
D-Fusion: a Distinctive Fusion Calculus?

Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
2 Dipartimento di Informatica, Università di Pisa, Italy.

boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it

Abstract. Fusion calculus is commonly regarded as a generalisation of pi-calculus. Ac-
tually, we prove that there is no uniform fully abstract embedding of pi-calculus into Fu-
sion. This fact motivates the introduction of a new calculus, D-Fusion, with two binders,
λ andν. We show that D-Fusion is strictly more expressive than both pi-calculus and
Fusion. The expressiveness gap is further clarified by the existence of a fully abstract
encoding of mixed guarded choice into the choice-free fragment of D-Fusion.

1 Introduction

A recent trend in the design of certain distributed applications based on XML like Web ser-
vices [20] or business-to-business systems [6] sees the emergence of a message-passing pro-
gramming style. Languages like Highwire [5] provide, in a concurrency setting, sophisticated
data structures; these allow programmers to describe and manipulate complex messages and
interaction patterns. If one looks for ‘foundational’ counterparts of these programming lan-
guages, both the pi-calculus [9, 10] and the Fusion calculus [16], seem very promising candi-
dates. Both of them, indeed, convey the idea of message-passing in a distilled form, and come
equipped with a rich and elegant meta-theory.

The main novelty of Fusion when compared to the pi-calculus is the introduction offusions.
A fusion is a name equivalence that, when applied onto a term, has the effect of a (possibly
non-injective) name substitution. Fusions are ideal for representing, e.g., forwarders for objects
that migrate among locations [3], or forms of pattern matching between pairs of messages [5].
Computationally, a fusion is generated as a result of a synchronisation between two comple-
mentary actions, and it is atomically propagated to processes running in parallel with the active
one. This happens in much the same way as, in logic programming, term substitutions resulting
from a unification step on a subgoal can be forced on the other subgoals.

If compared to pi-calculus name-passing, fusions enable a more general name matching
mechanism during synchronisation. However, differently from the pi-calculus, the binding
mechanism of Fusion ignores the issue of unicity of newly generated names. One of the goals
of this paper is to show that this fact limits the expressiveness of Fusion. Overcoming this lim-
itation calls for co-existence of two name binders,λ andν: the former analogous to the only
binder of Fusion, and the latter imposing unicity. The resultingdistinctiveFusion calculus, or
D-Fusion, is at least as expressive as pi-calculus and Fusion separately, and in fact, we strongly
argue,moreexpressive than both. A more precise account of our work follows.

The binding mechanism of pi-calculus generalises that ofλ-calculus in several ways. Input
prefixa(x). binds likeλx, and name passing takes place in pi-calculus in a way typical of func-
tional programming, i.e., formal names are assigned their actual counterpart. Therestriction

? Research partially supported by FET Global projectsPROFUNDISandMIKADO.



2

binderν, however, is very different fromλ, as a restricted name can be exported (extruded),
with the guarantee that it will never be identified to anything else.

Fusion calculus is presented in [16] as a more uniform and more expressive version of pi-
calculus. The main idea is to decompose input prefixa(x). into a binder(x) and a prefixa〈x〉.
In the polyadic case, matching between the input list and the output list of arguments induces
name unification, i.e. a fusion. The latter is propagated across processes, but one or more
binders can be used to control the scope (i.e. propagation) of the fusion. Thus one achieves both
a perfect symmetry between input and output and a more general name passing mechanism.

At first sight, Fusion is more general than pi-calculus. And, indeed, the pi-calculus transi-
tion system can be embedded into Fusion’s, provided that one identifies restriction(νx) with
the(x) binder of Fusion [16].

Our first move is to argue that this embedding breaks down if comparing the two calculi on
the basis of behavioural semantics. We prove that no ‘uniform’ encoding exists of pi-calculus
into Fusion that preserves any ‘reasonable’ behavioural equivalence (at least as fine as trace
equivalence). Here ‘uniform’ means homomorphic with respect to parallel composition and
name substitution, mapping(νx) to (x) and preserving (a subset of) weak traces. As hinted
before, the ultimate reason for this failure is that in Fusion all names are like logical variables,
i.e., unification always succeeds, which is not true in the pi-calculus.

The above considerations motivate the introduction of a new calculus, D-Fusion, with two
binders,λ andν: the first generalises input prefix, and the second models restriction. Also, any
issue of symmetry between input and output is preempted, since the calculus has just one kind
of prefix (no polarisation); polarised prefixes can be easily encoded, though. In D-Fusion, while
lambdas are used to control the propagation of fusions, restrictions are used to possibly inhibit
fusions. In logical terms, this corresponds to consider unification not only among variables,
but also among variables and dynamically generated constants (that is,ν-extruded names). As
expected, unification fails whenever one tries to identify two distinct constants. We show that
the additional expressive power achieved in this way is relevant. Both pi-calculus and Fusion
are subcalculi of D-Fusion. Moreover, the combined mechanism of restriction and unification
yields additional expressive power: it allows to express a form of pattern matching which
cannot be expressed in the other two calculi. As a consequence, we prove, D-Fusion cannot be
uniformly encoded neither into Fusion, nor into pi-calculus.

Next, the gap between D-Fusion and Fusion/pi-calculus is explored from a more concrete
perspective. First, we exhibit a simple security protocol and a relatedcorrelation property
that are readily translated into D-Fusion. The property breaks down if uniformly translating
the protocol into Fusion. The failure is illuminating: in Fusion, one has no way of declaring
unique fresh names to correlate different messages of the protocol.

Palamidessi has shown [13, 14] that nondeterministicguarded choicecannot be simulated
in the choice (+) -free pi-calculus in a fully abstract way, while preserving any ‘reasonable’
semantics. The reason is that it is not possible to atomically perform, in the absence of+, an
external synchronisation and an internal exclusive choice among a number of alternatives. We
prove that in D-Fusion, under mild typing assumptions, guarded choice can actually be simu-
lated in a fully abstract way in the choice-free fragment. The encoding preserves a reasonable
semantics, defined in terms of barbed equivalence ([11]). Informally, branches of a choice are
represented as concurrent processes. Synchronisation is performed in the ordinary way, but
it forces a fusion between aλ-name global to all branches and aν-name local to the chosen
branch. Excluded branches are atomically inhibited, since any progress would lead them to
fusing two distinctν-names.



3

In the present paper, we are mainly interested in assessing the expressive power of D-
Fusion compared to other calculi. The principal tool for this study will be barbed bisimilarity
and the induced equivalences, as they enjoy a uniform definition based only on a reduction
relation, on an observation predicate and on context-closure. We defer the study of alternative,
more tractable semantics for D-Fusion, like a form of ‘labelled’ bisimulation, to a forthcoming
work.

The rest of the paper is organised as follows. Section 2 contains a proof that the pi-calculus
cannot be uniformly encoded into Fusion. In Section 3 we introduce the D-Fusion calculus, its
operational semantics and barbed congruence. In Section 4 we show that D-Fusion calculus
is strictly more expressive than both pi-calculus and Fusion. We further explore this expres-
siveness gap in Section 5, by means of an example concerning a security protocol, and in
Section 6, by encoding mixed guarded choice into the choice-free calculus. Section 7 contains
a brief overview of some related work and a few concluding remarks.

2 Fusion and Pi

The aim of this section is to illustrate the difference between pi-calculus and Fusion, and to
show that the former cannot be uniformly encoded in the latter.

The crucial difference between the pi-calculus and Fusion shows up in synchronisations:
in Fusion, the effect of a synchronisation is not necessarily local, and is regulated by the scope
of the binder(x). For example, an interaction betweenuv.P andux.Q will result in a fusion of
v andx. This fusion will also affect any further processR running in parallel, as illustrated by
the example below:

R|uv.P|ux.Q
{x=v}−−−→ R|P|Q.

The binding operator(x) can be used to limit the scope of the fusion, e.g.:

R|(x)
(
uv.P|ux.Q

) τ−→ R|(P|Q)[v/x].

whereτ denotes the identity fusion. For a full treatment of pi-calculus and Fusion we refer
to [10] and to [16], respectively.

Below, we show that there is no ‘reasonably simple’ encoding of the pi-calculusΠ into
FusionF . We focus on encodings[[·]] that have certain compositional properties and preserve
(a subset of) weak traces. As to the latter, we shall only require that moves ofP are reflected in
[[P]], not vice-versa. We also implicitly require that the encoding preserves arity of I/O actions
(the length of tuples carried on each channel). This is sometimes not the case for process
calculi encodings; however, it is easy to relax this condition by allowing names of[[P]] to carry
longertuples. We stick to the simpler correspondence just for notational convenience. Note that
the encoding presented in [16] does satisfy our criterion. We shall assume here the standard
pi-calculus late operational semantics [10] and, for the purpose of our comparison, we shall
identify the late input pi-actiona(x̃) with the Fusion input action(x̃)ax̃.

Definition 1. A translation[[·]] : Π → F is uniform if for each P,Q∈ Π it holds that:

– for each trace of actions s not containing bound outputs, P
s=⇒ implies[[P]] s=⇒;

– [[P|Q]] = [[P]]|[[Q]];
– for each y,[[(νy)P]] = (y)[[P]];
– for each substitutionσ, [[Pσ]] = [[P]]σ.



4

Note that the above notion of uniform encoding is stronger than the one introduced in [14].
The next proposition generalises an example from [16]. Below, we fix an arbitraryΠ-

equivalence included in trace equivalence,∼Π, and an arbitraryF -equivalence which is in-
cluded in trace equivalenceand is preserved by parallel composition,∼F (like, e.g., hyper-
equivalence of [16]).

Proposition 1. There is no uniform translation[[·]] : Π → F such that for each P,Q∈ Π:

P∼Π Q implies[[P]]∼F [[Q]] .

PROOF: Suppose that there exists such a translation[[·]]. Let P andQ be the following two
pi-agents:

P = (νu,v) (a〈u,v〉 |u|v.w) Q = (νu,v)
(

a〈u,v〉 |(u.(v.w)+v.(u|w))
)
.

Obviously, P ∼Π Q (e.g. they are strongly late bisimilar). Suppose[[P]] ∼F [[Q]]. Let R =
a(x,y).(cx|cy) andA andB be as follows:

A= [[P]]|R=(u,v)([[a〈u,v〉]]|[[u]]|[[v.w]]) |R
B=[[Q]]|R=(u,v)([[a〈u,v〉]]|[[u.(v.w)+v.(u|w)]]) |R.

Since∼F is preserved by|, A andB are∼F -equivalent. By uniformity of the encoding, it is

easy to check thatA
w=⇒. On the other hand, a careful case analysis shows thatB 6 w=⇒. This is

a contradiction. �

3 The Distinctive Fusion Calculus, D-Fusion

Syntax We consider a countable set of namesN ranged over bya,b, . . . ,u,v, ...,z. We write
x̃ for a finite tuplex1, . . . ,xn of names. The setDF of D-Fusionprocesses, ranged over by
P,Q, . . ., is defined by the syntax:

P ::= 0
∣∣ α.P

∣∣ P|P
∣∣ P+P

∣∣ [x = y]P
∣∣ !P

∣∣ λxP
∣∣ (νx)P

whereprefixesα are defined asα ::= aṽ. The occurrences ofx in λxP and(νx)P arebound,
thus notions offree namesandbound namesof a processP arise as expected and are denoted
by fn(P) and bn(P), respectively. The notion ofalpha-equivalencealso arises as expected. In
the rest of the paper we will identify alpha-equivalent processes. Acontext C[·] is a process
with a hole that can be filled with any processP, thus yielding a processC[P].

Note that we consider one kind of prefix, thus ignoring polarities. However, a sub-calculus
with polarities can be easily retrieved, as shown at the end of this section.

The main difference from Fusion is the presence of two distinct binding constructs,λ and
ν. Theλ-abstraction operator corresponds to the binding construct of Fusion and generalises
input binding of the pi-calculus. The restriction operator (ν) corresponds to the analogous
operator of the pi-calculus: it allows a process to create a fresh, new name that will be kept
distinct from other names.

Definition 2 (Structural Congruence). The structural congruence,≡, between processes is
the least congruence satisfying the abelian monoid laws for Summation and Composition (as-
sociativity, commutativity and0 as identity), and the scope laws

(νx)0 ≡ 0 (νx)(νy)P ≡ (νy)(νx)P (νx)(P+Q) ≡ (νx)P + (νx)Q
λx 0 ≡ 0 λxλyP≡ λyλxP λx(P+Q) ≡ λxP + λxQ



5

plus thescope extrusionlaws

(νx)(P|Q)≡ P|(νx)Q where x/∈ fn(P) λx(P|Q)≡ P|λxQ where x/∈ fn(P)

and also theswappinglaw
λx(νy)P ≡ (νy)λxP.

Operational SemanticsForRa binary relation overN , let R? denote the reflexive, symmetric
and transitive closure ofRwith respect toN . We useσ, σ′ to range over substitutions, i.e. finite
partial functions fromN ontoN . Domain and co-domain ofσ, denoted dom(σ), cod(σ) are
defined as expected. We denote bytσ the result of applyingσ onto a termt. Given a set/tuple
of names̃x, we defineσ|x̃ asσ∩ (x̃×N ), andσ−x̃ asσ− (x̃×N ).

Below, we define fusions, that is, name equivalences that arise as the result of equating two
lists of names in a synchronisation.

Definition 3 (fusions).We letφ,χ, . . . range overfusions, that is total equivalence relations
on N with only finitely many non-singleton equivalence classes. We let:

– n(φ) denote{x : xφy for some y6= x};
– τ denote the identity fusion (i.e.,n(τ) = /0);
– φ−z denote(φ− ({z}×N ∪N ×{z}))?;
– {x = y} denote{(x,y)}?;
– φ[x] denote the equivalence class of x inφ.

We now introduce a labelled transition system for D-Fusion. The reduction relation coin-
cides with the identity fusion action

τ−→ of the labelled transition system. This will be useful in
order to compare D-Fusion with other calculi and, in particular, to prove that D-Fusion cannot
be encoded in pi-calculus (see Section 4).

Definition 4 (labelled transition system).The transition relation P
µ−→Q, for µ a label of the

form (νx̃)λỹ ãv (action) or of the form(νx̃)φ (effect), is defined in Table 1.

Some notations for actions and effects. The bound names ofµ are written bn(µ) and are
defined as expected, while subj(µ) and obj(µ) denote the subject and object part ofµ, if µ
is an action, otherwise they both denote conventional value ‘−’. Moreover, n(µ) denotes all
names inµ. We use abbreviations such as n(φ,µ) to denote n(φ)∪n(µ) and(νz)µ for (νx̃z)φ,
if µ= (νx̃)φ. Furthermore, we shall identify actions and effects up to reordering of the tuplex̃
in (νx̃) andλx̃.

The rules in Table 1 deserve some explanation. As mentioned, we have two kinds of labels,
actions and effects. Apart from the absence of polarities,actionsare governed by rules similar
to those found in pi-calculus. The main difference is that on the same action one can find both
ν- andλ-extruded names. On the other hand,effectsare similar to those found in Fusion: an
effect of the formφ can be created as a result of a communication (ruleCOM), and be propagated
across parallel components, until aλ that binds a fused namez is encountered (ruleλ-OPENf ). At
that point, a substitutive effect[w/z] is applied onto the target process andz is discarded from the
fusion (the result isφ−z). A major difference with respect to Fusion is that our effects can also
ν-extrude names. The side condition ‘φ[z]∩ x̃= /0’ in rule ν-OPEN prevents effects from equating
two distinctν-extruded names. Note that the premises of rulesCOM andλ-OPEN only deal with
binder-free actions and effects, whileλ-OPENa only deals withν-binder-free actions. However,



6

(PREF) α.P
α−→ P (SUM)

P1
µ−→Q

P1 +P2
µ−→Q

(COM)
P1

aũ−→Q1 P2
aṽ−→Q2

P1|P2
{ṽ=ũ}−−−→Q1|Q2

|ũ|= |ṽ| (PAR)
P

µ−→Q

P|R µ−→Q|R

(ν-PASS)
P

µ−→Q

(νz)P
µ−→ (νz)Q

z /∈ n(µ) (λ-PASS)
P

µ−→Q

λzP
µ−→ λzQ

z /∈ n(µ)

(ν-OPEN)
P

µ−→Q

(νz)P
(νz)µ−−−→Q


z∈ n(µ)

µ an action impliesz 6= subj(µ)

µ= (νx̃)φ impliesφ[z]∩ x̃ = /0

(λ-OPENa)
P

λỹ ãv−−→Q

λzP
λỹz ãv−−−→Q

z∈ ṽ− ({a}∪ ỹ) (λ-OPENf )
P

φ−→Q

λzP
φ−z−→Q[w/z]

zφ w, w 6= z

(MATCH)
P

µ−→Q

[a = a]P
µ−→Q

(STRUCT)
P1 ≡ P P

µ−→Q Q≡Q1

P1
µ−→Q1

Symmetric rules for(SUM) and(PAR) are not shown. Usual conventions about freshness of bound

names apply.

Table 1.Actions and effects transitions in D-Fusion.



7

structural congruence permits freely movingλ’s andν’s, so the general case is covered via
STRUCT.

Let us illustrate the rules with some examples. We shall write{x̃ = ỹ}.P for (νc)(cx̃|cỹ.P)
(for a fresh namec).

Example 1.

1. LetP = (νc)((νx)cx.P1 |cy.P2). The interaction betweencx.P1 andcy.P2 will result into a
fusion{x = y}, that causesx to be extruded:

P≡ (νx)(νc)(cx.P1 |cy.P2)
(νx){x=y}−−−−−→ (νc)(P1 |P2).

Now considerQ= λyP. The effect ofλ-abstractingy in P is that of removingφ and getting
the substitution[x/y] applied onto the continuation:

λy(νx)(νc)(cx.P1 |cy.P2)
τ−→ (νx)((νc)(P1 |P2)[x/y]) .

2. Another example is as follows:

λz(νw){z,a = w,b}.P {a=b}−−−→ (νw)P[w/z], but λz(νw){z,z= w,b}.P (νw){w=b}−−−−−−→ P[w/z].

Encoding I/O polaritiesWe can encode polarities as follows:

c〈ṽ〉.P 4
= (νx)λyc̃vxy.P c〈ṽ〉.P 4

= (νx)λyc̃vyx.P

for some chosen freshx andy. The position of theν-namex forbids fusions between actions
with the same polarity and, hence, communication. For instance, the processc〈ṽ〉.P|c〈ũ〉.Q
has noτ-transition, since the latter would force the fusion of two distinctν-names, which is
forbidden by the operational rules. We denote byDF p, polarised D-Fusion, the subset ofDF
in which every prefix can be interpreted as an input or output, in the above sense.

Barbed CongruenceWe now define our main tools for assessing the expressive power of
D-Fusion compared to other calculi, that is barbed bisimulation and barbed congruence.

Definition 5 (barbs).We write P↓ a if and only if there exist an action µ and a process Q such
that P

µ−→Q andsubj(µ) = a.

Definition 6 (barbed bisimulation). A barbed bisimulationis a symmetric binary relationR
between processes such that PR Q implies:

1. whenever P
τ−→ P′ then Q

τ−→Q′ and P′R Q′;
2. for each name a, if P↓ a then Q↓ a.

P is a barbed bisimilar to Q, written P
.∼Q, if PR Q for some barbed bisimulationR .

Definition 7 (barbed congruence).Two processes P and Q arebarbed congruent, written
P∼Q, if for all contexts C[·], it holds that C[P] .∼C[Q].



8

Example 2. 1. An example of ‘expansion’ for parallel composition is as follows:

(νk)ak.0|av.0 ∼ (νk)ak.av.0 + av.(νk)ak.0 + (νk){k = v}.0

On the other side,

((νk)ak.ak.0)|av.0 6∼ (νk)ak.(ak.av.0+av.ak.0) + av.((νk)ak.ak.0) + (νk){k= v}.ak.0,

since the two processes are not barbed bisimilar within a contextC[·] = (λx,v)([·] |ax.0).
2. The following two examples show the effect of fusing aλ-abstracted name with a free

name and with anotherλ-abstracted name, respectively:

λv{k = v}.P ∼ τ.P[k/v] (λk,v) {k = v}.P ∼ λk τ.P[k/v].

On the contrary,
(νv){k = v}.P 6∼ τ.P[k/v],

since the two processes are not barbed bisimilar within a contextC[·] = (νk) [·].

4 Expressiveness of D-Fusion

Pi-calculus and Fusion are subcalculi of D-Fusion, because their respective labelled transition
systems are embedded into polarised D-Fusion’s, under the two obvious uniform translations
from Π andF to DF p given below. The definition of uniformity can be extended to the case
of encodings fromF /Π into DF p in the obvious way: in particular, by requiring that(x) and
(νx) be mapped toλx and(νx) , respectively.

Definition 8. The translations[[·]]π : Π→DF p and[[·]] f : F →DF p are defined by extending
in the expected homomorphic way the following clauses, respectively:

[[a〈x〉.P]]π = a〈x〉.[[P]]π [[a(x).P]]π = λx a〈x〉.[[P]]π [[(νx)P]]π = (νx) [[P]]π
[[a〈x〉.P]] f = a〈x〉.[[P]] f [[a〈x〉.P]] f = a〈x〉.[[P]] f [[(x)P]] f = λx [[P]] f

As expected, inclusion in term of labelled transition systems naturally lifts to bisimulation
equivalences. Let∼π and∼f denote barbed congruence, respectively, overΠ ([17]) and over
F (see [19]). Also, let∼[[π]] and∼[[f]] be the equivalences onDF p obtained by closing barbed
bisimulation

.∼ only under translated pi- and Fusion-contexts, respectively (e.g.,P∼[[π]] Q iff
for eachΠ-contextC[·], [[C]]π[P] .∼ [[C]]π[Q]).

Proposition 2.

1. Let P and Q be two pi-calculus processes. P∼π Q iff [[P]]π ∼[[π]] [[Q]]π.

2. Let P and Q be two Fusion processes. P∼f Q iff [[P]] f ∼[[f]] [[Q]] f .

Note that, under the hypothesis that processes are image-finite (see e.g. [17]), pi-calculus
early congruence and Fusion hyper-equivalence coincide with their respective barbed congru-
ences (see [17] and [19], respectively).

Most interesting, we now show that D-Fusion cannot be uniformly encoded intoΠ. The
intuitive reason is that, in D-Fusion, the combined use of fusions and restrictions allows one
to express a form of input with pattern matching. This is not possible inΠ, at least without



9

breaking atomicity of certain actions (e.g. choice). To show this fact, we restrict our attention
to polarised D-Fusion,DF p.

Given P ∈ Π and a trace of actionss, let us writeP
ŝ=⇒ if P

s′=⇒ for some traces′ that
exhibits the same sequence of subject names, with the same polarity, ass(e.g.,s= a〈x̃〉·λỹb〈ṽ〉
ands′ = a〈z̃〉 ·b〈w̃〉). The reference semantics forΠ is again the late operational semantics.

Definition 9. A translation[[·]] : DF p → Π is uniform if for each P,Q∈ DF p:

– for each trace s, P
s=⇒ implies[[P]] ŝ=⇒;

– [[P|Q]] = [[P]]|[[Q]];
– for each y,[[(νy)P]] = (νy) [[P]];
– for each substitutionσ, [[Pσ]] = [[P]]σ.

Below, we denote by∼DF p any fixed equivalence overDF p which is contained in trace
semantics (defined in the obvious way), and by∼Π any fixed equivalence overΠ which is
contained in trace equivalence. Note that barbed congruence overDF p, ∼, is contained in
trace equivalence.

Proposition 3. There is no uniform translation[[·]] : DF p → Π such that∀P,Q∈ DF p:

P∼DF p Q⇒ [[P]]∼Π [[Q]].

PROOF: Suppose that there exists such a translation[[·]]. Let us consider the following two
DF p-processesP andQ:

P = (νc,k,h)(c〈k〉.a.0|c〈h〉.b.0|c〈k〉.0) Q = τ.a.0.

It holds thatP∼Q in DF p: the reason is that, inP, synchronisation between prefixesc〈h〉 and
c〈k〉, which carry differentrestrictednamesh andk, is forbidden (see ruleν-OPEN). ThusP
can only makec〈k〉 andc〈k〉 synchronise, and then performa. Thus,P∼DF p Q holds too.

On the other hand, by Definition 9, for any uniform encoding[[]], c andc̄ in [[P]] can syn-

chronise and, thus,[[P]] b=⇒, while [[Q]] 6 b=⇒ (because ofb 6∈ fn(Q) and of the uniformity with
respect to substitutions). Thus[[P]] 6∼Π [[Q]]. �

Of course, it is also true that D-Fusion cannot be uniformly encoded intoF , as this would
imply the existence of a uniform fully abstract encoding fromΠ to F , which does not exist
(Proposition 1).

The conclusion is that there is some expressiveness gap between D-Fusion on one side and
the other two calculi on the other side, at least, as far as our simple notion of uniform encoding
is concerned. This gap is further explored by means of more elaborate examples in the next
two sections.

5 Example: Correlation

This example aims at illustrating the gap between D-Fusion and Fusion from a more concrete
perspective. Consider the following simple protocol. An agentA asks a trusted serverS for
two keys, to be used to access two distinct services (e.g.A might be a proxy requiring remote
connections on behalf of two different users). Communication betweenA andS takes place



10

over an insecure public channel, controlled by an adversary, but it is protected by encryption
and challenge-response nonces. Informally, the dialogue betweenA andS is as follows:

1. A → S : n
2. S→ A : {n,k}kS
1′. A → S : n′
2′. S→ A : {n′,k′}kS

Here{·}(·) is symmetric encryption andkS is a secret master key shared byA andS. A simple
property of this protocol is thatA should never receivek andk′ in the wrong order (k′ and then
k), even in caseS accepts new requests before completing old ones. Indeed, noncesn andn′

are intended to avoid confusion of distinct sessions. In other words, nonces docorrelateeach
request toSwith the appropriate reply ofS.

Below, we show that the above small protocol and the related ordering property can be
readily translated and verified in D-Fusion. Next, we show that the property breaks down when
(uniformly) translating the protocol into Fusion.

D-Fusion Encryption is not a primitive operation in D-Fusion. However, in the present case, it
is sensible to model an encrypted message{n,k}kS as an output actionkS〈n,k〉: only knowing
the master keykS, and further specifying a session-specific nonce, it is possible to acquire
the keyk (similarly for {n′,k′}kS, of course). Thus, assumingA concludes the protocol with a
conventional ‘commit’ action and thatp is the public channel,A, Sand the whole protocolP
might be specified as follows (below, we abbreviateλx̃ p〈x̃〉.X asp(x̃).X):

A = (νn)(p〈n〉.0|λykS〈n,y〉.(νn′)(p〈n′〉.0|λy′ kS〈n′,y′〉.commit〈y,y′〉.0))
S= p(x).(kS〈x,k〉.0|p(x′).kS〈x′,k′〉.0)
P = (νkS)(A|S).

Let Aspec be the process defined likeA, except that thecommit〈y,y′〉 action is replaced by
commit〈k,k′〉, and letPspec= (νkS)(Aspec|S). The property thatA should never receivek andk′

in the wrong order is stated as:P∼ Pspec.
Informally, equivalence holds true because the second input action inA/Aspec, that is

λy′ kS〈n′,y′〉, can only get synchronised with the second output action inS, that iskS〈x′,k′〉.
In fact, n′ can be extruded onlyafter xhas been received, hence fusion ofx andn′ is forbid-
den. Note that the above protocol specification would not be easily translated in pi-calculus,
because inA the input prefixkS〈n,y〉 has aν-bound namen.

Fusion SupposePf andPf
specare obtained by some uniform encoding ofP andPspecabove into

Fusion. It is not difficult to show thatPf can be ‘attacked’ by an adversaryR that getsn andn′

and fuse them together,R= p(x).
(
p〈x〉.0|p(y).p〈y〉.0

)
. Formally, forα = commit〈k′,k〉,

Pf |R α=⇒ and, thus,Pf |R 6∼he Pf
spec|R,

which proves thatPf andPf
specare not hyper-equivalent.

This example illustrates the difficulty of modelling fresh, indistinguishable quantities
(nonces) in Fusion. This makes apparent that Fusion is not apt to express security properties
based on correlation.



11

6 Encoding guarded choice

In this section we show how the combined mechanisms of fusions and restrictions can be used
to encode different forms of guarded choicevia parallel composition, in a clean and uniform
way. Informally, different branches of a guarded choice will be represented as concurrent pro-
cesses. The encodings add pairs of extra names to the object part of each action: these extra
names are used as ‘side-channels’ for atomic coordination among the different branches. We
start by looking at a simple example.

Example 3.Consider the guarded choiceA = λx(νn)a〈xn〉.P+λx(νm)a〈xm〉.Q. Its intended
‘parallel’ implementation is the process:

B = λx((νn)a〈xn〉.P|(νm)a〈xm〉.Q)

(here,x,n,m /∈ fn(a,P,Q)). Assume a channel discipline by which output actions on channel
a must carry two identical names. InB, the parallel component that first consumes any such
message, forces fusion ofx either ton or tom, and consequently inhibits the other component.
E.g.:

λua〈uu〉|B τ−→∼ (νn)(P|(νm)a〈mn〉.Q) ∼ P|(νn,m)a〈mn〉.Q.

Under the mentioned assumption,(νm,n)a〈mn〉.Q is equivalent to0, because there is no way
of fusingmandn. Thus the process on the right of∼ is equivalent toP. In other words, choice
betweenP andQ has been resolved atomically.

The above line of reasoning can be formalised in two ways. One way is considering a
‘typed’ equivalence∼t, obtained by closing barbed bisimilarity only with respect to contexts
obeying the given channel discipline (i.e. contexts in which the rightmost two names in the
object part ofa-actions are the same). The other way is keeping standard barbed congruence
∼, but inserting processes inside a ‘firewall’ that filters outa-messages not respecting the given
sorting. The latter can be easily defined in D-Fusion relying on ‘non-linear’ inputs:

Fa,a′ [·] = (νa′)(λzazz.a′〈zz〉.0|[·]) .

We state the result in both forms below.

Proposition 4. Let A and B be as in Example 3.

1. A∼t B;
2. Let A′ and B′ be the processes obtained from A and B, respectively, by replacing the out-

ermost occurrences of a with a fresh a′. ThenFa,a′ [A′]∼ Fa,a′ [B′].

Note that the result above exploits in a crucial way features of both Fusion (non-linearity of
input actions, in the firewall, and sharing of input variablex, in B) and of D-Fusion (restricted
input).

Proposition 4 can be generalised to fully abstract encodings of different forms of guarded
choice. For the sake of simplicity, we will state the results in terms of in terms of a typed barbed
equivalence. We believe the results can also be stated in terms of untyped barbed congruence,
at the cost of breaking uniformity of the encoding and of introducing more sophisticated forms
of ‘firewalls’. We examine two cases, input-guarded choice and mixed choice.



12

Input-guarded (ig) choiceLet us fix, as a source language the fragment of polarised D-Fusion
with guarded choice,DF p,ig. In this language, input prefix and summation+ are replaced by
input-guarded choice∑i∈i ai〈x̃i〉.Pi . The target language is the fragment of polarised D-Fusion
with no form of summation. The relevant clauses of the encoding are:

[[∑
i∈i

ai〈x̃i〉.Pi ]]ig = λzΠi∈I (νn)λx̃i ai〈x̃izn〉.[[Pi ]]ig [[a〈ṽ〉.P]]ig = λza〈ṽzz〉.[[P]]ig ,

where Πi∈I Xi denotes the parallel composition of allXi ’s. The encoding acts as a homo-
morphism over the remaining operators. Below, we denote by∼p,ig barbed congruence over
DF p,ig, and denote by∼[[p,ig]] the equivalence over D-Fusion obtained by closing barbed bisim-
ulation under translated contexts (i.e.P ∼[[p,ig]] Q iff for each DF p,ig-contextC[·], it holds
[[C]]ig[P] .∼ [[C]]ig[Q]); note that both equivalences arereasonablesemantics in the sense of
[13]. The proof of the following theorem is straightforward, given that there is a 1-to-1 cor-
respondence between reductions and barbs ofR and of [[R]]ig, for any R, and given that the
encoding is compositional, in particular, for any contextC[·], it holds[[C]]ig[[[P]]ig] = [[C[P]]]ig.

Theorem 1 (full abstraction for ig choice).Let P,Q∈ DF p,ig. It holds that P∼p,ig Q if and
only if [[P]]ig ∼[[p,ig]] [[Q]]ig.

Of course, the above theorem also yields a fully abstract encoding of input-guarded choice
for pi-calculus, which may be viewed as a sub-calculus ofDF p,ig.

Mixed choice in a sorted pi-calculusAs a source language we fix here a sorted version of
polyadic pi-calculus [9] with ‘mixed’ choice,Πmix. In this language, prefixes and+ are re-
placed by mixed summation,∑i∈I ai (x̃i).Pi + ∑ j∈J b j〈ṽ j〉.Q j . The target language is again the
fragment of polarised D-Fusion with no summation at all. The encoding is a bit more complex
than in the previous case, as it implies addingtwo pairs of extra names to coordinate different
branches. The relevant clause is:

[[∑i∈I ai (x̃i).Pi +∑ j∈J b j〈v j〉.Q j ]]mix =
(λz,u)( Πi∈I (νn)λx̃i ai〈x̃iznuu〉.[[Pi ]]mix | Π j∈J(νn)b j〈ṽ juuzn〉.[[Q j ]]mix ).

Note that the relative positions ofν-names correctly forbid communication between branches
of opposite polarities within the same choice (no ‘incestuous’ communication, according to
the terminology of [12]). The encoding acts as a homomorphism over the remaining operators
of Πmix.

Below,∼mix denotes barbed congruence overΠmix, and∼[[mix]] the equivalence over D-
Fusion obtained by closing barbed bisimulation under translatedΠmix-contexts. Both equiv-
alences are reasonable semantics in the sense of [13]. The proof of the following theorem is
again straightforward by correspondence on reductions and barbs, and by compositionality of
the encoding.

Theorem 2 (full abstraction for mixed choice).Let P,Q ∈ Πmix. It holds that P∼mix Q if
and only if[[P]]mix ∼[[mix]] [[Q]]mix.

In a pi-calculus setting, it is well-known that mixed choice cannot be encoded into the
choice-free fragment, if one requires the encoding be uniform and preserve a reasonable se-
mantics [13, 14, 12]. The theorem above shows that pi-calculus mixed choicecan be imple-
mented into the choice-free fragment of D-Fusion. The encoding is uniform, deadlock- and
divergence-free, and preserves a reasonable semantics. This is yet another evidence of the ex-
pressiveness gap between D-Fusion and pi-calculus.



13

7 Conclusions and Future Work

We have proposed the D-Fusion calculus, an extension of the fusion calculus where two distinct
binders coexist, one analogous to the(x) binder in fusion, the other imposing name freshness.
We have shown that D-Fusion is strictly more expressive than both Fusion and pi-calculus.

Our expressiveness results seem to suggest that an efficient distributed implementation of
D-Fusion might be nontrivial to design. This design would certainly involve the introduction
of a distributed model of the calculus, including, e.g., explicit fusions [4] for broadcasting
fusions asynchronously, and primitives for handling explicit localities. We leave this task for
future work. For the time being, we just note that distributed implementations of pi/fusion-like
calculi do exist (e.g., the fusion machine of [3]) and may represent a good starting point for
building a distributed implementation of D-Fusion.

Another point that deserves further study is characterization of D-Fusion barbed congru-
ence in terms of a more tractable, labelled bisimulation, which would avoid universal quan-
tification on all contexts. Preliminary results indicate that definition of this equivalence would
require a (nontrivial) integration ofsubstitutive effects̀a la fusion calculus [16], i.e. name sub-
stitutions resulting from fusions, withdistinctionsà la open pi-calculus [18].

We also plan to extend the D-Fusion calculus by generalising name fusions to substitutions
over an arbitrary signature of terms. It would be interesting to compare the expressive power
of the extended D-Fusion with systems of Logic Programming that allow creation of new fresh
names, such as lambda-Prolog [8].

In [7] Merro has given an encoding from asynchronous Chi calculus [2] and Update calcu-
lus [15] to asynchronous pi-calculus. However, no result on the other direction is given; here,
we have proved that pi-calculus cannot be encoded into Fusion.

In [1] the synchronisation mechanism of the pi-calculus is extended to allow for polyadic
synchronisation, where channels are vectors of names. The expressiveness of polyadic syn-
chronisation, matching and mixed choice is compared and it is shown how the degree of syn-
chronisation of a calculus increases its expressive power.

References

1. M. Carbone and S. Maffeis. On the Expressive Power of Polyadic Synchronisation in Pi-Calculus.
To appear inNordic Journal of Computing.

2. Y. Fu. A Proof Theoretical Approach to Communication. InProc. of ICALP ’97, LNCS 1256.
Springer-Verlag, 1997.

3. P. Gardner, C. Laneve, and L. Wischik. The fusion machine (extended abstract). InProc. of CONCUR
’02, LNCS 2421. Springer-Verlag, 2002.

4. P. Gardner and L. Wischik. Explicit Fusions.Theoretical Computer Science. To appear.
5. L. G. Meredith, S. Bjorg, and D. Richter. Highwire Language Specification Version 1.0. Unpublished

manuscript.
6. Microsoft Corp. Biztalk Server -http://www.microsoft.com/biztalk.
7. M. Merro. On the Expressiveness of Chi, Update, and Fusion calculi. In Proc. of EXPRESS ’98,

ENTCS 16(2), Elsevier Science, 1998.
8. D. Miller. Unification under a mixed prefix.Journal of Symbolic Computation,14(4):321–358, 1992.
9. R. Milner. The Polyadic pi-Calculus: a Tutorial. Technical Report, Computer Science Dept., Univer-

sity of Edinburgh, 1991.
10. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).Information and

Computation, 100(1):1–77, 1992.
11. R. Milner and D. Sangiorgi. Barbed Bisimulation. InProc. of ICALP ’92, LNCS 623, Springer-

Verlag, 1992.



14

12. U. Nestmann and B. C. Pierce. Decoding choice encodings.Information and Computation, 163(1):1–
59, 2000.

13. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous pi-
calculus. InConf. Rec. of POPL’97, 1997.

14. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous pi-
calculus.Mathematical Structures in Computer Science, 13(5):685–719, 2003.

15. J. Parrow and B. Victor. The Update Calculus. InProc. of AMAST’97, LNCS 1349, Springer-Verlag,
1997.

16. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.
In Proc. of LICS’98. IEEE Computer Society Press, 1998.

17. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms.
PhD thesis, Department of Computer Science, University of Edinburgh, 1992.

18. D. Sangiorgi. A Theory of Bisimulation for the pi-Calculus.Acta Informatica, 33(1): 69-97, 1996.
19. B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. PhD thesis,

Department of Computer Systems, Uppsala University, 1998.
20. World Wide Web Consortium (W3C) -http://www.w3.org/TR/wsdl12.


