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Abstract. We propose a compositional coalgebraic semantics of the Fusion cal-
culus of Parrow and Victor in the version with explicit fusions by Gardner and
Wischik. We follow a recent approach developed by the authors and previously
applied to the pi-calculus for lifting calculi with structural axioms to bialgebraic
models. In our model, the unique morphism to the final bialgebra induces a bisim-
ilarity relation which coincides with hyperequivalence and which is a congruence
with respect to the operations. Interestingly enough, the explicit fusion approach
allows to exploit for the Fusion calculus essentially the same algebraic structure
used for the pi-calculus.

1 Introduction

A new generation of programming languages for distributed and interactive compu-
tation relying on some pattern matching mechanisms is recently emerging (e.g., High-
wire [6]). Fusion calculus [10, 14] seems a good candidate to formalise the foundational
aspects behind these languages.

Fusion calculus has been introduced as a variant of the pi-calculus [7] It makes
input and output operations fully symmetric and enables a more general name matching
mechanism during synchronisation. A fusion is a name equivalence that allows to use
interchangeably in a term all names of an equivalence class. Computationally, a fusion
is generated as a result of a synchronisation between two complementary actions, and
it is propagated to processes running in parallel with the active one. Fusions are ideal
for representing, e.g., forwarders for objects that migrate among locations [5], or forms
of pattern matching between pairs of messages [6].

In Fusion calculus, a fusion, as soon as it is generated, it is immediately applied to
the whole system and has the effect of a (possibly non-injective) name substitution. On
the other hand, the version of the calculus with explicit fusions [4, 5] aims at propagat-
ing fusions to the environment in an asynchronous way. Explicit fusions are processes
that exist concurrently with the rest of the system and enable to freely use two names
one for the other.

Interactive systems, when represented as labelled transition systems, can be con-
veniently modelled as coalgebras. A coalgebraic framework [11] presents several ad-
vantages: morphisms between coalgebras (cohomomorphisms) enjoy the property of
“reflecting behaviours” and thus they allow, for example, to characterise bisimulation
equivalences as kernels of morphisms and bisimilarity as the bisimulation associated to



the morphism to the final coalgebra. Also adequate temporal logics and proof methods
by coinduction fit nicely into the picture.

However, in the ordinary coalgebraic framework, the states of transition systems are
seen simply as set elements, i.e. the algebraic structure needed for composing programs
and states is disregarded. Bialgebraic models take a step forward in this direction: they
aim at capturing interactive systems which are compositional. Roughly, bialgebras [13,
2, 3] are structures that can be regarded as coalgebras on a category of algebras rather
than on the categor$et, or, symmetrically, as algebras on a category of coalgebras.
For them bisimilarity is a congruence, namely compositionality of abstract semantics is
automatically guaranteed.

When considering mobile interactive systems, like the pi-calculus, the ordinary
coalgebraic approach cannot be directly applied, since the generation of new names
requires special conditions on the inference rules and on the definition of bisimulations.
The bialgebraic approach, instead, fits well: it is enough to consider the states as forming
an algebra of name permutations [8, 9]. However, the interaction of structural axioms
with inference rules makes the application of the bialgebraic approach problematic, if
more complex operations are taken into account. To overcome this difficulty, in [1] it
has been proved that calculi defined by De Simone inference rules and equipped with
structural axioms can be lifted to bialgebras, provided that axioms bisimulate. In the
same paper, the approach has been applied to a version of pi-calculus.

In this paper we apply the general theory presented in [1] to the fusion calculus of
Parrow and Victor, in order to provide a bialgebraic model of the calculus. We argue that
this result does not only concern the fusion calculus but it could fit within theoretical
foundations of languages based on pattern matching.

Since bisimilarity in thet-calculus fails to be a congruence due to input prefix, the
model in [1] is compositional only with respect to parallel composition and restriction;
constants are introduced to magagents whose out-most operator is neither parallel
composition nor restriction. Moreover, the theorylac. cit. does not apply to late
and opemrt-calculus as this would require the introduction of arbitrary (possibly non-
injective) name substitutions. Our present model of the fusion calculus, instead, is fully
compositional with respect to the operations of the calculus. This is accomplished by
the introduction of explicit fusions into the underlying algebra. Indeed, the combination
of explicit fusions and restriction allows to derive a name substitution operator which
behaves like the standard capture-avoiding substitution.

We introduce a permutation algebra enriched with the operations of the calculus
plus constants modelling explicit fusions. We then prove that the conditions required
by [1] are satisfied. Remarkably enough, explicit fusions enable us to model substitu-
tions within our theory, while keeping essentially the same permutation algebra consid-
ered in [1] for the pi-calculus. No non-injective substitution operations are introduced
in the algebra: rather, their observable effects are simulated by De Simone inference
rules which saturate process behaviours, while still keeping the nice property of asyn-
chronous propagation typical of explicit fusions. We claim that the translation of fusion
agents in our algebra is fully abstract with respect to Parrow and Victor hyperequiva-
lence. As in [15], closure with respect to substitution is obtained by adding in parallel
at each step any possible fusion.



Structure of the papefSection 2 contains the background on permutations, fusion cal-
culus, and theory of bialgebras. In Section 3 we define a permutation algebra for the
fusion calculus, along with a (structured) transition systsmnd we prove that it can

be lifted to be a bialgebra. Moreover, we prove that fusion agents can be translated into
terms of our algebra and that such a translation is fully abstract with respect to fusion
hyperequivalence. The complete proof is reported in the appendix. Finally, Section 4
contains some concluding remarks and directions for future work.

2 Background

2.1 Names, Fusion and Permutations

We need some basic definitions and properties on names, fusions and permutations of
names. We denote witht = {xo, X1, X2, ...} the infinite, countable, totally ordered set
of namesand we usey, z... to denote names.
Name fusiongor, simply, fusiong are total equivalence relations &t with only
finitely many non-singular equivalence classes. Fusions are ranged ovetlby ..
We let:

— n(¢) denote{x: xdy for somey # x};

— T denote the identity fusion (i.en(t) = 0);

— ¢ + Y denote the finest fusion which is coarser tigaandy, that is(¢ UP)*;
— ¢_zdenoted — ({z} xNUN x {z})U{(z2,2)};

— ¢[x] denote the equivalence classxh ¢;

— ¢ C Y denote that is finer thaty, i.e., for allx € M, ¢[x] C W[x];

— {x=y} denote{(x,y), (y,X) }*.

A name substitutiois a functiono : 9t — 91. We denote witlo o o’ the composition
of substitutionsy andd’; that is,c 0 0’ (x) = a(0’(x)). We useo to range over substitu-
tion and we denote witfy; — xq,---,yn — Xq| the substitution that maps into y; for
i =1,...,nand which is the identity on the other names. We abbreviafy by x| the
substitutionly — x,x+— y|. Theidentity substitutioris denoted by id.

A substitutiono agrees witte fusiond if VX,y: x¢y < o(x) = o(y). A substitutive
effectof a fusion¢ is a substitutioro agreeing withp such that'x,y: o(x) =y = x¢y
(i.e.,0 sends all members of the equivalence class to one representative of the class).

A name permutatios a bijective name substitution. We ugs¢o denote a permu-
tation. Given a permutatiopm, we define permutatiop. ; as follows:

- P(Xn) = Xm
P+1(X0) =Xo P1(Xnr1) = Xmp1

Essentially, permutatiop. is obtained fronp by shifting its correspondences to the
right by one position.



2.2 The Fusion Calculus

In this section we give an overview of the fusion calculus, which has been introduced
in [10]. Here we consider monadicversion of the calculus.

The fusion calculuggents ranged over by, Q,..., are closed (wrt. variablexX)
terms defined by the syntax:

Pu=0|mP|PP| (X)P|recX.P|X
where recursion is guarded, apafixes ranged over byr, are I/O actions or fusions:
mi=| Xy | xy| ¢.

The occurrences ofin (x) P are bound and fusion effects with respeckiare limited
to P; free namesndbound namesf agentP are defined as usual and we denote them
with fn(P) and br{P), respectively. Also, we denote wittiP) andn(T) the sets of (free
and bound) names of agent temand prefixitrespectively.

The structural congruence, between agents is the least congruence satisfying the
following axioms:

(fus) ¢.P=¢.0¢(P) for o a substitutive effect of

(par) PlO=P  PQ=QP  P|(QR) =(PIQIR

(res)  (x0=0 (X)(Y)P=(y)XP (X (P+Q=XP+(XxQ
(scope) P|(2)Q=(z)(P|Q) wherez¢ fn(P)

The actionsan agent can perform, ranged over\pyare defined by the following
syntax:

yi=xy|[x@ [xy | X2 | ¢
and are called respectivefyee input bound input free output bound outputactions
andfusions Namesx andy are free iny (fn(y)), whereas is a bound name (kiy));
moreovem(y) = fn(y) Ubn(y). The notion of substitutive effect is extended to actions
by stating that the only substitutive effectyof ¢ is id.
The family of transition$® R Q is the least family satisfying the laws in Table 1.

Definition 1 (fusion bisimilarity). A fusion bisimulationis a binary symmetric rela-
tion § between fusion agents such thas ) implies:

If P L P with bn(y) N fn(Q) = 0 then Q—— Q@ anda(P') $ o(Q')
for some substitutive effegtofy.

P is bisimilar to Q, written P~ Q, if P.§ Q for some fusion bisimulatiasi.

Definition 2 (hyperequivalence).A hyperbisimulatioris a substitution closed fusion
bisimulation, i.e., a fusion bisimulatias with the property that 5 Q impliesa(P) § o(Q)
for any substitutioro. Two agents P and Q aleyperequivalentwritten P~y Q, if they
are related by a hyperbisimulation.



Y
(F-PRE) TLP —5 P (F-PaR) P'T’—Q if bn(y) Nfn(R) = 0
PR QR

XY o XZ o~ ¢
(F-Com) P F{’ 72? — Q (F-Scops) P Q¢7Zz¢ X,ZF# X

PIQ "= PIQ (2)P %5 [%2Q

2, Y
(F-OPEN) P Q aéfé {z2} (F-Pass) P+P// z¢ n(y)

(2P=2Q (2P— (2)P
) _p Y / /

(F-ReQ) PlrecX. P/Xll—> Q (F-Cono) P=P P >—y> Q Q=0

recX.P—Q P—Q

Table 1.LTS for Fusion

2.3 Bialgebras

We recall that an algebr@ over a signatur& (Z-algebra in brief) is defined by a car-
rier set|A| and, for each operatioop € = of arity n, by a functionop® : |A|" — |A.

A homomorphism (or simply a morphism) between tixalgebrasA andB is a func-
tion h: |A| — |B| that commutes with all the operationsinnamely, for each operator
op € Z of arity n, we haveop®(h(ay),---,h(an)) = h(op*(ay,...,a,)). We denote by
Alg (%) the category of-algebrasand Z-morphisms The following definition intro-
duces labelled transition systems whose states have an algebraic structure.

Definition 3 (transition systems).Let > be a signature, and L be a set of labels. A
transition systenover > and L is a pair Its= (A,——s) where A is a nonempt¥-
algebra and—ys C |A| x L x |A] is a labelled transition relation. Fotp,l,q) € —is

we write p'|—>|ts g.
Let lts= (A —ys) and Its = (B,—¢) be two transition systems. A morphism
h:lts — Its’ of transition systems ovérand L (Its morphism, in brief) is &-morphism

h: A — B such that p'—»ns g implies Kp) »'—>,tS/ h(q).
The notion of bisimulation on structured transition systems is the classical one.

Definition 4 (bisimulation). Let < be a signature, L be a set of labels, and dts
(A,—1is) be a transition system ové&rand L.
A relation® over|A| is abisimulationif p ® q implies:

— for each p# p’ there is some q'—> d such that pR d';
— for each q'—> g there is some p'—> P’ such that pR (.
Bisimilarity ~ys is the largest bisimulation.

Given a signatur& and a set of labelk, a collection of SOS rules can be regarded
as a specification of those transition systems @vandL that have a transition relation
closed under the given rules.

Definition 5 (SOS rules).Given a signatur& and a set of labels L, a sequent—ba q
(over L andZ) is a triple where le L is a label and pqg are Z-terms with variables in a
given set X.



An SOS ruler overZ and L takes the form:

R LI

p—q

where p R gi as well as p|—> g are sequents.
We say that transition system ks(A,—s) satisfiesa rule r like above if each

assignment to the variables in X that is a solution te-p> g fori=1,...,nis also a

solution to p# g.
We represent with

I n
P15 Gp o P G

i
p—q
a proof, with premises ipl—i> g fori=1,...,n and conclusion p'—> g, obtained by
applying the rules in R.

Definition 6 (transition specifications).Atransition specificatiois a tupleA = (3L, R)
consisting of a signaturg, a set of labels L, and a set of SOS rules R avand L.
A transition system oveX is a transition system over and L that satisfies rules R.

It is well known that ordinary labelled transition systems (i.e., transition systems
whose states do not have an algebraic structure) can be represented as coalgebras for a
suitable functor [11].

Definition 7 (coalgebras).Let F: C — C be a functor on a category. A coalgebra
for F, or F-coalgebrais a pair (A, f) where A is an object and fA — F(A) is an
arrow of C. A F-cohomomorphisnfor simply Fmorphisn) h: (A, f) — (B,g) is an
arrow h: A— B of C such that h ; g = f; F(h). We denote witBoalg(F) the category
of F-coalgebras and F-morphisms.

Proposition 1. For a fixed set of labels L, let P Set— Setbe the functor defined on
objects as P(X) = P(L x X+ X), where® denotes the countable powerset functor, and
on arrows as P(h)(S) = {{I,h(p)) | {I,p) € SNL x X} U {h(p) | p€ SN X}, for h:

X =Y and ST L x X+ X. Then P-coalgebras are in a one-to-one correspondence with

transition systems on L, given bys(p) = {{l,q) | p s g} U {p} and, conversely,
by p——us q if and only if(l,q) € f(p).

Definition 8 (De Simone format).Given a signature and a set of labels L, arule r
overX and L is inDe Simone formaif it has the form:

[ yliel)

Op(X]_, ce 7Xn) '|—> p

where ope Z, | C {1,...,n}, pislinear and the variables yccurring in p are distinct
from variables x except for y=x; ifi ¢ I.



The following results are due to [13] and concévialgebras i.e., coalgebras in
Alg(Z). Bialgebras enjoy the property that the unique morphism to the final bialgebra,
which exists under reasonable conditions, induces a bisimulation that is a congruence
with respect to the operations, as noted in the introduction.

Proposition 2 (lifting of P.). LetA = (Z,L,R) be a transition specification with rules
in De Simone format.
Define R : Alg(Z) — Alg(Z) as follows:
— [Pa(A)[ = PL(|A|)I;
~ whenever X —Vili €1}
op(Xa,-..,%n) LN p
(li,p)eS,iel qjeS§,j¢l
(Iplpi/yi i €1, aj/fy;, j 1) € op2¥ (s, )
— ifh: A— Bis a morphism irAlg(Z) then R(h) : PA(A) — Pa(B) and R (h)(S) =
{{,h(p) [(I,p) € SN(Lx[A]) } U {h(p)[pe SNIAJ}.

Then R is a well-defined functor oAlg(%).

€ R then

Corollary 1. LetA = (3, L,R) be a transition specification with rules R in De Simone
format.

Any morphism h f — g in Coalg(P,) entails a bisimulation-y, on Itg, that coin-
cides with the kernel of the morphism. Bisimulatiofis a congruence for the opera-
tions of the algebra.

Moreover, the categorgoalg(Py) has a final object. Finally, the kernel of the
unique R-morphism from f to the final object @foalg(Pa) is a relation on the states
of f which coincides with bisimilarity on ltsand is a congruence.

Note that, in order to prove that bisimilarity is a congruence, Corollary 1 requires
that the lifting of aP_-coalgebra to bé,-coalgebra takes place. In fact, this step is
obvious in the particular case 6f: A— Pa(A), with A= Ts and f unique by initiality,
namely wherA has no structural axioms and no additional constantsltgrid the min-
imal transition system satisfyinfy. The following results are due to [1] and generalise
the theory described so far to algebras with structural axioms.

Theorem 1. LetA = (X,L,R) be a transition specification with rules R in De Simone
format, B= Tz c) and g: |B| — PL(|B|) be a coalgebra which satisfiés If for all

equationsi =ty in E, with free variablegXx; }ic|, we have De Simone proofs as follows:
I . I :

oy del Xy Q€

Xr—w €] '—>)I/| '€ implies Y €1 Hi/' ' €

and t =gt) 1)
tp——t] tr— 1

and viceversa, using the rules in R and the additional rules:
clut ff (cht)eT.

Then, g can be lifted froi8etto Alg (Z). Moreover, in g bisimilarity is a congruence.



8

3 A Labelled Transition System for Fusion Calculus

In this section, following the approach adopted in [1] for the pi-calculus, we provide a
structured labelled transition systdts, for the fusion calculus and apply the general
result recalled in Section 2.3 to liisy to be a bialgebra. It follows that bisimilarity in
Itsq is @ congruence.

We first define a permutation algebra enriched with the operations of fusion calcu-
lus and with constants modelling explicit fusiors= y. Restrictionv corresponds to
(x) in fusion calculus: it has no argument here, since the extruded or restricted name is
assumed to be always the first one, xg Operatorp are generic, finite name permuta-
tions, as described in Subsection 21s meant to represent the substitut{gn— x;1],
fori =0,1,.... Of course, this substitution is not finite, but, at least in the case of an
ordinary agenp, it replaces a finite number of names, i.e., the free names of

The introduction of explicit fusions in the signaturas intended to model substi-
tutive effects of fusion calculus while keeping essentially the same permutation algebra
asin [1]. In fact, an explicit fusion = y allows to represent the global effect of a hame
fusion resulting from a synchronisation without need of replacing y or viceversa
in the processes in parallel: nameandy can be used interchangeably in the context

X=Y]-

Definition 9 (permutation algebra for fusion calculus).A permutation algebra B for
fusion calculus is the initial algebra B Ts ¢ g where:

— signatureX is defined as follows:
Tu=0|m_ | |-|v._|p-|d_|x=y,

with prefixesrt ::= Xy, xy, ¢;
— Cis the set of constants

C = {Crecx.p | P is a fusion agent;
— E is the set of axioms below:

(par)  pl0=p pla=dgp p(gr)=(plg)r

(res) v.0=0 v.(0p)|q=plv.q V.V, [X0 < X1]p=V.v.p

(group) (p'ep)p=p'(pp) idp=p

(perm) p0=0  p(mp)=p(m.pp  p(pla) =pp|pq
PV.P=V.p4+1P  PCrecX.P = Cp(recX.P)

(delta) &.0=0 0. (Lp) =94(m).0.p 0.p|lg=(d.p)|d.q
BV.p=V.[X = X1|0.p & CrecX.P = C5(recX.P)

(fus) x=x=0 Vv.(x0=x) =0 p(x=y) = p(x)=p(y)
d.x=y = 3(x)=3(y)



In the above axioms, bp(z) andd(z), for z= x,y, we mean the syntactical ap-
plication of permutationp andd, respectively, t; similarly, for p(m) andd(1r). Ax-
ioms (par), and(res) correspond to the analogous axioms for fusion calculus. Axioms
(perm) and(delta) rule how to invert the order of operators among each other, follow-
ing the intuition thatv andd decrease and increase variable indexes, respectively. By
axioms(fus) permutations can be syntactically applied to explicit fusions and fusions
of syntactically equal names are discarded. Notice that other expected properties like
v.d. p= pand[xp < X1]0.8. p=3.d. p can be derived from these axioms.

We give below a translation of fusion agents into terms of algBbTden, we define
a transition systerttsy for the algebraB and show thaltsy satisfies the conditions for
lifting coalgebras to bialgebras, as required by Theorem 1. The translation is straight-
forward, except for restrictiom that gives the flavour of the De Brujin notation. The
idea is to split standard restriction in three steps. First, one shifts all names up-wards to
generate a fresh nameg, then swap$ (x) andxo, and, finally, applies restriction o,
which now stands for what ‘used to be’

Definition 10 (translation [-]}). We define a translation of fusion ageffity : F — |B|
as follows:

[O)=0  [mP]=m[P] [PIQ]) = [Pl
[0)P] =v.[8(x) = xJ8[P]  [recX.P] = Crecx.p

For example, the translation of a fusion agdnt= (X2)({X2 = Xa}.X7%2.0) is
[P] =v. {x0=xs}.%eX0.0.

Definition 11. Let A be the set\ = {xy, x, Xy, X, ¢, — | X,y,n(¢p) € N}, where —
denotes a ‘null’ action, andP be the set of all fusions ovét. We define the set L of
labels as L= A x ®. We leta, 3, ... range overA andd, U, ... range overd.

Theentailment relatiort is defined as followsp - a =B, if o, # W anda(a) =
a(B), for all substitutive effectg of ¢; ¢ F W=/ if +yY = ¢+ . By d(a) and
v (a) we denote the labels obtained franby respectively applying substitutiodsand
v to its names, where (xi+1) = X, d(X) = X+1, and inv (¢) the equivalence class of
Xo is a singleton.

Definition 12 (transition specificationA). The transition specification is the tuple
(%,L,R), where the signaturE is as in Definition 9, labels L are defined in Definition 11

and R is the set of SOS rules in Table 2. Transitions take the fé%hg»)m, where(a, )
ranges over L.

The first group of rules in Table 2 is essentially the same as that one given in [1] for
the pi-calculus. The most interesting among them are in the right-column and concern
bound 1/O actions: they follow the intuition that substitutions on the source of a transi-
tion must be reflected on its destination by restoring the extruded or fresh nage to
Thus, for example, ruleeta) appliesd to g and then permutes) andx,, in order to
have the extruded name backxp Conversely, rulgres) permutes¢g andx; to make
sure that the restriction operation appliesg@nd not to the extruded name In rule
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(Par) side condition bfo) Nfn(r) = 0 is not necessarysinced shifts any name im to
the right and, thus¢y does not appear ib.r.

The main novelty is the second group of rules in Table 2: such rules are suited to deal
with explicit fusions. By ruleexr) explicit fusions are propagated and by ruies.),
(Pary), and(pary) they are combined with each other and with other agents in parallel.
Rules(rre), (Pre), and(Fus) are intended to ensure that the associated bisimilarity be pre-
served by closure with respect to fusions running in parallel. The presence of two rules
(Pre) @and (pre) is required in order to have a fully abstract translation of fusion agents
into terms of the algebra, as shown in Example 2 below. All the side conditions are
meant to ensure a saturation of process behaviours with respect to the explicit fusions.
This form of saturation is formalised in the following proposition.

First we introduce the notion of equivalence relatiteyip), induced by the explicit
fusions in a ternp. The notation given for fusions also appliesEw( p): this holds in
particular forv(Eq(p)), 8(Eq(p)), andEq(p) F a = .

Definition 13. Let p be a term of algebra B. The equivalence relatigip) obtained
as the sum of all explicit fusions in p is inductively defined as follows:

Eq(0)=T1  Eq(mp)=T1  Eq(pla) =Eq(p)+Eq(@  Eq(v.p)=V(Eq(p))
Eq(pp) = p(Eq(p)) Eq(d.p) =d8(Eq(p)) Eq(X=Y)={X=y} Eq(Crecx.p)=T

For example, fop = x = y|y = z|q, Eq(p) = {x=y = 7} +Eq(0).

Proposition 3.

1. 0f pw g then pwg g, for all g such thatq(p) +¢ - a =B.

(a,

2. Ifp @.9) g then p(a—w2 g, for all @ such thatp C ¢.

Example 1.

1. The termsp; Sy y|ly = k|p and p2 Sy y|x = k| p have the same transi-

tions. For instance, ip; “’ﬂ? then, by rulesEexr) and (pars), P2 M for any

¢ Cx=y+ x=kand, in particular, fop = y=k.

2. Considermp = Xy.p1 | zk p2. By rules(pre) and(com), p =k0) p1|p2|W |y =k, for

all ¢ andy such thak=zC ¢ and$ T p+y=Kk; in other words, a synchronisation
in p can take place in any context whetandz can be used interchangeably and,
moreover, any ‘smaller’ fusiof can be observed.

Proposition 4. LetA = (Z,L,R) be the transition specification in Definition 12. Rules
R are in De Simone format.

Definition 14 (transition systemltsg). The transition system for algebra B isdts
(B,—), where— is defined by the SOS rules in Table 2 plus the following axiom:
(a,9)
[PlrecX.P/X]] — q

CrecX.P (a—¢2 q

(REC)



(a,9)

(@.9)

pP—4a a#xX L, _P——0g a=XXx
(RHO) = oa),p(9)) (RHO) o 1(@).p,1(9))
pp ——= pq pp————=p41q
(D) p g arxx (DEL) p8¥q a=xx
d(a),d o(a),d
6.p( (@).3(9)) 5. p! (@).3(9)) % x1J3.q
(a.9) - (0,9) -
(PAR) —p ::L ¢()} # XX (PAR') —p q _a=xX
plr —=qr p\ q|5r
d d(¢ .0 _
pB@3®) o oy p (). <¢>)q o=
(RES) @.9) (ReS) .9
V. p—=V.q V.p—=V.[X0 < X1]q
(x%.5(9)) (9.5(y)
(OPEN) x 6q<¢>>>x7é 2 (seory —ET
p———=q V.p——>V.q
, [0 A 3(x),0(¢
com P12 )Q1 P2 V% cowy B %i?l pp 28 g,
pllpz b=24) ql\Qzly— z P1/P2 — a1 |v. (d2[3(y) = Xo)
(x.9) (X9)

p1— Q1 P2 — Qo
(CLoSE) V@)

p1/p2 V@), (calaz)

xy.¢")

(PRE) XY.p—=pl¢  O'Cd; ¢ xy=xy

3(x),3(¢
(PrE) xy.p( X), (¢))(

5.(pld) Ix=38(y) ¢ EdidFx=x

Vpw+o WCGwr o=

(ExP) xfy<—ny y X#Y

(FS)¢D

b ( ,01) G p (—,02) G o =Xyxy
(Pary) LML 2<B-¢’> 2 : O Co1+d2 1+ a=p
P1|p2 — d1d2
(a,¢1) (—,62)
(Prry PL—— & ‘—*QZ O=XX o/ C ¢y +5(h2); d1+3(02) -
P1|p2 E.9) qu5 a2
(=, 91) (= 92)

(Pary) PL—— 1 P2 ——Q

0
p1|p2 (—qu\Qz

O Eo1+¢2

Rules(Pre), (Pre), and(Oren) are analogous with output actions; rutew’)
has a symmetric counterpart.

Table 2. Structural Operational Semantics

11
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In fact, axiom(rec) is an axiom schema, that is, for each constaptx p, there is an
axiom instance that provides a concrete way to build all the possible transitions that
Crecx.p UNdergoes; the fact that recursion is guarded ensgatesto be well defined.
Note that any axiom instance is in De Simone format. Moreover it can be proved that,
for each fusion ager®, the number of constants and associated axigwms needed
in all derivations of[P[recX.P /X]] is finite, up to name permutations. The proof is
analogous to the proof given in [1] for the pi-calculus.

We remark that-g is very close in spirit to thénside-outsidévisimulation defined
in [4], which satisfies the following properties: two equivalent terms must contain the
same explicit fusions; two equivalent names must behave in the same way under explicit
fusions context.

Theorem 2. Let B be the permutation algebra defined in Definition 9. Then, Condi-
tion 1 in Theorem 1 holds.

Proof (Hint). The proof consists in showing that for edgh-t, in E, for eacht; @9 p

there existg; @9 g with p = q, and viceversa. The proof is quite long, because there

are several cases that have to be taken into account, depending on the transition rules

that can be applied tig andty, for allt; =t,. In most cases the proof is analogous to the

proof given in [1] for the pi-calculus. Here we only consider axiort. p)|q = pJv.q,

that is one of the most interesting axioms and it also involves explicit fusions.
(8(a),3(9))

g ————

/

Suppose that, by rulges), v. (8. p)|q @9y, p’. Necessarily(5. p

p
and there is a number of possible cases. Suppose that bypaiy}ed. p 0F).8(4) p’,
q (=:3(¢2)) q, with ¢ C ¢1 + ¢2 and d1 + ¢ - o = B; moreoverp’ = p’|¢. Then,

p (B.4) p”, with p” = 3. p”’. Now considerp|v.q. By rule (Res) v.q Cobe) v.0p and, by

rule (Pary), p|v.q(a—’¢2 p”|v.q. Andv.p = p”|v.q.
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Corollary 2. Let B be the algebra defined in Definition 9. Bisimilarity is a congruence
ing:B— PaA(B).

Proof. It follows by Theorems 2 and 1.

Our next claim is that the translatid]] of fusion agents into terms of the permu-
tation algebra is fully abstract with respect to hyperequivalence. Here we provide the
reader with some intuition behind the proof. The formal proof is given in the appendix.

Theorem 3. Let P and Q be two fusion agents. ThenyR Q iff [P]] ~g [Q].

Proof (Hint). The proof relies on the definition of three intermediate transition systems
and their notions of bisimulation.

The first transition systefis; is defined by the rules given in Table 3. The rules are
similar to those given in Table 2 fdtsg, except for the fact thdts; aims at ensuring
saturation of behaviours of a term only with respect to the explicit fusion contained
in the term, rather than with respect to all the possible fusion context. This difference
shows up in rules for prefixes and communication. Moredtgrcontains the rule

- p—1p Eq(p) -oa=p
-

which replaces the rules for propagation and combination of explicit fusi@rs, (
(Pary), (PARY), (Pary)). The fact thateq) has the same effect of the above rules easily
follows by observing that by rulgo) Its; enjoys a saturation property that is the special

case of Proposition.3, with ¢ = 1. Thus, for examplex = y| Xz 0 has a transition >,

as well asﬂl. The notion of bisimilarity~1 is the standard one, except for the fact
that bisimilar processes are also required to contain the same explicit fusions. Our first
claim is that, forP andQ two fusion agentsP? ~Q if and only if [P]] ~1 [Q]], being~
the notion of fusion bisimulation given in Definition 1.

Our next step is to define a second transition sydtenby adding tdts; a rule for
closing with respect to fusions in parallel:

plo-"10
(C1X) 70[7(') L

pP—20

Bisimilarity ~» is analogous te-1 (with —» in place of— ). We argue tha® ~n Q
if and only if [P] ~2 [Q], where~ne denotes fusion hyperequivalence. The intuition
behind this result is that we are able to modekinclosure with respect to substitution,
by considering any possible fusion context (ride)).

The third transition systertiss is defined by essentially the same rules as those
given forltsy, except for the fact that, akin tts1, a rule

N
p &y Eq(p) - a=p

PME, P

(EQ)
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replaces the rules for fusion propagation. Bisimilarity is analogous tov, (—3
replaces—:»).

The proof of the theorem is concluded by showing thais equivalent to both-»
and~g. As to the equivalence ef, and~3, the intuition is thatv> and~3 are both
contained in~1 and are preserved by fusion contexts: this is achievétdily means
of rule (crx), while in Itsz by the rules for prefixes.

Finally, the idea behind the proof of the equivalence-gbind~g is thatlts; satisfies
the saturation property stated in Proposition 3, by means of the combined use of rules
for prefixes andeq).

Example 2.Consider two fusion agenB= (x2) ({X2=X4}.X7%2.0) andQ = T.X7x4. 0.
Of courseP andQ are hyperequivalent. Let us now transiBtandQ in terms of algebra
B. Then,[P] = v. {Xxo=Xs}.%gX0.0 and[[Q] = T.X7X4.0. It holds that[[P] ~g [Q]: the

most interesting case is as follows [R]] Yy, (x8%0.0| X0 =Xg) then[Q]] &Y X7X4.0.

Next, if v. (XgXo.|Xo =Xg) M Xo = X5 then, by ruleprre), X7%4.0 is able to take the

same step.

4 Conclusions

In this paper we have provided a compositional coalgebraic model of the Fusion cal-
culus, following the approach applied in [1] to the pi-calculus. We have introduced a
permutation algebra with the operations of the Fusion calculus along with constants
modelling explicit fusions. We have then defined a labelled transition system for the
enriched permutation algebra and we have proved that the conditions required by the
result presented in [1] for lifting calculi with structural axioms to bialgebras are satis-
fied. It is worth noting that the introduction of explicit fusions allows to model name
substitutions, while keeping essentially the same permutation algebra defined in [1] for
the pi-calculus.

We are also studying a bialgebraic model of the open pi-calculus semantics [12].
We argue that the general theory developed in [1] cannot be straightforwardly applied
to the open pi-calculus, because of the notion of ‘distinction’, that is needed in open
pi-calculus to keep extruded names distinct from all (free) names. Our proposal is to
extend the above theory with types, by defining an underlying multi-sorted permutation
algebra, whose sorts are the distinctions.

A further challenge would be to consider general substitutions (on some first or-
der signature), yielding models rather close to logic programming. We expect that the
approach in [1] be flexible enough to allow varying the underlying algebra while em-
ploying similar constructions.
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A Proof of Theorem 3

We now give a formal proof of Theorem 3, by detailing the steps that we have outlined
in Section 3.

Definition 15. Leto be a substitution. The syntactical applicationmfo any term p
of algebra B is inductively defined as follows:

0(0)=0 o(mp)=o(m.o(p)  o(pla)=oploq  o(v.p)=V.0.1p
o(pp) = (6op)(p)  0(b.p)=00d.(p)  O(x=Yy)=0(x) =0(y)
O(CrecX.P) = Co(recX.P)

Note thato(p) contains no explicit fusion if is a substitutive effect diq(p).

Definition 16. The transition system liss defined as lts= (B,— ), where— is
defined by the rules in Table 3.

As mentioned, the rules in Table 3 are similar to those given in Table Rsfpr
There are two main differences. Firli; aims at ensuring saturation of behaviours of
a term only with respect to the explicit fusion contained in the term. Thus, rules for
prefixes do not consider all the possible fusion contexts. Sedtspdontains rulgeq)
in place of(exr), (Pary), (PaRrY), @aNd(Pary). In fact, it can be easily seen that ryie) has
the same effect of the above rules for propagation and combination of explicit fusions,
but it is not in De Simone format.

Definition 17 (bisimilarity ~1). A bisimulation onlts; is a binary symmetric relation
S between terms of B such thatSpy implies:

1. Eq(p) =Eq(a);
2. for each p21 p' there is some qB—q g such thatq(p) F a=Band g R ¢, and
viceversa.
Bisimilarity ~1 is the largest bisimulation on lis

Our first claim is that, foP andQ two fusion agents?~ Q if and only if [P] ~1 [Q]],
being~ the notion of fusion bisimulation.

Proposition 5. Let p and q be two terms of algebra B anddelbe a substitutive effect
of Eq(p). Then, p~1 q if and only ifo(p) ~1 0(q).

Proof. First, note that, foo a substitutive effect dfq(p), it holds thato(p)——1 g, with
a = o(B) andg = o(q'), for someP andq. Moreover,o(p)ml iff p(p) &1, for any

substitutive effectp of Eq(p).
Next, let p andq be two terms of algebr® and letc be a substitutive effect of
Eq(p). Then,p—"51 q with a £ X;x (resp.a = X,X) if and only if o(p)wlo(q) (resp.

0(p)0+1(_a)+1)1 041(0g)) and viceversa. This is easily proved by induction on the rules of

. . A — A .
Its;. For instance, considgy =x =Yy |zvandpy =z=y| xw. Sinceps|p2 - z=X,
by rule com) p|g—1. On the other hand, any substitutive effeaf Eq(pz|pz) fusesz
andx and, thusg(pz|p2)—1 . The thesis follows by the above remarks.
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V. p—1V.q V. p—1 V. [Xo < X1]q
XX o
(OPEN) P—1q X7 Xo X X?é X0 (Scorg _P—q
V.p—1q V. pmlv.q
ey [PlzecX.P/X]]-"1g
CrecX.P—10
Yoq s
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X, X,
Pr—101 P2——1Qp prpo - x=X

(CLOSE) T
P1|p2—1V. (A1/02)
Xy 3(x)
(PRE) XY.p—1P (PRE) XY.p—10.p[d(Y) = Xo
o
—> E Fo=
(Fus) ¢.p-1plo (e P—19 Eq(p)Foa=P

B
p—m4d
(oreN) is analogous with output actions; ruleom’) has a symmetric
counterpart.

Table 3. Transition Systenits;
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Theorem 4. Let p and q be two terms of algebra B anddelbe a substitutive effect of
Eq(p). Then, p~1 qif and only if{{a(p)]} ~{[o(q)]}, where{[-]} is the inverse transla-
tion of [[-]).

Corollary 3. Let P and Q be two fusion agents~ if and only if[[P] ~1 [Q].

Definition 18. The transition system lfds defined as lts= (B,—»), where— is
defined by adding to the rules ofita rule for closing with respect to fusions in parallel:

a
- p|¢a?1q
p—2q

Bisimulation and bisimilarity~, are analogous to those defined fonltsvith —» in
place of—.

Lemma 1. Let p and g be two terms of algebra B. li~p q then gé ~» q| ¢, for all
.

Theorem 5. P ~e Q if and only if[P] ~2 [Q], where~pe denotes fusion hyperequiv-
alence.

Proof. The proof follows by Corollary 3 and by Lemma 1.
Definition 19. The third transition system Kss defined as lis= (B,—3), where

——gis given by the rules in Table 4. Bisimilaritys is analogous tev, (— replaces
—3).

The proof of the Theorem 3 is concluded by showing thats equivalent to both
~p andn~yg.

Lemma 2. Let p and g be two terms of algebra B. I~ g then g¢ ~3 q| 4, for all
.

Theorem 6. Let p and g be two terms of algebra B. Theny$q if and only if p~2 g.
Proof. It follows by the fact thatv, C~1 and~3C~j and by Lemmata 1 and 2.
Theorem 7. Let p and g be two terms of algebra B~ q if and only if p~¢ q.

Proof. The proof relies on the fact that the ruleslisy for propagation and combina-
tion of explicit fusions (Exr), (Pary), (PAR}), (PaRrf)) Can be simulated rulgq) in Itsz and
viceversa. Moreovettsy ensures that ip ~¢ ¢ thenEq(p) = Eq(Q).
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@.9) L) o # XX @4 o =XX
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v.p(gﬂgv.q v.p(—aﬂzgv.[onxﬂq
(x%0,3(9)) (9.3(w))
(OPEN s *EX0 (scomg SO
p——*3q V.p——3V.q
¢ ¢ ) 5(X),5(¢
(Com) pl(xy <)3;11) P2 (izsﬁh (Com) pl(y )3(11 P2 Mst
p1|P2—>3 Quloply =z P1\P24%3 au|v-d2|8(y) = %o
L0 X (a,9)
cos PLPaa 0™ Magp o [PlrecX.P/X]] “*5q
(Tv(9)) (0, 0)
P1lpz ——3V.t1|d2 CrecX.P —30
ere) xyp bl 6 i xy=XY

prey xyp X)) (5 (p9)) %0 =B(y) ¢’ Tk x=x

o 0.p Y pluto WCwro=¢

(o, 9)
P—39 Eq(p)ra=R
B¢
p (4%) 3q
Rules(Pre), (Pre'), and(oren) are analogous with output actions; rytew’)

has a symmetric counterpart.
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