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Abstract. The quest for the formal certification of properties of systems
is one of the most challenging research issues in the field of formal meth-
ods. It requires the development of formal models together with effective
verification techniques. In this paper, we describe a formal methodol-
ogy for verifying security protocols based on ideas borrowed from the
analysis of open systems, where applications interact with one another
by dynamically sharing common resources and services in a not fully
trusted environment. The methodology is supported by ASPASyA, a
tool based on symbolic model checking techniques.

1 Introduction

Software applications are evolving towards open architectures. The key aspect
in this shift is the relevance that interaction and dynamics have assumed in the
life of applications. An open system is characterised by being composed of au-
tonomous interacting components, whose configuration may dynamically vary in
time. Moreover, the system architecture may be only partially accessible, both
because of its dynamics and because it may be distributed over different, non-
controllable domains. Hence, interacting components have to coordinate their
behaviour according to the dynamic supply and demand of resources. This sce-
nario fosters the creation of an environment of services, offered on the net and
accessed on demand by a phase of dynamical binding (preceded by complemen-
tary publishing and discovering phases). The standard example is provided by
the Web Services technology [16].

The advantages of an architectural design of components and services have
been investigated from several different perspectives, as, for instance, the dy-
namic coordination of active components, understood as “the process of building
programs by gluing together active pieces” [11], or the theory about “the structure
of the components of a program/system, their interrelationships, and principles
and guidelines governing their design and evolution over time” [18]. However,
despite the many advances obtained, lifting traditional techniques to the case
of services integration in open systems presents a set of recognised difficulties,
which impose an upgrade of the goals and techniques that must be developed
for a mature architectural design, [30, 3]. For instance, extra information must



be formalised by the component abstractions, like the assumptions which they
are based on and the conditions under which they can be dynamically inte-
grated/binded into a system. Moreover, these dynamic systems need affordable
verification techniques to express the properties of interest.

Here, we present a specification and verification methodology tailored for
security protocols. The methodology has been inspired by the more general con-
text outlined above. It basically considers a protocol as an open system where
principals (e.g., components), may dynamically join and coordinate themselves
in multiple running session of the protocol, where a malicious component, here-
after called intruder, may “interfere” with the execution of the protocol. The
methodology consists of four steps: 1) Specification of the behaviour of the prin-
cipals and the desired property, 2) specification of the conditions on intended
sharing of secrets, 3) specification of the power of the intruder, in terms of its
initial knowledge, 4) automatic verification of whether the protocol executions,
as they have been formalised, do or do not satisfy the property. We have observed
that the results of step 4) can be fruitfully exploited to iterate steps 2), 3), and
4), according to the insights gained in the previous iterations about the actual,
and often unexpected, behaviour of the protocol. Also, step 2) has impact on
dynamic connections and communications.

The methodology relies on a formal framework introduced in [9, 35]. This
consists of a calculus for the formal description of principals enhanced with
linguistic mechanisms for dynamic bindings, and an ad-hoc logic to express the
security properties to be checked. The logic predicates over data exchanged in
the protocol and observed by an intruder in the execution environment, and also
over the “presumed” identities of the principals.

The methodology is supported by a verification environment, called ASPASyA

(Automatic Security Protocol Analysis via a SYmbolic model checking Ap-
proach). In the model checking approach, the system behaviour is described
in terms of a transition system, while properties that must be verified are repre-
sented as logic formulae. The possible models for a formula are represented by a
subset of states, for instance those corresponding to terminating computations.
If the formula “exhaustively” holds in all the significant states, verification is
successful, otherwise a counter example is produced. Among the advantages of
model checking we remind efficiency (e.g., optimized data structures, like BDDs),
and the possibility of being completely automated, [14]. In our case, symbolic
techniques have been adopted to overcome some intrinsic sources of incomplete-
ness. Namely, during state space generation, constraints on the possible values of
principals’ variables are collected, then ASPASyA checks whether an assignment
for the variables, such that the formula is satisfied, does or does not exist. The
overall methodology and ASPASyA are quite human-interactive, both because
of the high degree of expertise required by the problem and its formalisation,
and to allow the verification process to be guided towards the properties of in-
terest. Once the protocol and its properties are tuned by the user, the automatic
verification phase starts. Our framework naturally allows varying the intruder’s
knowledge, the portion of the state space to be explored, and the specification



of implicit assumptions that are very frequent in security. The user can oppor-
tunely mix those three ingredients for checking the correctness of the protocol
without modifying neither the protocol specification nor the specification of the
desired properties.

Section 2 and Section 3 review security protocols, and the formal framework,
respectively, to put the reader in context. The verification methodology is il-
lustrated in Section 4. A comparison with similar approaches in literature is
reported in Section 5. Section 6 contains some concluding remarks.

2 Security Protocols: An Overview

Security protocols are intended to control relevant information in a scenario
where some principals communicate through a “public channel”. Relevant in-
formation has a very broad sense, subsuming confidentiality, non-modifiability
or authenticity. On the other hand, the channel is public: It is not possible to
avoid that the exchanged messages are accessed, manipulated or destroyed by
an intruder.

In general, the formal certification of security protocols requires a careful
definition of the underlying assumptions upon which the protocol relies, of the
security property it is supposed to enforce, and also of the hypotheses on the
capabilities of the intruder. In the following, we briefly review security protocols,
referring to [32, 23] for a more comprehensive introduction.

Cryptography. A message m is a plaintext when the information it contains
can be obtained directly from m, while a message n is a cryptogram when the
information is “hidden” in it. Given a cryptographic key k, the message m is
encrypted in the cryptogram n = {m}k and the original information can be
retrieved only by means of the knowledge of the key k. We adopt the standard
working assumption of perfect encryption: A cryptogram can be decrypted only
using its decryption key, i.e. secrets cannot be guessed, no matter how much
information is possessed. In symmetric cryptography, the same key k is used for
encryption and decryption, while in asymmetric cryptography one key, called
public key, is used for encryption, and a complementary private key, is used for
decryption. Any principal can encrypt a message for another principal by means
of its public key. The latter is the only one that can decrypt the message with
its private key.

Hereafter, we denote the intruder by I , principals by A,B, ..., A− and A+

are the private and public keys of a principal A, λ− is the complementary key
of λ (i.e. A+ if λ = A−, A− if λ = A+, and k if λ = k is a symmetric key), and
m,n is the pair of messages m and n. For the sake of presentation, we assume
that keys have no structure, i.e. they are simply names. Structured keys add a
source of complexity to the analysis that can be dealt with by the same symbolic
techniques illustrated in Section 3 for handling structured, and hence infinite in
number, messages.

Notice that an appropriate sharing of keys, which may also be obtained
dynamically, is an essential feature for the correct assignment of the roles played



by the principals in the execution of protocols. For instance, keys and their
ownership may be used to attribute identity to principals.

Protocol specification. A security protocol may be naively thought of as a finite
sequence of messages between two or more principals. There is a great variety
of specification mechanisms for protocols and properties, but traditionally an
informal mix of natural language and ad hoc notation is used. The next example
illustrates the informal specification of a protocol as a list of communication
steps.

Example 1. The Wide Mouthed Frog (WMF) protocol [10] aims at letting A
send a fresh session key kab, i.e. a key to be used within a limited temporal
interval, to B through a trusted server S. Both A and B share two private keys
with S (kas and kbs, respectively). The informal xspecification of WMF protocol
is:

(1) A → S : A, {ta, B, kab}kas

(2) S → B : {ts, A, kab}kbs

A sends S its name and a cryptogram with the name of B, the session key
kab and a “fresh” nonce ta. S sends B a cryptogram with the session key kab,
the name of A, and a new nonce ts. Nonces, which are uniquely associated to
a session of the protocol, “approximate” the time-stamps used in the original
formulation (e.g., S would not react to two requests by A with the same nonce).
This makes the presentation simpler without requiring an explicit representation
of time (which, however, can be embedded in our approach). �

Note that the above description is not a complete specification, since it does
not specify, for instance, whether or not only B and S must know kab and ts,
and who can access the exchanged messages. Moreover, in some consist the in-
truder exploits the information acquired by playing different roles in concurrent
sessions of the protocol. Hence, a clear specification of how sessions can be in-
terleaved, and of the security properties expected after such concurrent runs, is
also necessary, as recognised for instance in [10].

Security properties. Protocols have been designed to enforce many security prop-
erties. Among them we consider here integrity (the intruder cannot corrupt
exchanged cryptograms), secrecy (the intruder cannot know exchanged cryp-
tograms), and authentication (the intruder cannot let a principal misunderstand
the identity of its partners in the communications). Different kinds of security
properties, like fairness and non-repudiation, will be addressed in future inves-
tigations.

Example 2. The WMF protocol of Example 1 is expected to enforce the secrecy
of kab: In every session its value must be known only by the principals playing
the roles of A, B and S. Moreover, also the authentication of A to B is desirable:
In every session where B receives the message from S, A must have created kab,
in the same session, and asked S to forward it to B. �



Intruder model. We adopt the (widely accepted) Dolev-Yao intruder model [17]:
The intruder is a principal that can interfere with all the communications, e.g.
by hiding, reading and modifying messages, with the only limit of the perfect
encryption hypothesis. The intruder can have some private data, and can store
data exchanged in previous runs of a protocol. It can be characterised in terms of
its acquired knowledge and formalised as an execution environment that collects
all the sent messages, manipulates and sends them to the principals waiting for
some input.

Let N be a countable set of names, containing nonces and principal names
and K a set of symmetric and asymmetric keys. Then, within this paper, the
set M = {m,n, . . . } of messages is defined as

M ::= N | K | M,M | {M}M .

The Dolev-Yao intruder is characterised by a set of messages κ, the intruder
knowledge, and the messages that can be derived from it, written as κ on m, by
splitting known pairs, pairing and encrypting known messages, and decrypting
known cryptograms whose key is known. Decidability of on has been proved for
private key cryptography in [13], and for public key cryptography in [9, 35].

Example 3. Given κ = {{A−1}k, {m}A+ , k}, it holds κ on {m}k. Indeed, from
κ on {A−1}k and κ on k, it follows κ on A−1, which allows the decryption of
{m}A+ obtaining m. Finally, from κ on k it follows κ on {m}k.

3 Formalising Security Protocols

The methodology (introduced in Section 4) relies upon two ingredients: The
cryptographic Interaction Pattern calculus (cIP), and the Protocol Logic (PL),
introduced in [9, 35]. The calculus, allows us to formally specify the behaviour
that the principals of a protocol exhibit. Distinguishably, the calculus requires
to explicitly indicate how principals can be connected together, i.e. how keys can
be shared by them. It consists of an instance of the IP-calculus, a process algebra
introduced in [9] for describing the behavioural composition of components in
open systems. The logic is used to formalise the properties that the protocol is
expected to enforce. It predicates over the intruder knowledge, the way principals
share keys and the data they exchange. Moreover it allows for quantification over
principal instances in order to uniformly express properties about multiple-runs
of protocols.

The cIP calculus. The cIP calculus is a name-passing calculus of the π-calculus
family [25]. It extends the IP-calculus with cryptographic primitives, in the style
of [1], and with explicit constructs for the dynamic sharing of keys.

A cIP processes A , (X̃)[E] stands for the principal A that is ready to share
keys represented by its open variables X̃ and behave according to its behavioural
expression E. A behavioural expression consists of a finite sequence of input
and output actions in(d) or out(d) (over a public channel, whose name is omit-
ted). The datum d is a message where variables can appear. Open variables



are binders for the free occurrences of X̃ in E; usual scoping rules apply: Occur-
rences of variables in input actions are binder, and are denoted as ?x (we assume
that output actions do not contain binders and input actions contain at most
one binder of each variable). A variable can hence be instantiated either when
a communication action is executed, or when the principal is dynamically con-
nected to its partners in a protocol execution. Note that open variables has been
introduced in [8] as a general mechanism to express the sharing of resources, e.g.
communication channels, between components which are dynamically connected
together. In this paper, this mechanism has been specialised to the sharing of
cryptographic keys that allow principals to interact within a protocol run.

Names and variables are syntactically distinguished entities, the former are
constant terms, the latter placeholders that can be substituted with terms or
opportunely renamed. A principal must be closed: Variables must be bound by
either input actions or open variables.

Example 4. The principals of the WMF protocol are formalised in cIP as follows:

A
�

(x, xas)[out(A, {ta, x, kab}xas)] B
�

(zbs)[in({?s, ?x, ?w}zbs)]

S
�

(u, ya, v, yb)[in(u, {?t, v, ?r}ya).out({ts, u, r}yb)]

Principal A intends to agree on a session key with a partner whose identity will
be assigned to its open variable x when A will join a protocol run, where S and
B may already be present. The open variables xas of A and ya of S, by being
instantiated with the same symmetric key, allow the two principals to share a
key. Similarly, yb and zbs play the same role for S and B. Finally, the server S
gets the identity of A and B in u and v. �

To model multiple-runs, principals may be replicated in principal instances, ob-
tained by indexing all variables (open or not) and all names in E with a dis-
tinguished natural number, e.g. A1 , (x1, xas1)[out(A1, {ta1, x1, kab1}xas1

)].
Principal instances with different indexes are distinguished, i.e. A1 6= A3.

Instances run in a context, i.e. a set of running instances that may be dynam-
ically joined by other instances, causing a further sharing of keys, as explained
below. Notice that the actual sharing is determined off-line as a mapping from
open variables to keys. Indeed, the verification task is not oriented to determine
the “right” sharing of secrets, but in testing whether a sharing allowing for an
attack does or does not exist.

Let C be a (running) context, with n − 1 instances of principals, and ov(C)

the set of the open variables of its principals. Given An , (X̃n)[En] a principal

instance, and γ a partial mapping from ov(C) ∪ X̃n to the set of keys, then the
join operation is defined as:

join(An, γ, C) = (X̃n − dom(γ))[Enγ] ∪ �
(Ỹ )[E′]∈C

(Ỹ − dom(γ))[E′γ].

It returns the new context joined by the principal instance, according to the
mapping. Open variables must be assigned to symmetric or asymmetric keys
according to their usage (that is explicit in the syntax of the principal). Once
assigned, they are no longer open. Note that after a join operation the context
may remain open, i.e. it may contain open variables for later join operations.



κ � � m : ∃γ ground s.t. dγ ∼ m
(in)

〈(X̃i)[in(d).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[Eiγ] ∪ C, χγ, κ〉

(out)
〈(X̃i)[out(m).Ei] ∪ C, χ, κ〉 −7→ 〈(X̃i)[E

′
i] ∪ C, χ, κ ∪m〉

C′ = join(Ai, γ, C) A
�

(X̃)[E] i new
(join)

〈C, χ, κ〉 −7→ 〈C′, χγ, κ ∪ {Ai, A
+
i }〉

Fig. 1. Context reduction semantics

Semantics of contexts. The operational semantics of contexts is given in
terms of the Labelled Transition System (LTS) −7→ that relates configurations
〈C, χ, κ〉, where C is a context, χ are the bindings due to communications and
join executions, and κ is the intruder knowledge. The rules specifying −7→ are
reported in Figure 1. A principal can input a datum, if an appropriately matching
∼ message m can be derived from κ, rule (in). All the outputs of the principals
are recorded in κ, rule (out), as well as the name and the public key of every
principal joining the context, rule (join). The semantic model of cIP formalises
the Dolev-Yao intruder model. All the communications occur throughout the
intruder: It records all the exchanged messages and the names of the principal
instances that join the context, and it sends messages derived from its knowledge
to principals. In the simplest case it only forwards messages, allowing for the
intended execution of the protocol to take place.

Example 5. A configuration of a context of the WMF protocol, joined by the
principal instances A3, S2 and B1 is 〈{A3, S2, B1}, ∅, γ0〉, where

A3

�
()[out(A3, {ta3, B1, kab3}k)]

S2

�
()[in(A3, {?t2, B1, ?r2}k).out({ts2, A3, r2}k)]

B1

�
()[in({?s1, ?x1, ?w1}k)]

and γ0 =

���� ���
zbs1, xas3 7→ k
ya2, yb2 7→ k
x3, v2 7→ B1

u2 7→ A3

Notice that, even if not intended, this context models the case in which A3,
S2 and B1 share the same key k. A possible terminating trace leads to the final
intruder knowledge κ = {A3, {ta3, B1, kab3}k, {ts2, A3, kab3}k}, and mapping
γ1 = γ0{ta3,kab3,ta3,A3,kab3/t2,r2,s1,x1,w1

}, which is generated when the environ-
ment sends the cryptogram {ta3, B1, kab3}k to B1 (the match holds). �

The cIP calculus offers the possibility of uniformly extending a context with
new instances of principals of the protocol. What it is meant by “uniformly” is
the fact that variables and names occurring in principal expressions are labelled
with a unique index when instances join the context. This linguistic mechanism
allows us to determine which are the instances that originated the names used
through the execution of the protocol as well as to distinguish between different
principals playing the same role.

Some remarks are worth to be done here.



Join is not an operator of the calculus. The way principals are connected to-
gether, namely how keys are initially shared, is typically given beforehand. Since
this is determinant for the aims of protocol verification, it has been described
at the semantic level, which hence formally describes the consequences of a new
principal joining the running protocol. As it will be discussed in Section 4, distin-
guishably for our methodology, this also provides an efficient mean to control the
conditions of the verification experiment, and to focus on those initial sharing
of secrets which are more significant for the properties one wants to certify.
Cryptography. Encryption and decryption are embedded into communications
via the notion of matching (rule (in)). This linguistic choice is shared with a
few of other approaches, like [1, 6], which, however, adopt different verification
methodologies. Input actions must declare the key with which they intend to
receive and decrypt a cryptogram, and the communication can take place only if
the input and output messages match, namely {m}λ ∼ {n}λ− , with m ∼ n. This
guarantees a correct use of keys. For instance, {m}k matches the input message
in({?x}k), since the symmetric key k decrypts the cryptogram, while {m}k1 and
{?x}k2 would not match, with k1 6= k2. After the communication, variable x is
instantiated with the content m of the cryptogram {m}k.
Symbolic analysis The semantics of cIP contains a source of incompleteness in
the choice of the message m, rule (in), among the infinitely many that can be
derived from κ as input message for a principal (see [13] about incompleteness
in protocol analysis). This leads to an infinite state space problem that we have
addressed by adopting a symbolic approach; this approach consists in delaying
the choice of the message and annotating the inputs variables with a finite rep-
resentation of the current κ, and, hence, of all the messages that can be derived
from it. We represent this, for an input variable x, by means of the symbolic vari-
able x(κ), for “x can assume any message m such that κ on m”. Symbolically
matching messages can be structurally composed in terms of symbolic variables
and standard messages. Future evolutions of the context, may further specify
the values of x(κ), for instance when it is used in place of a key. Symbolic vari-
ables allow the existential quantifier of rule (in) to be replaced by a constructive
generation of a finite set of possible symbolic messages, which works similarly to
unification.

Even if in general more assignments for a variable can be possible, their
number is finite (and typically bound by the number of messages added so-far
to the knowledge). Consider, for instance, an input message {?x}λ. A matching
message could be constructed either by knowing the appropriate key λ−1, or
by means of each suitable matching message, like {m}λ−1 . Such messages may
belongs to the initial knowledge or been acquired in previous communications
and hence are finite in number. A symbolic trace represents all the concrete traces
obtained by instantiating its symbolic variables with the messages derivable from
the associated knowledges. Proving the correspondence of symbolic and concrete
traces [9, 35] guarantees the correctness of the symbolic verification, which also
impacts, together with other optimisations, on the effectiveness of the method.

PL logic. Security properties are expressed by means of the PL logic (Protocol
Logic), which predicates over the messages derivable from κ, the values assumed



by variables and their relationship with the principals that generate and com-
municate them. In our approach, integrity is read as the possibility of fixing
some values, generalising the approach introduced in [1], secrecy as the values
contained or not contained in κ, and authentication through relations among
principals’ variables.

Let δ, σ be messages, variables, or the name of the intruder I , the formulae
ψ, φ of PL are

δ ∈ κ | δ = σ | ∀A.i : φ | ¬φ | φ ∧ ψ,

where ∈ is read as derivability of the message, =, ¬, ∧ are equality, negation and
conjunction, and ∀A.i : φ allows for quantification over instances: i is a variable
ranging over instance indexes, possibly occurring as index in φ.

Example 6. A property that the WMF protocol should satisfy is the secrecy of
the session key kab, unless it is intended for I : ∀A.i : xi 6= I → kabi 6∈ κ, i.e.
“for every instance of A, whose partner is not I (the open variable xi of A is for
its partner name), the key generated by Ai, kabi, can not be derived from κ”. �

Truth of formulae depends on the past computation, namely on both κ and
assignments χ, hence formulae are checked against models consisting of pairs
κ, γ produced by terminating traces, since those are the states of interest where
the formula must hold. The notation κ |=χ φ means that κ, under the variable
assignment χ, is a model of the formula φ. Relation |= (for closed formulae) is
defined by the following deduction rules (and the omitted obvious one for ∧):

xiχ = δχ
(=)

κ |=χ xi = δ

κ � � δχ
(∈)

κ |=χ δ ∈ κ

κ 6|=χ φ
(¬)

κ |=χ ¬φ

κ |=χ φ{
j/i} for all Aj : κ � � Aj

(∀).
κ |=χ ∀A.i : φ

Index quantification ranges over the finite number of instances that partici-
pated to a session, whose name is in κ (∀). Intuitively, the use of 6|= in the premise
of rule (¬), intended as the impossibility to prove φ, is justified by the fact that,
in each rule, formulae in the premises are always “structurally smaller” than
those in the conclusions (and hence the recursive definition |= is well defined).
Finally, the lifting of the logic to the case in which symbolic variables occur
in formulae as effect of assignments is easy, considering symbolic variables as
conditions of membership to the associated κ.

Example 7. Considering again the WMF protocol, one may wish to verify the
secrecy property written in its naive form, as φ = ∀A.i : kabi 6∈ κ: “The session
key generated by A is not know by the intruder”. Let us suppose that we want
to let I play the role of a normal principal, namely B. In this case, it is sufficient
to add a key, say ksi to κ. Let us consider the context where S shares ksi with
I , and A wants to speak with I :

A1

�
()[out(A1, {ta1, I, kab1}kas)]

S2

�
()[in(A1, {?t2, I, ?r2}k).out({ts2, A1, r2}ksi)]

where γ0 =

�� � xas1, ya2 7→ kas
yb2 7→ ksi
x1, v2 7→ I



It is easy to verify that κ1 = {A1, S2, I, ksi, {Ta, I, kab}kas, {Ts,A, kab}ksi},
and γ = {xas1, ya2 7→ kas, yb2 7→ ksi, x1, v2 7→ I, t2 7→ ta1, r2 7→ kab1}, which
are produced by a terminating trace of the context, are not a model for φ. The
discovery of this “spurious”, but possible, attack can be easily avoided by further
specifying the property in its original formulation: ∀A.i : xi 6= I → kabi 6∈ κ. In
this case the antecedent of the formula is false, and the trace is not considered
as an attack. This kind of expressiveness of the logic will be helpful in focusing
the verification on “intended” classes of attacks.

�

4 The Verification Methodology

Our verification allows the user to directly control and manage many aspects of
the verification process. The methodology consists of four steps:

1. Initially, the informal narration of the protocol is specified in cIP, and, ac-
cordingly, the security property is formalised by means of a PL formula;

2. a formula specifying invariants on the connections of principals is given; such
a formula, hereafter called connection formula, states the constraints on open
variables that the join operation must satisfy so that sharing of secrets is
explicitly specified;

3. the intruder knowledge is set according to the power that the verifier grants
to the intruder, for instance public/private keys or messages acquired in
previous run of the protocol may be added to κ;

4. the automatic phase of the verification starts. ASPASyA is invoked and,
depending on the results, steps 2 and 3 are iterated.

About step 1, the formalisation of the protocol narration cannot be auto-
mated but it requires expertise, for instance to specify open variables of cIP
principals. Nevertheless, some rule of thumbs can be given:

– Initiator usually needs an open variable for connecting to the responder;
– if the identity of the partner is acquired in a communication, then no open

variable should be necessary about the identity of partner (unless checks on
the identity are required);

– an open variable might be necessary when a principal must interact with a
server, in order to share a key (as done in φWMS).

Also the formalisation of security properties is a complex task that requires
experience. The logic PL can formalise:

– The impossibility for the intruder to know a particular datum d in a run of
the protocol, when checking for secrecy properties,

– the relations between variables of different principals that must hold in every
run, when more complex properties, like authentication, must be verified.



In step 2 a connection formula is specified, in order to constraint the allowed
connections and the sharing of keys between principals. Consider, for instance,
principals A and S of the WMF protocol as described in Example 4; if S is
trusted, we might be interested in verifying only the executions of the protocol
where (any instance of) A properly shares a secret key with (a corresponding
instance of) S. This can be expressed by the following connection formula, which,
intuitively, states that the intruder cannot behave as a server:

φWMF , ∀A.i : ∃S.j : xasi = yaj ∧ xasi 6∈ κ.

Connection formulae, together with the join operation, are a distinguished fea-
ture of our approach. Whenever a join operation is executed, the connection
formula is checked and, if it does not hold, then the analysis of that trace is
aborted. Moreover, formulae constitute a formal device that the user can exploit
for pruning the state space. Indeed, by tuning the connection formula, the user
can formally state assumptions that are usually implicit in the informal presen-
tation of the protocol (e.g., the trustworthy of the server in the WMF protocol).
The result of a verification session sometimes reveals that some assumptions
on the protocol have not been correctly formalised. By refining the hypotheses
on principal connections, false attacks can be filtered out. Basically, connection
formulae can be exploited for focussing the verification on those states that are
interesting to the verifier.

The join operation and the connection formulae are also a coordination mech-
anism for programming and modelling the interactions of processes in an open
system, where components dynamically access running contexts by connecting
to other participants. For instance, considering web services, the components are
the services and new services are built by properly connecting existing compo-
nents. In the current practice, this is statically done by the programmer; while
the join operation and the connection formula would allow the programmers to
specify the constraints over the dynamic connections of their components.

Step 3 specifies the initial knowledge of the intruder so that a protocol is
checked under weaker conditions. This knowledge is mainly used for two pur-
poses: (i) to let the intruder know some secrets (e.g. compromised keys) en-
hancing its attacking power, for instance to test the robustness of the protocol,
and (ii) to let the intruder know something about past interactions between
principals (cryptograms exchanged in previous sessions). The latter is especially
useful in finding replay attacks where the intruder exploits messages appeared
in previous session.

Steps 2, 3 and 4 can be iterated in order to tune the connection conditions,
and the initial knowledge, according to the results obtained in previous itera-
tions.

In order to explain the methodology, we apply it to the analysis of the KSL
protocol [19] (a simplification of Kerberos [20]). The goal of KSL is the repeated
authentication between principals A and B that exploit a trusted server S. The
protocol is divided into two parts: An initial exchanging of messages which estab-
lishes a session key between principals, followed by the repeated authentication



part. Repeated authentication is performed by means of an expiring ticket gen-
erated by B for A. Until the ticket is valid (not expired), A can re-authenticate
itself with B without requesting a new session key from S. The informal speci-
fication of KSL is as follows:

(1) A→ B : na,A
(2) B → S : na,A, nb, B
(3) S → B : {nb, A, kab}kbs , {na, B, kab}kas

(4) B → A : {na,B, kab}kas , {Tb,A, kab}kbb , nc, {na}kab

(5) A→ B : {nc}kab

(6) A→ B : ma, {Tb,A, kab}kbb

(7) B → A : mb, {ma}kab

(8) A→ B : {mb}kab

Messages (1 ÷ 5) are the key exchange part whereas messages (6 ÷ 8) are
the repeated authentication. Namely, each further interaction between A and B
starts from message (6). Server S shares a symmetric key with each principal.
Initiator A generates a nonce na, and sends it to B. Then B asks S for a
new session key, S generates kab and, in (3), encrypts the session key in two
cryptograms {nb,A, kab}kbs and {na,B, kab}kas sent to B. Notice that here it is
implicitly assumed that kas (resp. kbs) is known only by S and A (resp. B). After
decrypting {nb,A, kab}kbs , B assumes that kab is the fresh session key generated
by S and meant to be shared with A (freshness of kab is enforced by nonce nb).

Message (4) is quite complex and crucial; B sends to A a message contain-
ing: (i) the cryptogram {na,B, kab}kas generated by S on message (3), (ii) the
“ticket” {Tb,A, kab}kbb , (iii) a new nonce nc and (iv) the nonce na encrypted
with kab.

The ticket is a cryptogram encrypted with a key kbb that only B knows and
will be used in the second part of KSL for achieving repeated authentication;
apart from the identity ofA, it contains a generalised time-stamp1 and the session
key so that B can check the validity of the ticket. The nonce nc will be used
to prove to B that A really asked for the session key kab, while the cryptogram
{na}kab is generated to witness to A that B has acquired kab. Message (5) closes
the first part of KSL: A sends back nc encrypted with kab so that B is granted
that A acquired the session key.

Principal A knowing kab and the ticket issued by B can re-authenticate itself
performing messages (6÷ 8). In (6), B receives a nonce, ma, and the ticket that
B has previously generated for A. If the ticket is valid, B sends ma encrypted
with kab to A together with a new nonce mb, used to ensure the identity of A
in message (8).

The first step of our methodology prescribes to provide the cIP formalisation
of each role of the protocol and the formalisation of the property of interest. We
first describe the first phase of the protocol, i.e messages (1 ÷ 5). Later, we will
describe the rest of the protocol according to a verification session. This allows
us to focus on the main characteristics of the two phases and also shows how
the methodology accomplishes with the intuitions behind the verification. The

1 A generalised time-stamp reports the current time of the local clock of B, an indi-
cation of lifetime and an “epoch” identifier to protect B against replay attacks. we
refer to [27] for problems related to time-stamps.



principals are

S
�

(a, ak, b, bk) [ in(?cna, a, ?cnb, b). out({cnb, a, kab}bk, {cna, b, kab}ak) ]

A
�

(b, sk) [ out(na,A). in({na, b, ?r}sk, ?tkb, ?bn, {na}r). out({bn}r) ]

B
�

(sk) [ in(?cn, ?u). out(cn, u, nb, B). in({nb, u, ?r}sk, ?tka).
out(tka, {nt, u, r}kbb, nc, {cn}r). in({nc}r) ]

It is important to point out the role played by open variables. Principal S has
variables a and b respectively for the identity of the initiator and the responder.
The server needs two further variables, ak and bk that are meant to store the
symmetric keys that S shares with A and B, respectively. Similarly, A and B
use sk for storing the keys they share with S. Notice that variables are distinct
in different principals.

KSL tries to achieve repeated mutual authentication; informally this means
that each time B (connected to S) terminates a run of the protocol, thinking
to have interacted with a A (connected to S) then A has recently executed a
session with B and A actually has been the partner in the communications,
and viceversa. The following PL formula ψKSL formalises the authentication
property of A to B for the KSL protocol:

∀B.l : ∃S.i : ∃A.j : (bi = Bl ∧ ul = Aj ∧ bj = Bl ∧ ai = Aj) →
(cnai = naj ∧ cnbi = nbl ∧ rj = kabi ∧ rl = kabi ∧ cnl = naj ∧ ncl = bnj)

The formula ψKSL states that any instance Bl is attached to an instance of the
server template Si (bi = Bl). Moreover, if Bl is the partner of an instance Aj

(ul = Aj) that is connected as initiator to Si (ai = Aj) then a “correct” data
exchange should take place, provided that Aj aimed at authenticating itself to
Bl (bj = Bl). Correctness of data exchanging holds if: (i) the server receives the
correct nonces (cnbi = nbl and cnai = naj), (ii) both Bl and Aj obtain the same
session key generated by Si (rj = kabi and rl = kabi), finally, (iii) the nonces
received by Bl are all generated by Aj (ncl = bnj and cnl = naj).

The second step of our methodology requires to specify a connection formula
φKSL stating that the server shares private keys with the initiator and the
responder. In PL this is rendered as follows:

φKSL

�
∀S.i : ∃A.j : (ai = Aj → aki = skj) ∧ ∃B.l : (bi = Bl → bki = skl).

In words, it is required that for every Si (instance of the server) there is a
connected initiator Aj such that aki and skj are assigned to the same value:
Si and Aj share the same key. This also models the correspondence between
the initiator’s identity and the server’s open variable holding the shared key.
(The rest of φKSL states the same property for the responder.) Note that φKSL

excludes that an instance of A can act as responder. In order to allow this
possibility, we can consider the following formula:

φ′
KSL

�
∀S.i : ∃A.j : (ai = Aj → aki = skj ∧ bi = Aj → bki = skj) ∧

∃B.l : (bi = Bl → bki = skl ∧ ai = Bl → aki = skl),

however, we stick to the simpler φKSL for our verification.
Table 1 reports the results of the verification for the first phase of KSL. We

checked various scenarios by varying the number of instances and the possible



3 Instances 4 Instances

Join Configurations Time (s) Attacks Configurations Time (s) Attacks

true 10240 58 0 – – –
φKSL 550 12 0 13218 4:21 0
φ′

KSL 590 34 0 15723 5:07 0
Table 1. Attack report for the first phase of KSL

connection formulae. Even though no attack has been discovered in this phase,
it is worth noticing how the connection formulae can help in reducing the size
of the state space. For instance, in the case of three instances of principals, the
number of states in a completely unconstrained setting (first row) is very large
compared to the case where one of φKSL or φ′KSL is used. This is even more
evident when considering the case of four instances; in fact, the verification with
the trivial connection formula requires a unreasonable amount of time (one day
on a 2.4MHz Athlon processor), whereas both φKSL and φ′KSL terminate in few
minutes.

Since the first phase of the protocol does not yield any attack, we perform
the verification of KSL by focussing on the second phase of the protocol, i.e., on
the messages (6 ÷ 8). We consider correct the session key exchange phase, and
check whether an attack can be built during the repeated authentication phase.
Under this hypothesis, at the end of the 5-th message of KSL, we can safely
assume that

– since the intruder is aware of the initial five messages of the session, the
ticket is in the initial knowledge (among other data);

– A (resp. B) thinks that B (resp. A) is running a session protocol as responder
(resp. initiator);

– A and B share a key in the current session;

– the key is valid in virtue of a certificate issued by B.

Since we are assuming that the interactions of A and B with S are trusted and
not compromised, we can consider only the principals for A and B:

A
�

(b, sk, tk)[out(nma, {b, A, sk}tk).in(?mb, {nma}sk).out({mb}sk)]

B
�

(a, sk, tk)[in(?ma, {B, a, sk}tk).out(nmb, {ma}sk).in({nmb}sk)].

Note that the sharing of the ticket acquired by A in the first phase is here
modelled by the use of the open variable tk of A and B. Actually, A never uses
tk as decryption key (i.e., in an input action) since the key encrypting the ticket
is known only by B. Indeed, A only uses tk in the first output for communicating
the ticket to B. The assumptions on the secrets shared by A and B, including
the correct sharing of data acquired in the previous phase of the protocol, is
formalised by means of the following connection formula:

φ̄KSL = ∃B.l : ∃A.j : tkj = tkl → bj = al ∧ skj = skl,

stating that if there are two instances of A and B sharing a ticket, then they
aim at communicating one another (bj = al) and share a session key (skj = skl).



2 Instances 3 Instances 4 Instances

Join/Knowl. Conf. Time (s) Attacks Conf. Time (s) Attacks Conf. Time (s) Attacks

true, κ0 104 0.69 0 3878 1.53 8 – – –
true, κ̄0 104 0.85 0 3878 1.89 8 130870 2:27 16
φ̄KSL, κ0 71 0.64 0 3220 1.50 6 – – –
φ̄KSL, κ̄0 71 0.80 0 3220 1.85 6 52692 1:16 12

Table 2. Attack report for KSL repeated authentication part

The authentication formula to be checked can be stated similarly to what
done for ψKSL, but it is simpler than ψKSL because we can ignore the commu-
nications with the server:

ψ̄KSL

�
∀B.l : ∃A.j : bj = Bl ∧ al = Aj → mal = nmaj ∧ mbj = nmbl.

Since the verification of KSL with two instances does not yield any attack (as
reported in Table 2), we focus on the case with three participants.

In the third step we must specify the intruder’s knowledge. We have al-
ready pointed out that the intruder is aware of those messages exchanged in the
first phase. Hence, the initial knowledge κ0 contains the following messages: I ,
B1, B2, A3, i.e. the instances that joined the session, and {B1, A3, sk1}tk1

, the
ticket issued by B1 for A3. These messages contain variables (e.g., sk1, tk1,. . .)
that will be instantiated during the generation of the initial contexts by means
of the join operation. We can think of κ0 as a template for a knowledge that
compactly specify a set of messages depending of the join operation. In this case,
ASPASyA finds (and reports) the following attack (among others):

(1) A3 → I : nma3, {B2, A3, ks}kb2

(2) I → B2 : nma3, {B2, A3, ks}kb2

(3) B2 → I : nmb2, {nma3}ks

(4) I → B1 : nmb2, {B1, A3, ks}kb1

(5) B1 → I : nmb1, {nmb2}ks

(6) I → B2 : {nmb2}ks

(7) I → A3 : nmb1, {nma3}ks

(8) A3 → I : {nmb1}ks

(9) I → B1 : {nmb1}ks

In messages (1 ÷ 3), A3 and B2 begin the authentication phase; the communi-
cations are possible because of the ticket in κ0. In messages (4 ÷ 5), I , playing
the role of A3, uses B1 for encrypting nmb2 with ks. At this point, I can match
the input data requested by B2 and can subsequently, playing the role of B2,
use A3 as an encrypting oracle to obtain {nmb1}ks which is needed to end the
protocol run with B1. Hence, the intruder has been able to let B1 believe he was
interacting with A3 while he was interacting with I , violating the authentication
property.

Noteworthy, the attack is possible because there is a trace that start from a
context where the join has assigned the same session keys for the two different
tickets (the one in κ0 and the other generated by A3 in (1)). Observe that
nothing prevents this neither in ψKSL nor in φ̄KSL; therefore, we could repeat the
verification by imposing this condition (that is indeed, required by the informal
specification of KSL). Nevertheless, this is the hypothesis imposed in the analysis
of KSL reported in [21] where the same attack has been firstly reported; this
analysis is anyway motivated by considering the robustness of a protocol in
presence of weaker assumptions (two tickets that contains the same session key)
that are also realistic.



As a final attempt, we check whether enriching the intruder’s knowledge,
KSL has new flaws. Let us iterate the verification algorithm with the initial
knowledge

κ̄0 = κ0 ∪ {{B2, A3, sk2}tk2
}

that corresponds to the fact that the intruder has collected the ticket generated
by B2 for A3. Table 2 collects the results of the verification. First, observe that
there is no difference in using κ0 or κ̄0; the reason for this is that the extra
message added to κ0 is generated by the instance A in any case. Another aspect
to remark is that, looking at the table in the case of 3 instances, it seems that
φ̄KSL cuts off some attacks. However, by analysing the reported attacks it is
possible to recognise that the extra attacks found with the trivial connection
formula true are special cases of the attack presented previously. Indeed, in
those attacks, the two instances of B use the same session key and the same key
for encrypting the tickets (that is unrealistic). Moreover, the reported attacks
basically correspond to “permutations” of the attack shown above, namely, they
are the same attack where a different indexing of the instances is used.

We conclude by emphasising the advantage of using join and connection for-
mulae; indeed, Table 1 and the last two rows of Table 2, show how the generated
state space is dramatically reduced by exploiting a non trivial connection for-
mula, while discovering the same set of attacks.2

5 Related work

We briefly relate our framework with some verification approaches (and their
related tools) for security protocols based on model checking. The most impor-
tant ones (up to our knowledge) are described in [22, 5, 36, 31, 24]. Our analysis
will be more focused on methodological aspects rather than on efficiency issues,
because different semantics have been exploited by different frameworks.

The approach in [22] has many similarities with our framework in modeling
security protocols as open systems. There the openness is represented by a non-
completely specified and extendible context. Principals are expressed in a dialect
of the CCS calculus (equipped with cryptographic primitives) and properties are
also given in a suitable logic. The main differences of our framework wrt [22] are
represented by the open variables and the join primitive that, together with the
connection formulae, can be seen as a coordination mechanism for open systems.
Moreover we exploit symbolic techniques to shrink the state space.

In [5, 36] symbolic techniques for generating and analysing traces have been
described. They are based on dialects of the π-calculus for principal representa-
tion while properties are stated as correspondence assertions ; in [36] assertions
are embedded in principal definitions, violating separation of concerns (changing
the property to be checked leads to a re-formalisation of principal definitions).
We separated more neatly the specification of principals from that of security

2 The number of attacks are doubled with respect to the case of three instances because
there are the same attacks where the two instances of A are swapped in the attacks.



Number of states Times

Protocol ASPASyA TRUST STA ASPASyA TRUST STA

NS (2 instances) 55 328 24 0.7 0.06 0.07
KSL (2 instances) 39 135 33 0.8 0.04 0.04
KSL (4 instances) 21742 69875 - 43 1.8 -

Table 3. Comparing ASPASyA

properties. Both [5, 36] lack the possibility of template definition, hence every
principal instance has to be specified by hand, which may be long and error
prone, and impact on the formalisation of protocols and properties. For instance,
many protocol assumptions depend on the initial knowledge and secrets shar-
ing and must be explicitly stated in [5, 36]. For instance, we analysed the KSL
protocol using TRUST and, in order to find the attack reported in Section 4,
we had to explicitly state that the tickets must have the same session key, while
the join mechanism of ASPASyA automatically generates and find the flawed
context. Both [5, 36] offer the possibility to specify the initial knowledge of the
intruder but without any parameterisation (as done in Section 4).

The approaches in [31, 24] are based on the strand space model introduced
in [33, 34, 12]. Properties are expressed in terms of connections between strands
of different kinds. A strand can be parameterised with variables and a trace
is generated by finding a substitution for which an interaction graph exists.
Principals are represented with terms of a free algebra whereas properties are
specified by a suitable logic. Both approaches provide devices very similar to our
join mechanism but is missing the possibility for the user to impose constraints
on principal connections. Initial knowledge specification is given by adding data
to the strand space, and can be fully parameterised with variables.

In [15] and [4] encryption/decryption primitives have been embedded into
communication actions. Though the linguistic properties of the resulting cal-
culi are very similar to those in cIP, our verification approach is different with
respect to both [15] and [4]. Indeed, [15] introduces an event-based semantics
where events are defined in terms of the enhanced communication; the semantics
is then exploited to draw the relationships among Petri Nets, Strand Spaces and
the inductive proof technique of [29, 28]. In [4], this enhanced synchronisation
mechanism simplifies the static analysis of cryptographic protocols. The main
difference wrt [15] and [4] lies in the verification techniques adopted, which are
completely different in the three approaches. Indeed, embedding cryptographic
primitive in the communication primitives allows us to define a symbolic se-
mantics on the top of which our model checking algorithm works. This also
allows us to avoid generating states that are considered not interesting (accord-
ing to our working hypothesis). Regarding efficiency issues, the amount of time
used by ASPASyA is comparable to those used by STA and TRUST (Table 3).
ASPASyA is a bit slower than others because it consumes time in generating ini-
tial contexts and checking connection formulae. However, STA stops as soon as
the first attack trace is found whereas TRUST and ASPASyA perform a search
over the whole state space. TRUST generates the largest state space, mainly
because it is based on a small step semantics. ASPASyA and STA have more



compact state spaces whose difference lies in the fact that ASPASyA initially
applies the join mechanism.

6 Conclusions

We have addressed the problem of security protocol analysis taking inspiration
from an approach oriented to a more general framework. We have proposed a
verification methodology, and the ASPASyA tool which supports it, and we
have presented the results of some practical experimentations.

The methodology tries to limit as much as possible the sources of errors in the
formalisation process by keeping the different aspects of the formalisation into
clearly separated steps. Importantly, and distinguishing from other approaches,
the specification of the protocol and the property are clearly separate. Moreover,
once the principal behaviours are given in the first step of the methodology, they
remain unchanged. Several verification parameters can be finely tuned by the
verifier, mostly in an intuitive way, like the search space by means of connection
formulae in step two, and the power of the intruder in step three. Principal con-
nections can be constrained by means of a PL formula and the intruder power
can be augmented by adding information to its initial knowledge, allowing for dis-
covering attacks where the intruder exploits information about previous sessions
of the protocol, and for testing the robustness of protocols under unexpected
conditions.

The automatic phase of verification is performed at a cost comparable with
similar state of the art tools, also thanks to mechanisms for the selective pruning
of the state space. Experimentally, we have applied the methodology to the
verification of several protocols, some of which have been illustrated in this
paper, detecting all the known flaws (like the one recently reported in [4], found
with techniques not based on model checking).

In order to enhance our methodology, we are planning to extend the frame-
work to handle non atomic keys, hashing functions and time-marked names.
Moreover, along the line of connection formulae, we believe that security prop-
erties can be exploited as heuristic strategies to “guide” the state exploration
towards states that more likely make the property false.

Finally, we would like to extend the open variables and the constrained join
mechanism, now based on connection formulae, to the more the general case
of open system verification, where open variables represent resources, and the
join is constrained by formulae aimed at guarantee more general composition
properties, as we have initially investigated in [7].
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