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Abstract. Fusion calculus is commonly regarded as a generalisation of pi-calculus. Ac-
tually, we prove that there is no uniform fully abstract embedding of pi-calculus into Fu-
sion. This fact motivates the introduction of a new calculus, D-Fusion, with two binders,
A andv. We show that D-Fusion is strictly more expressive than both pi-calculus and
Fusion. The expressiveness gap is further clarified by the existence of a fully abstract
encoding of mixed guarded choice into the choice-free fragment of D-Fusion.

1 Introduction

A recent trend in the design of certain distributed applications based on XML like Web ser-
vices [20] or business-to-business systems [6] sees the emergence of a message-passing pro-
gramming style. Languages like Highwire [5] provide, in a concurrency setting, sophisticated
data structures; these allow programmers to describe and manipulate complex messages and
interaction patterns. If one looks for ‘foundational’ counterparts of these programming lan-
guages, both the pi-calculus [9, 10] and the Fusion calculus [16], seem very promising candi-
dates. Both of them, indeed, convey the idea of message-passing in a distilled form, and come
equipped with a rich and elegant meta-theory.

The main novelty of Fusion when compared to the pi-calculus is the introductfasiofis
A fusion is a name equivalence that, when applied onto a term, has the effect of a (possibly
non-injective) name substitution. Fusions are ideal for representing, e.g., forwarders for objects
that migrate among locations [3], or forms of pattern matching between pairs of messages [5].
Computationally, a fusion is generated as a result of a synchronisation between two comple-
mentary actions, and it is atomically propagated to processes running in parallel with the active
one. This happens in much the same way as, in logic programming, term substitutions resulting
from a unification step on a subgoal can be forced on the other subgoals.

If compared to pi-calculus nhame-passing, fusions enable a more general name matching
mechanism during synchronisation. However, differently from the pi-calculus, the binding
mechanism of Fusion ignores the issue of unicity of newly generated names. One of the goals
of this paper is to show that this fact limits the expressiveness of Fusion. Overcoming this lim-
itation calls for co-existence of two name bindersandv: the former analogous to the only
binder of Fusion, and the latter imposing unicity. The resultisginctiveFusion calculus, or
D-Fusion is at least as expressive as pi-calculus and Fusion separately, and in fact, we strongly
argue moreexpressive than both. A more precise account of our work follows.

The binding mechanism of pi-calculus generalises thatodiculus in several ways. Input
prefixa(x). binds likeAx, and name passing takes place in pi-calculus in a way typical of func-
tional programming, i.e., formal names are assigned their actual counterparesttietion
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binderv, however, is very different from, as a restricted name can be exported (extruded),
with the guarantee that it will never be identified to anything else.

Fusion calculus is presented in [16] as a more uniform and more expressive version of pi-
calculus. The main idea is to decompose input prafi. into a binder(x) and a prefixa(x).

In the polyadic case, matching between the input list and the output list of arguments induces
name unification, i.e. a fusion. The latter is propagated across processes, but one or more
binders can be used to control the scope (i.e. propagation) of the fusion. Thus one achieves both
a perfect symmetry between input and output and a more general name passing mechanism.

At first sight, Fusion is more general than pi-calculus. And, indeed, the pi-calculus transi-
tion system can be embedded into Fusion’s, provided that one identifies resttictjowith
the (x) binder of Fusion [16].

Our first move is to argue that this embedding breaks down if comparing the two calculi on
the basis of behavioural semantics. We prove that no ‘uniform’ encoding exists of pi-calculus
into Fusion that preserves any ‘reasonable’ behavioural equivalence (at least as fine as trace
equivalence). Here ‘uniform’ means homomorphic with respect to parallel composition and
name substitution, mappin@x) to (x) and preserving (a subset of) weak traces. As hinted
before, the ultimate reason for this failure is that in Fusion all names are like logical variables,
i.e., unification always succeeds, which is not true in the pi-calculus.

The above considerations motivate the introduction of a new calculus, D-Fusion, with two
binders A andv: the first generalises input prefix, and the second models restriction. Also, any
issue of symmetry between input and output is preempted, since the calculus has just one kind
of prefix (no polarisation); polarised prefixes can be easily encoded, though. In D-Fusion, while
lambdas are used to control the propagation of fusions, restrictions are used to possibly inhibit
fusions. In logical terms, this corresponds to consider unification not only among variables,
but also among variables and dynamically generated constants (thabisuded names). As
expected, unification fails whenever one tries to identify two distinct constants. We show that
the additional expressive power achieved in this way is relevant. Both pi-calculus and Fusion
are subcalculi of D-Fusion. Moreover, the combined mechanism of restriction and unification
yields additional expressive power: it allows to express a form of pattern matching which
cannot be expressed in the other two calculi. As a consequence, we prove, D-Fusion cannot be
uniformly encoded neither into Fusion, nor into pi-calculus.

Next, the gap between D-Fusion and Fusion/pi-calculus is explored from a more concrete
perspective. First, we exhibit a simple security protocol and a reledeelation property
that are readily translated into D-Fusion. The property breaks down if uniformly translating
the protocol into Fusion. The failure is illuminating: in Fusion, one has no way of declaring
unigue fresh names to correlate different messages of the protocol.

Palamidessi has shown [13, 14] that nondetermingi@rded choiceannot be simulated
in the choice {) -free pi-calculus in a fully abstract way, while preserving any ‘reasonable’
semantics. The reason is that it is not possible to atomically perform, in the absencarof
external synchronisation and an internal exclusive choice among a number of alternatives. We
prove that in D-Fusion, under mild typing assumptions, guarded choice can actually be simu-
lated in a fully abstract way in the choice-free fragment. The encoding preserves a reasonable
semantics, defined in terms of barbed equivalence ([11]). Informally, branches of a choice are
represented as concurrent processes. Synchronisation is performed in the ordinary way, but
it forces a fusion betweenXxname global to all branches andraname local to the chosen
branch. Excluded branches are atomically inhibited, since any progress would lead them to
fusing two distinctv-names.



In the present paper, we are mainly interested in assessing the expressive power of D-
Fusion compared to other calculi. The principal tool for this study will be barbed bisimilarity
and the induced equivalences, as they enjoy a uniform definition based only on a reduction
relation, on an observation predicate and on context-closure. We defer the study of alternative,
more tractable semantics for D-Fusion, like a form of ‘labelled’ bisimulation, to a forthcoming
work.

The rest of the paper is organised as follows. Section 2 contains a proof that the pi-calculus
cannot be uniformly encoded into Fusion. In Section 3 we introduce the D-Fusion calculus, its
operational semantics and barbed congruence. In Section 4 we show that D-Fusion calculus
is strictly more expressive than both pi-calculus and Fusion. We further explore this expres-
siveness gap in Section 5, by means of an example concerning a security protocol, and in
Section 6, by encoding mixed guarded choice into the choice-free calculus. Section 7 contains
a brief overview of some related work and a few concluding remarks.

2 Fusion and Pi

The aim of this section is to illustrate the difference between pi-calculus and Fusion, and to
show that the former cannot be uniformly encoded in the latter.

The crucial difference between the pi-calculus and Fusion shows up in synchronisations:
in Fusion, the effect of a synchronisation is not necessarily local, and is regulated by the scope
of the binder(x). For example, an interaction betweawP andux.Q will result in a fusion of
v andx. This fusion will also affect any further proceRsunning in parallel, as illustrated by
the example below:

RlovP|uxQ 224 RIP|Q.

The binding operatofx) can be used to limit the scope of the fusion, e.g.:
R| (%) (WvP|uxQ) = R|(P|Q)[YX.

wheret denotes the identity fusion. For a full treatment of pi-calculus and Fusion we refer
to [10] and to [16], respectively.

Below, we show that there is no ‘reasonably simple’ encoding of the pi-cal€ulino
Fusion# . We focus on encodingg] that have certain compositional properties and preserve
(a subset of) weak traces. As to the latter, we shall only require that mo®esrefreflected in
[P]l, not vice-versa. We also implicitly require that the encoding preserves arity of I/O actions
(the length of tuples carried on each channel). This is sometimes not the case for process
calculi encodings; however, it is easy to relax this condition by allowing namf]jdb carry
longertuples. We stick to the simpler correspondence just for notational convenience. Note that
the encoding presented in [16] does satisfy our criterion. We shall assume here the standard
pi-calculus late operational semantics [10] and, for the purpose of our comparison, we shall
identify the late input pi-actioa(X) with the Fusion input actiofX) aX.

Definition 1. A translation[-] : ' — ¥ is uniformif for each PQ € I it holds that:

— for each trace of actions s not containing bound outputsZPimplies[P]] =

- [PIQ] = [PIIIQI;
— for eachy,[[(vy) P] = (¥)[Pl;
— for each substitutiow, [Po] = [P]o.



Note that the above notion of uniform encoding is stronger than the one introduced in [14].

The next proposition generalises an example from [16]. Below, we fix an arbifrary
equivalence included in trace equivalensg;, and an arbitraryf -equivalence which is in-
cluded in trace equivalenandis preserved by parallel compositior, (like, e.g., hyper-
equivalence of [16]).

Proposition 1. There is no uniform translatioft] : ' — ¥ such that for each ® < IM:

P ~n Q implies([P] ~ [Q].

PROOF. Suppose that there exists such a translafiinLet P and Q be the following two
pi-agents:

P = (vu,v) (&u,v)|tvw)  Q = (vu,v) (a(u,v)|(T.(v.W)+V.(T[W))).

Obviously, P ~n Q (e.g. they are strongly late bisimilar). SuppdBg ~# [Q]. Let R=
a(x,y).(ctxcy) andA andB be as follows:

A= [Pll|R= (u,v)([a(u,v)] | [G]|[v-w]) |R
B=[QJIR= (u,v)([a(u, v)][ [O.(v.w) +v.(aw)])) [R

Since~ ¢ is preserved by, A andB are~ ¢-equivalent. By uniformity of the encoding, it is

easy to check thak —=. On the other hand, a careful case analysis showstk&t . This is
a contradiction. O

3 The Distinctive Fusion Calculus, D-Fusion

Syntax We consider a countable set of nanfgsranged over by, b,...,u,v,...,z. We write
X for a finite tuplexy,..., X, of names. The seD¥ of D-Fusionprocessesranged over by
P,Q,..., is defined by the syntax:

Pu=0|aP|PP|P+P|[x=yP|IP|AP| ()P

whereprefixesa are defined aa ::= av. The occurrences ofin AxP and(vx) P arebound
thus notions ofree namesndbound namesf a proces#® arise as expected and are denoted
by fn(P) and br{P), respectively. The notion aflpha-equivalencalso arises as expected. In
the rest of the paper we will identify alpha-equivalent processesomtext @] is a process
with a hole that can be filled with any procd&sthus yielding a proce<s[P].

Note that we consider one kind of prefix, thus ignoring polarities. However, a sub-calculus
with polarities can be easily retrieved, as shown at the end of this section.

The main difference from Fusion is the presence of two distinct binding constiuats]
v. TheA-abstraction operator corresponds to the binding construct of Fusion and generalises
input binding of the pi-calculus. The restriction operatey ¢orresponds to the analogous
operator of the pi-calculus: it allows a process to create a fresh, new name that will be kept
distinct from other names.

Definition 2 (Structural Congruence). The structural congruences, between processes is
the least congruence satisfying the abelian monoid laws for Summation and Composition (as-
sociativity, commutativity an@ as identity), and the scope laws

(v)0=0 (vx)(vy)P = (vy) (V)P (vx)(P4+Q) = (V)P + (vX)Q
AX0=0 AXAY P = AyAxP MX(P+Q) = AXP + AXQ



plus thescope extrusiotaws
(vx) (P|Q) = P|(vx) Q where x¢ fn(P) MX(P|Q) = P|AxQ where % fn(P)

and also theswappingaw
AX(vy)P = (vy)AxP

Operational Semantic§or R a binary relation ovef\, let R* denote the reflexive, symmetric
and transitive closure d&® with respect ta\(. We useg, ¢’ to range over substitutions, i.e. finite
partial functions from\{ onto 2’. Domain and co-domain af, denoted dorfo), cod o) are
defined as expected. We denotetbythe result of applying onto a ternt. Given a set/tuple
of namesx, we defineojzy asoN (X x A(), ando_z asa — (X x A).

Below, we define fusions, that is, name equivalences that arise as the result of equating two
lists of names in a synchronisation.

Definition 3 (fusions). We let@, X, ... range overfusions that is total equivalence relations
on A’ with only finitely many non-singleton equivalence classes. We let:

— n(@) denote{x: x@y for some y£ x};

— T denote the identity fusion (i.en(1) = 0);
~ @, denote(q— ({z} x ALUN x {z}))";

— {x=y} denote{(x,y)}";

— @[X] denote the equivalence class of xgin

We now introduce a labelled transition system for D-Fusion. The reduction relation coin-
cides with the identity fusion actiof of the labelled transition system. This will be useful in
order to compare D-Fusion with other calculi and, in particular, to prove that D-Fusion cannot
be encoded in pi-calculus (see Section 4).

Definition 4 (labelled transition system).The transition relation RS Q, for M a label of the
form (vX) Ay av (action) or of the form(vx) @ (effect), is defined in Table 1.

Some notations for actions and effects. The bound namgsaoé written biiy) and are
defined as expected, while sghj and objp) denote the subject and object partjofif p
is an action, otherwise they both denote conventional valdeMoreover, r{p) denotes all
names inu. We use abbreviations such aspry) to denote ) Un(p) and (vz) pfor (vXz) @,
if L= (vX)@. Furthermore, we shall identify actions and effects up to reordering of theXuple
in (vX) andAX.

The rules in Table 1 deserve some explanation. As mentioned, we have two kinds of labels,
actions and effects. Apart from the absence of polariieBpnsare governed by rules similar
to those found in pi-calculus. The main difference is that on the same action one can find both
v- andA-extruded names. On the other hareffectsare similar to those found in Fusion: an
effect of the formpcan be created as a result of a communication @elg, and be propagated
across parallel components, until ghat binds a fused nanzds encountered (ruleoren:). At
that point, a substitutive effef¥/Z] is applied onto the target process amisidiscarded from the
fusion (the result i®_;). A major difference with respect to Fusion is that our effects can also
v-extrude names. The side conditiagiZl "X = @’ in rule v-oren prevents effects from equating
two distinctv-extruded names. Note that the premises of ratesandx-oren only deal with
binder-free actions and effects, whil@ren, only deals withv-binder-free actions. However,
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Table 1. Actions and effects transitions in D-Fusion.



structural congruence permits freely moviklg andv'’s, so the general case is covered via
STRUCT.

Let us illustrate the rules with some examples. We shall wiite: y}.P for (vc) (cX|cy.P)
(for a fresh name).

Example 1.

1. LetP = (vc) ((vx)cx Py | cy.P). The interaction betweerx P; andcy.P, will result into a
fusion{x =y}, that causes to be extruded:

(V) {x=y} (

P = (vx) (ve) (cx Py | cy.P») ve) (PL|P2).

Now consideQ = Ay P. The effect ofA-abstracting/in P is that of removingpand getting
the substitutior*/y] applied onto the continuation:

Ay (V) (ve) (cxPr| cy.Pa) = (vx) ((ve) (Pr|P2)[¥H)
2. Another example is as follows:

Az(vw){z,a=w,b}.P tazh), (vw)PW/z, but Az(vw){z,z=w,b}.P (ow) {w=b}, PW/z].

Encoding I/O polaritiesWe can encode polarities as follows:

Tt(V).P 2 (vX) Ay cvxy.P c(V).P 2 (vX) Ay cvyx P

for some chosen freshandy. The position of thev-namex forbids fusions between actions
with the same polarity and, hence, communication. For instance, the p@@e$c(U).Q
has not-transition, since the latter would force the fusion of two distmetames, which is
forbidden by the operational rules. We denoteZby P, polarised D-Fusionthe subset o> ¥

in which every prefix can be interpreted as an input or output, in the above sense.

Barbed CongruenceWe now define our main tools for assessing the expressive power of
D-Fusion compared to other calculi, that is barbed bisimulation and barbed congruence.

Definition 5 (barbs). We write P| a if and only if there exist an action p and a process Q such
that P Q andsubjp) = a.

Definition 6 (barbed bisimulation). A barbed bisimulatioiis a symmetric binary relatio®
between processes such thaR |®) implies:

1. whenever RS P then Q5 Q and PR Q';
2. for each name a, if Pathen Q] a.

P is a barbed bisimilar to Q, written R Q, if PR Q for some barbed bisimulatiaoR .

Definition 7 (barbed congruence).Two processes P and Q almrbed congruentwritten
P ~ Q, if for all contexts €], it holds that GP] ~ C[Q].



Example 2. 1. An example of ‘expansion’ for parallel composition is as follows:
(vk)akOjav0 ~ (vk)akav0 + av.(vk)ak0 + (vk) {k=v}.0
On the other side,
((vk)akak.0)|av0 ¢ (vk)ak (akav.0+avak0) + av.((vk)akak0) + (vk) {k=v}.ak0,

since the two processes are not barbed bisimilar within a co@text (Ax,v)([-]|ax0).
2. The following two examples show the effect of fusing-abstracted name with a free
name and with anothérabstracted name, respectively:

AW{k=V}.P ~ T.PKAN]  (Ak,V) {k=V}.P ~ AKT.P[KN].

On the contrary,
(w) {k=V}.P % 1.P[KA],

since the two processes are not barbed bisimilar within a co@fext (vk) [-].

4 Expressiveness of D-Fusion

Pi-calculus and Fusion are subcalculi of D-Fusion, because their respective labelled transition
systems are embedded into polarised D-Fusion’s, under the two obvious uniform translations
from I and F to DFP given below. The definition of uniformity can be extended to the case

of encodings fromF /M into DFP in the obvious way: in particular, by requiring tha) and

(vx) be mapped tax and(vx), respectively.

Definition 8. The translationg-]: M — DFP and[-] ¢ : F — DFP are defined by extending
in the expected homomorphic way the following clauses, respectively:

[2(%)-Pln=2a{}). [Pl [a().Plx=AxaX).[Plx [(vX)Pln= (vX) [Pl
a). [Pl [a().Plt =a().[Plr [P =Ax [Pl

As expected, inclusion in term of labelled transition systems naturally lifts to bisimulation
equivalences. Let™ and~f denote barbed congruence, respectively, dV€f17]) and over
F (see [19]). Also, let-[M and~[f] be the equivalences ai ¥ P obtained by closing barbed
bisimulation~ only under translated pi- and Fusion-contexts, respectively @ gl Q iff
for eachl-contextC[-], [Cl|«[P] ~ [C]|=[Q])-

i

x

3
Il

Proposition 2.
1. Let P and Q be two pi-calculus processes.®Q iff [P]; ~[™ [Q].

2. Let P and Q be two Fusion processes-Q iff [P]+ ~I7 [Q].

Note that, under the hypothesis that processes are image-finite (see e.g. [17]), pi-calculus
early congruence and Fusion hyper-equivalence coincide with their respective barbed congru-
ences (see [17] and [19], respectively).

Most interesting, we now show that D-Fusion cannot be uniformly encodedlinithe
intuitive reason is that, in D-Fusion, the combined use of fusions and restrictions allows one
to express a form of input with pattern matching. This is not possibl@,iat least without



breaking atomicity of certain actions (e.g. choice). To show this fact, we restrict our attention
to polarised D-Fusionp FP.

GivenP € I and a trace of actions let us writeP = if P= for some traces’ that
exhibits the same sequence of subject names, with the same polasitg, @ss = a(X) - Ayb(v)
ands' = a(2) - b(W)). The reference semantics fidris again the late operational semantics.

Definition 9. A translation[-] : 2P — M is uniformif for each PQ € DFP:

— for each trace s, P=5 implies[[P] N
— [PIQ] = [PIIIQI;

— foreachy,[[(vy) P]| = (vy) [P];
— for each substitutiow, [Po]] = [P]o.

Below, we denote by, any fixed equivalence oved 7P which is contained in trace
semantics (defined in the obvious way), and~y any fixed equivalence ovén which is
contained in trace equivalence. Note that barbed congruence/®¥ér ~, is contained in
trace equivalence.

Proposition 3. There is no uniform translatiof] : 7P — M such thatP,Q € DFP:

P~pge Q= [P] ~n [Q].

PROOF. Suppose that there exists such a translafiinLet us consider the following two
D FP-processe® andQ:

P = (vc,k h) (c(k).a.0|c(h).b.0[c(k).0) Q=rt.a0.

It holds thatP ~ Q in D P: the reason is that, iR, synchronisation between prefixgé) and
t(k), which carry differentestrictednamesh andk, is forbidden (see rule-OPEN). ThusP
can only makee(k) andc(k) synchronise, and then perfomnThus,P ~ 5+ Q holds too.

On the other hand, by Definition 9, for any uniform encodjiigc andcin [[P]] can syn-

chronise and, thugP] =2, while Q] ;é (because ob ¢ fn(Q) and of the uniformity with
respect to substitutions). Th{iB] #n [Q]. O

Of course, it is also true that D-Fusion cannot be uniformly encodedfintas this would
imply the existence of a uniform fully abstract encoding fréiio F, which does not exist
(Proposition 1).

The conclusion is that there is some expressiveness gap between D-Fusion on one side and
the other two calculi on the other side, at least, as far as our simple notion of uniform encoding
is concerned. This gap is further explored by means of more elaborate examples in the next
two sections.

5 Example: Correlation

This example aims at illustrating the gap between D-Fusion and Fusion from a more concrete
perspective. Consider the following simple protocol. An agkmrisks a trusted serv& for

two keys, to be used to access two distinct services fengight be a proxy requiring remote
connections on behalf of two different users). Communication betweand S takes place
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over an insecure public channel, controlled by an adversary, but it is protected by encryption
and challenge-response nonces. Informally, the dialogue bettvardSis as follows:

%é_’ﬁ:{ K
— n K
" A-S:n °
2. S—A: {I’l k/}ks

Here{-}, is symmetric encryption arkk is a secret master key sharedAdwandS. A simple
property of this protocol is thak should never receieandk’ in the wrong orderk’ and then
k), even in casé& accepts new requests before completing old ones. Indeed, noroel
are intended to avoid confusion of distinct sessions. In other words, nonaesrétateeach
request tdSwith the appropriate reply d.

Below, we show that the above small protocol and the related ordering property can be
readily translated and verified in D-Fusion. Next, we show that the property breaks down when
(uniformly) translating the protocol into Fusion.

D-Fusion Encryption is not a primitive operation in D-Fusion. However, in the present case, it
is sensible to model an encrypted messfyé}y as an output actioks(n, k): only knowing

the master kes, and further specifying a session-specific honce, it is possible to acquire
the keyk (similarly for {n’, k'}, of course). Thus, assumidgconcludes the protocol with a
conventional ‘commit’ action and thatis the public channely, Sand the whole protocd?
might be specified as follows (below, we abbrevigte(X).X asp(X).X):

A = (vn) (p(n)-0[Ay ks(n, ). (viv) ({n).0]AY ks(r',y/).commity,y).0) )
S= p(x).(ks(x,K).0|p(x)-ks(X,K').0
P = (vks) (AlS).

Let Aspec be the process defined lik except that theommitly,y’) action is replaced by
commitk, k'), and letPspec= (Vks) (AspedS). The property thah should never receivieandk’
in the wrong order is stated &~ Pspec
Informally, equivalence holds true because the second input actiddAigpe, that is
AY ks(n',y'), can only get synchronised with the second output actio8 that isks(x', k).
In fact,’ can be extruded onlgifter xhas been received, hence fusionxaindr’ is forbid-
den. Note that the above protocol specification would not be easily translated in pi-calculus,
because i the input prefixks(n,y) has av-bound name.

Fusion Supposé' andPsfpecare obtained by some uniform encodingRdndPspecabove into
Fusion. It is not difficult to show tha’ can be ‘attacked’ by an adversadRythat getsr andn’
and fuse them togethed® = p(x).(P(x).0|p(y).p(y).0). Formally, fora = commitk’, k),

PfIR= and, thusP'|R " Psfpecle

which proves thaPf andPsfpecare not hyper-equivalent.

This example illustrates the difficulty of modelling fresh, indistinguishable quantities
(nonces) in Fusion. This makes apparent that Fusion is not apt to express security properties
based on correlation.
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6 Encoding guarded choice

In this section we show how the combined mechanisms of fusions and restrictions can be used
to encode different forms of guarded choiga parallel composition, in a clean and uniform

way. Informally, different branches of a guarded choice will be represented as concurrent pro-
cesses. The encodings add pairs of extra names to the object part of each action: these extra
names are used as ‘side-channels’ for atomic coordination among the different branches. We
start by looking at a simple example.

Example 3.Consider the guarded choige= Ax(vn) a(xn).P+ Ax(vm)a(xm).Q. Its intended
‘parallel’ implementation is the process:

B= )\x( (vn)a{xn).P|(vm) a(xm>.Q)

(here,x,n,m ¢ fn(a,P,Q)). Assume a channel discipline by which output actions on channel
a must carry two identical names. By the parallel component that first consumes any such
message, forces fusion wkither ton or tom, and consequently inhibits the other component.
E.g.

Auauw B S~ (vn) (P|(vma(mn).Q) ~ P|(vn,m)a(mn.Q.

Under the mentioned assumptigem, n)a(mn).Q is equivalent td, because there is no way
of fusingmandn. Thus the process on the rightefis equivalent td®. In other words, choice
betweerP andQ has been resolved atomically.

The above line of reasoning can be formalised in two ways. One way is considering a
‘typed’ equivalence-!, obtained by closing barbed bisimilarity only with respect to contexts
obeying the given channel discipline (i.e. contexts in which the rightmost two names in the
object part ofa-actions are the same). The other way is keeping standard barbed congruence
~, but inserting processes inside a ‘firewall’ that filters @auhessages not respecting the given
sorting. The latter can be easily defined in D-Fusion relying on ‘non-linear’ inputs:

Faal] = (va) (Azazzd (z2.0][]).
We state the result in both forms below.

Proposition 4. Let A and B be as in Example 3.

1. A~UB;
2. Let A and B be the processes obtained from A and B, respectively, by replacing the out-
ermost occurrences of a with a fresh @henF, 4 [A'] ~ F, v [B'].

Note that the result above exploits in a crucial way features of both Fusion (non-linearity of
input actions, in the firewall, and sharing of input variaklén B) and of D-Fusion (restricted
input).

Proposition 4 can be generalised to fully abstract encodings of different forms of guarded
choice. For the sake of simplicity, we will state the results in terms of in terms of a typed barbed
equivalence. We believe the results can also be stated in terms of untyped barbed congruence,
at the cost of breaking uniformity of the encoding and of introducing more sophisticated forms
of ‘firewalls’. We examine two cases, input-guarded choice and mixed choice.
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Input-guarded (ig) choice_et us fix, as a source language the fragment of polarised D-Fusion
with guarded choicep#™'9. In this language, input prefix and summatierare replaced by
input-guarded choicg;; & (X).P. The target language is the fragment of polarised D-Fusion
with no form of summation. The relevant clauses of the encoding are:

[> &%) Rllig =AzMici (v A% & (%zn).[Rlig  [aV).Plig =Aza(vz2.[Plig

1€l
where i X denotes the parallel composition of a's. The encoding acts as a homo-
morphism over the remaining operators. Below, we denote-b§ barbed congruence over
DFP9 and denote by.[P19l the equivalence over D-Fusion obtained by closing barbed bisim-
ulation under translated contexts (iR ~[Pi9] Q iff for each DFPY-contextC]], it holds
[Clig[P] ~ [Cllig[Q)); note that both equivalences armasonablesemantics in the sense of
[13]. The proof of the following theorem is straightforward, given that there is a 1-to-1 cor-
respondence between reductions and bartR afd of [R]ig, for any R, and given that the
encoding is compositional, in particular, for any contei, it holds|[Cllig[[Pllig] = [C[P]]lig-

Theorem 1 (full abstraction for ig choice).Let RQ € DFP9_ 1t holds that P~Pi9 Qifand
only if [P[ig ~[P'9 [Qlig.

Of course, the above theorem also yields a fully abstract encoding of input-guarded choice
for pi-calculus, which may be viewed as a sub-calculu®g™'"9.

Mixed choice in a sorted pi-calculug\s a source language we fix here a sorted version of
polyadic pi-calculus [9] with ‘mixed’ choice[1™X. In this language, prefixes and are re-
placed by mixed summatioiy,c, & (%).P + ZJ-EJE-(VJ).QJ-. The target language is again the
fragment of polarised D-Fusion with no summation at all. The encoding is a bit more complex
than in the previous case, as it implies addiwg pairs of extra hames to coordinate different
branches. The relevant clause is:

[Yierai (%)-R+ ZjeJHj<Vj>~Qj]]mix = o
(Azu) (Mier (V) AXi & (Xiznuy. [R]mix | Mjea(vn) bj(viuuzn.[Qjllmix ).

Note that the relative positions ofnames correctly forbid communication between branches
of opposite polarities within the same choice (no ‘incestuous’ communication, according to
the terminology of [12]). The encoding acts as a homomorphism over the remaining operators
of MMX,

Below, ~™X denotes barbed congruence ofEFX, and~IMXl the equivalence over D-
Fusion obtained by closing barbed bisimulation under transifé%-contexts. Both equiv-
alences are reasonable semantics in the sense of [13]. The proof of the following theorem is
again straightforward by correspondence on reductions and barbs, and by compositionality of
the encoding.

Theorem 2 (full abstraction for mixed choice).Let RQ M™x_ It holds that P~™X Q if
and only if[P]mix ~I™ [Q] mix-

In a pi-calculus setting, it is well-known that mixed choice cannot be encoded into the
choice-free fragment, if one requires the encoding be uniform and preserve a reasonable se-
mantics [13, 14, 12]. The theorem above shows that pi-calculus mixed ctenidee imple-
mented into the choice-free fragment of D-Fusion. The encoding is uniform, deadlock- and
divergence-free, and preserves a reasonable semantics. This is yet another evidence of the ex-
pressiveness gap between D-Fusion and pi-calculus.
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7 Conclusions and Future Work

We have proposed the D-Fusion calculus, an extension of the fusion calculus where two distinct
binders coexist, one analogous to tlgbinder in fusion, the other imposing name freshness.
We have shown that D-Fusion is strictly more expressive than both Fusion and pi-calculus.

Our expressiveness results seem to suggest that an efficient distributed implementation of
D-Fusion might be nontrivial to design. This design would certainly involve the introduction
of a distributed model of the calculus, including, e.qg., explicit fusions [4] for broadcasting
fusions asynchronously, and primitives for handling explicit localities. We leave this task for
future work. For the time being, we just note that distributed implementations of pi/fusion-like
calculi do exist (e.g., the fusion machine of [3]) and may represent a good starting point for
building a distributed implementation of D-Fusion.

Another point that deserves further study is characterization of D-Fusion barbed congru-
ence in terms of a more tractable, labelled bisimulation, which would avoid universal quan-
tification on all contexts. Preliminary results indicate that definition of this equivalence would
require a (nontrivial) integration &fubstitutive effecta la fusion calculus [16], i.e. name sub-
stitutions resulting from fusions, wittlistinctionsa la open pi-calculus [18].

We also plan to extend the D-Fusion calculus by generalising name fusions to substitutions
over an arbitrary signature of terms. It would be interesting to compare the expressive power
of the extended D-Fusion with systems of Logic Programming that allow creation of new fresh
names, such as lambda-Prolog [8].

In [7] Merro has given an encoding from asynchronous Chi calculus [2] and Update calcu-
lus [15] to asynchronous pi-calculus. However, no result on the other direction is given; here,
we have proved that pi-calculus cannot be encoded into Fusion.

In [1] the synchronisation mechanism of the pi-calculus is extended to allow for polyadic
synchronisation, where channels are vectors of nhames. The expressiveness of polyadic syn-
chronisation, matching and mixed choice is compared and it is shown how the degree of syn-
chronisation of a calculus increases its expressive power.
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