A Method for Symbolic Analysis
of Security Protocols

Michele Borealé and Maria Grazia Buscefi

1 Dipartimento di Sistemi e Informatica, Univeisidi Firenze, Italy.
2 Dipartimento di Informatica, Universitdi Pisa, Italy.
boreale@dsi.unifi.it, buscemi@di.unipi.it

Abstract. In security protocols, message exchange between the intruder and
honest participants induces a form of state explosion which makes protocol mod-
els infinite. We propose a general method for automatic analysis of security pro-
tocols based on the notion frfhme essentially a rewrite system plus a set of dis-
tinguished terms callesthessaged-rames are intended to model generic crypto-
systems. Based on frames, we introduce a process language akin to Abadi and
Fournet's applied pi. For this language, we define a symbolic operational seman-
tics that relies on unification and provides finite and effective protocol models.
Next, we give a method to carry out trace analysis directly on the symbolic model.
We spell out aregularity condition on the underlying frame, which guarantees
completeness of our method for the considered class of properties, including se-
crecy and various forms of authentication. We show how to instantiate our method
to some of the most common crypto-systems, including shared- and public-key
encryption, hashing and Diffie-Hellman key exchange.

1 Introduction

Many of the methods employed in security protocol analysis are based conceptually on
a model dating back to Dolev and Yao [18], where a (hostile) intruder has total con-
trol over the communication network. In particular, it is assumed that the intruder can
learn, hide or replace any message in transit on the network. It can also synthesize new
messages starting from learned messages and using arbitrary combinations of opera-
tions like nonce creation, pairing, encryption and decryption. The intruder cannot guess
secret keys or forge messages it cannot syntethise. Thus, sending a message on the net-
work means handing it to the intruder, while receiving a message from the network
means accepting any message the intruder can syntethise at a given moment. Due to the
latter point, any Dolev-Yao model is in principle infinite.

Traditional finite-state model checking has been employed in security protocol anal-
ysis (e.g., [26, 32, 36, 39]), under two simplifying assumptions: (a) there is a bound on
the number of protocol runs, and (b) at any moment, there is a bound on the number of
possible messages the intruder can syntethise and send to honest participants. Discard-
ing either of these two assumptions leads to infinite models. Also, these bounds have

* Extended and revised version of [8—10]. This work has been partially supported by EU within
the IST FET - Global Computing initiative, projects MIKADO and PROFUNDIS.



to be chosen carefully: due to the combinatorics of message generation, the size of the
model tends to explode as the number of principals and data values increases.

In general, it is known that discarding assumption (a) leads to undecidability of pro-
tocol analysis, unless severe syntactic restrictions are imposed on the analysed protocols
(see e.g. [4,16, 19, 20, 23, 34]). In particular, in the presence of pairing and encryption,
an even weak form of iteration (the ability to create arbitrarily many protocol instances)
allows for encoding of 2-counter machines, which in turn implies undecidability of
e.g. secrecy, based on information transfer from one protocol instance to ardithebr (
copying [35]. Wanting to preserve decidabiliBnd an expressive term language, one
is left with little choice but keeping assumption (a), hence ruling iteration out.

In the last few years, symbolic approaches have been proposed that make infinite-
state analysis possible and lead to discard assumption (b) [4, 8, 16, 30]. These approaches
focus on specific crypto-systems (typically, shared- or public-key encryption), and the
corresponding completeness proofs are rather ad-hoc. The present paper introduces a
general framework for symbolic protocol analysis. It can be viewed as an attempt at
presenting in a uniform manner methods based on unification (e.g. [8, 4]), while extract-
ing a common factor out of the related proof techniques. When instantiated to specific
crypto-primitives, under a condition of regularity that we illustrate below, the frame-
work yields complete verification methods. In those case studies that we have actually
experimented [9], the method is also quite effective in practice.

More in detail, we start by introducing a notionfodme essentially a term rewrit-
ing system plus a set of distinguished terms catieessagesWe consider a generic
signature> that may include constructors and destructors for various cryptographic op-
erations. The meaning di-terms is provided by an evaluation relatigrthat maps
terms to messages. On top of the evaluation relation, we introduce a deduction rela-
tion - that describes how the environment can synthesize new messages from known
ones. On top of a generic frame, we introduce a process language akin to Abadi and
Fournet’s applied pi [1], that can be used to describe protocols. Protocol properties are
formalised as correspondence assertions between 1/O everastiams of the form
“every execution of actioa must be preceded by some execution of acfion

In agreement with the Dolev-Yao approach, the “concrete” operational semantics of
the process calculus is infinitary, because each input action gives rise to infinitely many
transitions. This problem is overcome by introducing a symbolic operational seman-
tics. In the latter, as a result of a receive operation, input variables are not instantiated,
rather they areonstrainedas the computation proceeds. Constraints are generated by
symbolic evaluation of terms representing crypto-operations, and take the form of most
general unifiers (mgu’s) between terms of the signature. As an example, evaluation of
shared-key decryption df using keyn, written decy({), generates a mgé for the
equation¢ = {x}, for a freshx. The result of the decryption is therefore represented as
6(x). Mgu'’s are propagated through whole process terms as soon as they are generated.
The resulting transition system is finitely branching, hence it yields finite models when
protocols with a finite number of participants are considered.

Next, we give a method to carry out trace analysis directly on the symbolic model,
and provide aegularity condition on the given frame, under which the method is proven
sound and complete with respect to the concrete semantics. In other words, for regular



frames every attack detected in the symbolic model corresponds to some attack in the
concrete one, and vice-versa. Thus, our method makes no approximation with respect
to the infinitary, concrete model. For instance, type-dependent flaws (see e.g. [22]),

which usually escape finite-state analysis, with our approach naturally emerge when

present. The regularity condition roughly amounts to requiring that the set of messages
deducible from any trace of the protocol candymtacticallybuilt out of a finite basis

of messages, and that the induced finite-basis operation commutes with substitution.

We show how to instantiate the general framework to some of the most common
crypto-systems, providing frames for shared- and public-key encryption, digital signa-
ture, hashing and Diffie-Hellman exponentiation. The proof of regularity is covered in
detail for the public-key frame only. We also highlight the relevance of the regularity
condition by providing an example of a meaningful non-regular frame. This also illus-
trates the limits of our approach.

Our method is quite efficient in practice, because in the symbolic model there is
no state-explosion induced by message exchange: every input action gives rise exactly
to one symbolic transition. We have developed a prototype tool, STA (Symbolic Trace
Analyzer), based on this method [41]. Experimentation with STA has given very en-
couraging results [9].

Related work Early work on symbolic analysis is due to Huima. In [24], the execu-
tion of a protocol generates a set of equational constraints. Only an informal descrip-
tion is provided of the kind of equational rewriting needed to solve these constraints.
Approaches based on symbolic analysis were also exploited in [8, 3, 21], all of which
focus on shared-key encryption. The work [8] introduces a shared-key only version of
our symbolic method. In [3], unlike our approach, symbolic execution and consistency
check are not kept separate, and this may have a relevant impact on the size of the com-
puted symbolic model. Another point worth noting is that, in [3], a brute-force method

is needed to resolve variables in key position: such variables have to be instantiated to
every possible name used by the participants; this fact may lead to state explosion, too.
In [21], a procedure is provided to analyse the knowledge of the environment, based
on a symbolic semantics akin to [8]. The approach applies to protocols with arbitrary
messages as keys, but, like ours, it is proven complete only for atomic keys. Also, the
method suffers from the same problem as [3] concerning brute-force instantiation. The
paper [4] extends the symbolic reachability analysis of [3] to hash functions and public
key cryptography and establishes some complexity results.

Developments of the symbolic approach not specifically relying on unification are
presented in [16] and [30]. The decision technique in [16] is based on a reduction to
a set constraint problem which is in turn reduced to an automata-theoretic problem.
Completeness is proven by assuming rather severe restrictions on protocol syntax. The
technique in [30] focuses on reachability properties and is based on constraint solving;
the approach makes use of the strand space formalism [42] to specify protocol pro-
cesses. The symbolic reduction and the knowledge analysis are separated and the latter
is performed by a procedure for constraint solving procedure.

Some recent papers ([7, 15, 33, 34]) focus on protocols with unbounded instances
and unbounded message size, and give verification algorithms that terminate under
certain assumptions, like tagging. Other recent work addresses the symbolic analysis



problem in the presence of low-level cryptographic operations and, in particular, mod-
ular exponentiation [31, 13, 40]. Blanchet’'s model [6] abstracts away from operations
like inverse, root extraction and random number generation. The resulting method may
give rise to false attacks and may not terminate. Pereira and Quisquater first [31] pro-
posed a technique for analysing group Diffie-Hellman protocols in the presence of an
attacker with restricted capabilities (e.g. no symmetric encryption), though not facing
the issue of decidability. Chevali@t al. [13] demonstrated that the protocol analy-

sis problem is decidable and NP-complete in the presence of modular exponentiation.
Shmatikov [40] proved that the above problem in the presence of Abelian group opera-
tor and exponentiation is decidable for a finite number of protocol sessions. Also related
to these approaches is protocol analysis in the presence of the xor operation, which has
been recently proven to be decidable by Chevaditeal. [12] and, independently, by
Comon-Lundh and Shmatikov [17].

SummaryIn Section 2 we introduce the notion of frame at the basis of our method.
In Section 3 we present the process language, its concrete and symbolic semantics,
and we study the relationship between the two semantics. In Section 4 we describe the
verification method based on the symbolic semantics. Throughout Sections 2-4 we use
public-key cryptography as a running example. An extended system featuring shared-
key, public-key, digital signature and hashing is considered in Section 5; this section
also contains an example of non-regular frame. In Section 6 we illustrate an applica-
tion to a low-level primitive, modular exponentiation, hence, the Diffie-Hellman key
exchange. Section 7 illustrates STA on the classic Needham-Schroeder protocol. In
Section 8 we draw some conclusions. Detailed proofs of a few technical results are
confined to Appendices A, B and C.

2 A General Framework

In this section, we present the main ingredients of our framework. We introduce the
concept oframe that is, a structure consisting of a signature, a set of (legal) messages
and an evaluation relation. Then, we define the notions of process, trace, configuration
and security property.

2.1 Frames

We consider two countable disjoint setsnames mn, ... € A’ andvariables xy, ... €
/. The setA\l is in turn partitioned into a countable setlotal names a,... € LA
and a countable set @hvironmental names, b, ... € EA: these two sets represent
infinite supplies of fresh quantities (keys, nonces, ...), that can be used by processes
and environment, respectively. The 9t 7V is ranged over by letters v, .. .. The fact
that LA and EA( are disjoint guarantees that nonces and keys generated by honest
participants cannot be guessed in advance by the environment (of course, local names
might be learned and then used by the environment), and vice-versa.

Given a finite signatur& of function symbolsf,g, ..., each coming with its arity
(constants have arity 0), we denote &y the algebra of terms (ogxpressionson
AN UV UZ, given by the grammar:

¢no o= u | f(Q)



wherez is a tuple of terms of the expected lengthtekm context ¢] is a term with a
hole that can be filled with any terfy thus yielding a ternC[{].

Definition 1 (frame). Aframe ¥ is a triple &, M, |), where:

— X is a signature;
- M C Esis a set oimessageM, N, .. ;
— | € Es x ‘Es is anevaluation relation

In the sequel, we writé | n for ({,n) €| and say thaf evaluates ta). In typical
frame instances the relatignwill be both a function and a congruence with respect to
the operations iz, but we need not to assume these facts in the general framework. In
fact, as we shall see in Section 6, a non-deterministic evaluation relation can be used to
model a commutative operation.

Next, we define a deduction relatioh ), which specifies how the environment can
generate new messages starting from an initial set of mes&dg@sr definition of
deduction relation is not given by a set of deductive rules. Rather, we make use of the
set# (S), which consists of all the expressions inductively built by applying functions
of X to elements oS and of EAl. We denote byP; (X) the set of finite subsets f.

Definition 2 (deduction relation). For ¥ = (£, ,|) a frame and SC M, the set

}[f(S) is inductively defined by the following clauses:

HP(S) =SUEN -
}[}H(S) _ }[}(S)U{f(o: fes (C }[}(S)}
Hy(S) = U H;(S).

Thededuction relation-¢ C Ps (M) x M is defined by:

SkeM & FLeH (9 :TIM.
A message M ideduciblefrom S if Sk4 M.
When no confusion arises, we simply writ&(S) for 7, (S) and - for .

Example 1 (Public-Key Encryption frame Fpx = (2, M, | ) for public-key cryptog-
raphy is defined in Table 1. The functions Bfare: generation of public({)*) and
private (-)7) keys, encryption with a public key{[¢]} ), decryption using a private
key (decz’_k>(~)), pairing (-,-)) and selectiont(-)). Public and private keys are repre-

sented by™ andu, respectively. Names and variables can be used to build compound
messages via public-key encryption and pairing. In partic§|&t]} .+ represents the
message obtained by encryptivyunderm®. Primitives for pairing and public key
encryption of messages can be arbitrarily nested. Non-atomic keys are forbidden in
messages: this restriction is crucial in our method, as we will show in Example 7. The
definition of evaluation relation makes use of an auxiliary relationthat models the
mechanisms of public key encryption under the perfect cryptography assumption (see
e.g. [18)]).

As an example of deduction, &= { {[(a,b)]}x+.k™ } then S+ a, since{ =
nl(decl‘zf({Ka, b)}k+)) € H(S) andl | a. Note that, whateve§, the set of messages
deducible fronSis infinite. O



SGNATURE = ={()*, ()7, {Bos () ) (=12), decl()}

MESSAGES M,N:=u | u" | u™ | {{M}}s+ | (M,N)

(PRJ) m(((1,02)) ~ ¢ (i=12)
(DEC)  decP({[J}y+) ~ €
{(~T

(CTx) —_—
C[g) ~C[']

EVALUATION ¢in & {~*n

Table 1: Fp, a frame for public key encryption

2.2 Processes

Syntax As a base language, we consider a variant of the applied pi-calculus [1], para-
metrised by an arbitrary framg (for readability, we omit explicit reference t§ in

the notation). The syntax aigent expressionsvhose set we nam@, is reported in Ta-

ble 2. A single constructdt) for expression evaluation replaces the ad-hoc constructs
found in the spi-calculus for encryption, decryption and other cryptographic operations.
The main difference from applied pi is that, here, we consider & sd#tinput and out-
putlabels ranged over by, b, ..., which must not be regarded as channels — according
to the Dolev-Yao model, we assume just one public network — but, rather, as ‘tags’
attached to process actions for ease of reference. We do not consider the pi-calculus
restriction operator: it could be easily accommodated, but it has no semantic relevance,
in the absence of iteration.

Given the presence of binders for variables, notionfresf variablesv(A) C 7/,
andalpha-equivalencarise as expected. We shall identify alpha-equivalent agent ex-
pressions. For an§ andx, [{/X denotes the operation of substituting the free occur-
rences ok by . An agent expressiofis said to beclosedor aprocessf v (A) = 0; the
set of processe® is ranged over by, Q,.... Local names and environmental names
occurring inA are denoted by ) and erfA), respectively. A procesB is initial if
enP) =0.

Example 2 (the Needham-Schroeder protocolWWe consider the classical
Needham-Schroeder protocol as described e.g. in [26]. The protocol involves two hon-
est participantsA andB, which want to authenticate with one anothers the initiator,



AGENTSA AB:=0 (null)

| a(x).A (input)

| a(Q).A (output)

| lety={inA (evaluation)

| [Z=n)A (matching)

| A|B (parallel composition)

The occurrences of variablesandy are bound.

Table 2: Syntax for agents

B the responder:

1. A— B:{{nAidal}xs+ (nAfresh nonce)
2.B — A: {[nAnBJ}a+ (nB fresh nonce)
3.A— B: {[nB]}kB+

We formalise below a ‘one-shot’ configuration of this protodé§ where two distinct
instances of are willing to talk toB and to a malicious insiddr;, a participant whose
role is played by the attacker. An instanceBok willing to respond taA (this example

will be analysed in Section 7). Aisclose action is supposed to have provided the envi-
ronment with its initial knowledge (identities and public keys of participants, plus the
insider’s private key information). To simplify the notation, we use a few self-explaining
notational shorthands, likg{[y, n}4 ). P for

c(x). Ietx’:dec{zf (X)inlety=m(X)inlety =mp(X)in]y =n|P, for freshx,X,y.

éi J—

A1({IA id, g+ ). a2({INA XNBl}a ). 33({XNBls+).0
| FTIVA 1duha). 3 2(VA XN hxe ). 3({xnl} .0

A

B 2 b1({ynA id,}e+). B2({IyNA Bl b3({NBl}ier ). O

NS £ (disclose(kl, kA" kB, idy,1ds,1ds), (A||B)).
O

Operational Semantic he semantics of the calculus is given in terms of a transition
relation —, which we will sometimes refer to as ‘concrete’ (as opposed to the ‘sym-
bolic’ one we shall introduce later on). We model the state of the system as(a, falir
wheres records the current environment’s knowledge (i.e., the sequence of messages
the environment has “seen” on the network up to a given momentpPda process

term. Anactionis a term of the forma(M) (inputaction) ora(M) (outputaction), fora

a label andvl a message. The set of actiohat is ranged over bw, 3, .. ., while the set

Act* of strings of actions is ranged over byg, .... String concatenation is writter :

We denote by a¢t) and msgs) the set of actions and messages, respectively, appearing



in s. A string sis closedif v(s) = 0 andinitial if en(s) = 0. In what follows, we shall
often write s+ M’ for msg(s) H M and ‘M € s for M € msq(s).

Below we definetraces i.e. sequences of actions that may result from the inter-
action between a process and its environment. In traces, each message received by a
process (input message) must be synthesizable from the knowledge the environment
has previously acquired. lconfigurations the environment’'s knowledge is explicitly
recorded as a trace.

Definition 3 (traces and configurations) A traceis a closed string & Act* such that
for each g,  anda(M), ifs=s;-a(M)-sp theng - M.

A configuration written as(s, P), is a pair consisting of a trace s and a process P.
A configuration idnitial if en(s,P) = 0. Configurations are ranged over g, (', .. ..

(INP) (s, a(x).P) — (s-a(M), PM)x]) s+ M, M closed

(Out) (s a(().P) — (s:a(M), P) Z 1M, M closed

(LET) (s, lety=CinP) — (s, P[j]) 1 n,n closed
(MATCH) (s, [{=n]P) — (s, P) Clgnlé

(s, P) — (g, P)

(PAR)
(s, P|Q — (s, P'|Q)

plussymmetric version of (BR).

Table 3: Rules for the transition relation-{-)

The concrete transition relation on configurations is defined by the rules in Table 3.
Each action taken by a process is recorded in the configuration’s first component. Rule
(INP) makes the transition relation infinitely-branching,Msanges over the infinite
set{M : s+ M, M closed. In rule (QuT), { is evaluated before the action takes place.

By rule (LET), the evaluation of replaces any occurrence wfn P. Note that, while

we require that evaluation of terms sent on the network yields closed messages, for the
purpose of internal computation (rulesgt) and (MATCH)) we do allow evaluation to
arbitrary terms. No handshake communication is provided: all messages go through the
environment (rule (BRr)). By ¢ —" ¢’ we mean that” reduces ta”’ in n execution

steps.

2.3 Properties

We express security properties of a protocol in terms of the traces generated by the
protocol. In particular, we focus on correspondence assertions of the kind ‘for every
generated trace, whenever actfpaccurs in the trace, then actiarmust have occurred



at some previous point in the trace’. Given a configura{®rP) and a trace’, we say
that(s, P) generates’swritten (s, P) \, &, if (s, Py —* (s, P’) for someP'.

We let p range over ground substitutions, i.e. substitutions that map variables to
closed messages, and denotdthe result of applying to an arbitrary ternt.

Definition 4 (satisfaction relation). Leta and 3 be actions and s be a trace. We say
thata occurs prior t in s if whenever s= - 3-s” thena € act(s). For v(a) C v(B),
we write = o < 3, and say satisfiext < B, if for each ground substitutiopiit holds
thatap occurs prior topp in s. We say that a configuratiqn satisfiesa < 3, and write

C = a < B, if all traces generated by satisfya < [.

Assertionsx < [3 can express interesting secrecy and authentication properties. As
an example, in the final step of many protocols, a princaknds a message of the
form {N} to a respondeB, where{N} is obtained by encrypting some authentication
informationN under a newly established shared-keyOur scheme permits express-
ing that everymessage encrypted withthat is accepted b during the execution
of the protocol indeed originates frof i.e. thatB is really talking toA, and thatk
is authentic. If we denote bfinalp andfinalg the labels attached t&'s andB's fi-
nal action, respectively, then the above property might be formalised as an assertion
finala ({x}k) < finalg ({x}k), for x a variable.

Example 3 (Needham-Schroeder Protocol - Coftgnsider the protocol configuration
NSdefined in Example 2.The property that, at ste@3hould only accept authentic
messages, i.e. messages truly originating figris expressed by the following asser-
tion:

AuthAtoB = a3({(Zher) < b3({[Z}eer ),

with zfresh inNS This means that any message receive&lay step 3and having the
form {[N]}g+, for someN, must have been previously sentAwt step 3. As we shall
see in Section 7, properfuthAtoBis not satisfied bNS O

In practice, all forms of authentication in Lowe’s hierarchy [27] are captured by this
scheme, except for the most demanding one requiring a one-to-one bijection between
a’s andf's. However, our scheme can be easily adjusted to include this stronger form,
by requiring that eacB is preceded bgxactlyone occurrence af.

Another property that can be set within our frameworgeasrecyin the style of [5].

In this case, it is convenient to fix a conventional ‘absurd’ acticthat is nowhere used

in agent expressions. Thus, the formula— a means that actioo should never take
place. Now, the fact that a protocol, sBydoes not leak a sensible datum, shyan

be expressed also by saying that the adversary will never be capable of synthesizing
d. This can be formalised by extending the protocol to include a ‘guardian’ that at any
time picks up one message from the netwdtK,g(x).0, and then requiring that this
guardian will never receive, that is, (€, P| g(x).0) = L < g(d). Note that in our
framework it is also possible to verify a more general form of secrecy, in which a datum
d cannot be leaked until a certain event, represented by a certain aetiat occurs.

This property can be specified by replacing the absurd action above wittvdhe
action:event < g(d).



3 Symbolic Semantics

The symbolic semantics we present in this section is based on the notion of symbolic
frame. The latter is essentially a frame equipped with an additional symbolic evaluation
relation, which is in agreement with its concrete counterpart.

A substitutionf in a frame is a finite partial map fron?’ to the set of messages
M of frame F such thaB(x) # x, for each variablex. Let us denote byubst the set
of all substitutions in a given frame. For any objédt.e. variable, message, process,
trace,. . .), we denote lif) the result of simultaneously replacing eachv(t) N"dom(6)
by 8(x). For 8 a substitution, we denote by d¢#&) and cod6), the domain and the co-
domain off. By 6, we denoted restricted td/, i.e. {(x,08(x)) [x € V}. A substitution
6 is aunifier of t; andt, if t,0 = t,08. We denote by mgiy,t2) a chosermost general
unifier (mgu) oft; andty, that is, a unifie® of t; andt, such that any other unifier is
a composition of substitutio with some®’, written 68’3, Also, forty, ], tp,t} terms,
mgu(t; = t3,t, =t5) stands fo®@mgu(t26,t5,60)), where® = mgu(ts,t;), if such mgu’s
exist.

We introduce below the symbolic evaluation relatignwhich extends the evalu-
ation relation to open terms. Intuitivelg, | N means thal evaluates ta) under any
possible instance d. We require that |g n be image-finite i.e., for eachl, the set
{(8,n)|C le n} is finite up to renaming of variables. The main advantage of the sym-
bolic relation over the concrete ong {s that infinitely many pairs{(n) such that | n
can be represented by means of a single judgeifeiy no, for somelg, 6, no.

Definition 5 (symbolic frame). A symbolic frameis a pair 5 = (¥,]s), where
F =(Z,M,]) is a frame, andls C Es x Subst x Es is an image-finitesymbolic
evaluation relationwe writeC [g N for (,0,n) € |s) such that, for any expressiah
and ground substitutiop with v({) € dom(p), the following hold:

() 1f {p | n, then there exist, 8, po such that{ | &, p = (6P0)|gomp) @NAN = &Epo.
Furthermoren € M implies € M.
(b) 1 le & andp = Bpo, for somepo, thendp | &po.

Note that in the above definitioB,may in general both contain variablesénd
introduce fresh variables.

Example 4 (Public-Key Encryption - Contﬂ}rf'k is defined as Fpk, |s), where|s is the
reflexive and transitive closure of the relatiord), as given in Table 4.

Proposition 1. Tpsk is a symbolic frame.
PrROOF See Appendix C.1. O

We now come to symbolic counterparts of traces and configurations. Congiion
in the definition below states that only the environment can introduce variables into
symbolic traces.

3We assume the standard notion of composition of substitutions (cfr. [25]):8foe

[tl/yl7 e 7tk/yk] and 62 = [ti/XL e 7tf’1/yn]v e162 = [tlez/yL e 7tk92/yk} U {[t(/x.] € e2 | Xi ¢
dom(61)}\ Id, where Iq is the identity relation on variables.

10



(DEC,) dec?k(n) Bix0 8=mguf = {xf}y;.L=%)
(PRy)  T(Q) 2s%0  (i=12) 8=mgul.(x.%))

(Enc,)  {[Qx ~s {{Z8]}x- 8=
SN
(CTxy) e
C[¢] s CO[T’]

SYMBOLIC EVALUATION ( |gn iff Zfis...wei‘sn and 0 =0;---6,

Variablesx; andx, are fresh.

Table 4: Symbolic Evaluation Relation|§) for psk

Definition 6 (symbolic traces and configurations) A symbolic tracds a string s¢

Act* such that: (a)en(s) = 0, and (b) for each§ $, o and X, if s=s;-0a -5 and
x € v(a) —v(sy) thena is an input action. Symbolic traces are ranged oveoby', . ...

A symbolic configurationwritten (o, A), is a pair composed by a symbolic trace
and an agent A, such that(A) = 0 andv(A) C v(o).

Note that, due to Condition (b) in the Definition 6, for instarig;™) - a({[h]},+) is
not a symbolic trace, while({[h]},+) -a(x") is.

Once a symbolic framé S is fixed, configurations can be equipped with a symbolic
transition relation,— , as defined by the rules in Table 5 (for the sake of readability
we omit any explicit reference t6°). There, a function new) is assumed such that, for
any givenV Cqn v, new(V) is a variable not iV. We also make use of the following
notation: forY = {y1,---yn}, by Y = new(V) we mean thay; = new(V), y» = new(V U
{y1})s --» Yn=newVU{ys, - ,y¥n-1}). Moreover,Ci>S C' stands forC —¢ (',
wheref is the substitution applied t6' in the reduction step, i.e(g, A), LS (o', A)g
means(o, A); — (0’, A'); ando’ = 08 a or @’ = 08, for some actior.

Note that, differently from the concrete semantics, input variablesatrastan-
tiated immediately (rule {ir,)). Rather, constraints on these variables are computed
and propagated as soon as needed. This may occur due to rulgg)(CLET,) and
(MATCHy). In the following example, after the first step, variaklgets instantiated to
nameb by a (MATCH,)-reduction:

(€, a(x). [x=b]P); — (a(X), [x=Db]P); — (a(b), P[PX)),

Whenever(o, A); — (d’, A'); for someA’, we say thafo, A); symbolically gen-
erateso’, and write (g, A), \, 0’. Due to the image-finiteness ¢f, the relation
— is finitely-branching, hence each configuration generates a finite number of sym-

bolic traces. For example, consider the prodéssa(y).letx:dec‘;5 (y)ina(x).0. By

11



the rules in Table 4, the initial configuratide, P), generates the following symbolic
traces:
e, a(y), a({[z}) (forsome frestr), a{{[z}c) 3(2).

It is important to stress that many symbolic traces are in fact ‘inconsistent’, that is,
sequences of actions that cannot be instantiated to any concrete trace. For instance,
the symbolic trace({[Z]}+) - 3a(2) above is not relevant for the analysis, because the
environment cannot generate the vatden {[z]},+ (i.e.€ ¥ k™, hencee I {{Z}«+). The
problem of detecting these inconsistent traces, that might give rise to ‘false positives’
when checking protocol properties, will be faced in the next section. The notion of
consistency is formally defined below.

Definition 7. Given a symbolic tracer and a ground substitutiop, we say thatp
satisfieso if op is a trace. If it is the case, we also say that is a solutionof o. A
symbolic traces is consistentf there exist solutions af.

(INPS) <07 a(x)'A>s s <O"a<X>, A>s
(OUTS) <07 5<Z>A>s s <09'5<M>7 Ae)s Z 19 M

(LET,) (0, letx=TinA), —, (08, AB[E/X]), L le&

(MATCHS) <Oa K = rﬂA>s s <0.95 A9>s Z l«el Ela n el lez EZ,
83 = mgu(€162,8>),
6=0,6,03

(0, A)g — (07, ),
(PARy)
(0, AlIB)g — (0, A'[|B'),

plussymmetric version of (kR,). In the above rules it is assumed that, Vor
the set of free variables in the source configuration:

(i) x=new(V);

(i) v(0)\V =newV);

(iii) in rule (PAR,), B' = BB where(o, A), —, (0, A),;

(iv) msg(0)8 C M.

Table 5: Rules for symbolic transition relation{— )

The task of checking consistency of symbolic traces is a crucial point of the verifi-
cation method presented in the next section. Theorem 1 below establishes a correspon-
dence between the concrete and the symbolic transition relations.

Theorem 1 (concrete vs. symbolic semantics)et F5 be a symbolic frame; be an
initial configuration and s be a trace gf. ThenC \, s if and only if there exists such
that C N\, 0 and s is a solution of.

12



PROOF. See Appendix A. O

4 A Verification Method

We first defineregular framesi.e., frames for which it is possible to determine a finite
basisfunction for the synthesis of messages. Then we introduedirementproce-

dure that can be used to check consistency of symbolic traces. Finally, we present a
verification method based on refinement that applies to regular frames.

Regular framesilt is convenient to extend the syntax of messages with a new class of
variables. Informally, these variables will be used as place-holders for generic messages

known to the environment. Formally, we consider a newigetf markedvariables, in
bijection with 9/ via a mapping;"thus, variablex,y,z ... have marked counterparts
X,¥,2,.... Marked messages (resp., traces) are messages (resp., traces) that may also
contain marked variables. Also, f&rC M, the set#(S) in Definition 2 is extended to

include marked variables, that is, we re-deﬁn@(S) as follows:

H(S) 2 SUENU V.

The deduction relatiorS+ M) remains formally unchanged. Note that in c&sadM

do not contain marked variables, the new definition coincides with Definition 2. Since
marked variables are intended to carry messages known to the environment, the satis-
faction relation is extended below to marked symbolic trace according to this intuition.
For anyx"and any traces, we denote by\X the longest prefix off not containing<”

Definition 8 (consistency)leto be a marked symbolic trace apdbe a ground sub-
stitution. We say thap satisfieso if op is a trace and, for eack € v(o), it holds that
(o\X)p F p(X). In this case, we say thaip is asolutionof g, and thato is consistent

The terminology introduced above agrees with Definition 7 wihepes not contain
marked variables. We give now the definition of solved form, that lifts the concept
of trace to the non-ground case (hote that this definition is formally the same as the
definition of trace, Definition 3).

Definition 9 (solved forms).Let o be a marked symbolic trace. We says in solved
form (sf) if for everyas, a(M) andoz s.t.c = 01 -a(M) - 03 it holds thato; - M.

Next, we define regular frames, which enjoy a ‘finite-basis’ property. Basically,
this property states the existence, for anyn solved form, of a finite set of ‘build-
ing blocks’, out of which all messages deducible frornan be syntactically built: this
requirement is stated by Condition 1, below. Condition 2 requires that basis functions
and substitutions commute with each other. In fact, this would be the exact meaning
of b(op) = b(o)p, but for our purposes inclusio suffices. Define the set of mes-

sages deducible frora as D(0) 2 {M|o + M}. The additional ‘sanity’ conditions

v(b(0)) C v(o) andb(o) C D(0) \ (EA_U V) are also desirable to rule out weird or
redundant bases (in fact, they are sufficient to guarantee correctness of our method, as
we shall see in Section 4).

13



Definition 10 (regular frames). A symbolic framef S is regularif there exists asis
functionb : Act* — P; (M) such that for each solved formof 75, v(b(g)) C v(0o)

andb(o) C D(o0) \ (EA U ‘IA/) and for all p satisfyingo:

1. op F Mifandonly if Me H (b(op));
2. b(op) C b(o)p.

For eachao, b(0o) is said abasisof 0.

Example 5 (Public-Key Encryption - Contlet us consider the frame for public key
encryption introduced in Example 1. A basis function jﬁj’k selects, for a givew in

sf, a set consisting of plain variables, local names, keys, and encrypted messages that
cannot decomposed out of smaller messages deducibledrdmthe following, by

M = (u)* we mearM =uorM =ut orM =u".

Definition 11 (function bpy).

bpk(0) 2 {M|(c F M) and(M = (u)*, for someuc LA'U¥, or3N,u:
M = {[N]},+ ando ¥ (N,u™)) }.

Note thatbpk(o) may in general contain encrypted open terms, e.goferc(X) -
c({X}k+), bpk(o) = {{{X}x+ }. In practice, for a givero in sf, the setopk(o) can be
effectively computed by an iterative procedure, which repeatedly applies destructors
(dec‘(’_‘;(-) andrg(-)) to messages i, until some fixed point is reached. This procedure

always terminates. U

The framefpsk defined in the above example is regular, as stated by the following
theorem, whose proof is reported in Appendix C.2.

Theorem 2. ¥ is a regular frame with basis functidp.

We shall exhibit an example of symbolic but non-regular frame in Section 5.

Refinemenin the refinement procedure, each input message in a symbolic trace is ten-
tatively unified to some message that can be synthesized from a basis for past messages.
By iterating this step, one can check whether a given symbolic trace can eventually be
instantiated to a trace in the concrete model. In particular, given any symbolicdtrace

we can compute the set of the ‘most general instances’satisfying the solved form
property, denoted b8F o).

Definition 12 (refinement and SKo)). We letrefinementwritten >, be the least bi-
nary relation over marked symbolic traces of a regular frame given by the two rules be-
low. In (REFy), @' is the longest prefix af that is in solved form and = ¢’ - a(M) - ¢”,

for someo”. Assume \NN' ¢ VU V.

M=C[N] N eb(d’) ©=mguN,N’)

(REF1)
o = 0606
X € v(M)
(RER)
o = o[%x

14



where8 # ¢, 8y 2 {¥%|X e v(o) and|(00)\X| < |o\X] }.
For any symbolic trace, we letSF(o) 2 {d’|o =* o’ andd’isin sf}.

Rule (ReF1) implements the basic step of refinement: a subtémwhM gets unified,
via 6, to an element db(c’). By rule (REF,) a variable can get marked: it will be treated
as a known constant in subsequent steps of refinement. Note that ierFg){&ep a
marked variable< ay possibly be ‘unmarked’ back to the plain variakl€eThis is
achieved via the renamirly, and happens precisely when applicatiordafauses the
first occurrence ok fo move backward in the trace.

Example 6.Consider o = c({[a]}x+,d) - €{{[b]}k+,€) - c{{{X]}k+,d), and let o’ =
c({[@}k+,d) -c{{[b]}x+,€). It holds that

bpk(0") = {{[al}k+, d, {[bl}k+ €}

Two possible refinements of, via the first rule, are - o[&/x] ando = o[b/x]; the re-
fined traces are in sf. The remaining refinemerd &fo > o[%/x]. Note thato[%/x] is not
in sf, sinceo’ ¥ ({{X}x+,d) (in particularo’ i {[{]}+). HenceSF(o) = {a[a/x], a[b/x]}.

]

Proposition 2. Leto be a symbolic trace. The®F(0) is finite.

PrROOF The thesis follows from two facts: (&} is a finitely-branching relation, and

(b) infinite sequences of refinement steps cannot arise. As to the latter point, first note
that each (RF1)-step eliminates at least one variable: this stems from the definition of
mgu, and from the fact that(M,N’) C v(c). Hence any sequence of refinement steps
can contain only finitely many (&F1)-steps and, after the last of them, ruleeR?) can

only be applied a finite number of times. O

We now prove that the solutions of a symbolic tracean be completely charac-
terised in terms of the solutions of the symbolic traceSH{c). The proof of this fact
is based on Lemma 1 below, which basically states that any consistent symbolic trace
that is not in solved form can be further refined.

Lemma 1 (Progression Lemma)Let #5 be a regular frame and be a marked sym-
bolic trace. Suppose that there exists sgnwehich satisfiew. Then eithew is in sf, or
there areo’ andp’ such thato = o', op = o’p/, andp’ satisfieso’.

PROOF. See Appendix B. O

Theorem 3. Let 5 be a regular frameg be a symbolic trace, and s be a trace#?.
Then s is a solution af if and only if s is a solution of son@& € SF(o).

PROOF. Supposes = 0’p is a solution ofg’. Then, obviouslys is a solution ofo, as
ad’ = a0, for some0 (note that by definitioro does not contain marked variables). On
the converse, suppose- op is a solution ofo. By repeated application of the previous
lemma, we find that there i’ in solved form and’ s.t. thato ~* o', s= op = ¢'p’
andp’ satisfiess’. Hence, by definitions is a solution ofo’. O

15



Note that each solved form has a non-empty set of solutions: a trivial solution is
obtained by mapping each variablemto any name inEA(. This fact and the above
theorem imply that a symbolic traceis consistent if and only iBF(o) # 0. It follows
that computingSF(o) gives an effective method to decide consistency.of

The verification methodrhe methodM (C,a < ) described in Table 6 can be used
to verify if C = a < B or not. If the property is not satisfied, the method computes
a trace violating the property, that is, an attack@nThe method always terminates,
because the symbolic transition relatien- is finitely-branching, hence the 9dbd

of symbolic traces generated Iyis finite.

M(C.a < B)
1. computeMod = {0 | C \ 0};
2. foreach o0 € Mod do
3 foreach actionyin o do
4. if 36 =mgu(B,y) and
5 Jo’ € SF(06) where o’ = 068’ and
6 066’ does not occur prior tB66’ in o’
7. then return (No, o’);
8. return (Yes);

Table 6: The verification method

The functioning of the method is best explained by considering the specifiacase
1, i.e. verification ofC = L < B. This means verifying that in theoncretesemantics,
no instance of actiofi is ever executed starting frogh By the correspondence between
symbolic and concrete semantics (Theorem 1), this amounts to checking that for each
o symbolically generated by, no solution ofo contains an instance @f The method
proceeds as follows. First, it checks whether there is a fhgtiy and 3, for every
actiony of 0 € Mod . If, for every g, such & does not exist, or it exists ba is not
consistent (this means that the chet € SF(09) at step 5 fails), then the property
holds true, otherwise it does not, and the trateiolating the property is reported.

We shall see a step-by-step illustration of our method at work on a specific example
in Section 6.

Remark 1.In practice, rather than generating the whole set of symbolic traces at once
(step 1) and then checking the property, it is convenient to work ‘on-the-fly’ and com-
paring every last symbolic actiontaken by the configuration against actiprof the
propertya — {3; the refinement procedu&(-) is invoked only wherf8 andy are unifi-

able. This is, in fact, the way our symbolic trace analyser STA works. The complexity of
the method in the worst case is expected to be exponential, since the analysis problem
is easily seen to be NP-hard (see e.g. [38]).

The correctness and completeness of the method in the general case is stated by
Theorem 4 below.

Theorem 4 (correctness and completenesg)et 75 be a regular frame( be an ini-
tial configuration of7 anda andp be actions off ® such thatv(a) C v(B).

16



(1) If M(C,a «+ B) returns(No, d’) then( [~ a < B. In particular, for any injective
ground substitutiop : v(a’) — EA/, it holds thatC \, (¢’p) and(d’p) j~ a < B.

(2) If C = a « BthenM(C,a < B) returns (No, 0’) and for any injective ground
substitutionp : v(a’) — EA[, C \, (d’p) and (d’p) }= a «— B.

PrROOE

(1) According to the method, there exist a traggan actiony € o, a unifier@ =
mgu(y, ), and®’ such thato’ = 066’ € SK(08), C \4 0, and

366" occurs ina’ butaB8’does not occur prior tB88’ in ¢’ (1)

Givenp asinthe hypotheses,é o’pis asolution ol and, by applying Corollary 1,
it follows that C \, s. Also, by (1) and by the injectivity gb on v(c’), a66’p may
not occur prior toB6'p in s, otherwisea88’pp~! = 068’ would occur prior to
BOO'pp~1 = pOF in ¢’, contrary to (1). Hencel~ a « B.

(2) SupposeC Y\, sands (- a — B. By definition, there existp; such thaip; does
not occur prior td3p1 in s. Leti be the position of the leftmost occurrencelpf in
s. By C ™\, sand by Corollary 1, it follows that there exisissuch thatC \, o and
sis a solution ofo, i.e.s= opy, for somep,. Since (a) and () are universally
quantified, we can assuméa 3) Nv(o) = 0 and so donfp1) Ndom(py) = 0. Let

Po 2 p1 U p2 andy be thei-th element ofo. It follows thatypo = Bpo. Thus, we
can conside® = mgu(B,y). By definition, po is an instance 06, i.e. po = 6pp,
for somep,. Hence,s = aBpy is a solution ofaB. By Theorem 3, there exists a
sf o’ = 080’ € SK(00) such thatsis a solution ofd’, i.e. s = o’pg, for somepg.
Necessarily

0008'does not occur prior tged'in o', (2)

because otherwise06'pj = ap; would occur prior toyd8'pj = Bps1 in s, contra-
dicting the hypotheses. Therefore, we have foundy, 6, and o’ such that
M (C,a « B) returns(No, ¢’). Finally, givenp as in the hypotheses]p is a so-
lution of 0. Thus,C ™\, (0’p) by the fact thaiC \, o and by Corollary 1. Also,
(0'p) = a «— B asPed’p (= yB8'p) occurs ina’p at positioni, butad6’p does not
occur ing’p prior to positioni, by (2) and by the injectivity op.

O

Note that assertion (1) (correctness) of the above theorem only depends on the prop-
erties of the seBF(o) of (a) being finite, and (b) containing only instancewofhese
two properties depends entirely on the sanity conditions of the definition of basis func-
tion. Thus, it makes sense to weaken Definition 10 as follows:

Definition 13. A symbolic frame isveakly regulaiif for each solved forno it holds
thatv(b(o)) C v(a) andb(o) C D(0) \ (EANU V).

This allows us to state a useful and more general form of correctness:

Theorem 5. Let 5 be a weakly regular frame; be an initial configuration off S and
o andp be actions off ® such thatv(a) C v(B). Then assertion (1) stated in Theorem
4 holds true.

17



5 ‘Black-Box’ Cryptographic Primitives

We consider extending the symbolic frame for public key cryptograﬁfﬂyo deal with
some of the most common cryptographic operations.

The set is enriched by means of appropriate operators for shared-key encryption
{-}() and decryptiorlecys(-), digital signing[{-}] ., and verifyingdec’s (-) and hashing
H(-). The syntax of messages is extended via the following additional clauses:

M,N ::= asin Table 1
| MY | MYy | HOW).

The symbolic and concrete evaluations are given in terms of an auxiliary relation
~, defined as expected. In particular, hashing has no rules, digital signature rules are
just the same as for public key, but the rolesibfandu™ are swapped. For shared key,
the concrete and symbolic rules are as follows:

dech({Thn) ~ L deci(Q) ~sx@ where8 =mguZ = {x}).

Pursuing the idea of selecting ‘building blocks’ out of deducible messages, a basis
function for this frame can be defined by extending the basis function of the public key
frame with all messages of the forfM }, (resp.{M}],-, H(M)) such thats ¥ u (resp.

o i (M,u7), 0 ¥ M).

The example below shows that the restriction to atomic keys is crucial to ensure the

regularity condition.

Example 7 (a non-regular frameonsider the frame defined above, but modified so
as to allow messages with non-atomic keys in shared-key encryption, thus:

M,N = |{M}n.

This frame is symbolic, but not regular. To see the latter, assume by contradiction there
is a basis functiotb(-) for this frame and consider the symbolic trace

o =1a(b)-a(X)-a({bh) - a{{c}z,)

which is in solved form. Take = [0/%]. Clearlyp satisfiess, andop + c. Howeverc ¢
#H(b(op)), which violates Condition 1 in the definition of basis function. To see this,
note that by definitiorx,T ¢ b(o), hencec ¢ b(a)p, hence, by Condition Z; ¢ b(ap).
From this it easily follows by induction that¢ # (b(op)).

6 Diffie-Hellman Key Exchange

In this section we instantiate our framework to the analysis of protocols based on a ‘low-
level’ operation, modular exponentiation. First, we briefly recall one such protocol, the
Diffie-Hellman key exchange, then we introduce a frame for shared-key and modular
exponentiation, within which this protocol can be analysed.

18



The Diffie-Hellman protocol is intended for exchange of a secret key over an inse-
cure medium, without prior sharing of any secret. The protocol has two public parame-
ters: a large prime and a generatar for the multiplicative groupzy = {1,...,p—1}.
AssumingA andB want to establish a shared secret key, they proceed as follows. First,
A generates a random private valie e Z; andB generates a random private value
ng € Zy. Next, AandB exchange their public values (x,y) denotes¢’ mod p):

1.A— B:exp(a,na)
2.B — A:exp(a,ng).

Finally, A computes the key d6 = exp (exp (a,Ng),Na) = exp (a, Na X Ng), andB com-
putes the key ak = exp (exp (0,nha),Ng) = exp (a,Nna x ng). Now A andB share the
valueK, andA can use it to, say, encrypt a secret datliand send it tdB:

3.A— B: {d}K

The protocol’s security depends on the difficulty of the discrete logarithm problem:
it is computationally unfeasible to compugef only x andexp (x,y) are known. The
protocol is believed to be secure in the absence of ‘active’ attackers, but a well-known
attack exists in the presence of active intruders.

Definition 14 (frame Fpy). A frame for exponentiation and shared-key cryptography
Fon = (Z,M, ) is defined in Table 7.

Besides shared-key encrypti¢g}, and decryptiorzﬂecf]k(i) (with n used as a key),
the other symbols df represent arithmetic operations modulo a fixed and public prime
number, which is kept implicit. In particular, we have exponentiatigm({,n), root
extractionroot ({,n), a constanti that represents a public generator, two symbols for
multiplicative unit @nit, 1), two symbols for producinult({,n) and its resul x n,
three symbolsinv(Q), inv/({) andZ~%, for the multiplicative inverse operation. The
aim of using multiple symbols for each of the above operations is to ensure termina-
tion of the symbolic relation, as explained later on. All the underlying operations are
computationally feasibfe A message is either a product of upltealues, for a fixed
constant, or a key or a message encrypted under a key. A key can be either an atomic
object, or an exponential with baseand a product exponenixp (a, F)).

Evaluation () is the reflexive and transitive closure of an auxiliary relatien
There, we usé; x {2 x - -- x {n as a shorthand fdy x ({2 x - -+ x {p), while (i1, ...,in)
is any permutation ofl, ..., n). The relationw- is terminating, but not confluent. In fact,
the non-determinism of is intended to model the commutativity and the associativity
of the product operation, as reflected in the ruleu{ll). Also, note rule (ROT): in
modular arithmetic, taking thié" root amounts to raising to* mod p— 1.

The choice of the above message formats and rules corresponds to imposing the
following restrictions on the attacker and on the honest participants:

4 An abstraction we make is that a unique operation is used to model both inversp amotl
inverse modp — 1 (the latter operation arises only inside exponents). Also, we are ignoring
that, in modular arithmetic mon, the inverse ok modulon is defined only if gcgk,n) = 1
(see e.g. [29]).

19



SIGNATURE > = {a,unit, 1, {~}(A), dec?5(~)., exp(+,-), root(-,-),
o, mult(s ), inv(s), i/ (), ()71}
FACTORS fu=u | utl
ProODUCTS Fu=1| fox---xfg
Keys K,H:=f | exp(a,F)

MESSAGES M,N:=F | K | {M}k

(DEC) dec‘({Z}n) ~ ¢
(MULT) mult(Zy X -+ x Qoo Lepr X -+ X L) ~ iy X -+ X G, 1<k<n<l
(INV1) inv(Lg X - X {n) ~> inV/(Cg) X -+ X inv/(Cn) n<l
(INV2) inV' (1) ~ T (INvg) inv/ (D)~ Tt (INvg) inv/(Q) x T~ unit
(UNIT1) unitxZ~ T (UNIT2) unit~ 1
(EXP) exp (exp (&,n),¢) ~ exp (& mult(n,{))
(RooT) root (exp (&,1),¢) ~ exp (§, mult(n,inv(Z)))
(T

(CTX) — EvALUATION | n iff {~™n
Clg) ~C[T]

Table 7: Fpy, a frame for modular exponentiation

20




1. there is a fixed upper bounlj 6n the number of factors;

2. product and inverse operations cannot be applied to exponentials and to encrypted
terms;

3. exponentiation starts from the baseand exponents can only be product terms.

More accurately, starting from a term obeying the above conditions, an attacker is ca-
pable of ‘deducing’ all - thougmot necessarily only AC variants of the message
represented by the term. Thus, if one such variant, in a computation, leads to an attack,
it will be considered by the operational model. Restriction (1) might be relaxed at the
cost of introducing a set ofiult) operations, one for eadh> 0, but for simplicity here
we stick to the above model.

The example below illustrates typical usage of the evaluation and of the deduction
relations.

Example 8.Consider a seB= { na,exp (a,ng) }. Then,SF exp(a,na x ng) andS+
exp(a,ng x na). A further example involves root extraction. Consider a Set
{ {M}exp (@ kx1), €xp(a,k x h), h, 1 }. Then,S = m since there exist§ € #(S), { =

decﬁk({m}exp(uﬁkxn), with n = exp (root (exp (a,k x h),h),l), s.t.{ | m. O

The symbolic evaluation relatiofy of 7py is presented in Table 8: it is defined as

the reflexive and transitive closure of the reIatiee>@. We can now explain the adoption
of multiple symbols in the case of produebflt and x), inverse {nv, inv/ and()*l),
and unit (init and 1). If we used just one symbol for, say, product, the rewrite rule
(MuLT,) in Table 8 would be non-terminating, e.g.:

/ e//

XY 35 (Xiy X - X %) s (Vg X - X Vi) X == X %) s+

similarly, for inverse and unit operations. On the contrary, the use of multiple symbols
and the form of the rules ensure termination of the evaluation relation.

Example 9.ConsiderP = a(k).a(x).letz=root (x,k) in P’. After an output action and
an input action, the symbolic evaluationrobt (x, k) produces a global substitutién=
[exp (a,X1) /x| (x, fresh), to be applied to the whole configuration, and a local substitution

o = [exp(a,x1x K1)/, to be applied t&'6. l.e.
(g, P)y — (a6, P'6F');, witho=a(k)-a(x).
O

In analogy to the public-key and shared-key cases, we can define a basis function
for 7oy by considering all ‘non-decomposable’ messages deducible from agives
have two more cases to consider here, non-decomposable products (i.e., products with
no deducible sub-products), and exponentials with non-decomposable exponent. Let us
write G C F if G andF are products, and the set of factors®fs strictly included in
F’s.

21



(DEC,) deci(2) s %, 8= mguZ = {X1}x,N = %)

o 1<k<n<l,
(MuLTy) mult({1,{2) ~>s (X, X --- X X,)0 0 =mgu({q = X1 X -+ X X,
(o =Xk41 X+ X Xn)

(INV1y) inv(Q) vgs (inv/(x,) x --- xinv/(x;,)) @ {éi?ﬂal(’( Xy X X )

(INV2,) inv/(2) ~2 %, 0 0 =mou,x 1)
(INV3) IV/(Q) ~5s 7Y (INV4)  in/(Q) xn~3sunit  8=mguZ,n)
(UNITL,) unit x Z ~5sZ (UNIT2,) unit~5¢1
(EXPL,) exp (x,0) ~3s exp (0, mult(xy, ) 0 = [exp (0, X1) /4
(EXP2,) exp (exp (§,N),2) ~s exp (& mult(n, )
(ROOTL, ) root (x,2) ~2s root (x,2)0 6 = [exp (0, X1) /4
(RoOT2,) root (exp (&,1),) ~5s exp (€, mult(n.inv(2)))
NG
ClZ) ~sCo[Y’]

(C1xy)

SyMmBoOLIC EVALUATION { |gn iff Zﬁ&s-..&sr} and 6=01---6,

Variablesxy, ---, Xn are fresh.

Table 8: Symbolic Evaluation Relation| §) for Fpn

22




Definition 15 (a basis function for Fpy). For each symbolic trace:

bpr(o)= {M|(c + M)and(M e LA U{a,1} UV
or(M=Fando if G,VGCF)
or (M =exp(a,F)ando ff G,VGCF))
or (M= {M}k ando ¥ K) ) }.

We strongly conjecture th@fpy equipped with the above basis function is a regular
frame, but the details remain to be worked out. On the other hand, it is easy to check
that this basis function turngpy into a weakly regular frame (Definition 13). Thus we
can appeal to Theorem 5 to make attacks found with the symbolic method correspond
to attacks on the concrete model.

We now analyse the Diffie-Hellman Protocol. The procBsdefined below is a
description of the Diffie-Hellman protocol presented in the introduction. For simplic-
ity, we just describe a one-session version of the protocol, using again a few obvious
notational shorthands.

A2 3T(exp (a,na)). a2(X). letz=exp (x,Na) ina3({d}).0
B2 b1(y).b2(exp (a,ng)).letw=exp (y,ng)inb3(t).lett’ =decy(t)in0

P2 A|B.

The Diffie-Hellman protocol is subject to secrecy attacks from active adversaries. In
terms of our model, discovering an attack of this type to the protocol amounts to finding

a ground traces such that(on = (€, P||g(d)) \, s ands [~ Secrefd) L1 g(d).
And, indeed, such asexists and it is as follows:

al(exp (0, na)) -a2(exp (0, 1)) - a3({d} exp (o ) ) - &),

wheren, is any environmental name.

Intuitively, the above trace corresponds to an attack in which the environment in-
terceptsxp (0, na), generates a nanmg and handlesxp (a,n;) to A, who believes the
message is fromB. ThenA computesk = exp (a,n, x na) and erroneously concludes
k is a shared key known b4 andB. Finally, A sends over the network the secret da-
tum d encrypted undek, sod is revealed to the environment, that can compuges
exp (exp (a,na),N;).

We show how the above attack is detected by the verification method. First, consider
the following symbolic execution starting frodby :

a,na)) -a2(x), (letz=exp (x,na)ina3({d}).0 B||g(t).0)),

(

2. @T{exp (o,na) -a2(exp (o,X)), (33({d}exp(asny) -Oll BB | £(1)- 0)). (%)
— (al(exp(a,ma)) X)

— < > X

£

);
-a2(exp (a,X)) -a3({d}exp (axxny)): (BOo [ &(1)-0))s
>.

a’
al(exp(a,na) ~a2<exp((x, ) a3<{d}exp((x,x’><nA)>'g<t>7 Beo)s



In step ), rule (LET,) is applied, withexp(X,na) lg, exp(a,X x na) and 6g =
[exp (a,X) /x], for a fixed fresh.
Now, we show step by step how the attack is detected by the verification method:

1. The symbolic modeMod - is computed (in practice, symbolic traces would be gen-
erated ‘on-the-fly’).
2. The symbolic trace defined above is considered.
3,4. Actiony = g(t) is found such thay unifies with = g(d), via @ = [dA].
5. The setSF(a6) = {0’} is computed, where’ = g086', and®’ = [X/x]. As stated
by Theorem 3,0’ is a consistent trace. Note, in particular, that if we dét=
0" -g(d), thend” I d. Indeed, there existé = decg ({d},) € #H(a"), withn =
exp (a,X x np), & = exp (exp (a,na),X), and{ ~»s~s decy ({d}) ~~s d.
6. Action L does not appear io’, hence,
7. (No, @) is returned.

Note that, as indicated by Theorem 5, the concrete tsaoerresponding to the
attack can be recovered froo by mappingx™to n,.

7 AnImplementation: STA

STA (Symbolic Trace Analyzer) [41] is a prototype tool, written in ML, that imple-
ments some of the verification techniques described in the previous sections. Currently,
STA supports shared-key, public-key cryptography and hashing, while modular expo-
nentiation has not yet been integrated in the tool.

We now illustrate the use of STA on the Needham-Schroeder protocol introduced
in Example 2, and check the authentication propéuyhAtoBdescribed in 3. When
required to check whethéiSsatisfiesAuthAtoB STA finds a trace o Sthat violates
the property. The trace is reported below:

disclose(kl, kAT, kB",idy,1idp,idz) - a’T{{['A, ida]}q+)-
bI{[MA, idyJbigr) - b2({[WA NBl}iear ) - a2({[W'A, NBJ}ar )
a'3({[nBl}+)-b3({NBl}kg+)-

This trace corresponds to the attack discovered by Lowe, that can be informally ex-
plained as followsA runs two parallel sessions, one seemingly witland the other
seemingly withB. In fact, bothA andB are talking to the adversary, who intercepts all
messages. This allows the adversary to re-use the ndAdgssued byA in its inter-
action withl) when impersonating the role éftalking toB. Then, the adversary can
induceA to decrypt messagn’A nBJ} i+, thus gettingnB (actionsa’2 anda’3).

This attack was found after examining 26 symbolic configurations, which took a
fraction of a second on a PC with a Pentium Il processor and a 64M RAM. After
repairing the flaw as suggested by Lowe, that is by inserting explicit identities inside
each encrypted message, STA finds no additional attack. The exploration reached all the
60 configurations that constitute the complete symbolic state-space of the protocol, and
this took again a fraction of a second. We also tried a configuration with two initiators
(A, D) and two responder8(C), where each initiator can non-deterministically choose

24



to engage in a run with eithd3, C or |. STA found no attacks on this version either.
The state-space consisting of 24,655 symbolic configurations was completely explored
in less than one minute. It is worthwhile to notice that memory occupation is not a
concern in STA, because a depth-first strategy is adopted when exploring the symbolic
model on the fly.

8 Conclusions

We have proposed a framework for the analysis of security protocols and provided
some sufficient conditions under which verification can be effectively performed via a
symbolic method. In contrast to finite-state model checking, our method can analyse the
whole infinite state space generated by a bounded number of participants. Compared to
other symbolic techniques, we offer a simple and general methodology together with
a regularity condition, which can be instantiated to complete verification methods for
specific crypto-systems. Our method is efficient in practice, because the symbolic model
is compact, and the refinement procedure at its heart is only invoked on demand and on
single symbolic traces. Note that general claims on efficiency should be taken with
some care, given that the protocol analysis problem is NP-hard even under very mild
hypotheses (see e.g. [38]).

References

1. M. Abadi, C. Fournet. Mobile Values, New Names, and Secure Communicati@orifi
Rec. of POPL'012001.

2. M. Abadi, A.D. Gordon. A calculus for cryptographic protocols: The spi calcuihisrma-
tion and Computation148(1):1-70, 1999.

3. R.M. Amadio, S. Lugiez. On the reachability problem in cryptographic protocoBrdo.
of Concur'0Q LNCS 1877, Springer-Verlag, 2000.

4. R.M. Amadio, S. Lugiez, V. Vanaéke. On the symbolic reduction of processes with cryp-
tographic functionsTheoretical Computer Scien@90(1): 695-740, 2003.

5. R. Amadio, S. Prasad. The game of the name in cryptographic tablesodnof Asian’00
LNCS 1742, Springer-Verlag, 2000. RR 3733 INRIA Sophia Antipolis.

6. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Ruld3rdo.
of 14th Computer Security Foundations WorksH&tEE Computer Society Press, 2001.

7. B. Blanchet and Andreas Podelski. Verification of Cryptographic Protocols: Tagging En-
forces Termination. IfProc. of FoSSaCS’'Q3NCS 2620, Springer-Verlag, 2003.

8. M. Boreale. Symbolic Trace Analysis of Cryptographic ProtocolsPioc. of ICALP'01
LNCS 2076, Springer-Verlag, 2001.

9. M. Boreale, M. Buscemi. Experimenting with STA, a Tool for Automatic Analysis of Secu-
rity Protocols. InProc. of SAC'02ACM Press, 2002.

10. M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protoc&do. of
CONCUR '02 LNCS 2421. Springer-Verlag, 2002.

11. M. Boreale and M. Buscemi. Symbolic Analysis of Crypto-Protocols based on Modular
Exponentiation. InProc. of MFCS '03 LNCS 2747. Springer-Verlag, 2003. An extended
version appears in Proc. of FCS’03.

12. Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. An NP Decision Procedure for
Protocol Insecurity with Xor. IfProc. of LICS '03 IEEE Computer Society Press, 2003.

25



13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

Y. Chevalier, R. Kuesters, M. Rusinowitch, and M. Turuani. Deciding the Security of Pro-
tocols with Diffie-Hellman Exponentiation and Product in Exponent®ioc. of FSTTCS

'03, LNCS 2914. Springer-Verlag, 2003.

E.M. Clarke, S. Jha, W. Marrero. Using State Space Exploration and a Natural Deduction
Style Message Derivation Engine to Verify Security Protocol®rt. of IFIP PROCOMET

1998.

H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order logic
and application to cryptographic protocolsRAroc. of RTA'O3LNCS 2706, Springer-Verlag,
2003.

H. Comon, V. Cortier, J. Mitchell. Tree automata with one memory, set constraints and ping-
pong protocols. IfProc. of ICALP’01 LNCS 2076, Springer-Verlag, 2001.

H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or.Rroc. LICS '03 IEEE Computer Society Press, 2003.

D. Dolev, A. Yao. On the security of public-key protocdEEEE Transactions on Information
Theory 2(29):198-208, 1983.

N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of bounded security protocols.
In Proc. of Workshop on Formal Methods and Security Protqctf99.

S. Even and Oded Goldreich. On the Security of Multi-Party Ping-Pong Protoc&mdn

of FOCS 1983.

M.P. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryptographic Pro-
tocols. InProc. of 14th Computer Security Foundations WorksHBEE Computer Society
Press, 2001.

J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security pro-
tocols. InProc. of 13th Computer Security Foundations WorkshBEE Computer Society
Press, 2000.

N. Heintze and J.D. Tygar. A Model for Secure Protocols and Their CompositieBE.
Trans. Software En@2(1): 16-30, 1996.

A. Huima. Efficient infinite-state analysis of security protocolsPmc. of Workshop on
Formal Methods and Security ProtocplErento, 1999.

J.W. Lloyd.Foundations of Logic Programmin@pringer-Verlag, 1987.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In
Proc. of TACAS'96LNCS 1055, Springer-Verlag, 1996.

G. Lowe. A Hierarchy of Authentication Specifications.Rroc. of 10th IEEE Computer
Security Foundations WorksholfEEE Computer Society Press, 1997.

W. Marrero, E.M. Clarke, S. Jha. Model checking for security protocols. In DIMACS Work-
shop on Design and Formal Verification of Security Protocols, 1997. A Preliminary version
appeared as Technical Report TR-CMU-CS-97-139, Carnegie Mellon University, 1997.

A. Menezes, P.C.van Oorschot, and S.A. Vanstbtamdbook of Applied Cryptography
CRC Press 1996.

J. Millen, V. Shmatikov. Constraint solving for bounded-process cryptographic protocol anal-
ysis. InProc. of 8th ACM Conference on Computer and Communication Secix@i
Press, 2001.

O. Pereira and J.J Quisquater. A Security Analysis of the Cliques Protocols SuResc.In

of the 14th IEEE Computer Security Foundations WorksHeBE Computer Society Press,
2001.

J.C. Mitchell, M. Mitchell, U Stern. Automated Analysis of Cryptographic Protocols Using
Muré. In Proc. of Symp. Security and PrivadiZEEE Computer Society Press, 1997.

R. Ramanujam and S.P. Suresh. Tagging makes secrecy decidable for unbounded nonces as
well. In Proc. of FST&TCS’03LNCS 2914, Springer-Verlag, 2003.

R. Ramanujam and S.P. Suresh. A decidable subclass of unbounded security protocols. In
WITS'03, 2003.

26



35.

36.

37.

38.

39.

40.

41.

42.

R. Ramanujam and S.P. Suresh. Undecidability of secrecy for security protocols. Manuscript,
2003. Available ahttp://www.imsc.res.in/~jam/TR-undec.ps.gz.

A.W. Roscoe. Modelling and verifying key-exchange using CSP and FDRroln of 8th
Computer Security Foundations Worksht#pEE Computer Society Press, 1995.

A.W. Roscoe. Proving security protocols with model checkers by data independent tech-
niques. InProc. of 11th Computer Security Foundations WorkshBEE Computer Society
Press, 1998.

M. Rusinowitch, M Turuani. Protocol Insecurity with Finite Number of Sessions in NP-
Complete Theoretical Computer Scien@99(1-3): 451-475, 2003.

S. Schneider. Verifying Authentication Protocols in CEEE Transactions on Software
Engineering 24(8):743-758, 1998.

V. Shmatikov. Decidable Analysis of Cryptographic Protocols with Products and Modular
Exponentiation. IrProc. of ESOP '04LNCS 2986, Springer-Verlag, 2004.

STA: a tool for trace analysis of cryptographic protocols. ML object code and examples,
2001. Available ahttp://www.dsi.unifi.it/~boreale/tool.html. Online version at
http://jordie.di.unipi.it:8080/pweb.

F. Thayer, J. Herzog, and J. Guttman. Strand Spaces: Proving Security Protocols Correct.
Journal of Computer Security(1): 191-230,1999.

27



A Concrete vs. Symbolic Semantics

We prove Theorem 1 that establishes a correspondence between the concrete and the
symbolic transition systems. The proof is based on the lemma below.

Lemma Al. Let F° be a symbolic frame; be a symbolic configuration andp be a
configuration. Then:

(1) Cp — (' implies thatthere exisf;, 8 andpg such thap = (epo)‘dom(p), Cis G
and ' = C1po.

2 Ci>s C1 andp = Bpg, for somepg such thatCipp is a configuration, imply that
cp — CGiPo.

PrROOF

(1) By induction on the rules of the transition relatien—. The cases (IP) and (RAR)
are trivial.

(OuT) (op, a({p).Ap) — (op-a(M), Ap), and{p | M. By def. of symbolic
frame, { le N, p = (8P0) gomp) @nd M = Npo. Then, (o, §<Z>.A>Si>s
(06-3(N), AB); and alsdoB-a(N), AB);po= (op-a(M), Ap). Note that above
we have exploited that() C dom(p) and o) C dom(p).

(LET) (Op, lety=CpinAp) — (op, Ap[/y]), with {p | n. By def. of symbolic
frame, { o & P = (8P0)gomp) a@Nd N = &po. Then, (o, lety={inA);

- (08, AB[E/]), where(aB, ABE])spo = (op, AP[A]).
(MATCH) (op, [(p=np|Ap) — (op, Ap), where(p | &, np | &. By definition
of symbolic framep | § impliesC |g, &1, wherep = (elpo’)ldmp) andé =

&€1po’, for somepy. Alsonp =nB1pg’ (v(n) € dom(p)) and, thusnés |, &2,
wherepy’ = (9290//)|dom(p5) and&,po” = &, for somepy”. Sinceé = &1py’ =
£102p0” = &2pg, then16, and&, are unifiable. LeBs = mgu(&162,&>), i.e.
po” = B3pg for somepy. We letd 2 616263. Then,p = 6pg and(a, [{ =n]A),
-2, (08, AB),, where(a, AB),po = (ap, Ap).
(2) The proof is by induction on—, . It is similar to the previous case and then it is
omitted.

O

Corollary A1 (Theorem 1). Let F* be a symbolic frame; be an initial configuration
and s be atrace of . Then( *\ s if and only if there exists such thatC \, o and s
is a solution ofo.

PROOFE The proof easily follows by a routine induction on the numbef execution
steps, using Lemma Al. In particular, for the ‘if’ direction, we exploit part (2) and note
that Cp = C, since( is ground. O

28



B Proof of Lemma 1

The proof of Lemma 1 relies on Lemma B1 below. The latter essentially states that any
input message that violates the ‘sf-ness’ of a consistent symbolic trace can be decom-
posed so to satisfy the premises of either of the refinement rules.

Lemma B1 (Context Lemma).Let ¥ be a regular frame and be a marked symbolic
trace in sf. Ifp satisfiess - a(M) andao t/ M, then either:

(a) 3C[],N s.t. N¢ b(6) U UV, M =C|N], and Np € b(a)p or
(b) Ix € v(M) s.t.op - p(x).

PROOF Since p satisfies o - a(M), then gp - Mp and VX € v(M),
op = p(X). Since ¥ is regular,Mp € #(b(op)). The proof is by induction on the
least index such thaMp € #H'(b(op)).

(i=0) Mp € b(op). Depending on the form d¥l, there are three cases:
— M =XorM = a. These cases cannot arise, as they would irapty M.
— M =x. Then, (b) holds.
- M¢ YUY.M ¢b(o) as, otherwise, it would follows - M. Since¥ is regular,
b(op) C b(o)p, thus, there existhl’ € b(o) such thatMp = N'p. Then, we

defineC 2 [], N 2 M. Np € b(o)p, asN’ € b(a) andNp = N'p; thus, (a)
holds.

(i >0) M= f(M’), whereM’p C #~1(ap). Note that, for som#l,’ € M’, 6 I M/, as
otherwiseo i M, by definition of#(-). By induction hypothesis, either (aa) there
existC’' andN’ s.t.N" ¢ b(o) U VU ¥, Mj’ =C'[N’], andN’p € b(o)p or (bb) there
existsx € v(M;’) such thaop F p(x). Obviously (bb) implies (b). If (aa) holds, then
we choosédN 2 N’ andC[-] 2 f(MJ,C[],M}), whereM’ = (M}, My’, M), thus (a)
holds true.

O

Lemma B2 (Lemma 1).Let F° be a regular frame and be a marked symbolic trace
in 5. Suppose that satisfiess. Then eithew is in sf, or there are’ andp’ such that
o = 0, 0p=0a'p/, andp’ satisfiesy’.

PROOF. Suppose that is notin sf and leta; be the longest prefix of which is in
sf. This means that = g1 - a(M) - g2, for someM s.t. o1 I/ M. Sincep satisfieso,
we must havesip - Mp. By Lemma B1, either (a) there exi€f-],N,N’ such that
N ¢ b(o1)UY U, M =C|N], N € b(o1) andN’p = Np, or (b) there existg € v(M)
such thaoip F p(X).

If (a) is the case, there exidis= mgu(N,N’) andp is an instance dd as a substitu-
tion. By rule (ReFy), 0 = o’ = 0@[Yjy], for an appropriate renamingy]. Furthermore,
p = BYA]p’, for some ground substitutiopi. Also note that, thanks to the renaming
Y], for eachx’e v(a’), o’ \Ris not longer thamw\ %, and this guarantees thaltsatisfies
d’. Thus we have found’ andp’ as required by the statement of the lemma.

If (b) holds, then we can apply @R), define o’ = o[% and
p’ = [¥/%]p, and the thesis will follow. O

29



C Proofs on 75

C.1 #g5isa Symbolic Frame

Notat|0n By { v N we mean that, ~2s 1, with (v(8) \ v(2)) C V, and byZ >y n

that( Wvl . g»vn, withV = U\/l, for somen > 0 and® = 6 - - - 6,,. Moreover, bye\V
1

we mearB\ (V x £s).

Lemma C1. Suppose~ and~~s are defined respectively as in Table 1 and 4. Then:

(1) If {p ~» n thenV¥X 2 dom(p), 3n’,po and V : XNV = 0, such that{ Ve;{/ n',
p = (8po) \V andn’po = n. Furthermoren € M impliesn’ € M.

(2) If C Jis n andp = Bpg, for somepg, thenp ~~* npo.
PROOFR

(1) By induction on{p ~~ . We only consider the most interesting case of decryption.
(DEC) Let Zp = dec ({[n]}y+). Then, g = decks(Z), with Z'p = {[n]}y+ and
{"p=y . LetV = {x1,%2} be such tha¥ N X = 0. Then, there exist§/ =
mau{’ = {[xl]}X;,Z” =X, ) andp = (8'pp) \V, for somepy. By definition of

~g 3/»\/ x10' = e n”, with r]”p0 =x10'py = C0'py =n. Now letn =M € M.
Thenn”pp =M impliespy = X /‘]po (Wherex are the variables Wh|ch occurin
key posmon inn”) for somepo, andn” wo r]”e” M’ € M, with 8" = [X+/ﬂ.

Finally, Wv n’, with 0299 andn’po=n"0"po=n"py=n€ M.
(2) By structural induction on the ruless.

(ENcy) {[]}x 2 ({28}, with 8 = X"/ We prove tha{[Zpl}xp ~ {[Z8]}x+ Po
in 0 steps. Indeed]Z8]}x+ po = {[6]}e(x)Po = {[CPI}p(x)

(PRY) m(Q) Vﬁs xi0,] with 8 = mgu(¢, (x1,%2)). By definition of 8, 15({p) =
T5(Bpo) = T4 ((X16p0, X20p0)) and 1 ({x16p0, X20p0)) ~~ X6po, by applying
rules of~-.

(DEG,) decﬁ,k(Z) %6, with 8 = mgu{ = {[xl]}xzr, P =X, ). By definition of®,
decwp(Zp) = decwepo(zepo) decX 800 ({[Xlepo]}xgep())- Finally, by applying
rules of~-, decpfep ({1x28Pol}t 6p,) ~ X16P0.

(CTx4) By induction hypothesis{p ~* {'po and, by rules of+, Cp[{p] ~*
Cp[Z’po], i-e. (C[¢])p ~* (CB[L])po.

Proposition C1.

(@) If {p~*nthenvX > dom(p), 3V : XNV =0such that ve;{/ n’, withp = (6pg) \V
andn’po = n. Furthermoren € M impliesn’ € M.

30



(b) If 724N andp = Bpo, for somepo, thenZp ~* npo.

PrROOE

(a) By induction on the numben of steps of relation~, such that{p ~~" . The
casen = 0 is trivial. Suppos@ > 0 andp ~"~1 £ ~ . By induction hypothesis,
20 g withv/ nX =0, p = (&'pp) \ V' and&’pp = &. By & = &'py ~» 1 and by
Lemma C1 (applied t&X UV’) it follows that &'’ ~9»V*” n’, with vV’ n(Xuv’) =0,
Po = (8”po) \V” andn’po = n. Now, letd = 6" andV =V'UV". Then,{ 3»’{, n,
with V(X = 0andp = (8/ph) \V' = (6'((8"po) \ V")) \V' = ((6'8"po) \V")\V' =
(Bpo) \ V, exploiting the fact that (6') C (X UV'). Furthermore, ifn € M, then
n’ € M, by Lemma C1.

(b) By induction on the numben of steps of relation~g, i.e. such that 9»15 (1 ~e3s

o ~e»”s n, with p = 616 --6,pg, for somepg. The casen = 0 is trivial. Suppose
C 9»13 G 333 fe 3»”5 (n %é n. By induction hypothesig,p | {npo, for somepg such
thatp = 61 ---6,po. By applying Lemma C1 tg,po, it follows that{p ~~* {npg ~~
NPy, for somepy,.

O

Corollary C1 (Proposition 1). Tpsk is a symbolic frame.

PrROORF It trivially follows by Proposition C1 withX 2 dom(p). O

C.2 g isaRegular Frame

We now prove thaif 5 is a regular frame. Propositions C2 and C3 below statelifjat
satisfies respectivelg)/ Conditions 1 and 2 in the definition of regular frame (Def. 10). In
particular, note that Proposition C2 generalises Condition 1 in Def. 10, sitetow

can be either a trace or a solved form.

Proposition C2. Let o be a sf or a trace in psk. Suppose/(M) C V. Then,o +
Miff M € H (bpk(0)).

PROOFE Suppose + M. By induction on the structure &fl.

— M € EAL. Then,M € HO%(bp(0)).

— M= (9)*. ThenM € #(by(0)).

— M = (m)*. Then,(m)* € #*(bpk(0)), by definition.

— M = (M1,M3). By induction hypothesi#li, M, € # (byk(0)) and, consequently,
M e H (bpk(0)).

- M={M};. If o (M, uf), M € bp(o), by definition. Otherwise, by induction
hypothesis, ut, M’ € H(bpk(0)) and, thus,
(M} =M € H(bpi(0)).

31



On the other hand, suppos¢ € # (bpk(0)). By induction on the leas} such that
M e H!(bpk(0)).

(J=0) There are two cases.M € VU EAN trivially o - M. ElseM € bp(o) and it
follows by definition that - M.

(j >0) SupposeM = {[M']},+ (the caseM = (M1,M,) is analogous), wittM’, u* €
H1(bpk(0)). Then, the thesis follows by induction hypothesisMhandu™.

O

The proof of Proposition C3 relies on the lemmata below. Lemma C2 says that
the deducibility relation on messages}- M, is preserved by ground substitutiops
under suitable conditions. Lemma C3 generalises Proposition C2 to arbitrarygerms
Lemma C4 is a sort of ‘converse’ of Lemma C2 (i.e., from - {p it is deduced that
o ¢, under appropriate conditions).

Lemma C2. Leto be in sf ant be a substitution that satisfies If o - M, then:

1) v(M) C V.
(2) op - Mp.

PROOF. Let og be the shortest prefix @f such thatop - M. The proof is by induction
on|aool. The caseap| = 0 is obvious. Iflag| > 0, we proceed by induction on the least
index j such that there existse #(0p), withn | M.

(j =0) Necessarilyn = M. The caseM € VU EA is obvious. IfM € ap thenMp €
oop and thusopp F Mp, i.e. (2). We now prove (1). It is not the case thais an
input message, i.exp = 01 -a(M) - 0y, as it would implyo; = M (by definition
of sf), in contradiction to the hypothesis ag. Then necessarili is an output
message, i.e09 = 01 - a(M) - 62. By definition of symbolic trace, it follows that
v(M) N ¥ C v(o1) N V. By induction hypothesis og1, v(o1) N ¥ = 0 (other-
wise, (1) would be violated fap;) and, thus, M) C V.

(j >0) Suppose) = deCE’E(Zl) with 1 | {[M]},+ and2 | u~. By induction hypothe-

sis, \{{M]},+,u”) C ‘IA/ which implies (1) forM. Also, by induction hypothesis,
0op = {[Mp]}(u+p) @andaop = (u™)p. It follows thatoop — Mp. The other cases
(n=C"n=C,n=({1,{2), n =T5(Q) are similar).

O
Remark C1.

1. Itis straightforward to prove the analogue of Lemma C2(1) for traces, i.es:heet
atrace and a message such thet- M, then (M) C 7.
2. Leto be a sf. Then (o) C 7. This fact trivially follows by Lemma C2(1).

Let us now generalise the definition of deduction relatiomo arbitrary terms, by
lettingo - ¢ ifand only if 3n € # (o) :n | C.

32



Lemma C3. Leto be in sfinfg. Theno = {if and only if € #(bpk(0)).

PROOF. The ‘if’ part of the lemma is proved by an easy induction on the lg¢astch
that{ € #'(bpk(a)). Conversely, suppose | ¢, for somen € #(a). The proof is by
induction on the least such than € # (o).

(j =0) Then, eithen ={ =M € o for someM, and the result follows from Lemma C1,

org,n € ENUY, and the result is trivial.

(j > 0) We distinguish the outermost operatormpfThe only non-trivial case ig =
dech’ (n2), wherens | {{{]}¢+ andny | '~ By induction onj, {{{J} ¢+ € H (bpk(0)).
The are two cases:

1. {{UB¢+ € HO(bpk(0)). Then, it must be{[{]}z+ = {M]}y+ € bpk(0), hence
(=M, for someM. Again, the thesis follows from Lemma C1.

2. {{{}g+ € H (bpk(0)) with i > 0, hencel, € # (bpk(0)), which is the thesis for
this case.

O

Lemma C4. Leto be in sf,p satisfyo and A= {mm* . m~ |me A(}. If op I n, with
n ground, then there exisfs withv(x) C v(o) such thaio - x andxp = n. Moreover,
if n € Athenx =n.

PROOF Let op be the shortest prefix @ such thatogp - n. The proof is by induction
on|ag|. If |op| =0, we takex 2 n. And, indeedgo - x since r{n) € EAL. If |oo| > 0,
we proceed by induction on the least indieguch that there existse H(opp), with

¢in.

(j=0) Itmustben ={=M € goU EA_. The caseM € EA_ is obvious. IfM € aopp,
there existgg = N € 0p such thatNp = M and obviously YN) C v(g). Further-
more, it is not the case thit= (X)*, as this would imply(gp \ X)p - p(X)* =M,
with oo \ X shorter tharoy, contradicting the minimality 06o. Also, it is not the
case thaN = (x)*, as (ap) C ¥, by Remark C1(2). It follows that i1 = (m)* ¢
AthenN = M, sinceNp = M.

(j > 0) There are different cases, depending on the outermost operaioHefe we
consider the only non-trivial case, i&= decg:(zz), where(z | {[n]}y+ andqy |
. By induction hypothesis (internal or external) it follows that thereyarand
X2 such that:

() 0 - X2 = {IXl}y» with v({[XJ}y) € v(00) and {[x]}yp = {In]} . for some
X, W (note that we can assume w.l.o.g. that 7/, by considering the shortest
prefix ag of ap S.t.app = {[N]}y+).

(i) agp F X2, with v(x2) C v(op) andxzp = Y~. Moreover, ify~ € Atheny, =
.

By Lemma C3 it follows tha{[x]}yy € # (bpk(00)), hence there are two cases:

1. {X}}y € bpk(00). In this case{[x]}y = {[N]}«+, for someN, k. (Note that it
cannot arise thap’ = X", a", by definition ofby(-), ory/ =x* since (/') C
v(0gp) € v by Remark C1 (2).) Hence) = k, from (i).

33



By (ii) it follows that xo = k=. By ap - {[X]}x+ andop F k™ it follows that
0o + X, where by (i)xp =n, and \X) C v(op). Moreover, ifn € A then
obviouslyx = n (in particular, it is not the case that= X, by the minimality
of Go).

2. {X}y+ € H'(bpk(00)), t > 0. Thus,x,y'* € #(bpk(0o)). By Lemma C3,
oo F x and by (i)xp =n and (x) C v(op). Finally,n € Aimpliesx = n, by
the same reasoning as in (1) (from (i)).

O

Proposition C3. Leto be in sfinfg. Thenbpi(op) € bpk(0)p, for anyp that satisfies
o.

PROOF. SupposeM € bpk(op). Note that, by Remark C1(1) and by definitiontapk(-),
M is necessarily ground. We have to prove that there ekistspi(0) such thalNp =
M. Let ag be the shortest prefix @f such thatigp - M. Clearly,M € bpk(oop) too. We
distinguish the two possible cases, depending on the structiWle of

— M = (k)*. Thenag - (k)* by Lemma C4 and obviously - (k)*. In this case, we
takeN 2 (K)* € by (0).

- M ={[M'}x+, with op ¥ (M’,m™). By Lemma C4 there exisgssuch thaog + x,
v(X) C v(op) andxp = M. By the hypotheses oo, X # X and so it must bg =
{IX'Thy, for somex’, p. Now, by Lemma C3, it follows thag € # (bpk(00)), for
somej > 0. But it holds that I# (X', W), otherwise by Lemma C2 it would follow
thatap  (X'p,Pp) = (M’ k™), contradicting the hypothesis thit € bpi(op).
Therefore it must bg = 0, hencel = N € bpk(0) andNp =M.

O
Theorem C1 (Theorem 2).7;k is a regular frame.

PrRoOOF The two conditions of regularity follow respectively from Proposition C2 (note

that, by Remark C1(1), ifp is a trace andp + M then (M) C /) and Proposition C3.
O

34



