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Abstract. We propose a compositional coalgebraic semantics of the Fusion cal-
culus of Parrow and Victor in the version with explicit fusions by Gardner and
Wischik. We follow a recent approach developed by the authors and previously
applied to the pi-calculus for lifting calculi with structural axioms to bialgebraic
models. In our model, the unique morphism to the final bialgebra induces a bisim-
ilarity relation which coincides with hyperequivalence and which is a congruence
with respect to the operations. Interestingly enough, the explicit fusion approach
allows to exploit for the Fusion calculus essentially the same algebraic structure
used for the pi-calculus.

1 Introduction

A new generation of programming languages for distributed and interactive compu-
tation relying on some pattern matching mechanisms is recently emerging (e.g., High-
wire [6]). Fusion calculus [10, 14] seems a good candidate to formalise the foundational
aspects behind these languages.

Fusion calculus has been introduced as a variant of the pi-calculus [7] It makes
input and output operations fully symmetric and enables a more general name matching
mechanism during synchronisation. A fusion is a name equivalence that allows to use
interchangeably in a term all names of an equivalence class. Computationally, a fusion
is generated as a result of a synchronisation between two complementary actions, and
it is propagated to processes running in parallel with the active one. Fusions are ideal
for representing, e.g., forwarders for objects that migrate among locations [5], or forms
of pattern matching between pairs of messages [6].

In Fusion calculus, a fusion, as soon as it is generated, it is immediately applied to
the whole system and has the effect of a (possibly non-injective) name substitution. On
the other hand, the version of the calculus with explicit fusions [4, 5] aims at propagat-
ing fusions to the environment in an asynchronous way. Explicit fusions are processes
that exist concurrently with the rest of the system and enable to freely use two names
one for the other.

Interactive systems, when represented as labelled transition systems, can be con-
veniently modelled as coalgebras. A coalgebraic framework [11] presents several ad-
vantages: morphisms between coalgebras (cohomomorphisms) enjoy the property of
“reflecting behaviours” and thus they allow, for example, to characterise bisimulation
equivalences as kernels of morphisms and bisimilarity as the bisimulation associated to
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the morphism to the final coalgebra. Also adequate temporal logics and proof methods
by coinduction fit nicely into the picture.

However, in the ordinary coalgebraic framework, the states of transition systems are
seen simply as set elements, i.e. the algebraic structure needed for composing programs
and states is disregarded. Bialgebraic models take a step forward in this direction: they
aim at capturing interactive systems which are compositional. Roughly, bialgebras [13,
2, 3] are structures that can be regarded as coalgebras on a category of algebras rather
than on the categorySet, or, symmetrically, as algebras on a category of coalgebras.
For them bisimilarity is a congruence, namely compositionality of abstract semantics is
automatically guaranteed.

When considering mobile interactive systems, like the pi-calculus, the ordinary
coalgebraic approach cannot be directly applied, since the generation of new names
requires special conditions on the inference rules and on the definition of bisimulations.
The bialgebraic approach, instead, fits well: it is enough to consider the states as forming
an algebra of name permutations [8, 9]. However, the interaction of structural axioms
with inference rules makes the application of the bialgebraic approach problematic, if
more complex operations are taken into account. To overcome this difficulty, in [1] it
has been proved that calculi defined by De Simone inference rules and equipped with
structural axioms can be lifted to bialgebras, provided that axioms bisimulate. In the
same paper, the approach has been applied to a version of pi-calculus.

In this paper we apply the general theory presented in [1] to the fusion calculus of
Parrow and Victor, in order to provide a bialgebraic model of the calculus. We argue that
this result does not only concern the fusion calculus but it could fit within theoretical
foundations of languages based on pattern matching.

Since bisimilarity in theπ-calculus fails to be a congruence due to input prefix, the
model in [1] is compositional only with respect to parallel composition and restriction;
constants are introduced to mapπ-agents whose out-most operator is neither parallel
composition nor restriction. Moreover, the theory inloc. cit. does not apply to late
and openπ-calculus as this would require the introduction of arbitrary (possibly non-
injective) name substitutions. Our present model of the fusion calculus, instead, is fully
compositional with respect to the operations of the calculus. This is accomplished by
the introduction of explicit fusions into the underlying algebra. Indeed, the combination
of explicit fusions and restriction allows to derive a name substitution operator which
behaves like the standard capture-avoiding substitution.

We introduce a permutation algebra enriched with the operations of the calculus
plus constants modelling explicit fusions. We then prove that the conditions required
by [1] are satisfied. Remarkably enough, explicit fusions enable us to model substitu-
tions within our theory, while keeping essentially the same permutation algebra consid-
ered in [1] for the pi-calculus. No non-injective substitution operations are introduced
in the algebra: rather, their observable effects are simulated by De Simone inference
rules which saturate process behaviours, while still keeping the nice property of asyn-
chronous propagation typical of explicit fusions. We claim that the translation of fusion
agents in our algebra is fully abstract with respect to Parrow and Victor hyperequiva-
lence. As in [15], closure with respect to substitution is obtained by adding in parallel
at each step any possible fusion.
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Structure of the paperSection 2 contains the background on permutations, fusion cal-
culus, and theory of bialgebras. In Section 3 we define a permutation algebra for the
fusion calculus, along with a (structured) transition systemlts and we prove that it can
be lifted to be a bialgebra. Moreover, we prove that fusion agents can be translated into
terms of our algebra and that such a translation is fully abstract with respect to fusion
hyperequivalence. The complete proof is reported in the appendix. Finally, Section 4
contains some concluding remarks and directions for future work.

2 Background

2.1 Names, Fusion and Permutations

We need some basic definitions and properties on names, fusions and permutations of
names. We denote withN = {x0,x1,x2, . . .} the infinite, countable, totally ordered set
of namesand we usex,y,z. . . to denote names.

Name fusions(or, simply, fusions) are total equivalence relations onN with only
finitely many non-singular equivalence classes. Fusions are ranged over byϕ,ψ, . . ..
We let:

– n(ϕ) denote{x : xϕy for somey 6= x};
– τ denote the identity fusion (i.e.,n(τ) = /0);
– ϕ + ψ denote the finest fusion which is coarser thanϕ andψ, that is(ϕ∪ψ)?;
– ϕ−z denoteϕ− ({z}×N∪N×{z})∪{(z,z)};
– ϕ[x] denote the equivalence class ofx in ϕ;
– ϕv ψ denote thatϕ is finer thatψ, i.e., for allx ∈N, ϕ[x]⊆ ψ[x];
– {x = y} denote{(x,y),(y,x)}?.

A name substitutionis a functionσ : N→N. We denote withσ◦σ′ the composition
of substitutionsσ andσ′; that is,σ◦σ′(x) = σ(σ′(x)). We useσ to range over substitu-
tion and we denote with[y1 7→ x1, · · · ,yn 7→ xn] the substitution that mapsxi into yi for
i = 1, . . . ,n and which is the identity on the other names. We abbreviate by[y↔ x] the
substitution[y 7→ x,x 7→ y]. Theidentity substitutionis denoted by id.

A substitutionσ agrees witha fusionϕ if ∀x,y : xϕy⇔ σ(x) = σ(y). A substitutive
effectof a fusionϕ is a substitutionσ agreeing withϕ such that∀x,y : σ(x) = y⇒ xϕy
(i.e.,σ sends all members of the equivalence class to one representative of the class).

A name permutationis a bijective name substitution. We useρ to denote a permu-
tation. Given a permutationρ, we define permutationρ+1 as follows:

−
ρ+1(x0) = x0

ρ(xn) = xm

ρ+1(xn+1) = xm+1

Essentially, permutationρ+1 is obtained fromρ by shifting its correspondences to the
right by one position.
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2.2 The Fusion Calculus

In this section we give an overview of the fusion calculus, which has been introduced
in [10]. Here we consider amonadicversion of the calculus.

The fusion calculusagents, ranged over byP,Q, . . ., are closed (wrt. variablesX)
terms defined by the syntax:

P ::= 0
∣∣ π.P

∣∣ P|P
∣∣ (x)P

∣∣ recX.P
∣∣ X

where recursion is guarded, andprefixes, ranged over byπ, are I/O actions or fusions:

π ::=
∣∣ x̄y

∣∣ xy
∣∣ ϕ.

The occurrences ofx in (x)P are bound and fusion effects with respect tox are limited
to P; free namesandbound namesof agentP are defined as usual and we denote them
with fn(P) and bn(P), respectively. Also, we denote withn(P) andn(π) the sets of (free
and bound) names of agent termP and prefixπ respectively.

The structural congruence,≡, between agents is the least congruence satisfying the
following axioms:

(fus) ϕ.P≡ ϕ.σϕ(P) for σ a substitutive effect ofϕ
(par) P|0≡ P P|Q≡Q|P P|(Q|R)≡ (P|Q)|R
(res) (x)0≡ 0 (x)(y)P≡ (y)(x)P (x)(P+Q)≡ (x)P+(x)Q

(scope) P|(z)Q≡ (z)(P|Q) wherez /∈ fn(P)

The actionsan agent can perform, ranged over byγ, are defined by the following
syntax:

γ ::= xy
∣∣ x(z)

∣∣ x̄y
∣∣ x̄(z)

∣∣ ϕ

and are called respectivelyfree input, bound input, free output, bound outputactions
and fusions. Namesx andy are free inγ (fn(γ)), whereasz is a bound name (bn(γ));
moreovern(γ) = fn(γ)∪bn(γ). The notion of substitutive effect is extended to actions
by stating that the only substitutive effect ofγ 6= ϕ is id.

The family of transitionsP
γ7−→Q is the least family satisfying the laws in Table 1.

Definition 1 (fusion bisimilarity). A fusion bisimulationis a binary symmetric rela-
tion S between fusion agents such that PS Q implies:

If P
γ7−→ P′ with bn(γ)∩ fn(Q) = /0 then Q

γ7−→Q′ andσ(P′) S σ(Q′)
for some substitutive effectσ of γ.

P is bisimilar to Q, written P
·∼Q, if P S Q for some fusion bisimulationS .

Definition 2 (hyperequivalence).A hyperbisimulationis a substitution closed fusion
bisimulation, i.e., a fusion bisimulationS with the property that PS Q impliesσ(P) S σ(Q)
for any substitutionσ. Two agents P and Q arehyperequivalent, written P∼heQ, if they
are related by a hyperbisimulation.
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(F-PRE) π.P π7−→ P (F-PAR)
P

γ7−→Q

P|R γ7−→Q|R
if bn(γ)∩ fn(R) = /0

(F-COM)
P

x̄y7−→ P′ Q
xz7−→Q′

P|Q {y=z}7−→ P′|Q′
(F-SCOPE)

P
ϕ7−→Q zϕx,z 6= x

(z)P
ϕ−z7−→ [x/z]Q

(F-OPEN)
P

az7−→Q a /∈ {z, z̄}

(z)P
a(z)7−→Q

(F-PASS) P
γ7−→ P′

(z)P
γ7−→ (z)P′

z /∈ n(γ)

(F-REC)
P[recX.P/X]

γ7−→Q

recX.P
γ7−→Q

(F-CONG)
P≡ P′ P′

γ7−→Q′ Q′ ≡Q

P
γ7−→Q

Table 1.LTS for Fusion

2.3 Bialgebras

We recall that an algebraA over a signatureΣ (Σ-algebra in brief) is defined by a car-
rier set|A| and, for each operationop∈ Σ of arity n, by a functionopA : |A|n→ |A|.
A homomorphism (or simply a morphism) between twoΣ-algebrasA andB is a func-
tion h : |A| → |B| that commutes with all the operations inΣ, namely, for each operator
op∈ Σ of arity n, we haveopB(h(a1), · · · ,h(an)) = h(opA(a1, . . . ,an)). We denote by
Alg(Σ) the category ofΣ-algebrasandΣ-morphisms. The following definition intro-
duces labelled transition systems whose states have an algebraic structure.

Definition 3 (transition systems).Let Σ be a signature, and L be a set of labels. A
transition systemover Σ and L is a pair lts= 〈A, 7−→lts〉 where A is a nonemptyΣ-
algebra and7−→lts⊆ |A|×L×|A| is a labelled transition relation. For〈p, l ,q〉 ∈ 7−→lts

we write p
l7−→lts q.

Let lts= 〈A, 7−→lts〉 and lts′ = 〈B, 7−→lts′〉 be two transition systems. A morphism
h : lts→ lts′ of transition systems overΣ and L (lts morphism, in brief) is aΣ-morphism

h : A→ B such that p
l7−→lts q implies h(p) l7−→lts′ h(q).

The notion of bisimulation on structured transition systems is the classical one.

Definition 4 (bisimulation). Let Σ be a signature, L be a set of labels, and lts=
〈A, 7−→lts〉 be a transition system overΣ and L.

A relationR over|A| is abisimulationif p R q implies:

– for each p
l7−→ p′ there is some q

l7−→ q′ such that p′ R q′;

– for each q
l7−→ q′ there is some p

l7−→ p′ such that p′ R q′.

Bisimilarity ∼lts is the largest bisimulation.

Given a signatureΣ and a set of labelsL, a collection of SOS rules can be regarded
as a specification of those transition systems overΣ andL that have a transition relation
closed under the given rules.

Definition 5 (SOS rules).Given a signatureΣ and a set of labels L, a sequent p
l7−→ q

(over L andΣ) is a triple where l∈ L is a label and p,q areΣ-terms with variables in a
given set X.
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AnSOS ruler over Σ and L takes the form:

p1
l17−→ q1 · · · pn

ln7−→ qn

p
l7−→ q

where pi
l i7−→ qi as well as p

l7−→ q are sequents.
We say that transition system lts= 〈A, 7−→lts〉 satisfiesa rule r like above if each

assignment to the variables in X that is a solution to pi
l i7−→ qi for i = 1, . . . ,n is also a

solution to p
l7−→ q.

We represent with

p1
l17−→ q1 · · · pn

ln7−→ qn
...

p
l7−→ q

a proof, with premises pi
l i7−→ qi for i = 1, . . . ,n and conclusion p

l7−→ q, obtained by
applying the rules in R.

Definition 6 (transition specifications).A transition specificationis a tuple∆ = 〈Σ,L,R〉
consisting of a signatureΣ, a set of labels L, and a set of SOS rules R overΣ and L.

A transition system over∆ is a transition system overΣ and L that satisfies rules R.

It is well known that ordinary labelled transition systems (i.e., transition systems
whose states do not have an algebraic structure) can be represented as coalgebras for a
suitable functor [11].

Definition 7 (coalgebras).Let F : C → C be a functor on a categoryC . A coalgebra
for F, or F-coalgebra, is a pair 〈A, f 〉 where A is an object and f: A→ F(A) is an
arrow of C . A F-cohomomorphism(or simply F-morphism) h : 〈A, f 〉 → 〈B,g〉 is an
arrow h : A→ B of C such that h ; g = f ; F(h). We denote withCoalg(F) the category
of F-coalgebras and F-morphisms.

Proposition 1. For a fixed set of labels L, let PL : Set→ Setbe the functor defined on
objects as PL(X) = P (L×X +X), whereP denotes the countable powerset functor, and
on arrows as PL(h)(S) = {〈l ,h(p)〉 | 〈l , p〉 ∈ S∩L×X} ∪ {h(p) | p ∈ S∩X}, for h :
X→Y and S⊆ L×X+X. Then PL-coalgebras are in a one-to-one correspondence with

transition systems on L, given by flts(p) = {〈l ,q〉 | p
l7−→lts q} ∪ {p} and, conversely,

by p
l7−→ltsf q if and only if〈l ,q〉 ∈ f (p).

Definition 8 (De Simone format).Given a signatureΣ and a set of labels L, a rule r
overΣ and L is inDe Simone formatif it has the form:

{xi
l i7−→ yi | i ∈ I}

op(x1, . . . ,xn) l7−→ p

where op∈ Σ, I ⊆ {1, . . . ,n}, p is linear and the variables yi occurring in p are distinct
from variables xi , except for yi = xi if i /∈ I.
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The following results are due to [13] and concernbialgebras, i.e., coalgebras in
Alg(Σ). Bialgebras enjoy the property that the unique morphism to the final bialgebra,
which exists under reasonable conditions, induces a bisimulation that is a congruence
with respect to the operations, as noted in the introduction.

Proposition 2 (lifting of PL). Let ∆ = 〈Σ,L,R〉 be a transition specification with rules
in De Simone format.

Define P∆ : Alg(Σ)→ Alg(Σ) as follows:

– |P∆(A)|= PL(|A|);

– whenever
{xi

l i7−→ yi | i ∈ I}
op(x1, . . . ,xn) l7−→ p

∈ R then

〈l i , pi〉 ∈ Si , i ∈ I q j ∈ Sj , j /∈ I

〈l , p[pi/yi , i ∈ I , q j/y j , j /∈ I ]〉 ∈ opP∆(A)(S1, . . . ,Sn)
;

– if h : A→ B is a morphism inAlg(Σ) then P∆(h) : P∆(A)→ P∆(B) and P∆(h)(S) =
{〈l ,h(p)〉 | 〈l , p〉 ∈ S∩ (L×|A|)} ∪ {h(p) | p∈ S∩|A|}.

Then P∆ is a well-defined functor onAlg(Σ).

Corollary 1. Let ∆ = 〈Σ,L,R〉 be a transition specification with rules R in De Simone
format.

Any morphism h: f → g in Coalg(P∆) entails a bisimulation∼h on ltsf , that coin-
cides with the kernel of the morphism. Bisimulation∼h is a congruence for the opera-
tions of the algebra.

Moreover, the categoryCoalg(P∆) has a final object. Finally, the kernel of the
unique P∆-morphism from f to the final object ofCoalg(P∆) is a relation on the states
of f which coincides with bisimilarity on ltsf and is a congruence.

Note that, in order to prove that bisimilarity is a congruence, Corollary 1 requires
that the lifting of aPL-coalgebra to beP∆-coalgebra takes place. In fact, this step is
obvious in the particular case off : A→ P∆(A), with A = TΣ and f unique by initiality,
namely whenA has no structural axioms and no additional constants, andltsf is the min-
imal transition system satisfying∆. The following results are due to [1] and generalise
the theory described so far to algebras with structural axioms.

Theorem 1. Let ∆ = (Σ,L,R) be a transition specification with rules R in De Simone
format, B= T(Σ∪C,E) and g: |B| → PL(|B|) be a coalgebra which satisfies∆. If for all
equations t1 = t2 in E, with free variables{xi}i∈I , we have De Simone proofs as follows:

xi
l i7−→ yi i ∈ I

t1
l7−→ t ′1

implies
xi

l i7−→ yi i ∈ I

t2
l7−→ t ′2

and t′1 =E t ′2 (1)

and viceversa, using the rules in R and the additional rules:

c
l7−→ t iff (c, l , t) ∈ T.

Then, g can be lifted fromSetto Alg(Σ). Moreover, in g bisimilarity is a congruence.
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3 A Labelled Transition System for Fusion Calculus

In this section, following the approach adopted in [1] for the pi-calculus, we provide a
structured labelled transition systemltsg for the fusion calculus and apply the general
result recalled in Section 2.3 to liftltsg to be a bialgebra. It follows that bisimilarity in
ltsg is a congruence.

We first define a permutation algebra enriched with the operations of fusion calcu-
lus and with constants modelling explicit fusionsx = y. Restrictionν corresponds to
(x) in fusion calculus: it has no argument here, since the extruded or restricted name is
assumed to be always the first one, i.e.x0. Operatorsρ are generic, finite name permuta-
tions, as described in Subsection 2.1;δ is meant to represent the substitution[xi 7→ xi+1],
for i = 0,1, . . .. Of course, this substitution is not finite, but, at least in the case of an
ordinary agentp, it replaces a finite number of names, i.e., the free names ofp.

The introduction of explicit fusions in the signatureΣ is intended to model substi-
tutive effects of fusion calculus while keeping essentially the same permutation algebra
as in [1]. In fact, an explicit fusionx = y allows to represent the global effect of a name
fusion resulting from a synchronisation without need of replacingx to y or viceversa
in the processes in parallel: namesx andy can be used interchangeably in the context
x = y| .

Definition 9 (permutation algebra for fusion calculus).A permutation algebra B for
fusion calculus is the initial algebra B= TΣ∪C,E where:

– signatureΣ is defined as follows:

Σ ::= 0
∣∣ π.

∣∣ | ∣∣ ν.
∣∣ ρ

∣∣ δ.
∣∣ x = y,

with prefixesπ ::= x̄y,xy,ϕ;
– C is the set of constants

C = {crecX.P | P is a fusion agent};

– E is the set of axioms below:

(par) p|0 .= p p|q .= q|p p|(q|r) .= (p|q)|r
(res) ν.0 .= 0 ν.(δp) |q .= p|ν.q ν.ν. [x0↔ x1]p .= ν.ν. p
(group) (ρ′ ◦ρ)p

.= ρ′(ρp) id p
.= p

(perm) ρ0 .= 0 ρ(π.p) .= ρ(π).ρp ρ(p|q) .= ρp|ρq

ρν. p .= ν.ρ+1p ρcrecX.P
.= cρ(recX.P)

(delta) δ.0 .= 0 δ.(π.p) .= δ(π).δ. p δ. p|q .= (δ. p) |δ.q
δ.ν. p .= ν. [x0↔ x1]δ. p δ. crecX.P

.= cδ(recX.P)

(fus) x = x
.= 0 ν.(x0 = x) .= 0 ρ(x = y) .= ρ(x) = ρ(y)

δ.x = y
.= δ(x) = δ(y)
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In the above axioms, byρ(z) andδ(z), for z = x,y, we mean the syntactical ap-
plication of permutationsρ andδ, respectively, toz; similarly, for ρ(π) andδ(π). Ax-
ioms(par), and(res) correspond to the analogous axioms for fusion calculus. Axioms
(perm) and(delta) rule how to invert the order of operators among each other, follow-
ing the intuition thatν andδ decrease and increase variable indexes, respectively. By
axioms(fus) permutations can be syntactically applied to explicit fusions and fusions
of syntactically equal names are discarded. Notice that other expected properties like
ν.δ. p = p and[x0↔ x1]δ.δ. p = δ.δ. p can be derived from these axioms.

We give below a translation of fusion agents into terms of algebraB. Then, we define
a transition systemltsg for the algebraB and show thatltsg satisfies the conditions for
lifting coalgebras to bialgebras, as required by Theorem 1. The translation is straight-
forward, except for restrictionν that gives the flavour of the De Brujin notation. The
idea is to split standard restriction in three steps. First, one shifts all names up-wards to
generate a fresh namex0, then swapsδ(x) andx0, and, finally, applies restriction onx0,
which now stands for what ‘used to be’x.

Definition 10 (translation [[·]]). We define a translation of fusion agents[[·]] : F → |B|
as follows:

[[0]] = 0 [[π.P]] = π.[[P]] [[P|Q]] = [[P]]|[[Q]]

[[(x)P]] = ν. [δ(x)↔ x0]δ[[P]] [[recX.P]] = crecX.P

For example, the translation of a fusion agentP = (x2)({x2 = x4}. x̄7x2.0) is
[[P]] = ν. {x0=x5}. x̄8x0.0.

Definition 11. Let Λ be the setΛ = {xy, x, xy, x, ϕ, − | x,y,n(ϕ) ∈ N}, where−
denotes a ‘null’ action, andΦ be the set of all fusions overN. We define the set L of
labels as L= Λ×Φ. We letα,β, . . . range overΛ andϕ,ψ, . . . range overΦ.

Theentailment relatioǹ is defined as follows:ϕ ` α = β, if α,β 6= ψ andσ(α) =
σ(β), for all substitutive effectsσ of ϕ; ϕ ` ψ = ψ′ if ϕ + ψ = ϕ + ψ′. By δ(α) and
ν(α) we denote the labels obtained fromα by respectively applying substitutionsδ and
ν to its names, whereν(xi+1) = xi , δ(xi) = xi+1, and inν(ϕ) the equivalence class of
x0 is a singleton.

Definition 12 (transition specification ∆). The transition specification∆ is the tuple
〈Σ,L,R〉, where the signatureΣ is as in Definition 9, labels L are defined in Definition 11

and R is the set of SOS rules in Table 2. Transitions take the form p
(α,ϕ)−−→ q, where(α,ϕ)

ranges over L.

The first group of rules in Table 2 is essentially the same as that one given in [1] for
the pi-calculus. The most interesting among them are in the right-column and concern
bound I/O actions: they follow the intuition that substitutions on the source of a transi-
tion must be reflected on its destination by restoring the extruded or fresh name tox0.
Thus, for example, rule(DELTA ′) appliesδ to q and then permutesx0 andx1, in order to
have the extruded name back tox0. Conversely, rule(RES′) permutesx0 andx1 to make
sure that the restriction operation applies tox0 and not to the extruded namex1. In rule
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(PAR′) side condition bn(α)∩ fn(r) = /0 is not necessary, sinceδ shifts any name inr to
the right and, thus,x0 does not appear inδ. r.

The main novelty is the second group of rules in Table 2: such rules are suited to deal
with explicit fusions. By rule(EXP) explicit fusions are propagated and by rules(PAR1),
(PAR′1), and (PAR f ) they are combined with each other and with other agents in parallel.
Rules(PRE), (PRE′), and(FUS) are intended to ensure that the associated bisimilarity be pre-
served by closure with respect to fusions running in parallel. The presence of two rules
(PRE) and (PRE′) is required in order to have a fully abstract translation of fusion agents
into terms of the algebra, as shown in Example 2 below. All the side conditions are
meant to ensure a saturation of process behaviours with respect to the explicit fusions.
This form of saturation is formalised in the following proposition.

First we introduce the notion of equivalence relationEq(p), induced by the explicit
fusions in a termp. The notation given for fusions also applies toEq(p): this holds in
particular forν(Eq(p)), δ(Eq(p)), andEq(p) ` α = β.

Definition 13. Let p be a term of algebra B. The equivalence relationEq(p) obtained
as the sum of all explicit fusions in p is inductively defined as follows:

Eq(0) = τ Eq(π.p) = τ Eq(p|q) = Eq(p)+Eq(q) Eq(ν. p) = ν(Eq(p))

Eq(ρp) = ρ(Eq(p)) Eq(δ. p) = δ(Eq(p)) Eq(x = y) = {x = y} Eq(crecX.P) = τ

For example, forp
4
= x = y|y = z|q, Eq(p) = {x = y = z}+Eq(q).

Proposition 3.

1. If p
(α,ϕ)−−→ q then p

(β,Eq(p)+ϕ)−−−−−−→ q, for all β such thatEq(p)+ ϕ ` α = β.

2. If p
(α,ϕ)−−→ q then p

(α,ψ)−−→ q, for all ψ such thatψv ϕ.

Example 1.

1. The termsp1
4
= x = y|y = k|p and p2

4
= x = y|x = k| p have the same transi-

tions. For instance, ifp1
(α,y=k)−−−→ then, by rules(EXP) and (PAR f ), p2

(α,ϕ)−−→, for any
ϕv x = y + x = k and, in particular, forϕ = y = k.

2. Considerp = x̄y.p1 |zk.p2. By rules(PRE) and (COM), p
(y=k,ϕ)−−−→ p1 | p2 |ψ′ |y = k, for

all ϕ andψ such thatx= zvψ andϕvψ+y= k; in other words, a synchronisation
in p can take place in any context wherex andz can be used interchangeably and,
moreover, any ‘smaller’ fusionϕ can be observed.

Proposition 4. Let ∆ = 〈Σ,L,R〉 be the transition specification in Definition 12. Rules
R are in De Simone format.

Definition 14 (transition system ltsg). The transition system for algebra B is ltsg =
〈B,−→〉, where−→ is defined by the SOS rules in Table 2 plus the following axiom:

(REC)
[[P[recX.P/X]]]

(α,ϕ)−−→ q

crecX.P
(α,ϕ)−−→ q
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(RHO)
p

(α,ϕ)−−→ q α 6= x, x̄

ρp
(ρ(α),ρ(ϕ))−−−−−−→ ρq

(RHO′)
p

(α,ϕ)−−→ q α = x̄,x

ρp
(ρ+1(α),ρ+1(ϕ))−−−−−−−−→ ρ+1q

(DEL)
p

(α,ϕ)−−→ q α 6= x, x̄

δ. p
(δ(α),δ(ϕ))−−−−−−→ δ.q

(DEL′)
p

(α,ϕ)−−→ q α = x̄,x

δ. p
(δ(α),δ(ϕ))−−−−−−→ [x0↔ x1]δ.q

(PAR)
p

(α,ϕ)−−→ q α 6= x, x̄

p|r (α,ϕ)−−→ q|r
(PAR′)

p
(α,ϕ)−−→ q α = x, x̄

p|r (α,ϕ)−−→ q|δ. r

(RES)
p

(δ(α),δ(ϕ))−−−−−−→ q α = x̄y,xy

ν. p
(α,ϕ)−−→ ν.q

(RES′)
p

(δ(α),δ(ϕ))−−−−−−→ q α = x̄,x

ν. p
(α,ϕ)−−→ ν. [x0↔ x1]q

(OPEN)
p

(xx0,δ(ϕ))−−−−−→ q x 6= x0

ν. p
(x,δ(ϕ))−−−−→ q

(SCOPE)
p

(ϕ,δ(ψ))−−−−→ q

ν. p
(ν(ϕ),ψ)−−−−→ ν.q

(COM)
p1

(xy,ϕ)−−→ q1 p2
(x̄z,ϕ)−−→ q2

p1|p2
(y=z,ϕ)−−−→ q1|q2|y = z

(COM′)
p1

(xy,ϕ)−−→ q1 p2
(δ(x̄),δ(ϕ))−−−−−→ q2

p1|p2
(τ,ϕ)−−→ q1|ν.(q2|δ(y) = x0)

(CLOSE)
p1

(x,ϕ)−−→ q1 p2
(x̄,ϕ)−−→ q2

p1|p2
(τ,ν(ϕ))−−−−→ ν.(q1|q2)

(PRE) xy.p
(x′y′,ϕ′)−−−→ p|ϕ ϕ′ v ϕ; ϕ ` xy= x′y′

(PRE′) xy.p
(δ(x′),δ(ϕ′))−−−−−−→ (δ.(p|ϕ)) |x0 = δ(y) ϕ′ v ϕ; ϕ ` x = x′

(FUS) ϕ.p
(ϕ′,ψ′)−−−→ p|ψ + ϕ ψ′ v ψ; ψ ` ϕ = ϕ′

(EXP) x = y
(−,x=y)−−−−→ x = y x 6= y

(PAR1)
p1

(α,ϕ1)−−→ q1 p2
(−,ϕ2)−−−→ q2 α = x̄y,xy

p1|p2
(β,ϕ′)−−→ q1|q2

ϕ′ v ϕ1 + ϕ2; ϕ1 + ϕ2 ` α = β

(PAR′1)
p1

(α,ϕ1)−−→ q1 p2
(−,ϕ2)−−−→ q2 α = x̄,x

p1|p2
(β,ϕ′)−−→ q1|δ.q2

ϕ′ v ϕ1 + δ(ϕ2); ϕ1 + δ(ϕ2) ` α = β

(PAR f )
p1

(−,ϕ1)−−−→ q1 p2
(−,ϕ2)−−−→ q2

p1|p2
(−,ϕ′)−−→ q1|q2

ϕ′ v ϕ1 + ϕ2

Rules(PRE), (PRE′), and(OPEN) are analogous with output actions; rule(COM′)

has a symmetric counterpart.

Table 2.Structural Operational Semantics
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In fact, axiom(REC) is an axiom schema, that is, for each constantcrecX.P, there is an
axiom instance that provides a concrete way to build all the possible transitions that
crecX.P undergoes; the fact that recursion is guarded ensures(REC) to be well defined.
Note that any axiom instance is in De Simone format. Moreover it can be proved that,
for each fusion agentP, the number of constants and associated axioms(REC) needed
in all derivations of[[P[recX.P/X]]] is finite, up to name permutations. The proof is
analogous to the proof given in [1] for the pi-calculus.

We remark that∼g is very close in spirit to theinside-outsidebisimulation defined
in [4], which satisfies the following properties: two equivalent terms must contain the
same explicit fusions; two equivalent names must behave in the same way under explicit
fusions context.

Theorem 2. Let B be the permutation algebra defined in Definition 9. Then, Condi-
tion 1 in Theorem 1 holds.

Proof (Hint).The proof consists in showing that for eacht1 = t2 in E, for eacht1
(α,ϕ)−−→ p

there existst1
(α,ϕ)−−→ q with p

.= q, and viceversa. The proof is quite long, because there
are several cases that have to be taken into account, depending on the transition rules
that can be applied tot1 andt2, for all t1 = t2. In most cases the proof is analogous to the
proof given in [1] for the pi-calculus. Here we only consider axiomν.(δ. p)|q = p|ν.q,
that is one of the most interesting axioms and it also involves explicit fusions.

Suppose that, by rule(RES), ν.(δ. p)|q (α,ϕ)−−→ ν. p′. Necessarily,(δ. p)|q (δ(α),δ(ϕ))−−−−−→ p′

and there is a number of possible cases. Suppose that by rule(PAR1) δ. p
(δ(β),δ(ϕ1))−−−−−−→ p′′,

q
(−,δ(ϕ2))−−−−→ q′, with ϕ v ϕ1 + ϕ2 and ϕ1 + ϕ2 ` α = β; moreoverp′ = p′′|q′. Then,

p
(β,ϕ1)−−→ p′′′, with p′′ = δ. p′′′. Now considerp|ν.q. By rule (RES) ν.q

(−,ϕ2)−−−→ ν.q2 and, by

rule (PAR1), p|ν.q (α,ϕ)−−→ p′′′|ν.q′. And ν. p′ .= p′′′|ν.q′.
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Corollary 2. Let B be the algebra defined in Definition 9. Bisimilarity is a congruence
in g : B→ P∆(B).

Proof. It follows by Theorems 2 and 1.

Our next claim is that the translation[[·]] of fusion agents into terms of the permu-
tation algebraB is fully abstract with respect to hyperequivalence. Here we provide the
reader with some intuition behind the proof. The formal proof is given in the appendix.

Theorem 3. Let P and Q be two fusion agents. Then, P∼he Q iff [[P]]∼g [[Q]].

Proof (Hint).The proof relies on the definition of three intermediate transition systems
and their notions of bisimulation.

The first transition systemlts1 is defined by the rules given in Table 3. The rules are
similar to those given in Table 2 forltsg, except for the fact thatlts1 aims at ensuring
saturation of behaviours of a term only with respect to the explicit fusion contained
in the term, rather than with respect to all the possible fusion context. This difference
shows up in rules for prefixes and communication. Moreover,lts1 contains the rule

(EQ)
p

α−→1 p′ Eq(p) ` α = β

p
β−→1 p′

,

which replaces the rules for propagation and combination of explicit fusions ((EXP),
(PAR1), (PAR′1), (PAR f )). The fact that(EQ) has the same effect of the above rules easily
follows by observing that by rule(EQ) lts1 enjoys a saturation property that is the special

case of Proposition 3.1, with ϕ = τ. Thus, for example,x = y| x̄z.0 has a transition
x̄z−→1

as well as
ȳz−→1 . The notion of bisimilarity∼1 is the standard one, except for the fact

that bisimilar processes are also required to contain the same explicit fusions. Our first
claim is that, forP andQ two fusion agents,P

·∼Q if and only if [[P]]∼1 [[Q]], being
·∼

the notion of fusion bisimulation given in Definition 1.
Our next step is to define a second transition systemlts2 by adding tolts1 a rule for

closing with respect to fusions in parallel:

(CTX)
p|ϕ α−→1q

p
α,ϕ−→2q

Bisimilarity∼2 is analogous to∼1 (with−→2 in place of−→1 ). We argue that,P∼heQ
if and only if [[P]] ∼2 [[Q]], where∼he denotes fusion hyperequivalence. The intuition
behind this result is that we are able to model in∼2 closure with respect to substitution,
by considering any possible fusion context (rule(CTX)).

The third transition systemlts3 is defined by essentially the same rules as those
given for ltsg, except for the fact that, akin tolts1, a rule

(EQ)
p

(α,ϕ)−−→3 p′ Eq(p) ` α = β

p
(β,ϕ)−−→3 p′

,
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replaces the rules for fusion propagation. Bisimilarity∼3 is analogous to∼2 (−→3

replaces−→2 ).
The proof of the theorem is concluded by showing that∼3 is equivalent to both∼2

and∼g. As to the equivalence of∼2 and∼3, the intuition is that∼2 and∼3 are both
contained in∼1 and are preserved by fusion contexts: this is achieved inlts2 by means
of rule (CTX), while in lts3 by the rules for prefixes.

Finally, the idea behind the proof of the equivalence of∼3 and∼g is thatlts3 satisfies
the saturation property stated in Proposition 3, by means of the combined use of rules
for prefixes and(EQ).

Example 2.Consider two fusion agentsP = (x2)({x2=x4}. x̄7x2.0) andQ = τ . x̄7x4.0.
Of course,PandQare hyperequivalent. Let us now translatePandQ in terms of algebra
B. Then,[[P]] = ν. {x0 =x5}. x̄8x0.0 and[[Q]] = τ .x̄7x4.0. It holds that[[P]] ∼g [[Q]]: the

most interesting case is as follows. If[[P]]
(τ,τ)−→ ν.(x̄8x0.0|x0 =x8) then[[Q]]

(τ,τ)−→ x̄7x4.0.

Next, if ν.(x̄8x0. |x0 = x8)
(x̄8,τ)−−→ x0 = x5 then, by rule(PRE′), x̄7x4.0 is able to take the

same step.

4 Conclusions

In this paper we have provided a compositional coalgebraic model of the Fusion cal-
culus, following the approach applied in [1] to the pi-calculus. We have introduced a
permutation algebra with the operations of the Fusion calculus along with constants
modelling explicit fusions. We have then defined a labelled transition system for the
enriched permutation algebra and we have proved that the conditions required by the
result presented in [1] for lifting calculi with structural axioms to bialgebras are satis-
fied. It is worth noting that the introduction of explicit fusions allows to model name
substitutions, while keeping essentially the same permutation algebra defined in [1] for
the pi-calculus.

We are also studying a bialgebraic model of the open pi-calculus semantics [12].
We argue that the general theory developed in [1] cannot be straightforwardly applied
to the open pi-calculus, because of the notion of ‘distinction’, that is needed in open
pi-calculus to keep extruded names distinct from all (free) names. Our proposal is to
extend the above theory with types, by defining an underlying multi-sorted permutation
algebra, whose sorts are the distinctions.

A further challenge would be to consider general substitutions (on some first or-
der signature), yielding models rather close to logic programming. We expect that the
approach in [1] be flexible enough to allow varying the underlying algebra while em-
ploying similar constructions.
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A Proof of Theorem 3

We now give a formal proof of Theorem 3, by detailing the steps that we have outlined
in Section 3.

Definition 15. Let σ be a substitution. The syntactical application ofσ to any term p
of algebra B is inductively defined as follows:

σ(0) = 0 σ(π.p) = σ(π).σ(p) σ(p|q) = σp|σq σ(ν. p) = ν.σ+1p

σ(ρp) = (σ◦ρ)(p) σ(δ. p) = σ◦δ.(p) σ(x = y) = σ(x) = σ(y)

σ(crecX.P) = cσ(recX.P)

Note thatσ(p) contains no explicit fusion ifσ is a substitutive effect ofEq(p).

Definition 16. The transition system lts1 is defined as lts1 = 〈B,−→1 〉, where−→1 is
defined by the rules in Table 3.

As mentioned, the rules in Table 3 are similar to those given in Table 2 forltsg.
There are two main differences. First,lts1 aims at ensuring saturation of behaviours of
a term only with respect to the explicit fusion contained in the term. Thus, rules for
prefixes do not consider all the possible fusion contexts. Second,lts1 contains rule(EQ)

in place of(EXP), (PAR1), (PAR′1), and(PAR f ). In fact, it can be easily seen that rule(EQ) has
the same effect of the above rules for propagation and combination of explicit fusions,
but it is not in De Simone format.

Definition 17 (bisimilarity ∼1). A bisimulation onlts1 is a binary symmetric relation
S between terms of B such that pS q implies:

1. Eq(p) = Eq(q);

2. for each p
α−→1 p′ there is some q

β−→1q′ such thatEq(p) ` α = β and p′ R q′, and
viceversa.

Bisimilarity∼1 is the largest bisimulation on lts1.

Our first claim is that, forP andQ two fusion agents,P
·∼Q if and only if [[P]]∼1 [[Q]],

being
·∼ the notion of fusion bisimulation.

Proposition 5. Let p and q be two terms of algebra B and letσ be a substitutive effect
of Eq(p). Then, p∼1 q if and only ifσ(p)∼1 σ(q).

Proof. First, note that, forσ a substitutive effect ofEq(p), it holds thatσ(p) α−→1q, with

α = σ(β) andq = σ(q′), for someβ andq′. Moreover,σ(p)
σ(α)−→1 iff ρ(p)

ρ(α)−→1 , for any
substitutive effectsρ of Eq(p).

Next, let p andq be two terms of algebraB and letσ be a substitutive effect of

Eq(p). Then,p
α−→1q with α 6= x̄,x (resp.α = x̄,x) if and only if σ(p)

σ(α)−→1 σ(q) (resp.

σ(p)
σ+1(α+1)−→ 1 σ+1(q)) and viceversa. This is easily proved by induction on the rules of

lts1. For instance, considerp1
4
= x = y | z̄v and p2

4
= z = y | xw. Sincep1|p2 ` z = x,

by rule (COM) p|q τ−→1 . On the other hand, any substitutive effectσ of Eq(p1|p2) fusesz
andx and, thus,σ(p1|p2) τ−→1 . The thesis follows by the above remarks.
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(RHO)
p

α−→1q α 6= x, x̄

ρp
ρ(α)−→1 ρq

(RHO′)
p

α−→1q α = x̄,x

ρp
ρ+1(α)−→ 1 ρ+1q

(DEL)
p

α−→1q α 6= x, x̄

δ. p
δ(α)−→1 δ.q

(DEL′)
p

α−→1q α = x̄,x

δ. p
δ(α)−→1 [x0↔ x1]δ.q

(PAR)
p

α−→1q α 6= x, x̄

p|r α−→1q|r
(PAR′)

p
α−→1q α = x, x̄

p|r α−→1q|δ. r

(RES)
p

α−→1q α = x̄y,xy; x0 6= x,y

ν. p
ν(α)−→1 ν.q

(RES′)
p

(α,δ(ϕ))−−−−→ q α = x̄,x; x 6= x0

ν. p
ν(α)−→1 ν. [x0↔ x1]q

(OPEN)
p

xx0−→1q x 6= x0

ν. p x−→1q
(SCOPE)

p
ϕ−→1q

ν. p
ν(ϕ)−→1 ν.q

(REC)
[[P[recX.P/X]]] α−→1q

crecX.P
α−→1q

(COM)
p1

xy−→1q1 p2
x̄′z−→1q2

p1|p2
y=z−→1q1|q2|y = z

p1|p2 ` x = x′

(COM′)
p1

xy−→1q1 p2
δ(x̄′)−→1q2

p1|p2
τ−→1q1|ν.(q2|δ(y) = x0)

p1|p2 ` x = x′

(CLOSE)
p1

x−→1q1 p2
x̄′−→1q2

p1|p2
τ−→1 ν.(q1|q2)

p1|p2 ` x = x′

(PRE) xy.p
xy−→1 p (PRE′) xy.p

δ(x)−→1 δ. p|δ(y) = x0

(FUS) ϕ.p
ϕ−→1 p|ϕ (EQ)

p
α−→1q Eq(p) ` α = β

p
β−→1q

(OPEN) is analogous with output actions; rule(COM′) has a symmetric

counterpart.

Table 3.Transition Systemlts1
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Theorem 4. Let p and q be two terms of algebra B and letσ be a substitutive effect of
Eq(p). Then, p∼1 q if and only if{[σ(p)]} ·∼{[σ(q)]}, where{[·]} is the inverse transla-
tion of [[·]].

Corollary 3. Let P and Q be two fusion agents. P
·∼Q if and only if[[P]]∼1 [[Q]].

Definition 18. The transition system lts2 is defined as lts2 = 〈B,−→2 〉, where−→2 is
defined by adding to the rules of lts1 a rule for closing with respect to fusions in parallel:

(CTX)
p|ϕ α−→1q

p
α,ϕ−→2q

Bisimulation and bisimilarity∼2 are analogous to those defined for lts1, with−→2 in
place of−→1 .

Lemma 1. Let p and q be two terms of algebra B. If p∼2 q then p|ϕ ∼2 q|ϕ, for all
ϕ.

Theorem 5. P∼he Q if and only if[[P]]∼2 [[Q]], where∼he denotes fusion hyperequiv-
alence.

Proof. The proof follows by Corollary 3 and by Lemma 1.

Definition 19. The third transition system lts3 is defined as lts3 = 〈B,−→3〉, where
−→3 is given by the rules in Table 4. Bisimilarity∼3 is analogous to∼2 (−→2 replaces
−→3).

The proof of the Theorem 3 is concluded by showing that∼3 is equivalent to both
∼2 and∼g.

Lemma 2. Let p and q be two terms of algebra B. If p∼3 q then p|ϕ ∼3 q|ϕ, for all
ϕ.

Theorem 6. Let p and q be two terms of algebra B. Then, p∼3 q if and only if p∼2 q.

Proof. It follows by the fact that∼2⊆∼1 and∼3⊆∼1 and by Lemmata 1 and 2.

Theorem 7. Let p and q be two terms of algebra B. p∼3 q if and only if p∼g q.

Proof. The proof relies on the fact that the rules inltsg for propagation and combina-
tion of explicit fusions ((EXP), (PAR1), (PAR′1), (PAR f )) can be simulated rule(EQ) in lts3 and
viceversa. Moreover,ltsg ensures that ifp ∼g q thenEq(p) = Eq(q).
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(RHO)
p

(α,ϕ)−−→3 q α 6= x, x̄

ρp
(ρ(α),ρ(ϕ))−−−−−−→3 ρq

(RHO′)
p

(α,ϕ)−−→3 q α = x̄,x

ρp
(ρ+1(α),ρ+1(ϕ))−−−−−−−−→3 ρ+1q

(DEL)
p

(α,ϕ)−−→3 q α 6= x, x̄

δ. p
(δ(α),δ(ϕ))−−−−−−→3 δ.q

(DEL′)
p

(α,ϕ)−−→3 q α = x̄,x

δ. p
(δ(α),δ(ϕ))−−−−−−→3 [x0↔ x1]δ.q

(PAR)
p

(α,ϕ)−−→3 q α 6= x, x̄

p|r (α,ϕ)−−→3 q|r
(PAR′)

p
(α,ϕ)−−→3 q α = x, x̄

p|r (α,ϕ)−−→3 q|δ. r

(RES)
p

(δ(α),δ(ϕ))−−−−−−→3 q α = x̄y,xy

ν. p
(α,ϕ)−−→3 ν.q

(RES′)
p

(δ(α),δ(ϕ))−−−−−−→3 q α = x̄,x

ν. p
(α,ϕ)−−→3 ν. [x0↔ x1]q

(OPEN)
p

(xx0,δ(ϕ))−−−−−→3 q x 6= x0

ν. p
(x,δ(ϕ))−−−−→3 q

(SCOPE)
p

(ϕ,δ(ψ))−−−−→3 q

ν. p
(ν(ϕ),ψ)−−−−→3 ν.q

(COM)
p1

(xy,ϕ)−−→3 q1 p2
(x̄z,ϕ)−−→3 q2

p1|p2
(y=z,ϕ)−−−→3 q1|q2|y = z

(COM′)
p1

(xy,ϕ)−−→3 q1 p2
(δ(x̄),δ(ϕ))−−−−−→3 q2

p1|p2
(τ,ϕ)−−→3 q1|ν.q2|δ(y) = x0

(CLOSE)
p1

(x,ϕ)−−→3 q1 p2
(x̄,ϕ)−−→3 q2

p1|p2
(τ,ν(ϕ))−−−−→3 ν.q1|q2

(REC)
[[P[recX.P/X]]]

(α,ϕ)−−→3 q

crecX.P
(α,ϕ)−−→3 q

(PRE) xy.p
(x′y′,ϕ′)−−−→3 p|ϕ ϕ′ v ϕ; ϕ ` xy= x′y′

(PRE′) xy.p
(δ(x′),δ(ϕ′))−−−−−−→3 (δ.(p|ϕ)) |x0 = δ(y) ϕ′ v ϕ; ϕ ` x = x′

(FUS) ϕ.p
(ϕ′,ψ′)−−−→3 p|ψ + ϕ ψ′ v ψ; ψ ` ϕ = ϕ′

(EQ)
p

(α,ϕ)−−→3 q Eq(p) ` α = β

p
(β,ϕ)−−→3 q

Rules(PRE), (PRE′), and(OPEN) are analogous with output actions; rule(COM′)

has a symmetric counterpart.

Table 4.Transition Systemlts3


