =
m(sub,voidvs). (2)

().
n(match, z,r) 3)

V)

Asymmetric keys are encoded using PKey, where the
parameters ¢ and u give the type of the key and its comple-
mentary type, and n is the key base, i.e., the location of M
forakey M+ or M.

PKey({,t,n,u) =

(c,m,r).
([c = type]T(t) (H
+ [c = base]| F(n) 2)
+ [c = match] 3)
m(type, void v s). 4)
s(x).
[z =1] 5)
Unary_Match(m, base,n,)

+ [¢ = k_match] (6)
m(type, void v s).
s(x).
[z = u] (N

Unary_Match(m, base,n,)

)

Notes: Lines 1 and 2 simply return the type and base of the
key; on line 3 a match request is handled by asking the other
object for its key type (line 4), checking that it’s the same
(line 5), and then matching the key bases. Line 6 handles a
key match request similarly to a match, but now checking
that the key types are complementary (line 7).

The remaining terms (pairs and encryptions) have two
subterms, and thus use the M, N = F' notation.

II(Ma N)]](=
M,N = (Any,n2) H(c,m,r).
([c = fst]r(nq) (D)
+[c= scd] (no) (2
+ [¢c = match] 3)

Binary_Match(
m, fst, ny,scd, no, r
)

TEEE .2

COMPUTER
SOCIETY

Notes: Lines 1 and 2 handle requests for subcompo-
nents, while line 3 handles match requests using the
Binary_Match agent (see below).

KM}n]e =
M,N = (Am,n)
Cipher(/, splain, m, skey, n, match)

KM n]e =
M,N = (Am,n)
Cipher (¢, pplain, m, pkey, n, k_match)

The Binary_Match agent is parameterised by the op-
erations to access the subterms sub; and subs of m, and
simply “chains” a unary match for each.

Binary_Match(m, suby, n, suby,no, r) =

(vs) (Unary_Match(m, suby,ni,s)
| s().Unary_Match(m, subs, ns,r)

Ciphertexts are created using symmetric or asymmetric
ciphers, and use different operations to access plaintext and
to match encryption keys.

Cipher(¢, plaintext, p, key, k, k_match) =

(c,m,r).

([c = plaintext] r(p) 1
+ [c = key] r(k) 2)
+ [c = match]

Binary_Match(3)

m, plaintext, p, key, k,r

+ [c = decrypt]
k{k_match,m,v s). 4)
) r(p) ®)

Notes: Lines 1 and 2 handle requests for plaintext and key
(i.e. splain/pplain and sk eypkey); line 3 handles match
by matching both plaintext and key; line 4 handles decrypt
requests by first key-matching the supplied key against our
own (using match or k_match for symmetric or asym-
metric keys, respectively), and returning the plaintext if they
match (line 5).

3.2.1 Unique-Plaintext Ciphertexts

Under the assumption that each encryption of a fixed plain-
text generates a new ciphertext, which is the case e.g. if
random padding of the plaintext is used, the encoding can

be optimized slightly, resulting in smaller state spaces: at
line 1 below, a match is successful only if matching against
the same term.

Cipher (¢, plaintext, p, key , k, kmatch) =
(c,m,T).
([c = plaintext] r(p)
+ [c = key] r(k)
+ [¢ = match]
m =€) M
+ [c = decrypt]

k(k-match,m,v s).

4 Preservation of Spi Calculus May-Tests

Testing in the sense of De Nicola and Hennessy [13] rests
on the idea of building an observation scenario for some de-
scription framework for concurrent processes by employing
the expressive power of that framework itself. This goal is
achieved by employing agents as so-called experiments, set-
ting them up in concurrent interaction with agents that are
to be tested and letting those experiments emit some sig-
nal if and when they have reached any success state. There
is a substantial literature about testing over the 7-calculus,
for example by Boreale and De Nicola [12], and Abadi and
Gordon identified may-testing already in [3] as particularly
suitable for the spi calculus since it is generally associated
with safety properties, the ones that are obviously most in-
teresting in connection with spi. We prove that our transla-
tion is adequate with respect to may-tests in the sense that a
spi calculus agent P may pass a spi calculus experiment E
if and only if its translation, [P], may pass E’s translation,
[E]. We state next the formal definitions that are needed
for our purposes and the adequacy theorem itself.

Definition 1

1. An experiment is an agent that may use a distinguished
name $. An action on $ is a success signal.

2. A spior m-calculus agent P may pass an experiment E if
some sequence of 7-steps of the composed agent P | E
has a state in which success is signalled. Formally, we
denote this property by P MAY E.

Theorem 2 Let P and E be a spi calculus agent and ex-
periment, respectively. Then P MAY E if and only if
[P] mAY [E].

A lack of space prevents us from presenting the long and
complex proof of this result. We refer the reader to [6] for
a formal presentation, restricting ourselves here to a largely

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

informal overview. The result is essentially a consequence
of several operational correspondence properties in whose
proofs the actual work lies. By far the most difficult one of
these properties is concerned with going from operational
steps of any agent obtained by translation back to opera-
tional steps or commitments of its pre-image. The trans-
lation induces sequences of steps on the m-calculus side
where there is only a commitment or a single step on the
spi calculus side. Concurrent sequences of this kind can be
interleaved and they can be composed of interleaved sub-
sequences amongst which there is communication. There-
fore we get a very complicated correspondence between the
states of [P] and those of P, where P is any spi agent. The
decisive observation, however, is that it is not imperative to
use a direct operational correspondence. Instead we use an
indirect one, where we rearrange the states of [P] along the
way so that they stay structurally more similar to those of
P. This strategy requires that the rearrangement preserves
bisimulation and two crucial properties of the translation are
needed for that: First, it is compositional with respect to all
static operators, that is, parallel composition, restriction and
replication; second, the translations of terms can be viewed
as resources in the sense of the Replication Lemmas over
the 7-calculus (see, for example, [19]), and we get suitable
agent rearrangements by applying these lemmas.

For the core of the proof of Theorem 2, we need to use
operational semantics without structural congruence since
arbitrary rearrangements due to it would complicate the
compositional arguments as they would have to be distin-
guished from rearrangements of the kind explained in the
previous paragraph. In consequence, we use bisimulation
over both the 7- and the spi calculus to relate our rearrange-
ments to actual states of spi agents and their translations. To
this end, we carry over the notion of context bisimulation
from higher-order process algebra [18] to both calculi. That
gives us a uniform framework to work with and, moreover,
it totally avoids the complications involved in other bisim-
ilarities proposed for the spi calculus (see [10] for a good
recent overview). Our immediate purposes are best served
by the definitions below; the definitions that we actually use
in the proof are equivalent, but are presented somewhat dif-
ferently to make the proof go smoother.

Definition 3 Context bisimilarity on spi calculus agents is
defined to be the largest binary relation ~ ¢yt S0 that P ~ ¢y
() implies:

(v) m(M)

ii. Whenever P ——'— — = —PL—then Q) ——— — — - —

for some Q' s.t. (vn)(R{z := M} | P') ~cxt
(vn)(R{z := M}| Q") for every spi agent expression
R in which at most = occurs as a free variable.

i.ii. Whenever P = (=) B’ then Q = (=) @' for some Q'
s.t. P{z := M} ~cxt Q'{z := M} for every closed

term M.

i.iii. Whenever P =»P’, then) —— Q' for some Q' s.t.
P’ ~ext QI'

ii.i.-iii. Like i.i-i.iii but with) driving the bisimulation
game.

Definition 4 Context bisimilarity on m-calculus agents is

defined to be the largest binary relation ~yq s0 that P~y

@ implies:

i.i. Whenever LVN—M—E(—I))—P’,—~>then Q LV—F)—EN(—b)—Q’—for
some Q' s.t. (V) (R{¢ :=b}|P') ~cxt (W) (R{C:=
b} | Q') for every m agent R, assuming that the names
in ¢ are distinct with |b] = |¢].

i.ii. Whenever P 2@ —P’, then 2@ —6)' for some Q' s.t.
P'{¢ := b} ~ext Q'{C:= b} forevery bwith |¢] = |b].

i.iii. Whenever P == P’, then) ——=Q’ for some Q' s.t.
P’ ~ext Q,-

ii.i.-iii. Like i.i-i.iii but with () driving the bisimulation
game.

The operational correspondences together establish what
could be regarded as a translation-coupled expansion be-
tween P and [P] for any spi agent P. Conventional expan-
sion, that is, expansion where the translation is not directly
built into it, has played a major role in work on translat-
ing the asynchronous - to the wI-calculus, the 7-calculus
where only private names are mobile [8§]. But we need
to formulate our expansion also on the basis of what we
call the ancestor relation (cf. [6]). The ancestor relation
seems to be absolutely necessary for us to handle concurrent
threads of activity on the w-calculus side were each such
thread corresponds to just a single step or commitment on
the spi calculus side. We denote it by « and some schematic
clauses for it are collected in Table 4 on the following page,
where = stands for zero or more 7-labelled transitions, =N
for zero or more T-labelled transitions followed by a transi-
tion labelled with u. An essential property of the ancestor
relation is that its defining clauses are compositional on the
static operators, since that allows us to reason composition-
ally. The other essential aspect is conveyed by those clauses
that are of the form

u
[P]=Q >, =r~ext [P']
P 4Q ’
where the outermost operator of P is a match, let, case or

prefix. They are to be read as follows: It holds that P € @
if

i. @ is equal to [P] or an intermediate state in the 7-
calculus execution trace of P’s outermost operator and

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

[[[M is N] P]] = Q >M=N £>cht [[P]]

[Mis N|P 4Q

[[let (1’1,1’2) = M in P]] = Q >M:(M1,M2) :T>cht [[P[(l’l,l'g) = (Ml,Mz)]]]

let (z1,22) =M in P €4 Q)

[case 0 of 0: P, suc(z) : P] = Q >true =~ext [P1]

case 0 of 0: P, suc(z): P, €4 @

[case M of 0: P suc(z) : Po] = Q >p=suc(ar,) Dvexs [Polz i= Mi]]

case M of 0: P, suc(z) : P» €4 Q
[case M of [z]x in P] = Q >, = ~cx [Plz := M]]

(€-MATCH) 0«40 («-NIL)
P 4@ P 4Q>
P | P, 4Q1]Q2
(4-PAR)
(«4-PAIR) P 4@
(vm)P 4 (vm)Q
(4-ZERO) (4-NEW)
'P «4![P] (4-REP)
(«-sucC)
(4-DEC)

case M of [z]x in P €4 Q

¢ in the above rule stating that (a) M = {M; } or (b) M = {|{M;[}n» and K = (N?)~! for

some N,p=—,+

Table 4. Selected schematic clauses for the ancestor relation on spi and 7-terms.

ii. if ¢ holds, then Q £~y [P'].

The intuition is that P <« @ holds if @ is bisimilar to a
successor state of [P] in which no thread of activity that
corresponds to an unguarded occurrence of a match, let,
case or prefix construct in P has been completed.

The central and most difficult part of the proof of The-
orem 2 then consists of establishing a “backward” opera-
tional correspondence that goes from steps of [P] to steps
and commitments of P, where P is any spi agent. This op-
erational correspondence is coupled via the ancestor rela-
tion and involves context bisimilarity as for term rearrange-
ments. There is also a “forward” operational correspon-
dence that goes from steps P to steps of [P], and there are
auxiliary operational correspondences that bridge the gap
between operational semantics with and without structural
congruence.

As a final remark, we note that, while context bisimilar-
ity is new to the spi calculus, it has recently found proof
technical application also to Cardelli and Gordon’s mobile
ambients [15].

5 Related and Future Work

Our translation from the spi to the w-calculus is obvi-
ously related to the general question of how to express
encryption and other security concepts directly in the 7-
calculus, foregoing the spi calculus or any other higher-level
framework. In the appendix to [3] Abadi and Gordon dis-
cuss three different approaches, where these schemes might
partly be considered embryonic versions of what we get via
our translation on the 7-calculus side. In particular the tech-
nique of representing a piece of data by an agent that is to

be accessed via a dedicated link, which goes back to the
early m-calculus literature, is already proposed as useful in
[4]. There is, however, no explicit translation from the spi
to the w-calculus in [4] and therefore of course also no ade-
quacy result along the lines of Theorem 2. Moreover, only
a very limited range of features is discussed with respect
to their expressibility in the 7w-calculus whereas we effec-
tively deal with everything that belongs to the spi calcu-
lus as it was originally presented. It can nevertheless al-
ready be concluded from [4] that in the way we are using
the m-calculus as a kind of assembler language for imple-
menting the spi calculus, we can probably never hope to
obtain full abstraction: There will probably always be -
calculus experiments that distinguish the respective transla-
tions of any two agents even if they are testing equivalent
with respect to spi calculus experiments. That is in fact
easily confirmed as far as our concrete translation is con-
cerned: Let P = (v x) a({b},).0 and Q = (vy) a{{c},).0.
Since neither x nor y are revealed, no spi-experiment will
be able to decipher b or ¢ after it has received {b}, or
{c}y, respectively, so P and () are may-equivalent (as spi
agents). But [P] and [@] are not may-equivalent (as 7-
agents). A m-experiment can distinguish them by access-
ing plaintexts directly via the splain-method, and then test
that what is returned for equality either to b or ¢, e.g.,
R = a(e) .e(splain, void,vr) .r(z). [z = b]$.

Another idea discussed in [4], and also by Carbone and
Maffeis in [11], is to model the communication of encrypted
data on the basis of extending the 7-calculus by multi-name
synchronisation, that is, a channel may consist of what may
perhaps be seen as several sub-channels that all take part in
any synchronisation on the channel at once. This approach

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

avoids at least to some degree the above-mentioned prob-
lem with stronger forms of adequacy than the preservation
of may- and must-testing. The downside is of course that
the target framework is less fundamental than the original
m-calculus and also that there do not seem to be any auto-
mated m-calculus verification tools that support multi-name
synchronisation in the input.

We have implemented our translation in a prototype that
generates input for the Mobility Workbench [20]. We note
that a translated spi calculus test [P | E] will have finitely
many states reachable by 7-moves if P | E already already
has the same property. The reason is (a) that only those
parts of [P | E] that correspond to terms are theoretically
problematic as they may harbour the only occurrences of
replications not already present on the spi side where, how-
ever, (b) any thread of activity within them is triggered by
activity within some agent part and then guaranteed to ter-
minate. Our prototype can therefore be used to translate
both an agent and an experiment, whereupon in many prac-
tical cases the Mobility Workbench can check whether the
agent may pass the experiment or not. As for work related to
that, we are aware of work based on [10] that aims at tools
for symbolic bisimulation for the spi calculus. Also, the
spi calculus has been considered for an extension of a logic
programming implementation of the w-calculus in [17].

As for possible future work, it would be very interesting
to adapt the encoding to other security-related calculi such
as the applied 7-calculus [1]. We also want to carry our fur-
ther experiments and case studies with our prototype, and
enhance it so that we can make it publicly available. Still
another issue is to extend the prototype so as to produce out-
put for backends other than the Mobility Workbench, such
as for example for the MIHDA toolkit [14].

Acknowledgement We would like to thank Martin
Abadi, Andrew Gordon and Emilio Tuosto for discussions
about earlier versions of this paper. We would also like to
thank the anonymous referees for their remarks and sugges-
tions.

References

[1] M. Abadi and C. Fournet. Mobile Values, New Names, and
Secure Communication. In Principles of Programming Lan-
guages, pages 104—115. ACM, 2001. POPL *01 symposium
proceedings.

[2] M. Abadi and A. Gordon. The Spi Calculus. In Computer
and Communications Security, pages 36-47. ACM, 1997.
Conference proceedings.

[3] M. Abadi and A. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Technical Report 149, SRC,
Palo Alto, California, 1998.

[4] M. Abadi and A. Gordon. A Calculus for Cryptographic
Protocols: The Spi Calculus. Information and Computation,
148(1):1-70, 1999.

[5] R. Amadio, D. Lugiez, and V. Vanackere. On the Symbolic
Reduction of Processes with Cryptographic Functions. The-
oretical Compututer Science, 290(1):695-740, 2003.

[6] M. Baldamus, J. Parrow, and B. Victor. Spi Calculus Trans-
lated to w-Calculus Preserving May-Testing. Technical Re-
port 2003-063, Department of Information Technology, Up-
psala University, Sweden, 2003.

[7]1 B. Blanchet. An Efficient Cryptographic Protocol Verifier
based on Prolog Rules. In Computer Security Foundations,
pages 82-96. IEEE, 2001. CSFW-14 proceedings.

[8] M. Boreale. On the Expressiveness of Internal Mobility
in Name-Passing Calculi. Theoretical Computer Science,
195:205-226, 1998.

[9] M. Boreale and M. Buscemi. Experimenting with STA, a
Tool for Automatic Analysis of Security Protocols. In Ap-
plied Computing, pages 281-285. ACM, 2002. SAC ’02
proceedings.

[10] J. Borgstrom and U. Nestmann. On Bisimulations for the Spi
Calculus. Technical Report 1C/2003/34, EPFL 1&C, Lau-
sanne, Switzerland, 2003.

[11] M. Carbone and S. Maffeis. On the Expressive Power of
Polyadic Synchronisation in w-Calculus. Nordic Journal of
Computing, 10(2):70-98, 2003.

[12] R. De Nicola and M. Boreale. Testing Equivalences for Mo-
bile Processes. Information and Computation, 120:279-303,
1995.

[13] R. De Nicola and M. Hennessy. Testing Equivalences for
Processes. Theoretical Computer Science, 34:83—133, 1983.

[14] G. Ferrari, U. Montanari, R. Raggi, and E. Tuosto. From Co-
Algebraic Specifications to Implementation: The MIHDA
Toolkit. In Formal Methods for Components and Objects,
LNCS. Springer-Verlag, 2003. FMCO ’03 symposium pro-
ceedings.

[15] M. Merro and F. Zappa Nardelli. Bisimulation Proof Meth-
ods for Mobile Ambients. In Automata, Logic and Program-
ming, LNCS 2719, pages 584-598. Springer-Verlag, 2003.
ICALP ’03 proceedings.

[16] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes, Parts I+11. Information and Computation, 100:1—
77, 1992.

[17] Ping Yang, C. Ramakrishnan, and S. Smolka. A Log-
ical Encoding of the m-Calculus: Model Checking Mo-
bile Processes Using Tabled Resolution. Available via
http://www.cs.sunysb.edu/~Imc/mmc, 2003.

[18] D. Sangiorgi. Bisimulation in Higher-Order Calculi. Infor-
mation and Computation, 131:141-178, 1996.

[19] D. Sangiorgi and D. Walker. The m-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2003.

[20] B. Victor and F. Moller. The Mobility Workbench — A Tool
for the w-Calculus. In Computer Aided Verification, LNCS
818, pages 428-440. Springer-Verlag, 1994. CAV ’94 pro-
ceedings.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04)
1043-6871/04 $ 20.00 IEEE

	footer1:

