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Abstract. Bialgebraic models of process calculi enjoy the property that
bisimilarity is a congruence. Indeed, the unique morphism to the final
bialgebra induces a bisimilarity relation which coincides with observa-
tional equivalence and which is a congruence with respect to the oper-
ations. However, the application of the bialgebraic approach to process
calculi with structural axioms is more problematic, because of the inter-
action between axioms and inference rules. In this paper, we generalise a
previous method proposed by the same authors to lift calculi with struc-
tural axioms to bialgebras. In order for the lifting to hold, two conditions
are required: the transition rules of the calculus are in tyft format and
the axioms bisimulate with respect to the lts. As a simple example of
applicability of this general approach we consider CCS with replication,
thus providing a compositional bialgebraic model of the calculus.

1 Introduction

Structural operational semantics [1, 16] is a well-established technique to provide
process calculi and specification languages with an interpretation. A transition
system is inductively derived from a set of transition rules that describe the
behaviour of every construct of the language.

Transition systems can be easily seen as coalgebras for a functor in the cat-
egory Set. A coalgebraic framework presents several advantages; for instance,
morphisms between coalgebras (cohomomorphisms) enjoy the property of “re-
flecting behaviours” and thus they allow to characterise bisimulation equiva-
lences as kernels of morphisms and bisimilarity as the kernel of the morphism to
the final coalgebra [17].

In the above representation of transition systems, states are seen as just form-
ing a set and the algebraic structure modelling the construction of programs and
the composition of states is disregarded. On the other side, on transition systems
with an algebraic structure on states, equivalences which are congruences with
respect to the operators are useful to provide a compositional abstract semantics.

The missing algebraic structure may be recovered by integrating coalgebras
with algebras, as it is done by Turi and Plotkin [19]. They propose a bialgebraic
semantics based on the classical approach to syntax and a coalgebraic approach

Research supported in part by FET Global project PROFUNDIS



to behaviours, and show how to derive, in an abstract fashion, GSOS as a con-
gruence format for bisimulation equivalence. Roughly, bialgebras are structures
that can be regarded both as algebras of coalgebras and as coalgebras of algebras.
Morphisms between bialgebras are both algebra homomorphisms and coalgebra
cohomomorphisms and, thus, the unique morphism to the final bialgebra, which
exists under reasonable assumptions, induces a (coarsest) bisimulation congru-
ence on any coalgebra.

The compositional nature of bialgebras also gives advantages in finite state
verification methods [5]. Usually, such techniques glue components together and,
then, apply model checking or other verification methods. However, in many
cases, state explosion severely limits the applicability. A compositional approach,
on the other side, gives a chance to minimize components before combining them,
thus preventing state explosion, at some extent, and yielding a smaller state
space.

In this paper we generalise a previous method proposed by the same au-
thors [2] to lift calculi with structural axioms to bialgebras. We show that, in
order for the lifting to hold, two conditions are required: the transition rules of
the calculus must be in tyft format [8] and the axioms must bisimulate with
respect to the transition system. The construction in [2] is limited to rules in
the more specialised De Simone format and is exploited to provide a coalgebraic
model of the early pi-calculus. Actually, since early-bisimilarity is not a congru-
ence, it is not surprising that this model is not fully compositional, in the sense
that some operators, remarkably input, are treated as constants.

We first consider a category Alg(Σ) of Σ-algebras and Σ-morphisms and
show that the powerset functor PL can be lifted to a functor P∆ on Alg(Σ)
using the tyft specification. Next, we prove that, given a Σ-algebra B with a
complete axiomatization E, a coalgebra g : |B| → PL(|B|) can be lifted to a
bialgebra g : B → P∆(B), provided that each axiom in E bisimulates. By the
theory on bialgebras, it then follows that bisimilarity is a congruence.

As an example of applicability of this method we consider CCS [11] with
replication. We define a transition system with SOS rules in tyft format, and
show that it can be lifted to a bialgebra. This is a simple example, since, for
the purpose of this paper, we are only interested in showing how the method
works. Of course, calculi with more complex axiomatizations can be modelled
within our framework. For instance, the coalgebraic model of early pi-calculus
presented in [2] is based on the lifting result. The main idea behind that model is
to consider an algebra of permutations enriched with a name extrusion operator
à la De Brujin, that shifts any name to the successor and generates a new name in
the first variable x0. The set of axioms of the associated algebraic specification,
thus, not only contains standard axioms of the pi-calculus, but also axioms for
dealing with permutations and name extrusion operator.

A lifting method has also been proposed in [4], though following a different
line of reasoning. The construction in [4] yields a category of bialgebras which
satisfy a set of axioms, that is, coalgebras on the category Alg(Γ ) of algebras
satisfying a specification Γ = (Σ,E). In our approach, on the contrary, the alge-



braic specification is only the signature without the axioms, thus our treatment
turns out to be simpler: the lifting of the functor, for instance, derives from the
fact that the SOS rules are in tyft format, and the essence of the proof is show-
ing that g is a morphism in Alg(Σ). However, the final coalgebra we obtain is
larger but, given a coalgebra which satisfies the axioms, its image in the final
coalgebra is the same in both the approaches.

The results presented in [4] have been applied in [13, 14] to give a coalgebraic
semantics of the π-calculus. This model is flat, in the sense that it represents the
calculus at an operational level, and exploits permutation algebras: the intuition
is that the effects of permutations on the behaviour of agents are the smallest in-
formation required to define observational equivalence via ordinary bisimilarity,
without limitations due to name generation and passing.

Klin [9, 10] has proposed an alternative approach for modelling process equiv-
alences, based on notions of test and test suites. This technique has been com-
bined with the bialgebraic framework of Turi and Plotkin, yielding a method for
deriving congruence format for different process equivalences and, in particular,
completed trace equivalence.

This paper is organised as follows. Section 2 contains the basic theory on
coalgebras and bialgebras. In Sect. 3 we prove a general result to lift coalgebras
in Set to coagebras on Alg(Σ). In Sect. 4 we consider CCS with replication
as a small example of application of our lifting method. Sect. 5 contains some
concluding remarks.

2 Coalgebraic/bialgebraic semantics

In this section we present the relevant definitions and results about coalgebras
and bialgebras. We start reviewing notions about algebras and algebraic speci-
fications.

We recall that, for Σ a signature, a Σ-algebra A = 〈|A|, (opA)op∈Σ〉 consists
of a carrier set |A| and a family of operations such that opA : |A|n → |A|
if op ∈ Σ of arity n. We assume to have a countable set X of the variables
that can be used in the terms of the algebra. A Σ-homomorphism (or simply
a morphism) between two Σ-algebras A and B is a function h : |A| → |B|
that commutes with all the operations in Σ, namely, for each operator op ∈ Σ
of arity n, we have opB(h(a1), · · · , h(an)) = h(opA(a1, . . . , an)). We denote by
Alg(Σ) the category of Σ-algebras and Σ-morphisms. A Σ-algebra A satisfies
an algebraic specification Γ = 〈Σ, E〉, if A satisfies all axioms in E. In this case,
A is called a Γ -algebra. The category of Γ -algebras and homomorphisms is the
full subcategory Alg(Γ ) ⊆ Alg(Σ).

The basic idea behind SOS specifications is to specify a transition relation by
induction over the structure of the system’s states. In order to make explicit this
structure, rather than ordinary labelled transition systems we consider transition
systems whose sets of states have an algebraic structure.

Definition 1 (transition systems). Let Γ = 〈Σ, E〉 be an algebraic specifica-
tion, and L be a set of labels. A labelled transition system (transition system, in



brief ) over Γ and L is a pair lts = 〈A,−→lts〉 where A is a nonempty Γ -algebra
and −→lts ⊆ |A| × L× |A| is a labelled transition relation. For 〈p, l, q〉 ∈ −→lts

we write p
l−→lts q.

Let lts = 〈A,−→lts〉 and lts ′ = 〈B,−→lts′〉 be two transition systems. A
morphism h : lts → lts ′ of transition systems over Γ and L (lts morphism, in
brief) is a Γ -morphism h : A → B such that p

l−→lts q implies f(p) l−→lts′ f(q).

The notion of bisimulation and transition systems with an algebraic structure is
the classical one.

Definition 2 (bisimulation). Let Γ = 〈Σ, E〉 be an algebraic specification, L
be a set of labels, and lts = 〈A,−→lts〉 be a transition system over Γ and L.

A relation R over |A| is a bisimulation if p R q implies:

– for each p
l−→ p′ there is some q

l−→ q′ such that p′ R q′;
– for each q

l−→ q′ there is some p
l−→ p′ such that p′ R q′.

Bisimilarity ∼lts is the largest bisimulation.

Given an algebraic specification Γ = 〈Σ, E〉 and a set of labels L, a collection
of SOS rules can be regarded as a specification of those transition systems over
Γ and L that have a transition relation closed under the given rules.

Definition 3 (SOS rules). Given an algebraic specification Γ = 〈Σ, E〉 and a
set of labels L, a sequent p

l−→ q (over L and Γ ) is a triple where l ∈ L is a
label and p, q are Σ-terms with variables in a given set X.

An SOS rule r over Γ and L takes the form:

p1
l1−→ q1 · · · pn

ln−→ qn

p
l−→ q

where pi
li−→ qi for all i = 1, · · ·n as well as p

l−→ q are sequents.
We say that transition system lts = 〈A,−→lts〉 satisfies a rule r like above

if each assignment to the variables in X that is a solution1 to pi
li−→ qi for

i = 1, . . . , n is also a solution to p
l−→ q.

Definition 4 (transition specifications). A transition specification is a tuple
∆ = 〈Γ,L,R〉 consisting of an algebraic specification Γ , a set of labels L, and
a set of SOS rules R over Γ and L. We abbreviate ∆ = 〈Γ = 〈Σ, ∅〉, L,R〉 by
∆ = 〈Σ, L, R〉

A transition system over ∆ is a transition system over Γ and L that satisfies
rules R.

1 Given h : X → A and its extension ĥ : T(Σ,E)(X) → A, h is a solution to p
l−→ q

for lts if and only if ĥ(p)
l−→lts ĥ(q).



It is well known that ordinary labelled transition systems (i.e., transition
systems whose states do not have an algebraic structure) can be represented as
coalgebras for a suitable functor [17].

Definition 5 (coalgebras). Let F : C → C be a functor on a category C.
A coalgebra for F , or F -coalgebra, is a pair 〈A, f〉 where A is an object and
f : A → F (A) is an arrow of C. A F -cohomomorphism (or simply F -morphism)
h : 〈A, f〉 → 〈B, g〉 is an arrow h : A → B of C such that

h; g = f ;F (h). (1)

We denote with Coalg(F ) the category of F -coalgebras and F -morphisms.

Proposition 1. For a fixed set of labels L, let PL : Set → Set be the functor
defined on objects as PL(X) = P(L × X + X), where P denotes the count-
able powerset functor, and on arrows as PL(h)(S) = {〈l, h(p)〉 | 〈l, p〉 ∈ S ∩
L × X} ∪ {h(p) | p ∈ S ∩ X}, for h : X → Y and S ⊆ L × X + X. Then
PL-coalgebras are in a one-to-one correspondence with transition systems2 on L,
given by flts(p) = {〈l, q〉 | p l−→lts q} ∪ {p} and, conversely, by p

l−→ltsf q if and
only if 〈l, q〉 ∈ f(p).

In [3] the generalised notion of lax cohomomorphism is given, in order to
accommodate also the more general definition of lts morphisms in a (lax) coal-
gebraic framework. To make clear their intuition, let f : A → PL(A) and
g : B → PL(B) be two PL-coalgebras and let h : A → B be a PL-morphism. If
we split the morphism condition (1) for h in the conjunction of the two inclusions
f ;PL(h) ⊆ h; g and h; g ⊆ f ;PL(h), then it is easily shown that the first inclu-
sion expresses “preservation” of transitions, while the second one corresponds
to “reflection”. Thus, lts morphisms can be seen as arrows (i.e., functions in
Set) that satisfy the first inclusion, while lts morphisms which also satisfy the
reflection inclusion are PL-morphisms. This observation will be useful in Sect. 3.

Definition 6 (tyft format). Given an algebraic specification Γ = 〈Σ,E〉 and
a set of labels L, a rule r over Γ and L is in tyft format if it has the form:

r =
{ti

li−→ yi}i∈I

op(x1, . . . , xn) l−→ t

where op ∈ Σ, yi and xj are all distinct variables.
Rule r is pure if all its variables are among {yi}i∈I ∪ {xj}1≤j≤n. Further-

more, r is look-ahead free if for all i ∈ I, Var(pi) ⊆ {x1, . . . , xn}. In the rest of
the paper, we will only consider tyft rules which are pure and look-ahead free
and, for brevity, we will simply call them ‘tyft rules’.

A tyft proof of sequent s
l−→ t from premises {xi

li−→ yi}i∈I is a proof of
s

l−→ t from {xi
li−→ yi}i∈I that is obtained using only tyft rules in R and

without using axioms in E.
2 Notice that this correspondence is well defined also for transition systems with sets

of states, rather than with algebras of states as required in Definition 1.



The following results are due to Turi and Plotkin ([19]) and concern bial-
gebras, that is, coalgebras in Alg(Σ). As noted in the introduction, bialgebras
enjoy the property that the unique morphism to the final bialgebra, which exists
under reasonable conditions, induces a bisimulation that is a congruence with
respect to the operations. The theory developed in [19] concerns transition sys-
tems in GSOS format. However, for the purpose of the paper, it will be enough to
recall a simplified theory where rules are in tyft format (remark that we abuse
notation by writing ‘tyft rules’ to mean pure, look-ahead free tyft rules).

Proposition 2 (lifting of PL). Let ∆ = 〈Σ, L, R〉 be a transition specification
with tyft rules. Define P∆ : Alg(Σ) → Alg(Σ) as follows:

– |P∆(A)| = PL(|A|);

– whenever {xi
li−→ yi | i ∈ I}

op(x1, . . . , xn) l−→ p
∈ R then

〈li, pi〉 ∈ Si, i ∈ I qj ∈ Sj , j /∈ I

〈l, p[pi/yi, i ∈ I, qj/yj , j /∈ I]〉 ∈ opP∆(A)(S1, . . . , Sn)
;

– if h : A → B is a morphism in Alg(Σ) then P∆(h) : P∆(A) → P∆(B) and
P∆(h)(S) = { 〈l, h(p)〉 | 〈l, p〉 ∈ S ∩ (L× |A|) } ∪ {h(p) | p ∈ S ∩ |A| }.

Then P∆ is a well-defined functor on Alg(Σ).

Corollary 1. Let ∆ = 〈Σ,L, R〉 be a transition specification with rules R in
tyft format.

Any morphism h : f → g in Coalg(P∆) entails a bisimulation ∼h on ltsf ,
that coincides with the kernel of the morphism. Bisimulation ∼h is a congruence
for the operations of the algebra.

Moreover, the category Coalg(P∆) has a final object. Finally, the kernel of
the unique P∆-morphism from f to the final object of Coalg(P∆) is a relation
on the states of f which coincides with bisimilarity on ltsf and is a congruence.

Note that the above corollary assumes that a PL-coalgebra can be lifted to
a P∆-coalgebra. Indeed, such assumption is obvious in the particular case of
f : A → P∆(A), with A = TΣ and f unique by initiality, namely when A has no
structural axioms and no additional constants, and ltsf is the minimal transition
system satisfying ∆. In the next section, we will spell out sufficient conditions to
lift a transition system with structural axioms from Coalg(PL) to Coalg(P∆),
under appropriate conditions on the axioms. Let us now consider an example
that in general this lifting may not succeed.

Example 1. Consider a chemical abstract machine CHAM. For our purposes, the
signature Σc of CHAM is defined as:

Σc ::= 0
∣∣ |

∣∣ a.
∣∣ ā.

∣∣ redex a( , )

and Ec is the set of axioms for commutativity, associativity, id, 0 plus an axiom
redex a(p, q) = a.p | ā.q. The only reduction rule redex a(p, q) −→ p | q is tyft.



For P∆c
the usual poweralgebra functor on Alg(Σc), the transition system of

CHAM forms a PL-coalgebra, but not a P∆c
-coalgebra 3. And bisimilarity is not

a congruence as, for example, 0 ∼ a.p but ā.p 6∼ a.p | ā.p.

3 Lifting Coalgebras on Set to Bialgebras

In this section we prove a general result about lifting a coalgebra g in Set
with set of states B and equipped with operations Σ, structural axioms E and
tyft rules R to a coalgebra in Alg(Σ). The lifting allows to apply Corollary 1
and, in particular, to prove that bisimilarity is a congruence.

Theorem 1. Let B be the class of coalgebras g in Set with the following prop-
erties:

1. g : |B| → PL(|B|), with B = T(Σ,E).
2. ltsg satisfies transition specification ∆ = (〈Σ, E〉, L,R), with R in tyft for-

mat.

Then, there is an initial coalgebra ĝ in B, such that ∀g ∈ B, ∀p ∈ B, p
l−→ĝq

implies p
l−→gq.

Furthermore, the transitions of ĝ can be derived using the rules R and the
following additional rule:

(Struct)
t1 =E t′1 t′1

l−→ĝt
′
2 t′2 =E t2

t1
l−→ĝt2

where terms t1, t
′
1, t2, t

′
2 are in TΣ.

Proof. Signature Σ, axioms E and transition specification ∆ can be considered as
a single algebraic specification, equipped with an initial model. The elements of the
model can be derived using the proof system associated to the specification.

Definition 7. Let g : |B| → PL(|B|) be the initial coalgebra of Theorem 1.
Then, we define the following Σ-algebras and Σ-morphisms:

– A = TΣ and h : A → B is the unique morphism in Alg(Σ) from the initial
object;

– f : A → P∆(A) is the unique arrow in Alg(Σ) from the initial object.

In the sequel, we want to find conditions under which PL-coalgebra g can be
lifted to a P∆-coalgebra and function h, as above defined, to a P∆-morphism.
The observation in Sect. 2 allows us to state, without any further condition, that
h is a lax morphism between PL-coalgebras f and g. The reflection inclusion,
instead, will require appropriate hypotheses.
3 Indeed, axiom redex a(p, q) = a.p | ā.q does not satisfy the “bisimulation” condition

required in Theorem 2.



Property 1. Function h in Definition 7 is a lts morphism, namely, a lax PL-
coalgebra morphism. Furthermore, it is surjective.

Proof. Immediate, as every proof of a transition in ltsf holds also in ltsg.

Theorem 2. Let g be the initial coalgebra in B as specified by Theorem 1, and
let A, h, and f be defined as in Definition 7. Then, h is surjective. Let us
assume that for all equations t1 = t2 in E, with free variables {xi}i∈I , we have
tyft proofs as follows (for t1, t

′
1, t2, t

′
2 terms of TΣ):

xi
li−→ yi i ∈ I

t1
l−→ t′1

implies
xi

li−→ yi i ∈ I

t2
l−→ t′2

and t′1 =E t′2 (2)

and viceversa, using the rules in R.
Then, the left diagram below commutes in Set, i.e., h; g = f ;PL(h). Thus,

h is a PL-morphism.

Proof. We start noticing that h : A → B is surjective since B = A/=E
and =E is the

kernel of h.
Then, we first prove that the equivalence relation =E is a bisimulation for ltsf . We

use rule induction on the proofs of =E . For axioms in E , the property is guaranteed
by Condition 2. Rules for reflexivity, symmetry and transitivity are obviously satisfied.
Rule for congruence is also easily checked, since if ti and t′i bisimulate, for i = 1, · · · , n,
also op(t1, · · · , tn) and op(t′1, · · · , t′n), with k ∈ Σn, have corresponding transitions by
applying the same tyft rule.

Since h is a lax PL-coalgebra morphism, to derive our result it is enough to show

that h(t1)
l−→gp implies t1

l−→f t2, with h(t2) = p. We prove this property by induction
on the rules of ltsg, as specified by Theorem 1. Rules in R can be easily checked since
they are the same for ltsf and for ltsg. Also, rule (Struct) preserves the property. Indeed,

given [t′1]E
l−→g[t′2]E , i.e., h(t′1)

l−→gh(t′2), by induction hypothesis we have t′1
l−→f t′′2 ,

with h(t′′2 ) = h(t′2). Furthermore, since t1 =E t′1 and =E is a bisimulation for f , we

can find t1
l−→f t′′′2 , with t′′′2 =E t′′2 and, thus, h(t′′′2 ) = h(t′′2 ). Also, t′2 =E t2 implies

h(t2) = h(t′2). Then, h(t′′′2 ) = h(t2).

|A| h //

f

��

|B|

g

��

PL(|A|)
PL(h)

// PL(|B|)

A
h //

f

��

B

g

��

P∆(A)
P∆(h)

// P∆(B)

Theorem 3. Let g be the initial coalgebra in B as specified by Theorem 1, and
let A, h, and f be defined as in Definition 7. If the left diagram above commutes
in Set, i.e., h; g = f ;PL(h), then g can be lifted from Set to Alg(Σ) and the
right diagram commutes in Alg(Σ).

Proof. See the Appendix.

Corollary 2. Let g be the initial coalgebra in B as specified by Theorem 1, and
let the right diagram above commute. Then in g bisimilarity is a congruence.

Proof. The claim follows by Theorem 3 and Corollary 1.



4 CCS with replication

In this section, we apply the results of Sect. 3 to the CCS with replication
operator, denoted CCS!. We will show that the transition system of CCS! satisfies
the ‘bisimilarity’ condition required by Theorem 2. As a consequence, bisimilarity
is a congruence with respect to the operations.

Let N be the countable set of names, ranged over by x, y, · · · . A signature
Σ! for the calculus is defined as follows:

Σ! ::= 0
∣∣ α.

∣∣ +
∣∣ |

∣∣ (νx)
∣∣ ! α ::= τ

∣∣ x
∣∣ x̄

For input and output actions, we write ᾱ for the complementary of α; that is, if
α = x then ᾱ = x̄, if α = x̄ then ᾱ = x. The occurrence of x in (νx) p is bound;
free names and bound names of agent term p are defined as usual and we denote
them with fn(p) and bn(p), respectively. Also, we denote with n(p) the sets of
(free and bound) names of agent term p. We take the calculus equipped with a
set of axioms E!, consisting of axioms for commutativity, associativity, id, 0 plus
an axiom for replication:

p |! p ≡! p.

Definition 8 (transition specification for CCS!). We define a transition
specification ∆! for CCS! as ∆! = 〈Σ!, L!, R!〉, where Σ! is the signature defined
above, L! is a set of labels L! = {τ, x, x , | x, y names}; R! is the set of SOS
rules presented in Table 1.

(Pre) α.p
α−→ p (Sum)

p
α−→ p′

p+q
α−→ p′

(Par)
p

α−→ p′

p|q α−→ p′|q
(Com)

p
x̄−→ p′ q

x−→ q′

p|q τ−→ p′|q′

(Rep)
p|!p α−→ p′

!p
α−→ p′ (Res)

p
α−→ q

(νx) p
α−→ (νx) q

if x /∈ n(α)

Table 1. SOS rules for CCS! (symmetric rules are omitted)

Proposition 3. The rules of the transition specification of CCS! that are defined
in Table 1 are in tyft format.

Note that rule (Rep) is not De Simone format, since the source of the premise is
not a variable, but a complex term.

Definition 9 (lts for CCS!). A transition system ltsCCS! for CCS! is defined
as 〈T(Σ!,E!),−→〉, where signature Σ! and axioms E! are as defined above, and
−→ is defined by the SOS rules in Table 1.



Theorem 4. Bisimilarity ∼ltsCCS!
in CCS! is a congruence.

Proof. (Hint) By Theorem 2, we have to prove that axioms E! satisfy the ‘bisim-
ilarity’ condition. The fact that axiom for replication bisimulates follows by rule
(Rep), while it is well-known that the other axioms bisimulate (see [11], for
instance).

Note that, for the sake of simplicity, we have not considered the CCS re-
labelling operator. This construct can, however, be accommodated within our
framework, by enriching both the transition specification and the algebra for
CCS! with permutations and proving that the extra axioms bisimulate with re-
spect to the extended transition system (see [14, 2] for details).

5 Conclusions

We have proposed a method to provide compositional coalgebraic models of pro-
cess calculi with structural axioms, under appropriate conditions. Specifically, we
have proved that the transition system of a calculus can be lifted to a bialgebra,
provided that the SOS rules are in tyft format and the axioms bisimulate.

We plan to apply this method to open pi-calculus [18]. The main difficulty
arises in modelling distinctions, that is relations that specify which names cannot
be fused. Our proposal is to generalise the permutation algebra considered for
the pi-calculus [2] with (possibly, non-injective) substitutions and to introduce
types to model distinctions. Moreover, since open bisimilarity is a congruence, we
expect this substitution algebra can be enriched with the full set of operations
of the calculus (remarkably, including input prefix).
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