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Abstract

We apply the recently developed techniques of higher order abstract syntax and functorial opera-
tional semantics to give a compositional and fully abstract semantics for the π-calculus equipped
with open bisimulation. The key novelty in our work is the realisation that the sophistication of
open bisimulation requires us to move from the usual semantic domain of presheaves over subcate-
gories of Set to presheaves over subcategories of Rel. This extra structure is crucial in controlling
the renaming of extruded names and in providing a variety of different dynamic allocation operators
to model the different binders of the π-calculus.
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1 Introduction

The π-calculus was introduced by Milner, Parrow and Walker [9] as an exten-
sion of previous paradigms for distributed and concurrent computation with
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structure to reflect not only the locality of information but also its mobil-
ity. Thus, in addition to the usual combinators of process algebra such as
prefix, parallel combination, nondeterministic choice, input and output, the
π-calculus contains processes of the form (νx)P which should be thought of as
the process P with local information x. Crucially, the operational semantics of
the π-calculus allows the topography of this locality to evolve dynamically so
that information which is local at some point may become global later. This
phenomenon, known as extrusion, is the central innovation of the π-calculus.
The π-calculus allows processes to change their connectivity over time. Hence
it is called a calculus of mobile processes.

One of the key advances of research in process algebra was the concept
of bisimulation as a method of proving equivalences of processes. While this
concept is fairly simple as introduced in CCS [8], the concept becomes more
intricate in process algebra with variable binding as a variety of different pos-
sibilities exist. The simpler ones, such as early bisimulation and late bisimula-
tion [9] suffer from not being congruences. Open bisimulation [15] on the other
hand is a congruence but is complicated by the fact that the bisimulation rela-
tion must be closed under not only transitions, but also certain substitutions
and these substitutions vary from process to process. This makes the overall
definition rather more complex and subtle than the definition of early and late
bisimulation.

The success of the π-calculus, and the variety of different bisimulations it
supports, makes it an ideal case study for some exciting recent developments
in program language semantics, in particular for higher order abstract syntax
(HOAS) [4] and functorial operational semantics (FOS) [18]. HOAS aims to
extend the highly successful paradigm of initial algebra semantics to languages
involving variable binding while FOS seeks a uniform framework in which to
reason about the relationship between operational and denotational models.
Hence we aim at a treatment of open bisimulation in the π-calculus by using
the following strategy:

• Since the π-calculus contains variable binding, we follow the HOAS ap-
proach and model the syntax of the π-calculus by the initial algebra of an
endofunctor over a category of presheaves.

• The observations one can make of a process are given by a language of pre-
fixes which is modelled by a copointed endofunctor over the same category
of presheaves. This endofunctor is called the behaviour functor. Transition
systems are the coalgebras for this behaviour functor and bisimulations are
given by coalgebraic bisimulations.

• We model the operational semantics as a distributivity of the syntax over
the behaviour from which we derive compositionality and full abstraction
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results.

The contributions of this paper are therefore:

• We give a clean presentation of open bisimulation and derive results like
compositionality and full abstraction. This is achieved by using abstract
ideas such as coalgebra, naturality and indexing to avoid the various tech-
nical side conditions concerning free and bound names which appear in the
standard definitions [16].

• The sophistication of open bisimulation arises from its closure under varying
classes of renamings. The novelty of our approach is that we capture this
feature by moving from presheaves over a subcategory of Set (as in [5]) to
presheaves over a subcategory of Rel which we call relational presheaves.
In this paper Rel is taken to be the category with relations as objects and
monotone functions as morphisms. These relational presheaves offer more
dynamic allocation operators to model the binders in the π-calculus than
are usually available.

• As we comment in the conclusion, this extra power of relational presheaves
seems exactly what is needed to treat other elaborate bisimulations such as
hyperbisimulation in the Fusion calculus [11].

Related Work:

This program of research has been applied to the π-calculus in [5] but only
to early and late bisimulations. However, the sophistication of open bisim-
ulation means that these methods could not be applied — our solution of
using relational presheaves seems to be precisely what is required in terms
of providing appropriate extra structure. Open bisimulation has been writ-
ten about extensively in the concurrency literature [16,12] (e.g. regarding its
axiomatisation, symbolic transition systems leading to efficient characterisa-
tions, and implemented algorithms for deciding equivalence). Interestingly,
in these papers, some constructions are indexed by relations as proposed here
while others are not. Thus our idea of building our semantics around relational
presheaves fits in with, and extends, a trend in the mainstream treatment of
open bisimulation. But the fact that one then sees connections with other
bisimulations such as hyperbisimulation makes a strong case for moving to
our more abstract setting.

This paper will appeal to those coalgebraists who are interested in HOAS
and FOS as, in order for this theory to fully mature, more complex examples
need to be treated. This is precisely what we have done. For example, we
wonder whether the relational presheaves we consider here fit into Power’s
axiomatics for FOS [14]. In addition, two of the present authors work in the
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α ::= a(x) (Input)

ax (Output)

a(x) (Bound Output)

τ (Silent)

P ::= 0 (Inaction)

α . Q (Prefix)

Q + R (Summation)

Q | R (Composition)

(νx)Q (Restriction)

[x = y]Q (Match)

! P (Replication)

Fig. 1. Syntax of π-calculus

area of concurrency and came to this subject as they were interested in the
possibility of more abstract treatment of their subject. Given the proliferation
of different process algebras and the numerous associated bisimulations, this is
certainly a growing area of interest and we expect other concurrency theorists
to be interested in this work. In summary, there are both good theoretical and
practical reasons for the development of open bisimulation within the higher
order functorial operational semantics framework that we have provided.

The paper is structured as follows: We provide the concrete syntax and
semantics of π-calculus in section 2 followed by abstract syntax of the π-
calculus in section 3. Section 4 contains the associated behaviour functor and
the key results on the compositional and fully abstract semantics of the π-
calculus. We finish in section 5 with some conclusions and ideas for further
work.

2 The π-calculus

In this section we recall the syntax and semantics of the π-calculus and the
definition of open bisimulation equivalence. As this is standard material, we
refer the reader to standard texts for some of the technical details, e.g. [16].

We assume an infinite set of names N ranged over by a, b, . . . x, y, . . ..
These represent the communication channels and the values sent and received.

Definition 2.1 (The π-calculus) The set of raw π-calculus processes, ranged
over by P, Q, R etc, and prefixes α are defined inductively by the rules of Fig-
ure 1.

0 stands for the empty process which can do nothing. The process α . Q
can perform the relevant input, output or silent action and then become the
process Q; Q + R is the nondeterministic choice of Q and R; Q | R is the
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pref
−

α . P
α−→ P

res
P

α−→ P ′

(νz)P
α−→ (νz)P ′ if z �∈ n(α)

sum
P

α−→ P ′

P + Q
α−→ P ′ par

P
α−→ P ′

P | Q
α−→ P ′ | Q

if bn(α) �∈ fn(Q)

match
P

α−→ P ′

[x = x]P
α−→ P ′ com

P
u(x)−−→ P ′, Q

uy−→ Q′

P | Q
τ−→ P ′{y/x} | Q′

open
P

xy−→ P ′

(νy)P
x(y)−−→ P ′ if x �= y close

P
u(y)−−→ P ′, Q

u(y)−−→ Q′

P | Q
τ−→ (νy)(P ′ | Q′)

rep-pref
P

α−→ P ′

! P
α−→ P ′ | ! P

rep-com
P

uy−→ P ′, P
u(y)−−→ P ′′

! P
τ−→ P ′ | P ′′{y/x} | ! P

rep-close
P

u(y)−−→ P ′, P
u(y)−−→ P ′′

! P
τ−→ (νy)(P ′ | P ′′) | ! P

Fig. 2. Transition rules for π-calculus

process Q and R running in parallel; (νx)Q is the process Q where x occurs
locally and is bound in Q; [x = y]Q is the process Q if the names x and y
are equal and otherwise is 0. Finally ! P is the replication operator which
can be seen as unlimited copies of P and can be used to encode recursion.
The prefixes generate the observable behaviour that processes exhibit as they
evolve. Observations vary depending upon the bisimulation one wants to study
but for open bisimulation there are four, namely i) a(x) represents the input
of an unknown name x on channel a; ii) ax represents the output of a global
name x on channel a; iii) a(x) represents the output of a local name x on
channel a; and iv) τ represents a silent internal action. In the actions above,
we call a the subject of the action, and x the object.

The input prefix and the restriction operator are binders (the bound output
prefix a(x) . P is short for (νx)ax . P ). Thus there are the obvious notions of
free and bound names in a process or prefix, denoted fn(P ), fn(α), bn(P ), bn(α);
we write n(P ) and n(α) for the free and bound names in a process or prefix.
The binders then induce the obvious notion of α-equivalence on processes,
and the terms of the π-calculus are the processes quotiented by α-equivalence.
Having defined the syntax of the π-calculus, we turn to its operational seman-
tics.

Definition 2.2 The family of transitions P
α−→ Q is the least family satis-

fying the laws in Figure 2, where symmetric rules for sum, par, com and
close have been omitted.
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Open bisimulation, originally defined by Sangiorgi [15], is finer than the
early and late bisimulations [9]; unlike early and late bisimulation, open bisim-
ulation is a congruence and, although its definition may seem more complex
at first sight, it has an “efficient” characterisation exploited in automated
tools [15,19]. Open bisimulation is defined as a set of relations indexed by
distinctions which are used to express the permanent inequality of names.

Definition 2.3 A distinction is a finite symmetric and irreflexive relation
on names. We may write {(x, y)} for {(x, y), (y, x)} etc, omitting symmetric
pairs. A substitution is a function on names which has obvious actions on
processes and distinctions. A substitution σ respects a distinction D if (a, b) ∈
D implies σ(a) �= σ(b).

Distinction relations are used to record the names extruded by bound
output; these names were originally bound and hence must be kept different
from all other names — the use of distinction relations allows us to consider
only those renamings which keep extruded names distinct.

Definition 2.4 A distinction indexed set S = {SD} of symmetric process
relations is an open bisimulation if for each SD and for each σ which respects
D, whenever (P, Q) ∈ SD

(i) if Pσ
a (x)−−→ P ′ with x �∈ fn(Q), then there is a Q′ such that Qσ

a (x)−−→ Q′

and (P ′, Q′) ∈ SD′, where D′ = Dσ ∪ {{x} × fn(Pσ, Qσ)};
(ii) if Pσ

α−→ P ′ with bn(α) �∈ fn(Q) otherwise, then Q′ exists s.t. Qσ
α−→ Q′

and (P ′, Q′) ∈ SD.

P and Q are open D-bisimilar, written P ∼D Q, if there is an open bisimulation
S s.t. (P, Q) ∈ SD for SD ∈ S.

As a simple motivating example, consider the processes

P = x . 0 | y . 0

Q = x . y . 0 + y . x . 0

P0 = (νx, y)z x . z y . P

Q0 = (νx, y)z x . z y . Q

where clearly P �∼∅ Q, since P{x/y} τ−→ P ′ but Q{x/y} �τ−→ Q′. However,
P0 ∼∅ Q0, since there is no possibility of x and y ever being identified. This
information is recorded in the distinction index of the open bisimulation rela-
tion; after the first two bound outputs z (w) and z (y), we only need to verify
that P ∼{(x,y)} Q, thus ruling out all substitutions identifying x and y. For
further examples and motivation see e.g. [16,15].

We shall see later how these technical conditions concerning bound and free
names etc are subsumed within the HOAS set up to provide a more pleasing
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definition.

3 Abstract Syntax

The problem with the concrete definition of the syntax of the π-calculus as
given in section 2.1 is that it is presented as a quotient datatype. Reasoning
with such quotient datatypes is notoriously difficult as one either has to ef-
fectively pick representatives for the equivalence classes or work directly with
the equivalence classes themselves. Consequently, it was something of a break-
through when it was discovered how to present not just the raw terms, but
also the α-equivalence classes of terms as free or initial datatypes [4].

The approach may be summarised as follows: rather than defining a set of
raw terms and then quotienting them by α-equivalence, one defines for each
set of free variables, the set of terms definable in that context. These contexts
are also called stages. Thus for each context or stage we have a set of terms.
Allowing renaming of variables in contexts means contexts form a category
C and then terms should be given by a functor C → Set. Typically C has
been chosen to be either the category of finite sets and all functions [5], or the
category of finite sets and injective functions [5]. Our central insight and the
novelty of our approach is that to tackle more sophisticated situations such
as open bisimulation in the π-calculus and hyperbisimulation in the Fusion
calculus, more structure is required of the stages and in particular that stages
form subcategories of Rel.

Open bisimulation is closed not just under transitions but also renamings
which must be injective on the names which have been extruded. Thus each
stage should not consist only of a set of free variables but should include a
relation which says when names cannot be renamed to be the same. Thus our
presheaves will be over certain subcategories of Rel and not Set. For open
bisimulation, this subcategory is the category of distinction relations which
we now define.

3.1 The Category of Distinction Relations

To interpret open bisimulation we use stages which consist of distinction re-
lations. Thus π-calculus-terms will form a presheaf D → Set where D is the
category of distinction relations.

Definition 3.1 (The category D) The category D of distinctions relations
is the full subcategory of Rel whose objects are distinction relations, i.e.,
relations which are irreflexive, symmetric and have a finite carrier set.

Thus morphisms between distinction relations (n, dn) and (m, dm) are func-
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tions f : n → m which preserve the distinction relation. Intuitively, a distinc-
tion relation is a set and a relation such that related elements are thought of as
definitely distinct which must never be renamed to be the same. As we argued
earlier, finding a mathematical formalism to ensure that extruded names are
renamed injectively while other names may be renamed non-injectively is the
key to understanding open bisimulation.

As mentioned above, the main insight here is that we work in the presheaf
category SetD. Much of the required structure of this presheaf category is
inherited from D as we now describe.

Lemma 3.2 (Structure of D) The category D has three distinguished dy-
namic allocation functors Id, δ+, δ− : D → D

Proof. The dynamic allocation operator Id is the identity, while δ− is simply
coproduct with the distinction relation on the one element set. The action of
δ+ : D → D on objects is given by δ(n, dn) = (n + 1, dn+1) where dn+1 is the
symmetric closure of

dn ∪ {(∗, i)|i ∈ n}
The action on morphisms is as expected while functoriality is a simple calcu-
lation. �

Thus both δ− and δ+ both add an extra element to the carrier of a dis-
tinction relation to represent the bound variable. However, δ+ asks that, in
addition, this new element is made distinct from the other elements. The
functor δ+ will be used for the binding associated with restriction to ensure
that the extruded name cannot be renamed to other name while the δ− func-
tor is used for bound input where no such restrictions are necessary. The
superscripts +,− are designed to convey the idea that while both δ+ and δ−

both add in an extra element, δ+ adds in extra distinctions. The presence
of more than one dynamic allocation operator is a direct consequence of our
move to relational presheaves as a semantic domain. We use the identity as a
dynamic allocation operator solely to avoid case analysis later on.

The structure exhibited in Lemma 3.2 lifts to structure of the category of
D-presheaves as follows. Note that the restriction to finite distinction relations
means that there are no size problems when talking about the category of D-
presheaves. Rather than invent new symbols for the lifted structure, we shall
use the same symbols but ensure the reader has enough information to deduce
which category we are working in.

Lemma 3.3 (Structure of SetD) The category SetD has products, coprod-
ucts, a presheaf of names, three dynamic allocation functors Id, δ−, δ+ and a
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finite powerset functor defined as follows:

• The presheaf of names N ∈ SetD with action N(n, dn) = n.

• As with all limits and colimits in functor categories, products and coproducts
are computed pointwise. Thus (P × Q)(n, dn) = P (n, dn) × Q(n, dn) and
similarly for coproducts.

• Each dynamic allocation functor κ ∈ {Id, δ+, δ−} on D defines the dynamic
allocation operator ◦ κ : SetD → SetD.

• If Pf is the finite powerset functor on Set, then Pf ◦ : SetD → SetD

defines the finite power operator on D-presheaves.

We can now give an initial algebra semantics for the π-calculus based upon
distinction relations.

3.2 π-calculus Syntax as an Initial Algebra

The category of presheafs SetD provides a suitable universe of types to model
syntax and semantics of π-calculus with an open interpretation. The syntax
of π-calculus given in Definition 2.1 is captured up-to α-equivalence by an
endofunctor Σ : SetD → SetD defined in Figure 3.

Σ X = K1 (Inaction)

+ N × N × X (Output Prefix)

+ N × δ+X (Bound Output)

+ N × δ−X (Input Prefix)

+ X × X (Summation)

+ X × X (Composition)

+ δ+X (Restriction)

+ N × N × X (Match)

+ X (Replication)

Fig. 3. Endofunctor modelling π-calculus-terms

The functor Σ is constructed as expected as the sum of functors for each
specific syntactic category of the language. For example, the 0 process always
adds one process, while free output prefixed processes consist of two names and
a process already constructed. Bound output on the other hand consists of the
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name of the channel on which the previous local name was to be transmitted,
and the process with the extruded name declared to be distinct from all other
names by the use of δ+. Compare this situation with the input prefix where
the name expected along the input channel is not extruded and hence not
forced to be distinct from other names by using δ−.

The syntax of the π-calculus is the initial Σ-algebra which we write Σπ.
That Σ has an initial algebra follows from the fact that i) SetD has ω-colimits
and an initial object inherited from Set; and ii) sums and products preserve
filtered colimits while for any functor F , ◦F always preserves filtered colimits.
That Σπ(X) is the set of π-calculus terms up-to α-equivalence with free names
from X is easily seen via the same kind of argument as in [5] to establish the
correctness of the higher order abstract syntax approach to the untyped λ-
calculus. Notice that since Σπ is a D-presheaf, we can also rename π-calculus
terms. However, exactly which names can be equated by such renamings is
controlled by the stage or distinction relation where the process lives. Recall
that achieving this is the key step to tackling open bisimulation.

4 Labelled Transition Systems

Having given an initial algebra semantics for the syntax of the π-calculus, we
turn to a treatment of the open transition relation and hence open bisim-
ulation. Our approach is to define a behaviour functor such that an open
transition system is simply a coalgebra for the behaviour functor and open
bisimulation is then a coalgebraic bisimulation. Of course, we wish to use
the advantages of HOAS to work up-to α-equivalence and so the first step is
to replace the prefixes of Definition 2.1 which contain bound variables, with
versions up-to α-equivalence. Thus we define the set Act = {a(), a(), ab, τ}
and note that if σ : N → N is any function over names, then there is the
obvious action on the set Act.

Next, we use these actions to define the notion of transition system. In the
HOAS framework processes are given in specific stages and hence the nodes
of the transition system must be pairs of stages and processes which inhibit
them.

Definition 4.1 (D-transition systems) A D-transition system consists of
a presheaf X : SetD and a graph such that

• The nodes are labelled by pairs (p, d) where p ∈ X(d)

• The edges are labelled by elements of the set Act such that if

· (p, d)
a()−→ (p′, d′) then d′ = δ−d and a ∈ d

· (p, d)
a()−→ (p′, d′) then d′ = δ+d and a ∈ d
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· (p, d)
ab−→ (p′, d′) then d′ = d and a, b ∈ d

· (p, d)
τ−→ (p′, d′) then d′ = d

• If (p, d)
α−→ (p′, κd) where κ ∈ {Id, δ−, δ+} and σ : d → d′

then (pσ, d′) ασ−→ (p′σ, κd′).

The essence of the FOS approach is to represent transition systems such
as those in Definition 4.1 as coalgebras of a behaviour functor. We define the
behaviour functor as follows:

Definition 4.2 (Behaviour Functor) The functor B : SetD → SetD is
defined as follows

BP = Pf (P + N × N × P + N × δ+P + N × δ−P )

To understand the above definition, think of BP as the possible evolution
of a presheaf of processes P . Non-determinism means there are many possible
evolutions and hence the presence of the power type functor Pf ◦ . Each of
these possible evolutions consists of the observable action and the resulting
process. The silent and free output actions are the first two possibilities —
notice that the resulting processes live in the same stage. For bound output,
we observe the channel along which the output is sent and the resulting process
has the name extruded and hence the stage is extended by the extruded name
which must be kept distinct from all others. Finally, for bound input much
the same is true except that in the resulting process the fresh name need not
be distinct from the other names.

Lemma 4.3 D-transition systems are in one-to-one correspondence with B-
coalgebras.

Proof. The structure map of the coalgebra gives us exactly the transition
relation while the naturality of the coalgebra structure map corresponds ex-
actly to the closure condition of open transitions under distinction preserving
renamings. �

A B-coalgebraic bisimulation is defined as follows:

Definition 4.4 (Coalgebraic Bisimulation) A B-bisimulation over a B-
coalgebra X is given by a relation R over X such that there is a B-coalgebra
structure on R making the following diagrams commute.

X � R � X

BX
�

� BR

∃
�

...........
� BX

�
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Lemma 4.5 The following data are equivalent:

• A B-bisimulation over a presheaf X : D � Set

• A family of symmetric relations

{Rd ⊂ X(d) × X(d)}d∈D

such that
· If σ : d → d′ and p Rd q, then pσ Rd′ qσ
· p Rd q implies if

p
τ−→ p′ then there is a q′ such that q

τ−→ q′ and p′ Rd q′

p
a()−→ p′ then there is a q′ such that q

a()−→ q′ and p′ Rδ−d q′

p
a()−→ p′ then there is a q′ such that q

a()−→ q′ and p′ Rδ+d q′.
p

ab−→ p′ then there is a q′ such that q
ab−→ q′ and p′ Rd q′.

Lemma 4.5 gives an elegant characterisation of B-bisimulations as open
bisimulations but is this really the same notion of open bisimulation as found
in Definition 2.4. The conditions relating to bound names have been implicitly
implemented by making processes reside in a specific distinction relation and
by using the dynamic allocation operators δ− and δ+. The only other issue
is that Definition 2.4 is not immediately closed under distinction preserving
renaming but this is actually a well known property [16].

4.1 Categorical rules

In this section we show how the operational rules of π-calculus given in Fig-
ure 2 are modelled via natural transformations of a certain form which imply
a compositional semantics with full abstraction property provided that the
behaviour functor is finitary and preserves weak pullbacks. That such natural
transformations give rise to a compositional and fully abstract semantics goes
back to the seminal paper [17]. More recent work [7,13] has recast the abstract
theory more elegantly in terms of distributivity laws but, since our goal is to
establish the existence of such distributivity laws, we stick with the original
concrete format. Since the material here is as one would expect, we treat only
the following laws for the restriction operator.

res
P

ab−→ P ′

(νz)P
ab−→ (νz)P ′ if z �∈ {a, b} open

P
xy−→ P ′

(νy)P
x(y)−−→ P ′ if x �= y

In general, we seek to model such operational laws as natural transforma-
tions which are natural in X

Σ(X × BX) → BTX in SetD(1)
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In the case of the two rules for restriction given above, we derive the correct
natural transformation from a natural transformation δ+(X × BX) → BTX
is generated by

δ+N × δ+N × δ+X
ρ−→ Pf(N × N × TX + N × δ+TX)

The definition of ρ can be given using the internal language defined in [3].

ρ(a, b, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a′(), q′), if a is old(a′) and if b = new(b′)

(a′b′, (νz)q′), if a is old(a′) and b = old(b′)

∅ if a = new(a′)

where old and new are the injections D � δ+D and 1 � δ+D.

Naturality can easily be checked.

Results in [17] show the semantics associated to the natural transforma-
tion modelling the operational rules induces compositional semantics with full
abstraction property, i.e., two process with the same semantics are B-bisimilar.

Lemma 4.6 Operational rules of Figure 2 modelled by natural transformation
of type (1) induces a compositional semantics having full abstraction property.

Proof.

Most of the constructors of the behaviour functor have already been proven
finitary. That Pf : Set � Set is finitary is folklore, and thus power type
operator Pf ◦ is finitary, since if K is any finitary functor, so is K ◦

The fact that B preserves weak pullbacks follows from i) the fact that prod-
ucts and coproducts do; the fact that Pf does; iii) and that if K : D � D
is any functor then ◦ K : SetD � SetD preserves weak pullbacks. This
can be proved as follows.

Let P be the weak pullback of η : S � Q and ε : R � Q (assume
that the following diagrams are weak pullbacks).

P
p � R

S

p′

�

η
� Q

ε

�
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We must show P ◦X is the weak pullback of η ◦X : S ◦X � Q ◦X and
ε ◦ X : R ◦ X � Q ◦ X.

P ◦ X
p◦X � R ◦ X

S ◦ X

p′◦X
�

η◦X
� Q ◦ X

ε◦X
�

Given a map h : H � S ◦X and h′ : H � R◦X with the properties that
(η ◦ X) ◦ h = (ε ◦ X) ◦ h′, we get maps LanXH � S and LanXH � R
making the square commute. Since P is the weak pullback of this square, we
have a map LanXH � P and hence a map H � P ◦ X as required. All
commutations follow from naturality. �

5 Conclusion

This paper has given a clean presentation of open bisimulation in the π-
calculus using the recently developed theories of higher order abstract syntax
and functorial operational semantics. Open bisimulation is more sophisti-
cated than early and late bisimulation which had previously been studied in
this framework because the extruded names must be recorded and kept dis-
tinct from all other names under renaming. We solve this technical challenge
in an elegant way by moving from presheaves over a subcategory of Set to
presheaves over a subcategory of Rel, namely the category of distinction re-
lations. The extra structure of such relational presheaves offers a choice of
dynamic allocation operators to model the different binding operators which
arise in the language. By verifying the preconditions of the functorial opera-
tional semantics framework, we then obtain a compositional and fully abstract
semantics for open bisimulation in the π-calculus.

There are a number of future directions we wish to take this research.
Firstly relational presheaves seem to offer the extra structure required to
model sophisticated bisimulations such as open bisimulations. The fusion
calculus [11] is a variant of the π-calculus where the communication rule

com
P

u(x)−−→ P ′, Q
uy−→ Q′,

P | Q
τ−→ P ′{y/x} | Q′

is replaced by the communication rule

com
P

ux−→ P ′, Q
uy−→ Q′

P | Q
{x=y}−−−→ P ′ | Q′

|x| = |y|

which can be thought of as an explicit substitution and with all the associated
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benefits of making substitution local etc. In such a calculus processes are
defined in a context which consists of not just a set of free names but also
an equivalence relation on the names which arise from the communication
rule above. This suggests modelling the fusion calculus using presheaves with
stages given by finite equivalence relations. We already have sketched the
details and will include them in the forthcoming journal version of this paper.

In the longer term there are a variety of directions we wish to go. On
the theoretical side, it would be very interesting to extend these techniques to
higher order process calculi and much of the semantic infrastructure already
exists and is waiting to be used. We would also like to consider whether these
techniques can be extended to Milner’s bigraphs [6] which is a formalism
intended to abstract away from specific process calculi. Further, it would be
interesting to test the applicability of Power’s recent work on computing with
distributivity laws [13] to this setting.

A more practical direction to take this research is that of HD-automata
[10]. HD-automata seek to give an operational model of History Dependent
calculi by decorating the states of automata with relevant information (free
names of a processes) and establishing the correspondence between the local
information in different states. These automata can be seen as concrete re-
alisations of the more abstract framework [12,2]. By automatically distilling
a concrete, minimised representation of a process as a history dependent au-
tomata, we can expect applications in model checking and verification along
the lines of [1].
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