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Abstract. In security protocols, message exchange between the intruder and
honest participants induces a form of state explosion which makes protocol mod-
els infinite. We propose a general method for automatic analysis of security pro-
tocols based on the notion offrame, essentially a rewrite system plus a set of dis-
tinguished terms calledmessages. Frames are intended to model generic crypto-
systems. Based on frames, we introduce a process language akin to Abadi and
Fournet’s applied pi. For this language, we define a symbolic operational seman-
tics that relies on unification and provides finite and effective protocol models.
Next, we give a method to carry out trace analysis directly on the symbolic model.
We spell out aregularity condition on the underlying frame, which guarantees
completeness of our method for the considered class of properties, including se-
crecy and various forms of authentication. We show how to instantiate our method
to some of the most common crypto-systems, including shared- and public-key
encryption, hashing and Diffie-Hellman key exchange.

1 Introduction

Many of the methods employed in security protocol analysis are based conceptually on
a model dating back to Dolev and Yao [18], where a (hostile) intruder has total con-
trol over the communication network. In particular, it is assumed that the intruder can
learn, hide or replace any message in transit on the network. It can also synthesize new
messages starting from learned messages and using arbitrary combinations of opera-
tions like nonce creation, pairing, encryption and decryption. The intruder cannot guess
secret keys or forge messages it cannot syntethise. Thus, sending a message on the net-
work means handing it to the intruder, while receiving a message from the network
means accepting any message the intruder can syntethise at a given moment. Due to the
latter point, any Dolev-Yao model is in principle infinite.

Traditional finite-state model checking has been employed in security protocol anal-
ysis (e.g., [26, 32, 36, 39]), under two simplifying assumptions: (a) there is a bound on
the number of protocol runs, and (b) at any moment, there is a bound on the number of
possible messages the intruder can syntethise and send to honest participants. Discard-
ing either of these two assumptions leads to infinite models. Also, these bounds have
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to be chosen carefully: due to the combinatorics of message generation, the size of the
model tends to explode as the number of principals and data values increases.

In general, it is known that discarding assumption (a) leads to undecidability of pro-
tocol analysis, unless severe syntactic restrictions are imposed on the analysed protocols
(see e.g. [4, 16, 19, 20, 23, 34]). In particular, in the presence of pairing and encryption,
an even weak form of iteration (the ability to create arbitrarily many protocol instances)
allows for encoding of 2-counter machines, which in turn implies undecidability of
e.g. secrecy, based on information transfer from one protocol instance to another (blind
copying) [35]. Wanting to preserve decidabilityand an expressive term language, one
is left with little choice but keeping assumption (a), hence ruling iteration out.

In the last few years, symbolic approaches have been proposed that make infinite-
state analysis possible and lead to discard assumption (b) [4, 8, 16, 30]. These approaches
focus on specific crypto-systems (typically, shared- or public-key encryption), and the
corresponding completeness proofs are rather ad-hoc. The present paper introduces a
general framework for symbolic protocol analysis. It can be viewed as an attempt at
presenting in a uniform manner methods based on unification (e.g. [8, 4]), while extract-
ing a common factor out of the related proof techniques. When instantiated to specific
crypto-primitives, under a condition of regularity that we illustrate below, the frame-
work yields complete verification methods. In those case studies that we have actually
experimented [9], the method is also quite effective in practice.

More in detail, we start by introducing a notion offrame, essentially a term rewrit-
ing system plus a set of distinguished terms calledmessages. We consider a generic
signatureΣ that may include constructors and destructors for various cryptographic op-
erations. The meaning ofΣ-terms is provided by an evaluation relation↓ that maps
terms to messages. On top of the evaluation relation, we introduce a deduction rela-
tion ` that describes how the environment can synthesize new messages from known
ones. On top of a generic frame, we introduce a process language akin to Abadi and
Fournet’s applied pi [1], that can be used to describe protocols. Protocol properties are
formalised as correspondence assertions between I/O events, oractions, of the form
“every execution of actionα must be preceded by some execution of actionβ”.

In agreement with the Dolev-Yao approach, the “concrete” operational semantics of
the process calculus is infinitary, because each input action gives rise to infinitely many
transitions. This problem is overcome by introducing a symbolic operational seman-
tics. In the latter, as a result of a receive operation, input variables are not instantiated,
rather they areconstrainedas the computation proceeds. Constraints are generated by
symbolic evaluation of terms representing crypto-operations, and take the form of most
general unifiers (mgu’s) between terms of the signature. As an example, evaluation of
shared-key decryption ofζ using keyη, written decη(ζ), generates a mguθ for the
equationζ = {x}η, for a freshx. The result of the decryption is therefore represented as
θ(x). Mgu’s are propagated through whole process terms as soon as they are generated.
The resulting transition system is finitely branching, hence it yields finite models when
protocols with a finite number of participants are considered.

Next, we give a method to carry out trace analysis directly on the symbolic model,
and provide aregularitycondition on the given frame, under which the method is proven
sound and complete with respect to the concrete semantics. In other words, for regular
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frames every attack detected in the symbolic model corresponds to some attack in the
concrete one, and vice-versa. Thus, our method makes no approximation with respect
to the infinitary, concrete model. For instance, type-dependent flaws (see e.g. [22]),
which usually escape finite-state analysis, with our approach naturally emerge when
present. The regularity condition roughly amounts to requiring that the set of messages
deducible from any trace of the protocol can besyntacticallybuilt out of a finite basis
of messages, and that the induced finite-basis operation commutes with substitution.

We show how to instantiate the general framework to some of the most common
crypto-systems, providing frames for shared- and public-key encryption, digital signa-
ture, hashing and Diffie-Hellman exponentiation. The proof of regularity is covered in
detail for the public-key frame only. We also highlight the relevance of the regularity
condition by providing an example of a meaningful non-regular frame. This also illus-
trates the limits of our approach.

Our method is quite efficient in practice, because in the symbolic model there is
no state-explosion induced by message exchange: every input action gives rise exactly
to one symbolic transition. We have developed a prototype tool, STA (Symbolic Trace
Analyzer), based on this method [41]. Experimentation with STA has given very en-
couraging results [9].

Related workEarly work on symbolic analysis is due to Huima. In [24], the execu-
tion of a protocol generates a set of equational constraints. Only an informal descrip-
tion is provided of the kind of equational rewriting needed to solve these constraints.
Approaches based on symbolic analysis were also exploited in [8, 3, 21], all of which
focus on shared-key encryption. The work [8] introduces a shared-key only version of
our symbolic method. In [3], unlike our approach, symbolic execution and consistency
check are not kept separate, and this may have a relevant impact on the size of the com-
puted symbolic model. Another point worth noting is that, in [3], a brute-force method
is needed to resolve variables in key position: such variables have to be instantiated to
every possible name used by the participants; this fact may lead to state explosion, too.
In [21], a procedure is provided to analyse the knowledge of the environment, based
on a symbolic semantics akin to [8]. The approach applies to protocols with arbitrary
messages as keys, but, like ours, it is proven complete only for atomic keys. Also, the
method suffers from the same problem as [3] concerning brute-force instantiation. The
paper [4] extends the symbolic reachability analysis of [3] to hash functions and public
key cryptography and establishes some complexity results.

Developments of the symbolic approach not specifically relying on unification are
presented in [16] and [30]. The decision technique in [16] is based on a reduction to
a set constraint problem which is in turn reduced to an automata-theoretic problem.
Completeness is proven by assuming rather severe restrictions on protocol syntax. The
technique in [30] focuses on reachability properties and is based on constraint solving;
the approach makes use of the strand space formalism [42] to specify protocol pro-
cesses. The symbolic reduction and the knowledge analysis are separated and the latter
is performed by a procedure for constraint solving procedure.

Some recent papers ([7, 15, 33, 34]) focus on protocols with unbounded instances
and unbounded message size, and give verification algorithms that terminate under
certain assumptions, like tagging. Other recent work addresses the symbolic analysis
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problem in the presence of low-level cryptographic operations and, in particular, mod-
ular exponentiation [31, 13, 40]. Blanchet’s model [6] abstracts away from operations
like inverse, root extraction and random number generation. The resulting method may
give rise to false attacks and may not terminate. Pereira and Quisquater first [31] pro-
posed a technique for analysing group Diffie-Hellman protocols in the presence of an
attacker with restricted capabilities (e.g. no symmetric encryption), though not facing
the issue of decidability. Chevalieret al. [13] demonstrated that the protocol analy-
sis problem is decidable and NP-complete in the presence of modular exponentiation.
Shmatikov [40] proved that the above problem in the presence of Abelian group opera-
tor and exponentiation is decidable for a finite number of protocol sessions. Also related
to these approaches is protocol analysis in the presence of the xor operation, which has
been recently proven to be decidable by Chevalieret al. [12] and, independently, by
Comon-Lundh and Shmatikov [17].
Summary In Section 2 we introduce the notion of frame at the basis of our method.
In Section 3 we present the process language, its concrete and symbolic semantics,
and we study the relationship between the two semantics. In Section 4 we describe the
verification method based on the symbolic semantics. Throughout Sections 2-4 we use
public-key cryptography as a running example. An extended system featuring shared-
key, public-key, digital signature and hashing is considered in Section 5; this section
also contains an example of non-regular frame. In Section 6 we illustrate an applica-
tion to a low-level primitive, modular exponentiation, hence, the Diffie-Hellman key
exchange. Section 7 illustrates STA on the classic Needham-Schroeder protocol. In
Section 8 we draw some conclusions. Detailed proofs of a few technical results are
confined to Appendices A, B and C.

2 A General Framework

In this section, we present the main ingredients of our framework. We introduce the
concept offrame, that is, a structure consisting of a signature, a set of (legal) messages
and an evaluation relation. Then, we define the notions of process, trace, configuration
and security property.

2.1 Frames

We consider two countable disjoint sets ofnames m,n, . . . ∈N andvariables x,y, . . . ∈
V . The setN is in turn partitioned into a countable set oflocal names a,b, . . . ∈ LN
and a countable set ofenvironmental names a,b, . . . ∈ EN : these two sets represent
infinite supplies of fresh quantities (keys, nonces, . . . ), that can be used by processes
and environment, respectively. The setN ∪V is ranged over by lettersu,v, . . .. The fact
that LN and EN are disjoint guarantees that nonces and keys generated by honest
participants cannot be guessed in advance by the environment (of course, local names
might be learned and then used by the environment), and vice-versa.

Given a finite signatureΣ of function symbolsf ,g, . . ., each coming with its arity
(constants have arity 0), we denote byEΣ the algebra of terms (orexpressions) on
N ∪V ∪Σ, given by the grammar:

ζ,η ::= u | f (ζ̃)
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whereζ̃ is a tuple of terms of the expected length. Aterm context C[·] is a term with a
hole that can be filled with any termζ, thus yielding a termC[ζ].

Definition 1 (frame). A frameF is a triple (Σ,M ,↓), where:

– Σ is a signature;
– M ⊆ EΣ is a set ofmessagesM,N, . . .;
– ↓⊆ EΣ×EΣ is anevaluation relation.

In the sequel, we writeζ ↓ η for (ζ,η) ∈↓ and say thatζ evaluates toη. In typical
frame instances the relation↓ will be both a function and a congruence with respect to
the operations inΣ, but we need not to assume these facts in the general framework. In
fact, as we shall see in Section 6, a non-deterministic evaluation relation can be used to
model a commutative operation.

Next, we define a deduction relation (` ), which specifies how the environment can
generate new messages starting from an initial set of messagesS. Our definition of
deduction relation is not given by a set of deductive rules. Rather, we make use of the
setH (S), which consists of all the expressions inductively built by applying functions
of Σ to elements ofSand ofEN . We denote byP f (X) the set of finite subsets ofX.

Definition 2 (deduction relation). For F = (Σ,M ,↓) a frame and S⊆ M , the set
HF (S) is inductively defined by the following clauses:

H 0
F (S) = S∪EN

H i+1
F (S) = H i

F (S)∪{ f (ζ̃) : f ∈ Σ, ζ̃ ⊆ H i
F (S)}

HF (S) =
⋃
i≥0

H i
F (S) .

Thededuction relatioǹ F ⊆ P f (M )×M is defined by:

S`F M
4⇔ ∃ζ ∈HF (S) : ζ ↓M .

A message M isdeduciblefrom S if S`F M.

When no confusion arises, we simply writeH (S) for HF (S) and` for `F .

Example 1 (Public-Key Encryption).A frameFpk = (Σ,M ,↓) for public-key cryptog-
raphy is defined in Table 1. The functions ofΣ are: generation of public ((·)+) and
private ((·)−) keys, encryption with a public key ({[·]}(·)), decryption using a private

key (decpk
(·)(·)), pairing (〈·, ·〉) and selection (πi(·)). Public and private keys are repre-

sented byu+ andu−, respectively. Names and variables can be used to build compound
messages via public-key encryption and pairing. In particular,{[M]}m+ represents the
message obtained by encryptingM underm+. Primitives for pairing and public key
encryption of messages can be arbitrarily nested. Non-atomic keys are forbidden in
messages: this restriction is crucial in our method, as we will show in Example 7. The
definition of evaluation relation makes use of an auxiliary relation , that models the
mechanisms of public key encryption under the perfect cryptography assumption (see
e.g. [18]).

As an example of deduction, ifS = { {[〈a,b〉]}k+ ,k− } then S ` a, since ζ =
π1(decpk

k−({[〈a,b〉]}k+)) ∈ H (S) andζ ↓ a. Note that, whateverS, the set of messages
deducible fromS is infinite. �
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SIGNATURE Σ = {(·)+, (·)−, {[·]}(·), 〈·, ·〉, πi(·) (i = 1,2), decpk
(·)(·)}

MESSAGES M,N ::= u | u+ | u− | {[M]}u+ | 〈M,N〉

(PRJ) πi(〈ζ1,ζ2〉)  ζi (i = 1,2)

(DEC) decpk
η−({[ζ]}η+)  ζ

(CTX)
ζ ζ′

C[ζ] C[ζ′]

EVALUATION ζ ↓ η 4⇔ ζ ∗η

Table 1: Fpk, a frame for public key encryption

2.2 Processes

Syntax As a base language, we consider a variant of the applied pi-calculus [1], para-
metrised by an arbitrary frameF (for readability, we omit explicit reference toF in
the notation). The syntax ofagent expressions, whose set we nameA , is reported in Ta-
ble 2. A single construct (let) for expression evaluation replaces the ad-hoc constructs
found in the spi-calculus for encryption, decryption and other cryptographic operations.
The main difference from applied pi is that, here, we consider a setL of input and out-
put labels, ranged over bya,b, . . ., which must not be regarded as channels – according
to the Dolev-Yao model, we assume just one public network – but, rather, as ‘tags’
attached to process actions for ease of reference. We do not consider the pi-calculus
restriction operator: it could be easily accommodated, but it has no semantic relevance,
in the absence of iteration.

Given the presence of binders for variables, notions offree variables, v(A) ⊆ V ,
andalpha-equivalencearise as expected. We shall identify alpha-equivalent agent ex-
pressions. For anyζ andx, [ζ/x] denotes the operation of substituting the free occur-
rences ofx by ζ. An agent expressionA is said to beclosedor aprocessif v(A) = /0 ; the
set of processesP is ranged over byP,Q, . . .. Local names and environmental names
occurring inA are denoted by ln(A) and en(A), respectively. A processP is initial if
en(P) = /0 .

Example 2 (the Needham-Schroeder protocol).We consider the classical
Needham-Schroeder protocol as described e.g. in [26]. The protocol involves two hon-
est participants,A andB, which want to authenticate with one another.A is the initiator,
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AGENTS A A,B ::= 0 (null)
| a(x).A (input)
| a〈ζ〉.A (output)
| lety=ζ inA (evaluation)
| [ζ = η]A (matching)
| A||B (parallel composition)

The occurrences of variablesx andy are bound.

Table 2: Syntax for agents

B the responder:

1. A −→ B : {[nA, idA]}kB+ (nA fresh nonce)
2. B −→ A : {[nA,nB]}kA+ (nB fresh nonce)
3. A −→ B : {[nB]}kB+

We formalise below a ‘one-shot’ configuration of this protocol,NS, where two distinct
instances ofA are willing to talk toB and to a malicious insiderI , a participant whose
role is played by the attacker. An instance ofB is willing to respond toA (this example
will be analysed in Section 7). Adisclose action is supposed to have provided the envi-
ronment with its initial knowledge (identities and public keys of participants, plus the
insider’s private key information). To simplify the notation, we use a few self-explaining
notational shorthands, likec({[y,n]}k+).P for

c(x). letx′=decpk
k−(x) in lety=π1(x′) in lety′=π2(x′) in [y′ = n]P, for freshx,x′,y′.

A
4
= a1〈{[nA,idA]}kB+〉.a2({[nA,xnB]}kA+).a3〈{[xnB]}kB+〉.0
|| a′1〈{[n′A,idA]}kI+〉.a′2({[n′A,xnI]}kA+).a′3〈{[xnI]}kI+〉.0

B
4
= b1({[ynA,idA]}kB+).b2〈{[ynA,nB]}kA+〉.b3({[nB]}kB+).0

NS
4
= 〈disclose〈kI,kA+,kB+,idA,idB,idI〉, (A||B)〉 .

�

Operational SemanticsThe semantics of the calculus is given in terms of a transition
relation−→ , which we will sometimes refer to as ‘concrete’ (as opposed to the ‘sym-
bolic’ one we shall introduce later on). We model the state of the system as a pair〈s, P〉,
wheres records the current environment’s knowledge (i.e., the sequence of messages
the environment has “seen” on the network up to a given moment) andP is a process
term. Anaction is a term of the forma〈M〉 (inputaction) ora〈M〉 (outputaction), fora
a label andM a message. The set of actionsAct is ranged over byα,β, . . ., while the set
Act∗ of strings of actions is ranged over bys,s′, . . .. String concatenation is written ‘·’ .
We denote by act(s) and msg(s) the set of actions and messages, respectively, appearing
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in s. A strings is closedif v(s) = /0 andinitial if en(s) = /0 . In what follows, we shall
often write ‘s ` M’ for msg(s) ` M and ‘M ∈ s’ for M ∈msg(s).

Below we definetraces, i.e. sequences of actions that may result from the inter-
action between a process and its environment. In traces, each message received by a
process (input message) must be synthesizable from the knowledge the environment
has previously acquired. Inconfigurations, the environment’s knowledge is explicitly
recorded as a trace.

Definition 3 (traces and configurations).A traceis a closed string s∈ Act∗ such that
for each s1, s2 anda〈M〉, if s= s1 ·a〈M〉 ·s2 then s1 ` M.

A configuration, written as〈s, P〉, is a pair consisting of a trace s and a process P.
A configuration isinitial if en(s,P) = /0 . Configurations are ranged over byC ,C ′, . . ..

(INP) 〈s, a(x).P〉 −→ 〈s·a〈M〉, P[M/x]〉 s ` M, M closed

(OUT) 〈s, a〈ζ〉.P〉 −→ 〈s·a〈M〉, P〉 ζ ↓M, M closed

(LET) 〈s, lety=ζ inP〉 −→ 〈s, P[η/y]〉 ζ ↓ η, η closed

(MATCH) 〈s, [ζ = η]P〉 −→ 〈s, P〉 ζ ↓ ξ, η ↓ ξ

(PAR)
〈s, P〉 −→ 〈s′, P′〉

〈s, P||Q〉 −→ 〈s′, P′ ||Q〉

plussymmetric version of (PAR).

Table 3: Rules for the transition relation (−→ )

The concrete transition relation on configurations is defined by the rules in Table 3.
Each action taken by a process is recorded in the configuration’s first component. Rule
(INP) makes the transition relation infinitely-branching, asM ranges over the infinite
set{M : s ` M, M closed}. In rule (OUT), ζ is evaluated before the action takes place.
By rule (LET), the evaluation ofζ replaces any occurrence ofy in P. Note that, while
we require that evaluation of terms sent on the network yields closed messages, for the
purpose of internal computation (rules (LET) and (MATCH)) we do allow evaluation to
arbitrary terms. No handshake communication is provided: all messages go through the
environment (rule (PAR)). By C −→n C ′ we mean thatC reduces toC ′ in n execution
steps.

2.3 Properties

We express security properties of a protocol in terms of the traces generated by the
protocol. In particular, we focus on correspondence assertions of the kind ‘for every
generated trace, whenever actionβ occurs in the trace, then actionα must have occurred
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at some previous point in the trace’. Given a configuration〈s, P〉 and a traces′, we say
that〈s, P〉 generates s′, written〈s, P〉 ↘ s′, if 〈s, P〉 −→∗ 〈s′, P′〉 for someP′.

We let ρ range over ground substitutions, i.e. substitutions that map variables to
closed messages, and denote bytρ the result of applyingρ to an arbitrary termt.

Definition 4 (satisfaction relation). Let α and β be actions and s be a trace. We say
thatα occurs prior toβ in s if whenever s= s′ ·β ·s′′ thenα ∈ act(s′). For v(α) ⊆ v(β),
we write s|= α←↩ β, and say ssatisfiesα←↩ β, if for each ground substitutionρ it holds
thatαρ occurs prior toβρ in s. We say that a configurationC satisfiesα←↩ β, and write
C |= α←↩ β, if all traces generated byC satisfyα←↩ β.

Assertionsα←↩ β can express interesting secrecy and authentication properties. As
an example, in the final step of many protocols, a principalA sends a message of the
form {N}k to a responderB, where{N}k is obtained by encrypting some authentication
informationN under a newly established shared-keyk. Our scheme permits express-
ing that everymessage encrypted withk that is accepted byB during the execution
of the protocol indeed originates fromA, i.e. thatB is really talking toA, and thatk
is authentic. If we denote byfinalA andfinalB the labels attached toA’s and B’s fi-
nal action, respectively, then the above property might be formalised as an assertion
finalA〈{x}k〉 ←↩ finalB〈{x}k〉, for x a variable.

Example 3 (Needham-Schroeder Protocol - Cont.).Consider the protocol configuration
NSdefined in Example 2.The property that, at step 3,B should only accept authentic
messages, i.e. messages truly originating fromA, is expressed by the following asser-
tion:

AuthAtoB
4
= a3〈{[z]}kB+〉 ←↩ b3〈{[z]}kB+〉,

with z fresh inNS. This means that any message received byB at step 3andhaving the
form {[N]}kB+ , for someN, must have been previously sent byA at step 3. As we shall
see in Section 7, propertyAuthAtoBis not satisfied byNS. �

In practice, all forms of authentication in Lowe’s hierarchy [27] are captured by this
scheme, except for the most demanding one requiring a one-to-one bijection between
α’s andβ’s. However, our scheme can be easily adjusted to include this stronger form,
by requiring that eachβ is preceded byexactlyone occurrence ofα.

Another property that can be set within our framework issecrecyin the style of [5].
In this case, it is convenient to fix a conventional ‘absurd’ action⊥ that is nowhere used
in agent expressions. Thus, the formula⊥←↩ α means that actionα should never take
place. Now, the fact that a protocol, sayP, does not leak a sensible datum, sayd, can
be expressed also by saying that the adversary will never be capable of synthesizing
d. This can be formalised by extending the protocol to include a ‘guardian’ that at any
time picks up one message from the network,P || g(x).0, and then requiring that this
guardian will never received, that is,〈ε, P||g(x).0〉 |= ⊥ ←↩ g〈d〉. Note that in our
framework it is also possible to verify a more general form of secrecy, in which a datum
d cannot be leaked until a certain event, represented by a certain actionevent, occurs.
This property can be specified by replacing the absurd action above with theevent
action:event←↩ g〈d〉.
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3 Symbolic Semantics

The symbolic semantics we present in this section is based on the notion of symbolic
frame. The latter is essentially a frame equipped with an additional symbolic evaluation
relation, which is in agreement with its concrete counterpart.

A substitutionθ in a frameF is a finite partial map fromV to the set of messages
M of frameF such thatθ(x) 6= x, for each variablex. Let us denote bySubst the set
of all substitutions in a given frame. For any objectt (i.e. variable, message, process,
trace,. . . ), we denote bytθ the result of simultaneously replacing eachx∈ v(t)∩dom(θ)
by θ(x). Forθ a substitution, we denote by dom(θ) and cod(θ), the domain and the co-
domain ofθ. By θ|V , we denoteθ restricted toV, i.e.{(x,θ(x)) |x∈V}. A substitution
θ is aunifier of t1 andt2 if t1θ = t2θ. We denote by mgu(t1, t2) a chosenmost general
unifier (mgu) of t1 andt2, that is, a unifierθ of t1 andt2 such that any other unifier is
a composition of substitutionθ with someθ′, written θθ′3. Also, for t1, t ′1, t2, t

′
2 terms,

mgu(t1 = t ′1, t2 = t ′2) stands for(θmgu(t2θ, t ′2θ)), whereθ = mgu(t1, t ′1), if such mgu’s
exist.

We introduce below the symbolic evaluation relation↓s, which extends the evalu-
ation relation to open terms. Intuitively,ζ ↓θ η means thatζ evaluates toη under any
possible instance ofθ. We require thatζ ↓θ η be image-finite, i.e., for eachζ, the set
{(θ,η)|ζ ↓θ η} is finite up to renaming of variables. The main advantage of the sym-
bolic relation over the concrete one (↓) is that infinitely many pairs (ζ,η) such thatζ ↓ η
can be represented by means of a single judgementζ0 ↓θ η0, for someζ0, θ, η0.

Definition 5 (symbolic frame). A symbolic frameis a pair F s = (F ,↓s), where
F = (Σ,M ,↓) is a frame, and↓s ⊆ EΣ × Subst × EΣ is an image-finitesymbolic
evaluation relation(we writeζ ↓θ η for (ζ,θ,η) ∈↓s) such that, for any expressionζ
and ground substitutionρ with v(ζ) ⊆ dom(ρ), the following hold:

(a) If ζρ ↓ η, then there existξ,θ,ρ0 such thatζ ↓θ ξ, ρ = (θρ0)|dom(ρ) and η = ξρ0.

Furthermore,η ∈M impliesξ ∈M .
(b) If ζ ↓θ ξ andρ = θρ0, for someρ0, thenζρ ↓ ξρ0.

Note that in the above definition,θ may in general both contain variables ofζ and
introduce fresh variables.

Example 4 (Public-Key Encryption - Cont.).F s
pk is defined as(Fpk,↓s), where↓s is the

reflexive and transitive closure of the relation ( s), as given in Table 4.

Proposition 1. F s
pk is a symbolic frame.

PROOF: See Appendix C.1. �

We now come to symbolic counterparts of traces and configurations. Condition(b)
in the definition below states that only the environment can introduce variables into
symbolic traces.

3 We assume the standard notion of composition of substitutions (cfr. [25]): forθ1 =
[t1/y1, · · · , tk/yk] and θ2 = [t ′1/x1, · · · , t

′
n/yn], θ1θ2 = [t1θ2/y1, · · · , tkθ2/yk]∪ {[t

′
i/xi ] ∈ θ2 | xi /∈

dom(θ1)}\ Id, where IdV is the identity relation on variables.
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(DEC
S
) decpk

ζ (η) θ
 s x1 θ θ = mgu(η = {[x1]}x+

2
,ζ = x−2 )

(PRJ
S
) πi(ζ) θ

 s xi θ (i = 1,2) θ = mgu(ζ,〈x1,x2〉)

(ENC
S
) {[ζ]}x

θ
 s {[ζθ]}x+ θ = [x+

/x]

(CTX
S
)

ζ θ
 s ζ′

C[ζ] θ
 s Cθ[ζ′]

SYMBOLIC EVALUATION ζ ↓θ η iff ζ θ1 s · · ·
θn s η and θ = θ1 · · ·θn

Variablesx1 andx2 are fresh.

Table 4: Symbolic Evaluation Relation (↓s) for F s
pk

Definition 6 (symbolic traces and configurations).A symbolic traceis a string s∈
Act∗ such that: (a)en(s) = /0 , and (b) for each s1, s2, α and x, if s= s1 ·α · s2 and
x∈ v(α)−v(s1) thenα is an input action. Symbolic traces are ranged over byσ,σ′, . . ..
A symbolic configuration, written 〈σ, A〉S , is a pair composed by a symbolic traceσ
and an agent A, such thaten(A) = /0 andv(A) ⊆ v(σ).

Note that, due to Condition (b) in the Definition 6, for instance,a〈x+〉 ·a〈{[h]}x+〉 is
not a symbolic trace, whilea〈{[h]}x+〉 ·a〈x+〉 is.

Once a symbolic frameF s is fixed, configurations can be equipped with a symbolic
transition relation,−→S , as defined by the rules in Table 5 (for the sake of readability
we omit any explicit reference toF s). There, a function new(·) is assumed such that, for
any givenV ⊆fin V , new(V) is a variable not inV. We also make use of the following
notation: forY = {y1, · · ·yn}, byY = new(V) we mean thaty1 = new(V), y2 = new(V∪
{y1}), · · · , yn = new(V ∪{y1, · · · ,yn−1}). Moreover,C θ−→S C ′ stands forC −→S C ′,
whereθ is the substitution applied toC ′ in the reduction step, i.e.,〈σ, A〉S

θ−→S 〈σ′, A′〉S
means〈σ, A〉S −→S 〈σ′, A′〉S andσ′ = σθ ·α or σ′ = σθ, for some actionα.

Note that, differently from the concrete semantics, input variables arenot instan-
tiated immediately (rule (INPS )). Rather, constraints on these variables are computed
and propagated as soon as needed. This may occur due to rules (OUTS ), (LETS ) and
(MATCHS ). In the following example, after the first step, variablex gets instantiated to
nameb by a (MATCHS )-reduction:

〈ε, a(x). [x = b]P〉S −→S 〈a〈x〉, [x = b]P〉S −→S 〈a〈b〉, P[b/x]〉S

Whenever〈σ, A〉S −→∗S 〈σ
′, A′〉S for someA′, we say that〈σ, A〉S symbolically gen-

eratesσ′, and write〈σ, A〉S ↘S σ′. Due to the image-finiteness of↓θ, the relation
−→S is finitely-branching, hence each configuration generates a finite number of sym-
bolic traces. For example, consider the processP = a(y). letx=decpk

k−(y) ina〈x〉.0. By

11



the rules in Table 4, the initial configuration〈ε, P〉S generates the following symbolic
traces:

ε, a〈y〉, a〈{[z]}k+〉 (for some freshz), a〈{[z]}k+〉 ·a〈z〉.
It is important to stress that many symbolic traces are in fact ‘inconsistent’, that is,
sequences of actions that cannot be instantiated to any concrete trace. For instance,
the symbolic tracea〈{[z]}k+〉 · a〈z〉 above is not relevant for the analysis, because the
environment cannot generate the valuek+ in {[z]}k+ (i.e.ε 6 ` k+, henceε 6 ` {[z]}k+). The
problem of detecting these inconsistent traces, that might give rise to ‘false positives’
when checking protocol properties, will be faced in the next section. The notion of
consistency is formally defined below.

Definition 7. Given a symbolic traceσ and a ground substitutionρ, we say thatρ
satisfiesσ if σρ is a trace. If it is the case, we also say thatσρ is a solutionof σ. A
symbolic traceσ is consistentif there exist solutions ofσ.

(INP
S
) 〈σ, a(x).A〉

S
−→

S
〈σ ·a〈x〉, A〉

S

(OUT
S
) 〈σ, a〈ζ〉.A〉

S
−→

S
〈σθ ·a〈M〉, Aθ〉

S
ζ ↓θ M

(LET
S
) 〈σ, letx=ζ inA〉

S
−→

S
〈σθ, Aθ[ξ/x]〉

S
ζ ↓θ ξ

(MATCH
S
) 〈σ, [ζ = η]A〉

S
−→

S
〈σθ, Aθ〉

S
ζ ↓θ1 ξ1, ηθ1 ↓θ2 ξ2,

θ3 = mgu(ξ1θ2,ξ2),

θ = θ1θ2θ3

(PAR
S
)

〈σ, A〉
S
−→

S
〈σ′, A′〉

S

〈σ, A||B〉
S
−→

S
〈σ′, A′ ||B′〉

S

plussymmetric version of (PAR
S
). In the above rules it is assumed that, forV

the set of free variables in the source configuration:
(i) x = new(V);
(ii) v(θ)\V = new(V);

(iii) in rule (PAR
S
), B′ = Bθ where〈σ, A〉

S

θ−→
S
〈σ′, A′〉

S
;

(iv) msg(σ)θ⊆M .

Table 5: Rules for symbolic transition relation (−→S )

The task of checking consistency of symbolic traces is a crucial point of the verifi-
cation method presented in the next section. Theorem 1 below establishes a correspon-
dence between the concrete and the symbolic transition relations.

Theorem 1 (concrete vs. symbolic semantics).Let F s be a symbolic frame,C be an
initial configuration and s be a trace ofF . ThenC ↘ s if and only if there existsσ such
that C ↘S σ and s is a solution ofσ.

12



PROOF: See Appendix A. �

4 A Verification Method

We first defineregular frames, i.e., frames for which it is possible to determine a finite
basisfunction for the synthesis of messages. Then we introduce arefinementproce-
dure that can be used to check consistency of symbolic traces. Finally, we present a
verification method based on refinement that applies to regular frames.

Regular framesIt is convenient to extend the syntax of messages with a new class of
variables. Informally, these variables will be used as place-holders for generic messages

known to the environment. Formally, we consider a new setV̂ of markedvariables, in
bijection with V via a mapping ˆ·; thus, variablesx,y,z, . . . have marked counterparts
x̂, ŷ, ẑ, . . . . Marked messages (resp., traces) are messages (resp., traces) that may also
contain marked variables. Also, forS⊆ M , the setH (S) in Definition 2 is extended to
include marked variables, that is, we re-defineH 0

F (S) as follows:

H 0
F (S)

4
= S∪EN ∪ V̂ .

The deduction relation (S` M) remains formally unchanged. Note that in caseSandM
do not contain marked variables, the new definition coincides with Definition 2. Since
marked variables are intended to carry messages known to the environment, the satis-
faction relation is extended below to marked symbolic trace according to this intuition.
For anyx̂ and any traceσ, we denote byσ\x̂ the longest prefix ofσ not containing ˆx.

Definition 8 (consistency).Let σ be a marked symbolic trace andρ be a ground sub-
stitution. We say thatρ satisfiesσ if σρ is a trace and, for eacĥx∈ v(σ), it holds that
(σ\x̂)ρ ` ρ(x̂). In this case, we say thatσρ is asolutionof σ, and thatσ is consistent.

The terminology introduced above agrees with Definition 7 whenσ does not contain
marked variables. We give now the definition of solved form, that lifts the concept
of trace to the non-ground case (note that this definition is formally the same as the
definition of trace, Definition 3).

Definition 9 (solved forms).Let σ be a marked symbolic trace. We sayσ is in solved
form (sf) if for everyσ1, a〈M〉 andσ2 s.t.σ = σ1 ·a〈M〉 ·σ2 it holds thatσ1 ` M.

Next, we define regular frames, which enjoy a ‘finite-basis’ property. Basically,
this property states the existence, for anyσ in solved form, of a finite set of ‘build-
ing blocks’, out of which all messages deducible fromσ can be syntactically built: this
requirement is stated by Condition 1, below. Condition 2 requires that basis functions
and substitutions commute with each other. In fact, this would be the exact meaning
of b(σρ) = b(σ)ρ, but for our purposes inclusion⊆ suffices. Define the set of mes-

sages deducible fromσ asD(σ)
4
= {M |σ ` M }. The additional ‘sanity’ conditions

v(b(σ)) ⊆ v(σ) andb(σ) ⊆ D(σ) \ (EN ∪ V̂ ) are also desirable to rule out weird or
redundant bases (in fact, they are sufficient to guarantee correctness of our method, as
we shall see in Section 4).

13



Definition 10 (regular frames).A symbolic frameF s is regularif there exists abasis
functionb : Act∗ −→ P f (M ) such that for each solved formσ of F s, v(b(σ)) ⊆ v(σ)
andb(σ)⊆D(σ)\ (EN ∪ V̂ ) and for all ρ satisfyingσ:

1. σρ ` M if and only if M∈H (b(σρ));
2. b(σρ) ⊆ b(σ)ρ.

For eachσ, b(σ) is said abasisof σ.

Example 5 (Public-Key Encryption - Cont.).Let us consider the frame for public key
encryption introduced in Example 1. A basis function forF s

pk selects, for a givenσ in
sf, a set consisting of plain variables, local names, keys, and encrypted messages that
cannot decomposed out of smaller messages deducible fromσ. In the following, by
M = (u)± we meanM = u or M = u+ or M = u−.

Definition 11 (function bpk).

bpk(σ)
4
= {M |(σ ` M) and(M = (u)±, for someu∈ LN ∪V , or∃N,u :

M = {[N]}u+ andσ 6 ` 〈N,u+〉 ) }.

Note thatbpk(σ) may in general contain encrypted open terms, e.g. forσ = c〈x̂〉 ·
c〈{[x̂]}k+〉, bpk(σ) = {{[x̂]}k+}. In practice, for a givenσ in sf, the setbpk(σ) can be
effectively computed by an iterative procedure, which repeatedly applies destructors
(decpk

(·)(·) andπi(·)) to messages inσ, until some fixed point is reached. This procedure
always terminates. �

The frameF s
pk defined in the above example is regular, as stated by the following

theorem, whose proof is reported in Appendix C.2.

Theorem 2. F s
pk is a regular frame with basis functionbpk.

We shall exhibit an example of symbolic but non-regular frame in Section 5.

RefinementIn the refinement procedure, each input message in a symbolic trace is ten-
tatively unified to some message that can be synthesized from a basis for past messages.
By iterating this step, one can check whether a given symbolic trace can eventually be
instantiated to a trace in the concrete model. In particular, given any symbolic traceσ
we can compute the set of the ‘most general instances’ ofσ satisfying the solved form
property, denoted bySF(σ).

Definition 12 (refinement and SF(σ)). We letrefinement, written � , be the least bi-
nary relation over marked symbolic traces of a regular frame given by the two rules be-
low. In (REF1), σ′ is the longest prefix ofσ that is in solved form andσ = σ′ ·a〈M〉 ·σ′′,
for someσ′′. Assume N,N′ /∈ V ∪ V̂ .

(REF1)
M = C[N] N′ ∈ b(σ′) θ = mgu(N,N′)

σ � σθθ0

(REF2)
x∈ v(M)

σ � σ[x̂/x]

14



whereθ 6= ε, θ0
4
= { x/x̂| x̂∈ v(σ) and|(σθ)\x̂|< |σ\x̂| }.

For any symbolic traceσ, we letSF(σ)
4
= {σ′ |σ �∗ σ′ andσ′ is in sf}.

Rule (REF1) implements the basic step of refinement: a subtermN of M gets unified,
via θ, to an element ofb(σ′). By rule (REF2) a variable can get marked: it will be treated
as a known constant in subsequent steps of refinement. Note that in a (REF1)-step a
marked variable ˆx may possibly be ‘unmarked’ back to the plain variablex. This is
achieved via the renamingθ0, and happens precisely when application ofθ causes the
first occurrence of ˆx to move backward in the trace.

Example 6.Consider σ = c〈{[a]}k+ ,d〉 · c〈{[b]}k+ ,e〉 · c〈{[x]}k+ ,d〉, and let σ′ =
c〈{[a]}k+ ,d〉 · c〈{[b]}k+ ,e〉. It holds that

bpk(σ′) = {{[a]}k+ , d, {[b]}k+ , e}.

Two possible refinements ofσ, via the first rule, areσ � σ[a/x] andσ � σ[b/x]; the re-
fined traces are in sf. The remaining refinement ofσ is σ � σ[x̂/x]. Note thatσ[x̂/x] is not
in sf, sinceσ′ 6 ` 〈{[x̂]}k+ ,d〉 (in particular,σ′ 6 ` {[x̂]}k+). HenceSF(σ)= {σ[a/x], σ[b/x]}.

�

Proposition 2. Let σ be a symbolic trace. ThenSF(σ) is finite.

PROOF: The thesis follows from two facts: (a)� is a finitely-branching relation, and
(b) infinite sequences of refinement steps cannot arise. As to the latter point, first note
that each (REF1)-step eliminates at least one variable: this stems from the definition of
mgu, and from the fact that v(N,N′) ⊆ v(σ). Hence any sequence of refinement steps
can contain only finitely many (REF1)-steps and, after the last of them, rule (REF2) can
only be applied a finite number of times. �

We now prove that the solutions of a symbolic traceσ can be completely charac-
terised in terms of the solutions of the symbolic traces inSF(σ). The proof of this fact
is based on Lemma 1 below, which basically states that any consistent symbolic trace
that is not in solved form can be further refined.

Lemma 1 (Progression Lemma).Let F s be a regular frame andσ be a marked sym-
bolic trace. Suppose that there exists someρ which satisfiesσ. Then eitherσ is in sf, or
there areσ′ andρ′ such thatσ � σ′, σρ = σ′ρ′, andρ′ satisfiesσ′.

PROOF: See Appendix B. �

Theorem 3. Let F s be a regular frame,σ be a symbolic trace, and s be a trace inF s.
Then s is a solution ofσ if and only if s is a solution of someσ′ ∈ SF(σ).

PROOF: Supposes = σ′ρ is a solution ofσ′. Then, obviouslys is a solution ofσ, as
σ′ = σθ, for someθ (note that by definitionσ does not contain marked variables). On
the converse, supposes= σρ is a solution ofσ. By repeated application of the previous
lemma, we find that there isσ′ in solved form andρ′ s.t. thatσ �∗ σ′, s= σρ = σ′ρ′
andρ′ satisfiesσ′. Hence, by definition,s is a solution ofσ′. �
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Note that each solved formσ has a non-empty set of solutions: a trivial solution is
obtained by mapping each variable ofσ to any name inEN . This fact and the above
theorem imply that a symbolic traceσ is consistent if and only ifSF(σ) 6= /0 . It follows
that computingSF(σ) gives an effective method to decide consistency ofσ.

The verification methodThe methodM(C ,α←↩ β) described in Table 6 can be used
to verify if C |= α←↩ β or not. If the property is not satisfied, the method computes
a trace violating the property, that is, an attack onC . The method always terminates,
because the symbolic transition relation−→S is finitely-branching, hence the setModC
of symbolic traces generated byC is finite.

M(C ,α←↩ β)
1. computeModC = {σ | C ↘

S
σ};

2. foreach σ ∈ModC do
3. foreach actionγ in σ do
4. if ∃θ = mgu(β,γ) and
5. ∃σ′ ∈ SF(σθ) where σ′ = σθθ′ and
6. αθθ′ does not occur prior toβθθ′ in σ′
7. then return(No, σ′);
8. return (Yes);

Table 6: The verification method

The functioning of the method is best explained by considering the specific caseα =
⊥, i.e. verification ofC |=⊥←↩ β. This means verifying that in theconcretesemantics,
no instance of actionβ is ever executed starting fromC . By the correspondence between
symbolic and concrete semantics (Theorem 1), this amounts to checking that for each
σ symbolically generated byC , no solution ofσ contains an instance ofβ. The method
proceeds as follows. First, it checks whether there is a mguθ of γ and β, for every
actionγ of σ ∈ModC . If, for everyσ, such aθ does not exist, or it exists butσθ is not
consistent (this means that the check∃σ′ ∈ SF(σθ) at step 5 fails), then the property
holds true, otherwise it does not, and the traceσ′ violating the property is reported.

We shall see a step-by-step illustration of our method at work on a specific example
in Section 6.

Remark 1.In practice, rather than generating the whole set of symbolic traces at once
(step 1) and then checking the property, it is convenient to work ‘on-the-fly’ and com-
paring every last symbolic actionγ taken by the configuration against actionβ of the
propertyα←↩ β; the refinement procedureSF(·) is invoked only whenβ andγ are unifi-
able. This is, in fact, the way our symbolic trace analyser STA works. The complexity of
the method in the worst case is expected to be exponential, since the analysis problem
is easily seen to be NP-hard (see e.g. [38]).

The correctness and completeness of the method in the general case is stated by
Theorem 4 below.

Theorem 4 (correctness and completeness).Let F s be a regular frame,C be an ini-
tial configuration ofF s andα andβ be actions ofF s such thatv(α) ⊆ v(β).
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(1) If M(C ,α←↩ β) returns(No, σ′) thenC 6|= α←↩ β. In particular, for any injective
ground substitutionρ : v(σ′)→EN , it holds thatC ↘ (σ′ρ) and(σ′ρ) 6|= α←↩ β.

(2) If C 6|= α←↩ β thenM(C ,α←↩ β) returns (No, σ′) and for any injective ground
substitutionρ : v(σ′)→ EN , C ↘ (σ′ρ) and(σ′ρ) 6|= α←↩ β.

PROOF:

(1) According to the method, there exist a traceσ, an actionγ ∈ σ, a unifier θ =
mgu(γ,β), andθ′ such that:σ′ = σθθ′ ∈ SF(σθ), C ↘S σ, and

βθθ′ occurs inσ′ but αθθ′does not occur prior toβθθ′ in σ′. (1)

Givenρ as in the hypotheses,s
4
= σ′ρ is a solution ofσ and, by applying Corollary 1,

it follows thatC ↘ s. Also, by (1) and by the injectivity ofρ on v(σ′), αθθ′ρ may
not occur prior toβθθ′ρ in s, otherwiseαθθ′ρρ−1 = αθθ′ would occur prior to
βθθ′ρρ−1 = βθθ′ in σ′, contrary to (1). Hences 6|= α←↩ β.

(2) SupposeC ↘ s ands 6|= α←↩ β. By definition, there existsρ1 such thatαρ1 does
not occur prior toβρ1 in s. Let i be the position of the leftmost occurrence ofβρ1 in
s. By C ↘ sand by Corollary 1, it follows that there existsσ such thatC ↘S σ and
s is a solution ofσ, i.e.s= σρ2, for someρ2. Since v(α) and v(β) are universally
quantified, we can assume v(α,β)∩v(σ) = /0 and so dom(ρ1)∩dom(ρ2) = /0. Let

ρ0
4
= ρ1∪ ρ2 andγ be thei-th element ofσ. It follows that γρ0 = βρ0. Thus, we

can considerθ = mgu(β,γ). By definition,ρ0 is an instance ofθ, i.e. ρ0 = θρ′0,
for someρ′0. Hence,s = σθρ′0 is a solution ofσθ. By Theorem 3, there exists a
sf σ′ = σθθ′ ∈ SF(σθ) such thats is a solution ofσ′, i.e. s= σ′ρ′′0, for someρ′′0.
Necessarily

αθθ′does not occur prior toγθθ′in σ′, (2)

because otherwiseαθθ′ρ′′0 = αρ1 would occur prior toγθθ′ρ′′0 = βρ1 in s, contra-
dicting the hypotheses. Therefore, we have foundσ, γ, θ, and σ′ such that
M(C ,α←↩ β) returns(No, σ′). Finally, givenρ as in the hypotheses,σ′ρ is a so-
lution of σ. Thus,C ↘ (σ′ρ) by the fact thatC ↘S σ and by Corollary 1. Also,
(σ′ρ) 6|= α←↩ β asβθθ′ρ (= γθθ′ρ) occurs inσ′ρ at positioni, butαθθ′ρ does not
occur inσ′ρ prior to positioni, by (2) and by the injectivity ofρ.

�

Note that assertion (1) (correctness) of the above theorem only depends on the prop-
erties of the setSF(σ) of (a) being finite, and (b) containing only instances ofσ. These
two properties depends entirely on the sanity conditions of the definition of basis func-
tion. Thus, it makes sense to weaken Definition 10 as follows:

Definition 13. A symbolic frame isweakly regularif for each solved formσ it holds

thatv(b(σ))⊆ v(σ) andb(σ)⊆D(σ)\ (EN ∪ V̂ ).

This allows us to state a useful and more general form of correctness:

Theorem 5. LetF s be a weakly regular frame,C be an initial configuration ofF s and
α andβ be actions ofF s such thatv(α) ⊆ v(β). Then assertion (1) stated in Theorem
4 holds true.
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5 ‘Black-Box’ Cryptographic Primitives

We consider extending the symbolic frame for public key cryptographyF s
pk to deal with

some of the most common cryptographic operations.
The setΣ is enriched by means of appropriate operators for shared-key encryption

{·}(·) and decryptiondecsk
(·)(·), digital signing[{·}](·) and verifyingdecds

(·)(·) and hashing
H(·). The syntax of messages is extended via the following additional clauses:

M,N ::= ... as in Table 1

| {M}u | [{M}]u− | H(M) .

The symbolic and concrete evaluations are given in terms of an auxiliary relation
 , defined as expected. In particular, hashing has no rules, digital signature rules are
just the same as for public key, but the roles ofu+ andu− are swapped. For shared key,
the concrete and symbolic rules are as follows:

decsk
η ({ζ}η)  ζ decsk

η (ζ) θ
 s xθ whereθ = mgu(ζ = {x}η).

Pursuing the idea of selecting ‘building blocks’ out of deducible messages, a basis
function for this frame can be defined by extending the basis function of the public key
frame with all messages of the form{M}u (resp.[{M}]u− , H(M)) such thatσ 6 ` u (resp.
σ 6 ` 〈M,u−〉, σ 6 ` M).

The example below shows that the restriction to atomic keys is crucial to ensure the
regularity condition.

Example 7 (a non-regular frame).Consider the frame defined above, but modified so
as to allow messages with non-atomic keys in shared-key encryption, thus:

M,N ::= · · · |{M}N.

This frame is symbolic, but not regular. To see the latter, assume by contradiction there
is a basis functionb(·) for this frame and consider the symbolic trace

σ = a〈b〉 ·a〈x̂〉 ·a〈{b}k〉 ·a〈{c}{x̂}k〉

which is in solved form. Takeρ = [b/x̂]. Clearlyρ satisfiesσ, andσρ ` c. However,c /∈
H (b(σρ)), which violates Condition 1 in the definition of basis function. To see this,
note that by definition ˆx,c /∈ b(σ), hencec /∈ b(σ)ρ, hence, by Condition 2,c /∈ b(σρ).
From this it easily follows by induction thatc /∈H (b(σρ)).

6 Diffie-Hellman Key Exchange

In this section we instantiate our framework to the analysis of protocols based on a ‘low-
level’ operation, modular exponentiation. First, we briefly recall one such protocol, the
Diffie-Hellman key exchange, then we introduce a frame for shared-key and modular
exponentiation, within which this protocol can be analysed.
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The Diffie-Hellman protocol is intended for exchange of a secret key over an inse-
cure medium, without prior sharing of any secret. The protocol has two public parame-
ters: a large primep and a generatorα for the multiplicative groupZ∗p = {1, . . . , p−1}.
AssumingA andB want to establish a shared secret key, they proceed as follows. First,
A generates a random private valuenA ∈ Z∗p andB generates a random private value
nB ∈ Z∗p. Next,A andB exchange their public values (exp(x,y) denotesxy mod p):

1. A −→ B : exp(α,nA)
2. B −→ A : exp(α,nB).

Finally,A computes the key asK = exp(exp(α,nB),nA) = exp(α,nA×nB), andB com-
putes the key asK = exp(exp(α,nA),nB) = exp(α,nA×nB). Now A andB share the
valueK, andA can use it to, say, encrypt a secret datumd and send it toB:

3. A −→ B : {d}K .

The protocol’s security depends on the difficulty of the discrete logarithm problem:
it is computationally unfeasible to computey if only x andexp(x,y) are known. The
protocol is believed to be secure in the absence of ‘active’ attackers, but a well-known
attack exists in the presence of active intruders.

Definition 14 (frame FDH ). A frame for exponentiation and shared-key cryptography
FDH = (Σ,M ,↓) is defined in Table 7.

Besides shared-key encryption{ζ}η and decryptiondecsk
η (ζ) (with η used as a key),

the other symbols ofΣ represent arithmetic operations modulo a fixed and public prime
number, which is kept implicit. In particular, we have exponentiationexp(ζ,η), root
extractionroot(ζ,η), a constantα that represents a public generator, two symbols for
multiplicative unit (unit, 1), two symbols for productmult(ζ,η) and its resultζ×η,
three symbols,inv(ζ), inv′(ζ) and ζ−1, for the multiplicative inverse operation. The
aim of using multiple symbols for each of the above operations is to ensure termina-
tion of the symbolic relation, as explained later on. All the underlying operations are
computationally feasible4. A message is either a product of up tol values, for a fixed
constantl , or a key or a message encrypted under a key. A key can be either an atomic
object, or an exponential with baseα and a product exponent (exp(α,F)).

Evaluation (↓) is the reflexive and transitive closure of an auxiliary relation .
There, we useζ1×ζ2×·· ·×ζn as a shorthand forζ1×(ζ2×·· ·×ζn), while (i1, . . . , in)
is any permutation of(1, . . . ,n). The relation is terminating, but not confluent. In fact,
the non-determinism of is intended to model the commutativity and the associativity
of the product operation, as reflected in the rule (MULT). Also, note rule (ROOT): in
modular arithmetic, taking thekth root amounts to raising tok−1 mod p−1.

The choice of the above message formats and rules corresponds to imposing the
following restrictions on the attacker and on the honest participants:

4 An abstraction we make is that a unique operation is used to model both inverse modp and
inverse modp− 1 (the latter operation arises only inside exponents). Also, we are ignoring
that, in modular arithmetic modn, the inverse ofk modulon is defined only if gcd(k,n) = 1
(see e.g. [29]).
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SIGNATURE Σ = { α , unit , 1 , {·}(·) , decsk
(·)(·) , exp(·, ·) , root(·, ·) ,

·× · , mult(·, ·) , inv(·) , inv′(·) , (·)−1 }

FACTORS f ::= u | u−1

PRODUCTS F ::= 1 | f1×·· ·× fk

KEYS K,H ::= f | exp(α,F)

MESSAGES M,N ::= F | K | {M}K

(DEC) decsk
η ({ζ}η) ζ

(MULT) mult(ζ1×·· ·×ζk,ζk+1×·· ·×ζn) ζi1×·· ·×ζin 1≤ k < n≤ l

(INV1) inv(ζ1×·· ·×ζn) inv′(ζ1)×·· ·× inv′(ζn) n≤ l

(INV2) inv′(ζ−1) ζ (INV3) inv′(ζ) ζ−1 (INV4) inv′(ζ)×ζ unit

(UNIT1) unit×ζ ζ (UNIT2) unit 1

(EXP) exp(exp(ξ,η),ζ) exp(ξ,mult(η,ζ))

(ROOT) root(exp(ξ,η),ζ) exp(ξ,mult(η, inv(ζ)))

(CTX)
ζ ζ′

C[ζ] C[ζ′]
EVALUATION ζ ↓ η iff ζ ∗η

Table 7: FDH , a frame for modular exponentiation
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1. there is a fixed upper bound (l ) on the number of factors;
2. product and inverse operations cannot be applied to exponentials and to encrypted

terms;
3. exponentiation starts from the baseα, and exponents can only be product terms.

More accurately, starting from a term obeying the above conditions, an attacker is ca-
pable of ‘deducing’ all - thoughnot necessarily only- AC variants of the message
represented by the term. Thus, if one such variant, in a computation, leads to an attack,
it will be considered by the operational model. Restriction (1) might be relaxed at the
cost of introducing a set ofmultl operations, one for eachl ≥ 0, but for simplicity here
we stick to the above model.

The example below illustrates typical usage of the evaluation and of the deduction
relations.

Example 8.Consider a setS= {nA,exp(α,nB) }. Then,S ` exp(α,nA×nB) andS `
exp(α,nB × nA). A further example involves root extraction. Consider a setS =
{ {m}exp(α,k×l), exp(α,k× h), h, l }. Then,S ` m since there existsζ ∈ H (S), ζ =
decsk

η ({m}exp(α,k×l)), with η = exp(root(exp(α,k×h),h), l), s.t.ζ ↓m. �

The symbolic evaluation relation↓s of FDH is presented in Table 8: it is defined as

the reflexive and transitive closure of the relation
θ
 s. We can now explain the adoption

of multiple symbols in the case of product (mult and×), inverse (inv, inv′ and()−1),
and unit (unit and1). If we used just one symbol for, say, product, the rewrite rule
(MULTS ) in Table 8 would be non-terminating, e.g.:

x×y
θ
 s (xi1×·· ·×xin)

θ′
 s ((y j1×·· ·×y jm)×·· ·×xin)

θ′′
 s · · · ;

similarly, for inverse and unit operations. On the contrary, the use of multiple symbols
and the form of the rules ensure termination of the evaluation relation.

Example 9.ConsiderP = a〈k〉.a(x). letz= root(x,k) inP′. After an output action and
an input action, the symbolic evaluation ofroot(x,k) produces a global substitutionθ =
[exp(α,x1)/x] (x1 fresh), to be applied to the whole configuration, and a local substitution
θ′ = [exp(α,x1×k−1)/z], to be applied toP′θ. I.e.

〈ε, P〉S −→∗S 〈σθ, P′θθ′〉S , with σ = a〈k〉 ·a〈x〉.

�

In analogy to the public-key and shared-key cases, we can define a basis function
for FDH by considering all ‘non-decomposable’ messages deducible from a givenσ: we
have two more cases to consider here, non-decomposable products (i.e., products with
no deducible sub-products), and exponentials with non-decomposable exponent. Let us
write G⊂ F if G andF are products, and the set of factors ofG is strictly included in
F ’s.
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(DEC
S
) decsk

η (ζ) θ
 s x1 θ θ = mgu(ζ = {x1}x2,η = x2)

(MULT
S
) mult(ζ1,ζ2)

θ
 s (xi1×·· ·×xin)θ


1≤ k < n≤ l ,
θ = mgu(ζ1 = x1×·· ·×xk,
ζ2 = xk+1×·· ·×xn)

(INV1
S
) inv(ζ) θ

 s (inv′(xi1)×·· ·× inv′(xin))θ
{

1≤ n≤ l ,
θ = mgu(ζ = x1×·· ·×xn)

(INV2
S
) inv′(ζ) θ

 s x1 θ θ = mgu(ζ,x1
−1)

(INV3
S
) inv′(ζ) ε

 s ζ−1 (INV4
S
) inv′(ζ)×η θ

 s unit θ = mgu(ζ,η)

(UNIT1
S
) unit×ζ ε

 s ζ (UNIT2
S
) unit

ε
 s 1

(EXP1
S
) exp(x,ζ) θ

 s exp(α,mult(x1,ζ)) θ = [exp(α,x1)/x]

(EXP2
S
) exp(exp(ξ,η),ζ) ε

 s exp(ξ,mult(η,ζ))

(ROOT1
S
) root(x,ζ) θ

 s root(x,ζ)θ θ = [exp(α,x1)/x]

(ROOT2
S
) root(exp(ξ,η),ζ) ε

 s exp(ξ,mult(η, inv(ζ)))

(CTX
S
)

ζ θ
 s ζ′

C[ζ] θ
 s Cθ[ζ′]

SYMBOLIC EVALUATION ζ ↓θ η iff ζ θ1 s · · ·
θn s η and θ = θ1 · · ·θn

Variablesx1, · · · , xn are fresh.

Table 8: Symbolic Evaluation Relation (↓s) for FDH
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Definition 15 (a basis function forFDH ). For each symbolic traceσ:

bDH(σ)= {M | (σ ` M) and
(

M ∈ LN ∪{α,1}∪V
or (M = F andσ 6 ` G, ∀G⊂ F)
or (M = exp(α,F) andσ 6 ` G, ∀G⊂ F))
or (M = {M}K andσ 6 ` K)

)
}.

We strongly conjecture thatFDH equipped with the above basis function is a regular
frame, but the details remain to be worked out. On the other hand, it is easy to check
that this basis function turnsFDH into a weakly regular frame (Definition 13). Thus we
can appeal to Theorem 5 to make attacks found with the symbolic method correspond
to attacks on the concrete model.

We now analyse the Diffie-Hellman Protocol. The processP defined below is a
description of the Diffie-Hellman protocol presented in the introduction. For simplic-
ity, we just describe a one-session version of the protocol, using again a few obvious
notational shorthands.

A
4
= a1〈exp(α,nA)〉.a2(x). letz=exp(x,nA) ina3〈{d}z〉.0

B
4
= b1(y).b2〈exp(α,nB)〉. letw=exp(y,nB) inb3(t). let t ′=decw(t) in0

P
4
= A||B.

The Diffie-Hellman protocol is subject to secrecy attacks from active adversaries. In
terms of our model, discovering an attack of this type to the protocol amounts to finding

a ground traces such thatCDH = 〈ε, P||g〈d〉〉 ↘ s ands 6|= Secret(d)
4
= ⊥←↩ g〈d〉.

And, indeed, such ans exists and it is as follows:

a1〈exp(α,nA)〉 ·a2〈exp(α,nI )〉 ·a3〈{d}exp(α,nI×nA)〉 ·g〈d〉,

wherenI is any environmental name.
Intuitively, the above trace corresponds to an attack in which the environment in-

terceptsexp(α,nA), generates a namenI and handlesexp(α,nI ) to A, who believes the
message is fromB. ThenA computesk = exp(α,nI ×nA) and erroneously concludes
k is a shared key known byA andB. Finally, A sends over the network the secret da-
tum d encrypted underk, sod is revealed to the environment, that can computek as
exp(exp(α,nA),nI ).

We show how the above attack is detected by the verification method. First, consider
the following symbolic execution starting fromCDH :

CDH −→S
−→

S
〈a1〈exp(α,nA)〉 ·a2〈x〉,

(
letz=exp(x,nA) ina3〈{d}z〉.0||B||g(t).0

)
〉
S

θ0−→
S
〈a1〈exp(α,nA)〉 ·a2〈exp(α,x′)〉,

(
a3〈{d}exp(α,x′×nA)〉.0||Bθ0 ||g(t).0

)
〉
S

(∗)
−→

S
〈a1〈exp(α,nA)〉 ·a2〈exp(α,x′)〉 ·a3〈{d}exp(α,x′×nA)〉,

(
Bθ0 ||g(t).0

)
〉
S

−→
S
〈a1〈exp(α,nA)〉 ·a2〈exp(α,x′)〉 · a3〈{d}exp(α,x′×nA)〉 ·g〈t〉, Bθ0〉S

4
= 〈σ, Bθ0〉S .
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In step (∗), rule (LETS ) is applied, withexp(x,nA) ↓θ0 exp(α,x′ × nA) and θ0 =
[exp(α,x′)/x], for a fixed freshx′.

Now, we show step by step how the attack is detected by the verification method:

1. The symbolic modelModC is computed (in practice, symbolic traces would be gen-
erated ‘on-the-fly’).

2. The symbolic traceσ defined above is considered.
3,4. Action γ = g〈t〉 is found such thatγ unifies withβ = g〈d〉, via θ = [d/t].
5. The setSF(σθ) = {σ′} is computed, whereσ′ = σθθ′, andθ′ = [x̂′/x′]. As stated

by Theorem 3,σ′ is a consistent trace. Note, in particular, that if we letσ′ =
σ′′ · g〈d〉, thenσ′′ ` d. Indeed, there existsζ = decξ({d}η) ∈ H (σ′′), with η =
exp(α, x̂′×nA), ξ = exp(exp(α,nA), x̂′), andζ s s decη({d}η) s d.

6. Action⊥ does not appear inσ′, hence,
7. (No, σ′) is returned.

Note that, as indicated by Theorem 5, the concrete traces corresponding to the
attack can be recovered fromσ′ by mapping ˆx′ to nI .

7 An Implementation: STA

STA (Symbolic Trace Analyzer) [41] is a prototype tool, written in ML, that imple-
ments some of the verification techniques described in the previous sections. Currently,
STA supports shared-key, public-key cryptography and hashing, while modular expo-
nentiation has not yet been integrated in the tool.

We now illustrate the use of STA on the Needham-Schroeder protocol introduced
in Example 2, and check the authentication propertyAuthAtoBdescribed in 3. When
required to check whetherNSsatisfiesAuthAtoB, STA finds a trace ofNSthat violates
the property. The trace is reported below:

disclose〈kI,kA+,kB+,idA,idB,idI〉 ·a′1〈{[n′A,idA]}kI+〉·
b1〈{[n′A,idA]}kB+〉 ·b2〈{[n′A,nB]}kA+〉 ·a′2〈{[n′A,nB]}kA+〉·
a′3〈{[nB]}kI+〉·b3〈{[nB]}kB+〉.

This trace corresponds to the attack discovered by Lowe, that can be informally ex-
plained as follows.A runs two parallel sessions, one seemingly withI , and the other
seemingly withB. In fact, bothA andB are talking to the adversary, who intercepts all
messages. This allows the adversary to re-use the noncen′A (issued byA in its inter-
action withI ) when impersonating the role ofA talking toB. Then, the adversary can
induceA to decrypt message{[n′A,nB]}kA+ , thus gettingnB (actionsa′2 anda′3).

This attack was found after examining 26 symbolic configurations, which took a
fraction of a second on a PC with a Pentium III processor and a 64M RAM. After
repairing the flaw as suggested by Lowe, that is by inserting explicit identities inside
each encrypted message, STA finds no additional attack. The exploration reached all the
60 configurations that constitute the complete symbolic state-space of the protocol, and
this took again a fraction of a second. We also tried a configuration with two initiators
(A,D) and two responders (B,C), where each initiator can non-deterministically choose
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to engage in a run with eitherB, C or I . STA found no attacks on this version either.
The state-space consisting of 24,655 symbolic configurations was completely explored
in less than one minute. It is worthwhile to notice that memory occupation is not a
concern in STA, because a depth-first strategy is adopted when exploring the symbolic
model on the fly.

8 Conclusions

We have proposed a framework for the analysis of security protocols and provided
some sufficient conditions under which verification can be effectively performed via a
symbolic method. In contrast to finite-state model checking, our method can analyse the
whole infinite state space generated by a bounded number of participants. Compared to
other symbolic techniques, we offer a simple and general methodology together with
a regularity condition, which can be instantiated to complete verification methods for
specific crypto-systems. Our method is efficient in practice, because the symbolic model
is compact, and the refinement procedure at its heart is only invoked on demand and on
single symbolic traces. Note that general claims on efficiency should be taken with
some care, given that the protocol analysis problem is NP-hard even under very mild
hypotheses (see e.g. [38]).
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A Concrete vs. Symbolic Semantics

We prove Theorem 1 that establishes a correspondence between the concrete and the
symbolic transition systems. The proof is based on the lemma below.

Lemma A1. Let F s be a symbolic frame,C be a symbolic configuration andCρ be a
configuration. Then:

(1) Cρ −→ C ′ implies that there existC1, θ andρ0 such thatρ =(θρ0)|dom(ρ), C θ−→S C1

andC ′ = C1ρ0.

(2) C θ−→S C1 and ρ = θρ0, for someρ0 such thatC1ρ0 is a configuration, imply that
Cρ −→ C1ρ0.

PROOF:

(1) By induction on the rules of the transition relation−→ . The cases (INP) and (PAR)
are trivial.
(OUT) 〈σρ, a〈ζρ〉.Aρ〉 −→ 〈σρ ·a〈M〉, Aρ〉, and ζρ ↓ M. By def. of symbolic

frame, ζ ↓θ N, ρ = (θρ0)|dom(ρ) and M = Nρ0. Then, 〈σ, a〈ζ〉.A〉S
θ−→S

〈σθ ·a〈N〉, Aθ〉S and also〈σθ ·a〈N〉, Aθ〉Sρ0 = 〈σρ ·a〈M〉, Aρ〉. Note that above
we have exploited that v(A)⊆ dom(ρ) and v(σ)⊆ dom(ρ).

(LET) 〈σρ, lety=ζρ inAρ〉 −→ 〈σρ, Aρ[η/y]〉, with ζρ ↓ η. By def. of symbolic
frame, ζ ↓θ ξ, ρ = (θρ0)|dom(ρ) and η = ξρ0. Then, 〈σ, lety=ζ inA〉S

θ−→S 〈σθ, Aθ[ξ/y]〉S where〈σθ, Aθ[ξ/y]〉Sρ0 = 〈σρ, Aρ[η/y]〉.
(MATCH) 〈σρ, [ζρ = ηρ]Aρ〉 −→ 〈σρ, Aρ〉, whereζρ ↓ ξ, ηρ ↓ ξ. By definition

of symbolic frame,ζρ ↓ ξ impliesζ ↓θ1 ξ1, whereρ = (θ1ρ0
′)|dom(ρ) andξ =

ξ1ρ0
′, for someρ′0. Also ηρ = ηθ1ρ0

′ (v(η)⊆ dom(ρ)) and, thus,ηθ1 ↓θ2 ξ2,
whereρ0

′ = (θ2ρ0
′′)|dom(ρ′0) andξ2ρ0

′′ = ξ, for someρ0
′′. Sinceξ = ξ1ρ0

′ =
ξ1θ2ρ0

′′ = ξ2ρ′′0, thenξ1θ2 andξ2 are unifiable. Letθ3 = mgu(ξ1θ2,ξ2), i.e.

ρ0
′′ = θ3ρ0 for someρ0. We letθ 4= θ1θ2θ3. Then,ρ = θρ0 and〈σ, [ζ = η]A〉S

θ−→S 〈σθ, Aθ〉S , where〈σθ, Aθ〉Sρ0 = 〈σρ, Aρ〉.

(2) The proof is by induction on−→S . It is similar to the previous case and then it is
omitted.

�

Corollary A1 (Theorem 1). LetF s be a symbolic frame,C be an initial configuration
and s be a trace ofF . ThenC ↘ s if and only if there existsσ such thatC ↘S σ and s
is a solution ofσ.

PROOF: The proof easily follows by a routine induction on the numbern of execution
steps, using Lemma A1. In particular, for the ‘if’ direction, we exploit part (2) and note
thatCρ = C , sinceC is ground. �
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B Proof of Lemma 1

The proof of Lemma 1 relies on Lemma B1 below. The latter essentially states that any
input message that violates the ‘sf-ness’ of a consistent symbolic trace can be decom-
posed so to satisfy the premises of either of the refinement rules.

Lemma B1 (Context Lemma).LetF s be a regular frame andσ be a marked symbolic
trace in sf. Ifρ satisfiesσ ·a〈M〉 andσ 6` M, then either:

(a) ∃C[·],N s.t. N/∈ b(σ)∪V ∪ V̂ , M = C[N], and Nρ ∈ b(σ)ρ or
(b) ∃x∈ v(M) s.t.σρ ` ρ(x).

PROOF: Since ρ satisfies σ · a〈M〉, then σρ ` Mρ and ∀ x̂ ∈ v(M),
σρ ` ρ(x̂). SinceF is regular,Mρ ∈ H (b(σρ)). The proof is by induction on the
least indexi such thatMρ ∈H i(b(σρ)).

(i = 0) Mρ ∈ b(σρ). Depending on the form ofM, there are three cases:
– M = x̂ or M = a. These cases cannot arise, as they would implyσ ` M.
– M = x. Then, (b) holds.
– M /∈V ∪V̂ . M /∈ b(σ) as, otherwise, it would followσ ` M. SinceF is regular,

b(σρ) ⊆ b(σ)ρ, thus, there existsN′ ∈ b(σ) such thatMρ = N′ρ. Then, we

defineC
4
= [·], N

4
= M. Nρ ∈ b(σ)ρ, asN′ ∈ b(σ) and Nρ = N′ρ; thus, (a)

holds.
(i > 0) M = f (M̃′), whereM̃′ρ ⊆ H i−1(σρ). Note that, for someMi

′ ∈ M̃′, σ 6` Mi
′, as

otherwiseσ ` M, by definition ofH (·). By induction hypothesis, either (aa) there
existC′ andN′ s.t.N′ /∈ b(σ)∪V ∪ V̂ , Mi

′ = C′[N′], andN′ρ ∈ b(σ)ρ or (bb) there
existsx∈ v(Mi

′) such thatσρ ` ρ(x). Obviously (bb) implies (b). If (aa) holds, then

we chooseN
4
= N′ andC[·] 4= f (M̃′1,C

′[·],M̃′2), whereM̃′ = (M̃′1,Mi
′,M̃′2), thus (a)

holds true.

�

Lemma B2 (Lemma 1).Let F s be a regular frame andσ be a marked symbolic trace
in F s. Suppose thatρ satisfiesσ. Then eitherσ is in sf, or there areσ′ andρ′ such that
σ � σ′, σρ = σ′ρ′, andρ′ satisfiesσ′.

PROOF: Suppose thatσ is not in sf and letσ1 be the longest prefix ofσ which is in
sf. This means thatσ = σ1 · a〈M〉 ·σ2, for someM s.t. σ1 6` M. Sinceρ satisfiesσ,
we must haveσ1ρ ` Mρ. By Lemma B1, either (a) there existC[·],N,N′ such that
N /∈ b(σ1)∪V ∪ V̂ , M = C[N], N′ ∈ b(σ1) andN′ρ = Nρ, or (b) there existsx∈ v(M)
such thatσ1ρ ` ρ(x).

If (a) is the case, there existsθ = mgu(N,N′) andρ is an instance ofθ as a substitu-
tion. By rule (REF1), σ � σ′ = σθ[ỹ/̃ŷ], for an appropriate renaming[ỹ/̃ŷ]. Furthermore,
ρ = θ[ỹ/̃ŷ]ρ′, for some ground substitutionρ′. Also note that, thanks to the renaming
[ỹ/̃ŷ], for each ˆx∈ v(σ′), σ′\x̂ is not longer thanσ\x̂, and this guarantees thatρ′ satisfies
σ′. Thus we have foundσ′ andρ′ as required by the statement of the lemma.

If (b) holds, then we can apply (REF2), define σ′ = σ[x̂/x] and
ρ′ = [x/x̂]ρ, and the thesis will follow. �
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C Proofs onF s
pk

C.1 F s
pk is a Symbolic Frame

Notation. By ζ θ
 V η we mean thatζ θ

 s η, with (v(θ) \ v(ζ)) ⊆ V, and byζ θ ∗
 V η

thatζ θ1 V1 · · ·
θn Vn, with V =

n⋃
1

Vi , for somen≥ 0 andθ = θ1 · · ·θn. Moreover, byθ\V

we meanθ\ (V×EΣ).

Lemma C1. Suppose and s are defined respectively as in Table 1 and 4. Then:

(1) If ζρ  η then ∀X ⊇ dom(ρ), ∃η′,ρ0 and V : X ∩V = /0, such thatζ θ ∗
 V η′,

ρ = (θρ0)\V andη′ρ0 = η. Furthermore,η ∈M impliesη′ ∈M .

(2) If ζ θ
 s η andρ = θρ0, for someρ0, thenζρ ∗ ηρ0.

PROOF:

(1) By induction onζρ η. We only consider the most interesting case of decryption.
(DEC) Let ζρ = decpk

ψ−({[η]}ψ+). Then, ζ = decpk
ζ′′(ζ

′), with ζ′ρ = {[η]}ψ+ and

ζ′′ρ = ψ−. Let V = {x1,x2} be such thatV ∩X = /0. Then, there existsθ′ =
mgu(ζ′ = {[x1]}x+

2
,ζ′′ = x−2 ) andρ = (θ′ρ′0)\V, for someρ′0. By definition of

 s, ζ θ′
 V x1θ′ 4= η′′, with η′′ρ′0 = x1θ′ρ′0 = ζθ′ρ′0 = η. Now letη = M ∈M .

Thenη′′ρ′0 = M impliesρ′0 = [x̃+
/̃x]ρ0 (wherex̃ are the variables which occur in

key position inη′′) for someρ0, andη′′ θ ∗
 /0 η′′θ′′ 4= M′ ∈M , with θ′′ 4= [x̃+

/̃x].

Finally, ζ θ ∗
 V η′, with θ 4= θ′θ′′ andη′ρ0 = η′′θ′′ρ0 = η′′ρ′0 = η ∈M .

(2) By structural induction on the rules s.

(ENCS) {[ζ]}x
θ
 s {[ζθ]}x+ , with θ = [x+

/x]. We prove that{[ζρ]}xρ ∗ {[ζθ]}x+ρ0

in 0 steps. Indeed,{[ζθ]}x+ρ0 = {[ζθ]}θ(x)ρ0 = {[ζρ]}ρ(x).

(PRJS) πi(ζ) θ
 s xiθ,] with θ = mgu(ζ,〈x1,x2〉). By definition of θ, πi(ζρ) =

πi(ζθρ0) = πi(〈x1θρ0,x2θρ0〉) and πi(〈x1θρ0,x2θρ0〉) xiθρ0, by applying
rules of .

(DECS) decpk
ψ (ζ) θ

 s x1θ, with θ = mgu(ζ = {[x1]}x+
2
,ψ = x−2 ). By definition ofθ,

decpk
ψρ(ζρ) = decpk

ψθρ0
(ζθρ0) = decpk

x−2 θρ0
({[x1θρ0]}x+

2 θρ0
). Finally, by applying

rules of , decpk

x−2 θρ0
({[x1θρ0]}x+

2 θρ0
) x1θρ0.

(CTXS) By induction hypothesis,ζρ  ∗ ζ′ρ0 and, by rules of , Cρ[ζρ]  ∗

Cρ[ζ′ρ0], i.e.(C[ζ])ρ ∗ (Cθ[ζ′])ρ0.

�

Proposition C1.

(a) If ζρ ∗ η then∀X⊇ dom(ρ), ∃V : X∩V = /0 such thatζ θ ∗
 V η′, withρ = (θρ0)\V

andη′ρ0 = η. Furthermore,η ∈M impliesη′ ∈M .
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(b) If ζ θ ∗
 s η andρ = θρ0, for someρ0, thenζρ ∗ ηρ0.

PROOF:

(a) By induction on the numbern of steps of relation , such thatζρ  n η. The
casen = 0 is trivial. Supposen > 0 andζρ n−1 ξ η. By induction hypothesis,

ζ θ′ ∗
 V ′ ξ′, with V ′∩X = /0, ρ = (θ′ρ′0)\V ′ andξ′ρ′0 = ξ. By ξ = ξ′ρ′0 η and by

Lemma C1 (applied toX∪V ′) it follows that ξ′ θ′′ ∗
 V ′′ η′, with V ′′ ∩ (X∪V ′) = /0,

ρ′0 = (θ′′ρ0)\V ′′ andη′ρ0 = η. Now, letθ = θ′θ′′ andV = V ′∪V ′′. Then,ζ θ ∗
 V η,

with V∩X = /0 andρ = (θ′ρ′0)\V ′= (θ′((θ′′ρ0)\V ′′))\V ′= ((θ′θ′′ρ0)\V ′′)\V ′=
(θρ0) \V, exploiting the fact that v(θ′) ⊆ (X ∪V ′). Furthermore, ifη ∈M , then
η′ ∈M , by Lemma C1.

(b) By induction on the numbern of steps of relation s, i.e. such thatζ θ1 s ζ1
θ2 s

· · · θn s η, with ρ = θ1θ2 · · ·θnρ0, for someρ0. The casen = 0 is trivial. Suppose

ζ θ1 s ζ1
θ2 s · · ·

θn s ζn
θn+1 s η. By induction hypothesis,ζρ ↓ ζnρ0, for someρ0 such

thatρ = θ1 · · ·θnρ0. By applying Lemma C1 toζnρ0, it follows thatζρ ∗ ζnρ0 
ηρ′0, for someρ′0.

�

Corollary C1 (Proposition 1). F s
pk is a symbolic frame.

PROOF: It trivially follows by Proposition C1 withX
4
= dom(ρ). �

C.2 F s
pk is a Regular Frame

We now prove thatF s
pk is a regular frame. Propositions C2 and C3 below state thatbpk

satisfies respectively Conditions 1 and 2 in the definition of regular frame (Def. 10). In
particular, note that Proposition C2 generalises Condition 1 in Def. 10, sinceσ below
can be either a trace or a solved form.

Proposition C2. Let σ be a sf or a trace inF s
pk. Supposev(M) ⊆ V̂ . Then,σ `

M iff M ∈H (bpk(σ)).

PROOF: Supposeσ ` M. By induction on the structure ofM.

– M ∈ EN . Then,M ∈H 0(bpk(σ)).
– M = (x̂)±. Then,M ∈H 1(bpk(σ)).
– M = (m)±. Then,(m)± ∈H 1(bpk(σ)), by definition.
– M = 〈M1,M2〉. By induction hypothesisM1, M2 ∈ H (bpk(σ)) and, consequently,

M ∈H (bpk(σ)).
– M = {[M′]}u+ . If σ 6 ` 〈M′,u+〉, M ∈ bpk(σ), by definition. Otherwise, by induction

hypothesis, u+, M′ ∈ H (bpk(σ)) and, thus,
{[M′]}u+ = M ∈H (bpk(σ)).
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On the other hand, supposeM ∈ H (bpk(σ)). By induction on the leastj such that
M ∈H j(bpk(σ)).

( j = 0) There are two cases. IfM ∈ V̂ ∪EN , trivially σ ` M. ElseM ∈ bpk(σ) and it
follows by definition thatσ ` M.

( j > 0) SupposeM = {[M′]}u+ (the caseM = 〈M1,M2〉 is analogous), withM′, u+ ∈
H j−1(bpk(σ)). Then, the thesis follows by induction hypothesis onM′ andu+.

�

The proof of Proposition C3 relies on the lemmata below. Lemma C2 says that
the deducibility relation on messages,σ ` M, is preserved by ground substitutionsρ,
under suitable conditions. Lemma C3 generalises Proposition C2 to arbitrary termsζ.
Lemma C4 is a sort of ‘converse’ of Lemma C2 (i.e., fromσρ ` ζρ it is deduced that
σ ` ζ, under appropriate conditions).

Lemma C2. Let σ be in sf andρ be a substitution that satisfiesσ. If σ ` M, then:

(1) v(M) ⊆ V̂ .
(2) σρ ` Mρ.

PROOF: Let σ0 be the shortest prefix ofσ such thatσ0 ` M. The proof is by induction
on |σ0|. The case|σ0|= 0 is obvious. If|σ0|> 0, we proceed by induction on the least
index j such that there existsη ∈H j(σ0), with η ↓M.

( j = 0) Necessarilyη = M. The caseM ∈ V̂ ∪EN is obvious. IfM ∈ σ0 thenMρ ∈
σ0ρ and thusσ0ρ ` Mρ, i.e. (2). We now prove (1). It is not the case thatM is an
input message, i.e.σ0 = σ1 · a〈M〉 ·σ2, as it would implyσ1 ` M (by definition
of sf), in contradiction to the hypothesis onσ0. Then necessarilyM is an output
message, i.e.σ0 = σ1 · a〈M〉 ·σ2. By definition of symbolic trace, it follows that
v(M) ∩ V ⊆ v(σ1) ∩ V . By induction hypothesis onσ1, v(σ1) ∩ V = /0 (other-

wise, (1) would be violated forσ1) and, thus, v(M) ⊆ V̂ .
( j > 0) Supposeη = decpk

ζ2
(ζ1) with ζ1 ↓ {[M]}u+ andζ2 ↓ u−. By induction hypothe-

sis, v({[M]}u+ ,u−) ⊆ V̂ , which implies (1) forM. Also, by induction hypothesis,
σ0ρ ` {[Mρ]}(u+ρ) andσ0ρ ` (u−)ρ. It follows thatσ0ρ ` Mρ. The other cases
(η = ζ+, η = ζ−, η = 〈ζ1,ζ2〉, η = πi(ζ) are similar).

�

Remark C1.

1. It is straightforward to prove the analogue of Lemma C2(1) for traces, i.e.: Letsbe

a trace andM a message such thats ` M, then v(M) ⊆ V̂ .

2. Letσ be a sf. Then v(σ) ⊆ V̂ . This fact trivially follows by Lemma C2(1).

Let us now generalise the definition of deduction relation` to arbitrary terms, by
letting σ ` ζ if and only if ∃η ∈H (σ) : η ↓ ζ.
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Lemma C3. Let σ be in sf inF s
pk. Then,σ ` ζ if and only ifζ ∈H (bpk(σ)).

PROOF: The ‘if’ part of the lemma is proved by an easy induction on the leastj such
thatζ ∈ H i(bpk(σ)). Conversely, supposeη ↓ ζ, for someη ∈ H (σ). The proof is by
induction on the leastj such thatη ∈H j(σ).

( j = 0) Then, eitherη = ζ = M ∈σ for someM, and the result follows from Lemma C1,

or ζ,η ∈ EN ∪ V̂ , and the result is trivial.
( j > 0) We distinguish the outermost operator ofη. The only non-trivial case isη =

decpk
η1(η2), whereη2 ↓ {[ζ]}ζ′+ andη1 ↓ ζ′−. By induction onj, {[ζ]}ζ′+ ∈H (bpk(σ)).

The are two cases:
1. {[ζ]}ζ′+ ∈ H 0(bpk(σ)). Then, it must be{[ζ]}ζ′+ = {[M]}u+ ∈ bpk(σ), hence

ζ = M, for someM. Again, the thesis follows from Lemma C1.
2. {[ζ]}ζ′+ ∈H i(bpk(σ)) with i > 0, henceζ ∈H (bpk(σ)), which is the thesis for

this case.

�

Lemma C4. Let σ be in sf,ρ satisfyσ and A= {m,m+,m− |m∈N }. If σρ ` η, with
η ground, then there existsχ, with v(χ) ⊆ v(σ) such thatσ ` χ andχρ = η. Moreover,
if η ∈ A thenχ = η.

PROOF: Let σ0 be the shortest prefix ofσ such thatσ0ρ ` η. The proof is by induction

on |σ0|. If |σ0|= 0, we takeχ 4= η. And, indeed,σ0 ` χ since n(η) ⊆ EN . If |σ0|> 0,
we proceed by induction on the least indexj such that there existsζ ∈ H j(σ0ρ), with
ζ ↓ η.

( j = 0) It must beη = ζ = M ∈ σ0∪EN . The caseM ∈ EN is obvious. IfM ∈ σ0ρ,
there existsχ = N ∈ σ0 such thatNρ = M and obviously v(N) ⊆ v(σ). Further-
more, it is not the case thatN = (x̂)±, as this would imply(σ0\ x̂)ρ ` ρ(x̂)± = M,
with σ0 \ x̂ shorter thanσ0, contradicting the minimality ofσ0. Also, it is not the

case thatN = (x)±, as v(σ0) ⊆ V̂ , by Remark C1(2). It follows that ifM = (m)± ∈
A thenN = M, sinceNρ = M.

( j > 0) There are different cases, depending on the outermost operator ofζ. Here we
consider the only non-trivial case, i.e.ζ = decpk

ζ1
(ζ2), whereζ2 ↓ {[η]}ψ+ andζ1 ↓

ψ−. By induction hypothesis (internal or external) it follows that there areχ1 and
χ2 such that:
(i) σ0 ` χ1 = {[χ]}ψ′ , with v({[χ]}ψ′) ⊆ v(σ0) and{[χ]}ψ′ρ = {[η]}ψ+ , for some

χ,ψ′ (note that we can assume w.l.o.g. thatχ1 /∈ V̂ , by considering the shortest
prefix σ′0 of σ0 s.t.σ′0ρ ` {[η]}ψ+).

(ii) σ0 ` χ2, with v(χ2) ⊆ v(σ0) andχ2ρ = ψ−. Moreover, ifψ− ∈ A thenχ2 =
ψ−.

By Lemma C3 it follows that{[χ]}ψ′ ∈H (bpk(σ0)), hence there are two cases:
1. {[χ]}ψ′ ∈ bpk(σ0). In this case,{[χ]}ψ′ = {[N]}k+ , for someN,k. (Note that it

cannot arise thatψ′ = x̂+,a+, by definition ofbpk(·), or ψ′ = x+ since v(ψ′) ⊆
v(σ0) ⊆ V̂ by Remark C1 (2).) Hence,ψ = k, from (i).
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By (ii) it follows that χ2 = k−. By σ0 ` {[χ]}k+ andσ0 ` k− it follows that
σ0 ` χ, where by (i)χρ = η, and v(χ) ⊆ v(σ0). Moreover, if η ∈ A then
obviouslyχ = η (in particular, it is not the case thatχ = x̂, by the minimality
of σ0).

2. {[χ]}ψ′+ ∈ H t(bpk(σ0)), t > 0. Thus,χ,ψ′+ ∈ H (bpk(σ0)). By Lemma C3,
σ0 ` χ and by (i)χρ = η and v(χ) ⊆ v(σ0). Finally, η ∈ A impliesχ = η, by
the same reasoning as in (1) (from (i)).

�

Proposition C3. Letσ be in sf inF s
pk. Then,bpk(σρ) ⊆ bpk(σ)ρ, for anyρ that satisfies

σ.

PROOF: SupposeM ∈ bpk(σρ). Note that, by Remark C1(1) and by definition ofbpk(·),
M is necessarily ground. We have to prove that there existsN ∈ bpk(σ) such thatNρ =
M. Let σ0 be the shortest prefix ofσ such thatσ0ρ ` M. Clearly,M ∈ bpk(σ0ρ) too. We
distinguish the two possible cases, depending on the structure ofM.

– M = (k)±. Thenσ0 ` (k)± by Lemma C4 and obviouslyσ ` (k)±. In this case, we

takeN
4
= (k)± ∈ bpk(σ).

– M = {[M′]}k+ , with σρ 6 ` 〈M′,m+〉. By Lemma C4 there existsχ such thatσ0 ` χ,
v(χ) ⊆ v(σ0) andχρ = M. By the hypotheses onσ0, χ 6= x̂ and so it must beχ =
{[χ′]}ψ, for someχ′,ψ. Now, by Lemma C3, it follows thatχ ∈ H j(bpk(σ0)), for
some j ≥ 0. But it holds thatσ 6 ` 〈χ′,ψ〉, otherwise by Lemma C2 it would follow
that σρ ` 〈χ′ρ,ψρ〉 = 〈M′,k+〉, contradicting the hypothesis thatM ∈ bpk(σρ).
Therefore it must bej = 0, henceχ = N ∈ bpk(σ) andNρ = M.

�

Theorem C1 (Theorem 2).F s
pk is a regular frame.

PROOF: The two conditions of regularity follow respectively from Proposition C2 (note

that, by Remark C1(1), ifσρ is a trace andσρ ` M then v(M)⊆ V̂ ) and Proposition C3.
�
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