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Abstract. We present a service-oriented approach to the verification of
properties of distributed systems specified in dialects of the π-calculus.
Our verification methodology allows programming the coordination of
the sub-tasks involved in verification runs together with the correspond-
ing verification toolkits. The methodology is supported by a Web-service
infrastructure integrating several verification toolkits for checking prop-
erties of specifications. Our experimental results have confirmed the po-
tential usefulness of the approach.

1 Introduction

In the last years distributed applications over the World-Wide Web, e.g. peer-
to-peer file sharing, have attained wide popularity. Several technologies have
been developed for handling computing problems which involve a large number
of heterogeneous components that are physically distributed and (inter)operate
autonomously. These efforts have begun to coalesce around a paradigm where the
Web is exploited as a service distributor. A service in this sense is a component
available over the Web that others might use to develop other services. Conceptu-
ally, Web services are stand-alone components in the Internet. Each Web service
has an interface accessible through standard protocols and, at the same time,
describing the interaction capabilities of the service. Applications over the Web
are developed by combining and integrating Web services. Moreover, no Web
service has pre-existing knowledge of what interactions with other Web services
may occur. The Web service framework has emerged as the standard and natural
architecture to support the so called Service Oriented Computing (SOC) [12, 23]
paradigm where services are the basic building blocks to construct applications
and service coordination becomes the main concern of the whole development
process.

In [2, 15] we demonstrate that the SOC paradigm is very effective in address-
ing the integration issues of verification toolkits. In particular, we developed a
Web-service infrastructure integrating verification toolkits for checking proper-
ties of mobile systems (e.g., [14, 16, 29]) specified in dialects of the π-calculus [22,
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24] and related toolkits for verifying security (e.g., [5, 27]). The development of
the verification infrastructure has been performed inside the Profundis project
(see URL http://www.it.uu.se/profundis) within the Global Computing Ini-
tiative of the European Union. For this reason we called it the Profundis WEB,
PWeb for short. The prototype implementation of the PWeb can be exercised
on-line at the URL http://jordie.di.unipi.it:8080/pweb.

The main idea of the approach is to make semantic-based verification toolkits
available as Web services, and to establish directories for publishing such Web
services. This facilitates the easy integration and maintenance of heterogeneous
verification toolkits having complementary functionalities.

In the PWeb infrastructure a verification session takes the form of service

coordination describing the rules a set of verification services have to follow
to achieve a certain goal. In other words, the coordination rules are used to
specify how the sub-tasks within any verification run are to be carried out, in
which order and which are the different toolkits involved. Moreover, there are
mechanisms for assigning verification sub-task to the specialized toolkits that
are most appropriate to solve them.

Beyond the current prototype implementation, we envisage the important
role that will be played by PWeb service coordination. Indeed, service coordina-
tion provides several benefits:

– Model-based verification. The coordination rules impose constraints on the
execution flow of the verification session thus enabling a model-based veri-
fication methodology where several descriptions are manipulated together.
Notice that there is a sound conceptual basis for model-based verification
since verification toolkits provide an implementation of well understood se-
mantic theories.

– Modularity. The verification of the properties of a large software system can
be reduced to the verification of properties over subsystems of manageable
complexity: the coordination rules reflect the semantic modularity of system
specifications.

– Flexibility. The choice of the verification toolkits involved in the verification
session may depend on the specific verification requirements.

We argue that service-based approaches have the potential to tackle the tool
integration issues of the software engineering process.

The rest of this paper reports on our experience in exploiting the facilities
of the PWeb infrastructure in the verification of properties of distributed sys-
tems specified in some dialect of the π-calculus. To illustrate the effectiveness
and usability of our approach, we consider a simple but illustrative case study:
the verification of the cryptographic protocol KSL [19]. KSL provides an ab-
stract representation of Kerberos [20] and has been conceived for the repeated
authentication between principals through a trusted server. In particular, the
verification of the KSL protocol will allow us to demonstrate how service coor-
dination supports and facilitates modular verification techniques.



Other approaches have been proposed for integrating verification toolkits;
we conclude this section by discussing a few of them. In the verification com-
munity the standard approach to deal with the integration issue is to provide
a coordination infrastructure based on common format. An illustrative example
of this approach is provided by the FC2 format [6]. The FC2 format has been
designed to represent automata by means of a set of tables that keep the infor-
mation about state, and transition relations between states. The intermediate
language approach has been further developed in the design of the VeriTech
framework [18]. In this framework, the integration among verification toolkits
is obtained by suitable functions providing faithful translations among models
and properties. A key role is played by the core design language (CDL): each
specification is compiled to and from the CDL representation.

A different approach is exploited by the Electronic Tool Integration Plat-

form (ETI) initiative [9, 8]. ETI is a web-based infrastructure for the interactive
experimentation of verification toolkits. The coordination middle-ware (HLL)
provides the ”glue” to integrate the different verification toolkits.

2 Service-Oriented Integration in the PWeb

Over the years several semantic-based verification toolkits have been designed
and experimented to formally address some issues raised by software develop-
ment. The Concurrency Workbench [11], for example, performs analysis on the
Calculus for Communicating Systems. The Mobility Workbench (MWB) [29]
does similar analysis but on the π-calculus. The History-Dependent Automata

Laboratory (HAL) [14] supports verification of logical formulae expressing prop-
erties of the behaviour of π-calculus agents.

The PWeb [2, 15] proposes itself as an experiment to address the integration
issue of verification toolkits by exploiting Web services. The PWeb prototype
implementation has been conceived to support reasoning about the behaviour
of systems specified in some dialects of the π-calculus. It supports the dynamic
integration of several verification techniques (e.g. standard bisimulation checking
and symbolic techniques for cryptographic protocols).

The PWeb has been designed by targeting also the goal of extending avail-
able verification environments (MWB and HAL) with new facilities provided as
Web services. This has given us the opportunity to verify the effective power
of the Web service approach to deal with the reuse and integration of “exiting”
modules. A Web service consists of an interface describing operations accessible
by message exchange over the Internet protocol stack. The description of a Web
service must cover all details needed to interact with it: the message formats,
the transport protocols, and son on. Hence, Web services are a programming
technology for distributed systems based on Internet standards. However, Web
services are not just another object-based paradigm for distributed systems. In-
deed, they promote a service-oriented programming style which is different from
the standard user-to-program style [25, 30]. The service oriented programming



metaphor is usually characterized in terms of publishing, finding and binding

cycle.
To publish-find-bind in an interoperable way Web services rely on a stack

of network protocols. The building block of this protocol is the Simple Object
Access Protocol (SOAP) [7]. SOAP is an XML-based messaging protocol defining
standard mechanism for remote procedure calls. The Web Service Description
Language (WSDL) [10] defines the interface and details service interactions.
The Universal Description Discovery and Integration (UDDI) protocol supports
publication and discovery facilities [31]. Finally, the Business Process Execution
Language for Web Services (BPEL4WS) [26] is exploited to produce a Web
service by composing other Web services.

2.1 The PWeb Verification Services

We now briefly list the main features of the new services of the PWeb. No-
tice that PWeb services have been developed by different groups using different
programming technologies and providing complementary verification techniques.
Moreover, most of the semantic-based verification environments have been de-
veloped independently of each other and there is no guarantee that they can
interoperate so that the verification of certain properties is the result of a col-
laboration among the toolkits.

Mihda [16, 17] performs minimisation of History-Dependent (HD) automata. HD
automata are made out of states and labeled transitions; their peculiarity re-
sides in the fact that states and transitions are equipped with names which
are no longer dealt with as syntactic components of labels, but become explicit
part of the operational model. This allows one to model explicitly name cre-
ation/deallocation, and name extrusion: these are the distinguished mechanisms
of name passing calculi. Mihda has been exploited to perform finite state verifi-
cation of π-calculus specifications.

ASPASyA [4] relies on a symbolic technique to model check properties of cryp-
tographic protocols. Security properties are expressed via a logic that predicates
over data exchanged in the protocol and observed by an intruder in the execution
environment, and also over the “presumed” identities of the protocol principals.
ASPASyA allows varying the intruder’s knowledge, the portion of the state
space to be explored, and the specification of implicit assumptions that are very
frequent in security. The user can opportunely mix those three ingredients for
checking the correctness of the protocol without modifying neither the protocol
specification nor the specification of the desired properties.

TRUST [28, 27] relies on an exact symbolic reduction method, combined with
several techniques aiming at reducing the number of interleaving that have to be
considered. Authentication and secrecy properties are specified using the corre-
spondence assertions [13], and whenever an error is found an intruder attacking
the protocol is given.



STA [5] implements symbolic execution of cryptographic protocols. A successful
attack is reported in the form of an execution trace that violates the specified
property expressed in terms of correspondence assertions.

2.2 The PWeb Directory Service

The core of the PWeb is a directory service. A PWeb directory service is a
component that maps the description of the Web services into the corresponding
network addresses. Moreover, it supports the binding of services.

The PWeb directory maintains references to the toolkits it works with. Every
toolkit has an end-point in the directory service through the WSDL specification.
As expected, the WSDL specification describes the interaction capabilities of the
toolkit; namely which methods are available and the types of their inputs and
outputs. In other words, the WSDL specification describes what a service can
do, how to invoke it and the supported XML types (more precisely the XML
Schema definitions XSD).

For instance, the WSDL-specification of Mihda provides the description of
the reduce service. The description of the reduce service refers to the XML
description of the HD-automaton. The invocation of this service on a given HD-
automata performs the state minimisation of the HD-automata. The WSDL-
description of the reduce service of the Mihda toolkit is displayed in Figure 1.

The PWeb directory service has two main facilities. The publish facility is
invoked to make a toolkit available as Web service. The query facility, instead, is
used to discover which are the services available. The query provides the service
discovery mechanism: it yields the list of services that match the parameter (i.e.
the XSD type describing the kind of services we are interested in).

The service discovery mechanisms is exploited by the trader engine. The
trader engine manipulates pools of services distributed over several PWeb di-
rectory services. It can be used to obtain a Web service of a certain type and
to bind it inside the application. The trader engine gives to the PWeb direc-
tory service the ability of finding and binding at run-time web services without
“hard-wiring” the name of the web service inside the application code. In other
words, the trader engine provides the resource discovery mechanism for PWeb
directory services. A further benefit is given by the possibility of replicating the
services and maintaining a standard access modality to the Web services under
coordination.

The trader engine allows one to hide network details in the service coordi-
nation code. For instance, consider the following code:

0. import Trader

1. offers = Trader.query( "reduce" )

2. red = offers[ 0 ]

3. offers = Trader.query( "model-checking" )

4. mc = find_neighbor(offers)

5. offers = Trader.query( "bisimulation-checking" )

6. bis_chk = offers[ 0 ]



<?xml version="1.0" encoding="UTF-8"?>
<definitions

name="Mihda"
targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://jordie.di.unipi.it:8080/pweb/Mihda.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/schemas">
<import namespace=’’http://http://jordie.di.unipi.it:8080/pweb/schemas’’

location=’’http://jordie.di.unipi.it:8080/pweb/hds_over_pi.xsd’’/>
<types>

<xsd:schema
targetNamespace="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://jordie.di.unipi.it:8080/pweb/Mihda.xsd">

</xsd:schema>
</types>
<message name="ReduceRequest"> <part name="contents" type="xsd1:hds_over_pi"/> </message>
<message name="ReduceResponse"> <part name="return" type="xsd1:hds_over_pi"/> </message>
<portType name="MihdaPortType">

<operation name="Reduce">
<documentation>Minimize the automata</documentation>
<input message="tns:ReduceRequest"/>
<output message="tns:ReduceResponse"/>

</operation>
</portType>
<binding name="MihdaBinding" type="tns:MihdaPortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="Reduce">

<soap:operation soapAction="connect:Mihda:MihdaPortType#Reduce"/>
<input> <soap:body use="literal"/> </input>
<output> <soap:body use="literal"/> </output>

</operation>
</binding>
<service name="Mihda">

<port binding="tns:MihdaBinding" name="MihdaPort">
<soap:address location="http://jordie.di.unipi.it:8080/pweb/mihda"/>

</port>
</service>

</definitions>

Fig. 1. The Mihda WSDL-specification

it describes the implementation of a simple interaction with the trader of the
PWeb directory. The trader is invoked for searching a reduce service (lines 1,2),
a model-checking service (line 3) which is selected among the neighbor sites (line
4), and a bisimulation checker (lines 5, 6).

As a final remark we want to point out that the trader engine provides
facilities which are similar to the CORBA trader. The CORBA trader is used
to query object infrastructures for specific applications and components. The
main difference with respect to the CORBA approach is that we are interested
in proving programmable trading policies.

2.3 Service Coordination

The fundamental technique which enables the dynamic integration of services
is the separation between the service facilities (what the service provides) and



the mechanisms that coordinate the way services interact (service coordination).
In our experiment, the service coordination language is python, an interpreted
object-based scripting language which is widely used to connect existing com-
ponents together.

Below we illustrate an example of service coordination to verify a property
of a specification, i.e. to test whether a π-calculus process A is a model for a
formula F .

:

try:

aut = red.compile( A )

reduced = red.reduce( aut )

if mc.name = ’hal’:

reduced_fc2 = red.to_fc2( reduced )

aut = mc.unfold( reduced_fc2 )

if mc.check( aut, F ):

print ’ok’

else:

print ’ko’

else:

mc.check(reduced, F)

except Exception, e: print "*** error ***"

We briefly comment on the coordination code above. Variables red and mc,
have been linked by the trader engine to the required services. The compile
facility compile of red is invoked to yield the automaton (stored in variable
aut), then, the automaton is minimized. If the available model-checker is HAL,
then the minimal automaton is first transformed into the FC2 format (to_fc2)
and afterward in a format suitable (unfold) for being processes by the HAL

model checker. Finally, a message on the standard output is printed. The message
depends on whether π-calculus process A satisfies the formula A or not. This is
obtained by invoking the model checking facility check.

3 Modular Verification: A Case Study

To illustrate the effectiveness and usability of our approach, we consider as a
case study the verification of a cryptographic protocol. This will allow us to
demonstrate how the PWeb supports and facilitates modular verification.

3.1 The KSL protocol

The cryptographic protocol we consider is the KSL protocol [19]. KSL provides
an abstract representation of Kerberos [20] and has been conceived for the re-
peated authentication between principals A and B through a trusted server S. It
is assumed that the trusted server shares symmetric key kas and kbs with prin-
cipals A and B, respectively. Repeated authentication is performed by means of
an expiring ticket generated by B for A. The secure communication of the ticket



relies on a session-key that A and B establish with the help of S. Until the ticket
is valid (not expired), A can re-authenticate itself with B without requesting a
new session key from S.

We briefly describes the informal specification of KSL as list of exchanged
messages of the form Source→ Destination : Payload

1. A→ B : na,A
2. B → S : na,A, nb,B
3. S → B : {nb,A, kab}kbs

, {na,B, kab}kas

4. B → A : {na,B, kab}kas
, {Tb,A, kab}kbb

, nc, {na}kab

5. A→ B : {nc}kab





I phase

6. A→ B : ma, {Tb,A, kab}kbb

7. B → A : mb, {ma}kab

8. A→ B : {mb}kab

}
II phase

Looking at the structure of the protocol, we can distinguish two parts:

– messages 1 ÷ 5 constitutes the initial session-key exchanging phase,
– messages 6 ÷ 8 are the repeated authentication part, namely, each further

interaction between A and B starts from message 6.

Notice that S does not play any role in the second phase: the trusted server is
involved only in generating and communicating the session key (messages 1÷5).

Initiator A generates a nonce na, and sends it to B which, on turn, asks
S for a new session key. In message 3, S generates a fresh session key kab and
encrypts it into two cryptograms {nb,A, kab}kbs

and {na,B, kab}kas
sent to B.

After decrypting {nb,A, kab}kbs
, B assumes that kab is the fresh session key

generated by S and meant to be shared with A.
Message 4 is rather involved and crucial to establish correctness of the proto-

col. In this step, principal B sends to A a message containing: (i) the cryptogram
{na,B, kab}kas

generated by S, (ii) the “ticket” {Tb,A, kab}kbb
, (iii) a new nonce

nc and (iv) the nonce na encrypted with kab. The ticket is a cryptogram en-
crypted with a key kbb that only B knows and will be used in the second part
of KSL for achieving repeated authentication. Apart from the identity of A, the
ticket contains a time-stamp and the session key so that B can check the validity
of the ticket itself. The nonce nc will be used to prove to B that A really asked
for the session key kab, while the cryptogram {na}kab

is generated to witness A
that B has acquired kab. Message 5 closes the first part of KSL: A sends back
nc encrypted with kab so that B is granted that A acquired the session key.

Principal A knowing kab and the ticket issued by B can re-authenticate itself
performing messages 6, 7 and 8. In message 6, B receives a nonce, ma, and
the ticket that B has previously generated for A. If the ticket is valid, B sends
ma encrypted with kab to A together with a new nonce mb, used to ensure the
identity of A (message 8).

3.2 Verifying KSL

Model checking techniques have been exploited in the verification of crypto-
graphic protocols because they can provide a counterexample when some prop-
erty fails to hold: attack generation. However, model checkers usually require to



limit various “quantity” of the protocol (e.g., the number of participants, the
length of the messages) in order to maintain the search space finite.

Traditional model checking techniques can hardly afford the complexity of
protocols with many steps (as the KSL) because of the state explosion problem.
In the case of KSL, also the use of symbolic techniques results harmless and can
only handle sessions with a very limited number of participants.

To cope with this problem we exploit the modularity of the specification by
splitting the verification session of KSL into two parts (reflecting the two phases
of the protocol). Standard semantic arguments ensures that the second phase
of KSL can be checked under the hypothesis that the first phase is safe. More
precisely, the repeated authentication property relies on the secrecy of the session
key and the tickets exchanged in the first phase. Hence, the second phase can
be verified under the assumption that the session-key (and the validity ticket)
are not corrupted. We, therefore, check the repeated authentication phase only
when the secrecy of kab has been assessed.

The KSL verification session can be roughly described by means of the fol-
lowing pseudo-code.

1. safe:= false;

2. while not safe [

3. get(property);

4. safe:= test(property, KSL[1-5]);

]

5. return test(repeat_auth, KSL[6-8]).

This code could be easily implemented in python, the PWeb coordination lan-
guage, as described in Section 2.3,

Notice that the coordination schemata allows us to combine two different
verification techniques, namely bisimulation checking and model checking. The
first phase of KSL is verified by means of a bisimulation checking technique and
then model checking is exploited in the second phase (detailed in Section 3.4
and 3.5, respectively).

3.3 Encoding KSL in π-calculus

The π-calculus is a name-passing process calculus where names model communi-
cation ports along which process send/receive other (port) names. Convention-
ally, output of a name x on port a is written as a〈x〉 while a(y) is the input
action. Consider the process (ν x)(a〈x〉.P ) | a(y).Q which represents the parallel
composition of (ν x)(a〈x〉.P ) and a(y).Q. The former outputs a name x on a
and continues as P ; notice that x is in the scope of the binder ν which models
the fact that x is a freshly-generated local name. The process a(y).Q receives
on a and continues as the process Q where the received name replaces y. The
reduction representing this behaviour is written as

(ν x)(a〈x〉.P ) | a(y).Q→ (ν x)(P | Q[x/y]).



Note that the scope of the binder ν has been enlarged in the reduction step and
after the communication it contains the continuation of the input process also.
This is called scope extrusion and is one of the main features of π-calculus. In
this paper we only give an informal description of the π- calculus; the interested
reader is referred to [22, 21, 24] for more detailed presentations.

The bisimilation checking tools of the PWeb can only deal with versions of
the π-calculus where only names and not terms can be exchanged. Hence, in
order to use such tools for verifying KSL, we must somehow encode tuples and
cryptograms. For the sake of simplicity, we do not consider here a mapping from
the spi-calculus to π-calculus (like [3]) and prefer to use a simpler and more
specific mapping. Communication of tuples is simply regarded as the separated
communication of each field of the tuple while the case of cryptograms is more
involved. We limit ourselves to symmetric cryptography which is the only type
of encryption used in KSL. Sending a cryptogram {M}k, where k is a symmetric
key, can be interpreted as sending M over k. This guarantees that a process can
acquire M only if it knows k. The delicate modelling of sharing/communicating
of secrets is resolved by exploiting restriction of names together with scope ex-

trusion.
We now describe the π-calculus specification of the KSL server. Hereafter, we

use a〈x1, . . . , xn〉 (resp. a(x1, . . . , xn)) as a shorthand for a〈x1〉. . . . .a〈xn〉 (resp.
a(x1). . . . .a(xn)).

The KSL server can be written as the following π-calculus process (lines
starting with # are comments).

S(p, a, kas, b, kbs)
4
= p(na, a, nb, b).[ a = a][ b = b] # receive&check request

(ν kab) # generate a session key

kbs〈nb, a, kab〉. # send {nb, a, kab}kbs
to B

kas〈na, b, kab〉. # send {na, b, kab}kas
to A

S(p, a, kas, b, kbs)) # restart.

The server specification is parameterised with respect to five names:

– p represents the public channel over which all public messages are sent/received;
– a and b do not represent communication channels but they are used to denote

the identities of the principals A and B of KSL;
– kas and kbs are the keys that S shares with A and B, respectively.

The server S(p, a, kas, b, kbs) waits on the public channel p for the request of
B (message 2 of KSL). It reads in variables na and nb the values of the nonces
sent by B while the identities of the principals are stored in a and b. Then,
S(p, a, kas, b, kbs) checks the identities (the construct [ a = a] can be read as
if a = a then · · ·) and if both are correct the session key kab is generated and
extruded to the other principals on the corresponding private keys.

The other principals of KSL are reported in Table 1. Notice that they are all
recursive processes that continously repeat the first phase of KSL. Cryptographic
protocols often relies upon implicit assumption that is better to take into account
in their verification. For instance, it is usually assumed that a principal can



AI(pa, qa, a, kas, b)
4

=
(ν na)(

pa〈na, a〉.

kas(n, r, kab).

[n = na][r = b]

qa(t, nc).

kab(n).[n = na]

kab〈nc〉.

AI(pa, qa, a, kas, b))

BI(pa, p, qa, b, kbs)
4

=

qa(na, a).(ν nb)(

p〈na, a, nb, b〉.

kbs(n, i, kab).[n = nb][i = a]

(ν nc, kbb, T b, e)(pa〈e, nc〉.

kab〈na〉.

kab(n).[n = nc]

BI(pa, p, qa, b, kbs)))

Table 1. Principals of KSL in π-calculus

recognize whether messages are intended for himself or for other principals and,
in the latter case, reject them. In π-calculus this can be modelled by using
different public channels; for instance BI uses p to communicate with S, pa for
receiving from AI and qa for sending to AI .

Finally, the session of (first phase of) the protocol is described by the follow-
ing process:

KSL(pa, qa, a, b)
4
= (ν p, kas, kbs, p)(S(p, a, kas, b, kbs) |

AI(pa, qa, a, kas, b) |
BI(pa, p, qa, b, kbs)).

Note that the non-restricted names are only the public channels pa, qa and the
principal identities a and b. The public channel p (that BI uses for communicat-
ing with S) has been restricted for modelling the trustedness of the server. This
is a standard assumption in cryptography and holds for KSL as well.

3.4 Secrecy via bisimulation checking

The secrecy of the session key kab of KSL is checked by contrasting the π-calculus
specification of KSL with a slightly different version specifying a protocol where
the principals “knows” the session key in advance. More precisely, we turn
KSL(pa, qa, a, b) into a “magic” process where the session-key cannot be com-
promised. Then we check that the magic specification is bisimilar to the original
one. This approach has been introduced in [1] for the spi-calculus and ensures the
secrecy of the session key because in the magic version the correct key-exchange
is forced.

Let us consider the following process

K̂SL(pa, qa, a, b)
4
= (ν p, kab, kas, kbs)(Skab

(p, a, kas, b, kbs) |
AI,kab

(pa, qa, a, kas, b, kab) |
BI,kab

(pa, p, qa, b, kbs, kab)),

where Skab
, AI,kab

and BI,kab
are reported in Table 2. The components of K̂SL

differs from those in KSL because they share kab in advance and AI,kab
and



BI,kab
check whether a correct key exchange has taken place or not: they stop

executing the protocol in the later case and continue in the former one. Therefore,
the secrecy of kab can be assessed by verifying that KSL and K̂SL are bisimilar.

AI,kab
(pa, qa, a, kas, b)

4

=
(ν na)(

pa〈na, a〉.

kas(n, r, x).[x = kab]

[n = na][r = b]

qa(t, nc).

kab(n).[n = na]

kab〈nc〉.

AI,kab
(pa, qa, a, kas, b))

BI,kab
(p, b, kbs)

4

=

qa(na, a).(ν nb)(

p〈na, a, nb, b〉.

kbs(n, i, x).[n = nb][i = a][x = kab]

(ν nc, kbb, T b, e)(pa〈e, nc〉.

kab〈na〉.

kab(n).[n = nc]

BI,kab
(p, b, kbs)))

Skab
(p, a, kas, b, kbs)

4

=
p(na, a, nb, b).[ a = a][ b = b]

kbs〈nb, a, kab〉.

kas〈nb, a, kab〉.
Skab

(p, a, kas, b, kbs)
Table 2. The magic version of KSL

To check bisimilarity we exploit two facilities of Mihda: pi-to-hd and reduce.
The former transforms π-calculus processes into a HD-automata (according to
the early-semantics of π-calculus) while reduce minimises the HD-automata by
applying a partition refinement algorithm.

Table 3 reports the execution time (in seconds) and the size of the HD-

automata generated by the two facilities for KSL and K̂SL. The output of Mihda

Mihda.pi-to-hd Mihda.reduce

States Transitions Time States Transitions Time

KSL 2937 3919 14.5s 154 322 7.39s

K̂SL 2353 3243 13.8s 154 322 301.7s

Table 3. Results of Mihda: the tests have been executed on an Linux system (Kernel
2.4) running on a AMD Athlon(TM) XP 1800MHz with 1Gb of RAM memory

verification formally confirms that KSL ensures the secrecy of the session key
kab, namely K̂SL and KSL are bisimilar.

Notice that the size of KSL is (more than) one order of magnitude greater

than the corresponding minimal realisation (and similarly for K̂SL). This is valu-
able if one considers that the minimal realisation of a transition system preserves
the set of properties of the original system (they are logically indistinguishable),



therefore, model checkers (e.g., HAL or ASPASyA) might visit the minimal
realisation instead of the full state space for checking other properties.

3.5 Model checking KSL

The second phase of KSL is verified by the model-checking facilities of ASPASyA.
In this case the methodology consists of four steps: 1) Specification of the be-
haviour of the principals and the desired property, 2) specification of the condi-
tions on intended sharing of secrets, 3) specification of the power of the intruder,
in terms of its initial knowledge, 4) automatic verification of whether the proto-
col executions, as they have been formalised, do or do not satisfy the property.
The results of step 4) can be exploited to iterate steps 2), 3), and 4), accord-
ing to the insights gained in the previous iterations about the actual, and often
unexpected, behaviour of the protocol.

Step 1) is performed by exploiting a dialect of π-calculus specifically de-
signed to tackle security issues. Moreover, properties are expressed in an ad-hoc
logic. For the sake of simplicity, we continue to describe protocol principals in
π-calculus: Since we are assuming that the interactions of A and B with S are
trusted and not compromised, we can consider only the principals for A and B:

AII(p, b, t, kab)
4

= (ν nma, e1, e2)(
p〈nma, e1〉.
p(m, e).e〈e〉.kab?n.[n = nma]
p〈e2〉 | Enc(e1, kab, t, b, A) | Enc(e2, kab, n))

BII(p, a, kab, b, T b, kbb)
4

= (ν nmb, e1)(
p(n, e).e〈e〉.kbb(t, i, k,).[t = Tb][i = a][k = kab]
p〈nmb, e1〉.
p(e).e〈e〉.k(nmb).[k = kab]τ | Enc(e1, kab, nma)),

where Enc(e, k, x1, . . . , xn)
4
= e?u.k〈x1, . . . , xn〉 is the encoding of the cryp-

togram {x1, . . . , xn}k.
A distinguished features of ASPASyA is that the portion of the state space

to be explored can be ruled by means of the so-called connection formulae which
impose constraints on the possible assignments of the variable by relating them
to other variables or values. For instance, the assumptions on the secrets shared
by A and B can be formalised by means of the following connection formula:

φ̄KSL = ∃B.l : ∃A.j : bj = al → kabj = kabl,

stating that, if there are two instances of A and B that have executed the first
phase as initiator and responder, then they share a session key (kabj = kabl).
ASPASyA will reject any session of the protocol that does not respect this
constraint.

The formula for the repeated authentication can be similarly stated as

ψ̄KSL
4

= ∀B.l : ∃A.j : bj = Bl ∧ al = Aj → mal = nmaj ∧ mbj = nmbl,

stating that if two instances of A and B aimed at communicating each other
then the nonce challenge has been respected.



Similarly to other toolkits performing symbolic analysis (e.g. STA, TRUST)
ASPASyA allows varying the intruder’s knowledge and the specification of im-
plicit assumptions (which are very frequent in security). However, differently
from STA and TRUST, in ASPASyA these ingredients can be opportunely
mixed without modifying neither the protocol specification nor the specification
of the desired properties.

Table 4 reports the results of the verification of the second phase in the cases
of two and three instances of principals. Since the former case does not yield any
attack, we focus on the latter one.

2 Instances 3 Instances

Knowl. Conf. Time (s) Attacks Conf. Time (s) Attacks

true, κ0 104 0.69 0 3878 1.53 8
true, κ̄0 104 0.85 0 3878 1.89 8
φ̄KSL, κ0 71 0.64 0 3220 1.50 6
φ̄KSL, κ̄0 71 0.80 0 3220 1.85 6

Table 4. Attack report for KSL repeated authentication part

The initial knowledge κ0 contains the information communicated on the pub-
lic channel p during the first phase (for instance the names of each instance, i.e.,
{B1, B2, A3} ⊆ κ0). In this case, ASPASyA finds (and reports) the following
attack:

1. A3 → I : nma3, {B2, A3, ks}kb2

2. I → B2 : nma3, {B2, A3, ks}kb2

3. B2 → I : nmb2, {nma3}ks

4. I → B1 : nmb2, {B1, A3, ks}kb1

5. B1 → I : nmb1, {nmb2}ks

6. I → B2 : {nmb2}ks

7. I → A3 : nmb1, {nma3}ks

8. A3 → I : {nmb1}ks

9. I → B1 : {nmb1}ks

where I plays the role of the intruder that can corresponds to the public channel
p in our π-calculus specification. In messages 1÷3, A3 and B2 begin the authen-
tication phase; the communications are possible because of the ticket has been
sent over p. In messages 4÷ 5, the intruder I, playing the role of A3, uses B1 for
encrypting nmb2 with ks. At this point, I can match the input data requested
by B2 and can subsequently use A3 to obtain {nmb1}ks. Hence, I has been able
to let B1 believe he was interacting with A3 while he was interacting with I,
violating ψ̄KSL.

4 Concluding Remarks

We started our experiment with the goal of understanding whether the SOC
paradigm could be effectively exploited to integrate verification toolkits. In this
respect, the prototype implementation of the PWeb is a significant example.
The main advantage of our coordination model resides in providing an abstract
layer to support semantic-based verification methodologies. The experiments we



have performed, including the one reported in this paper, have confirmed the
potential usefulness of the approach.

The basic PWeb framework can be extended in several directions. In conclu-
sion, we list some of the area of future research (i) abstraction techniques for
automatic decomposition, (ii) advanced discovery mechanisms, (iii) advanced
coordination mechanisms and trading facilities.
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