
Model Checking for Nominal Calculi�

Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto

Dipartimento di Informatica, Largo Bruno Pontecorvo 3, 56127 Pisa – Italy

Abstract. Nominal calculi have been shown very effective to formally model a
variety of computational phenomena. The models of nominal calculi have often
infinite states, thus making model checking a difficult task. In this note we survey
some of the approaches for model checking nominal calculi. Then, we focus on
History-Dependent automata, a syntax-free automaton-based model of mobility.
History-Dependent automata have provided the formal basis to design and imple-
ment some existing verification toolkits. We then introduce a novel syntax-free
setting to model the symbolic semantics of a nominal calculus. Our approach re-
lies on the notions of reactive systems and observed borrowed contexts introduced
by Leifer and Milner, and further developed by Sassone, Lack and Sobocinski.
We argue that the symbolic semantics model based on borrowed contexts can be
conveniently applied to web service discovery and binding.

1 Summary

Model checking has been shown very effective for proving properties of system be-
haviour whenever a finite model of it can be constructed. The approach is convenient
since it does not require formal proofs and since the same automaton-like model can
accommodate system specification languages with substantially different syntax and
semantics. Among the properties which can be checked, behavioural equivalence is
especially important for matching specifications and implementations, for proving the
system resistant to certain attacks and for replacing the system with a simpler one with
the same properties.

Names have been used in process calculi for representing a variety of different in-
formations concerning addresses, mobility links, continuations, localities, causal depen-
dencies, security keys and session identifiers. When an unbound number of new names
can be generated during execution, the models tend to be infinite even in the simplest
cases, unless explicit mechanisms are introduced to allocate and garbage collect names,
allowing the same states to be reused with different name meanings.

We review some existing syntax-free models for name-passing calculi and focus
on History-Dependent automata (HD-automata), introduced by Montanari and Pistore
in 1995 [62]. HD-automata [62, 63, 71] have been shown a suitable automata-based
model for representing Petri nets, CCS with causality and localities and some versions
of π-calculus [59, 75].

� Work supported by European Union project PROFUNDIS, Contract No. IST-2001-33100.

V. Sassone (Ed.): FOSSACS 2005, LNCS 3441, pp. 1–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 G. Ferrari, U. Montanari, and E. Tuosto

Different versions of HD-automata have been defined. The simplest version can be
easily translated to ordinary automata, but possibly with a larger number of states. In a
second version, the states are equipped with name symmetries which further reduce the
size of the automata. Furthermore, a theory based on coalgebras in a category of “named
sets” can be developed for this kind of HD-automata, which extends the applicability
of the approach to other nominal calculi and guarantees the existence of the minimal
automaton within the same bisimilarity class [64, 34].

HD-automata also constitute the formal basis upon which several verification toolk-
its have been defined and implemented. The front end towards the π-calculus and the
translation algorithm for the simplest version of HD-automata have been implemented
in the HAL tool [31, 32], which relies on the JACK verification environment [7] for
handling the resulting ordinary automata. The minimisation algorithm, naturally sug-
gested by the coalgebraic framework, has been implemented in the Mihda toolkit [35,
36] within the European project PROFUNDIS. Other versions of HD-automata can
be equipped with algebraic operations, and are based on a algebraic-coalgebraic the-
ory [61].

Here we propose a further instance handling the symbolic versions of nominal cal-
culi, where inputs are represented as variables which are instantiated only when needed.
As it is the case for logic programming unification, one would like the variables to be
instantiated only the least possible, still guaranteeing that all behaviours are eventually
explored. The approach we follow relies on the notion of reactive system and of observ-
able borrowed contexts introduced by Leifer and Milner [53, 52] and further developed
by Sassone, Lack and Sobocinski [76, 78, 50] using G-categories and adhesive cate-
gories. The reduction semantics of reactive systems is extended in order to introduce
as borrowed contexts both the variable instantiations needed in the transitions and the
ordinary π-calculus actions. It is argued that the symbolic semantics model based on
borrowed contexts can be conveniently applied to web service discovery and binding.

In this paper we review the main results on HD-automata setting them in the main-
stream research on nominal calculi. The final part of the paper introduces a novel
symbolic semantics of π-calculus based on reactive systems and observed borrowed
contexts. In our approach, unification is the basic interaction mechanism. We con-
sider this as being the first step toward the definition of a formal framework (models,
proof techniques and verification toolkits) for the so-called service oriented computing
paradigm.

2 Verification via Semantics Equivalence

In the last thirty years the application of formal methods to software engineering has
generated techniques and tools to deal with the various facets of the software devel-
opment process (see e.g. [19] and the references therein). One of the main advantages
of exploiting formal techniques consists of the possibility of constructing abstractions
that approximate behaviours of the system under development. Often, these abstrac-
tions are amenable to automatic verification of properties thus providing a support to
the certification of software quality.

Among the different proposals, verification via semantics equivalence provides a
well established framework to deal with the checking of behavioural properties. In

Model Checking for Nominal Calculi 3

this approach, checking behavioural properties is reduced to the problem of contrast-
ing two system abstractions in order to determine whether their behaviours coincide
with respect to a suitable notion of semantics equivalence. For instance, it is possi-
ble to verify whether an abstraction of the implementation is consistent with its ab-
stract specification. Another example is provided by the information leak detection;
in [39] the analysis of information flow is done by verifying that the abstraction of the
system P is equivalent to another abstraction obtained by suitably restricting the be-
haviour of P. A similar idea has been exploited in [1] for the analysis of cryptographic
protocols.

Bisimilarity [69] has been proved to be an effective basis for verification based on
semantics-equivalence of system abstractions described in some process calculus, i.e.
Milner’s Calculus of Communicating Systems (CCS) [58]. Bisimilarity is a co-inductive
relation defined over a special class of automata called labelled transition systems. A
generic labelled transition system (LTS) describes the evolution of a system by its in-
teractions with the external environment. The co-inductive nature of bisimulation pro-
vides an effective proof method to establish semantics equivalence: it is sufficient to
exhibit a bisimulation relating the two abstractions. Bisimulation-based proof methods
have been exploited to establish properties of a variety of systems such as communica-
tion protocols, hardware designs and embedded controllers. Moreover, they have been
incorporated in several toolkits for the verification of properties. Indeed, finite state ver-
ification environments have enjoyed substantial and growing use over the last years.
Here, we mention the Concurrency WorkBench [21], the Meije-FC2 tools [8] and the
JACK toolkit [7] to cite a few. Several systems of considerable complexity have been
formalised and proved correct by exploiting these semantics-based verification environ-
ments.

The advent of mobile computing and wireless communication together with the de-
velopment of applications running over the Internet (Global Computing Systems) have
introduced software engineering scenarios that are much more dynamic than those han-
dled with the techniques discussed above. Indeed, finite state verification of global com-
puting systems is much more difficult: in this case, even simple systems can generate
infinite state spaces. An illustrative example is provided by the π-calculus [59, 75]. The
π-calculus primitives are simple but expressive: channel names can be created, commu-
nicated (thus giving the possibility of dynamically reconfiguring process acquaintances)
and they are subjected to sophisticated scoping rules. The π-calculus is the archetype of
name passing or nominal process calculi. Nominal calculi emphasise the principle that
name mechanisms (e.g. local name generation, name exchanges, etc.) provide a suitable
abstraction to formally explain a wide range of phenomena of global computing sys-
tems (see e.g. [80, 41]). Moreover, nominal calculi provide a basic programming model
that has been incorporated in suitable libraries or novel programming languages [22, 4].
Finally, the usefulness of names has been also emphasised in practice. For instance,
Needham [66] pointed out the role of names for the security of distributed systems. The
World Wide Web provides an excellent (perhaps the most important) example of the
power of names and name binding/resolution.

Nominal calculi have greater expressive power than ordinary process calculi, but the
possibility of dynamically generating new names leads also to a much more complicated

4 G. Ferrari, U. Montanari, and E. Tuosto

theory. In particular, bisimilarity is not always a congruence even for the strong bisimi-
larity. Moreover, the ordinary, underlying LTSs are infinite-state and infinite branching,
thus making verification via semantics equivalence a difficult task.

Bisimulation-based proof techniques for nominal calculi can be roughly divided
into two main families. The first consists of the syntax-based approaches while the sec-
ond refers to the syntax-free approaches. The former line of development represents
the states of the LTS with their syntactic denotation, while in the latter the states are
just items characterised by their properties and connections. We recall a few of the
approaches of both families without the ambition of being exhaustive.

Among the syntax-based, the most efficient approaches for finite-state verification
rely on symbolic semantics. Symbolic semantics [42, 6, 54], generalise standard opera-
tional semantics by keeping track of equalities among names: transitions are derived in
the context of such constraints. The main advantage of the symbolic semantics is that it
yields a smaller transition system. The idea of symbolic semantics has been exploited to
provide a convenient characterisation of open bisimilarity [74] and in the design of the
corresponding bisimulation checker, the Mobility WorkBench (MWB) [83]. The MWB
adapts to the case of the π-calculus the on-the-fly approach of [30], where the bisim-
ulation relation is constructed during the state space generation. The MWB checks
for open bisimilarity in the case of (finite-control) π-calculus processes and has also
been reworked to deal with the Fusion calculus [70]. To gain efficiency, the MWB has
been extended in [44] with modules implementing certain bisimulation-preserving pro-
gram transformations, the up-to-techniques (introduced in [73]). Symbolic semantics
has been also exploited in the design of the MCC model checker for the π-calculus [84].
The key idea of the approach is to provide an encoding of π-calculus symbolic seman-
tics as a logic programming system. It is important to emphasise that all the construc-
tions of the symbolic semantics rely on an external metalanguage and on a theory to
describe and reason about name equalities.

A different approach is the definition of semantic-based techniques where names
have a central role and are explicitly dealt with. Basically, in these frameworks it is
possible to allocate and garbage collect names, allowing the same names to be reused
with different meanings. This alternative line of research explores models of name-
passing calculi, regardless of their syntactic details and aims at providing uniform the-
ories that can be used to handle a variety of calculi and semantics. A well studied
approach is based on the so-called permutation model, whose ingredients are a set of
names and an action of its group of permutations (renaming substitutions) on an abstract
set [37, 40, 47, 64]. In this setting, transition systems for nominal calculi are constructed
via suitable functors over the underlying category of names and permutations: the in-
ternal theory of names.

It is important to notice that these approaches are syntax-free and provide the ab-
stract framework to capture the notions of name abstraction and fresh name that are
needed to describe and reason about nominal calculi. The HD-automata [34, 64, 71]
and indexed LTSs [17] are examples of syntax-free models of name process calculi
developed following the permutation approach.

Model Checking for Nominal Calculi 5

3 Model Checking

Probably, the most successful formal technique applied in practice in the verification
of systems is model checking (we refer to [18] for a detailed introduction to this field).
Roughly speaking, model checking is used to determine whether a system abstraction
(expressed as an automata or a term of a process calculus) satisfies a property (ex-
pressed as a modal or temporal logic formula). In order to model check a system with
respect to a given formula it is necessary to prove that the system is a model of the for-
mula. Tools supporting model checking techniques have matured to be used in practice
(e.g. the SPIN model checker [45, 46] and SMV [57]). Recently, these techniques have
been adopted to verify properties of programs written in high level programming lan-
guages like C++ and Java (e.g. JavaPathFinder [10], BANDERA [23], SLAM [3] and
BLAST [43]).

Model checking presents several advantages. It is completely automatic, provided
that finiteness of the system (the model) is guaranteed. Usually, it provides counterex-
amples when a system does not satisfy the property. This gives information on the design
choices that have lead to the implementation errors. Finally, it is possible to obtain very
high efficiency by exploiting refined data structures (e.g. BDDs), or symbolic techniques.

While modal and temporal logics have been proved suitable to express many prop-
erties of interest of concurrent systems, similar logics for global computing systems are
still lacking. Only recently a new class of modal logics, spatial logics [15, 16], has been
introduced to address the characterising issues of global computing. In our opinion, this
explains why traditionally model checking has been exploited on foundational models
for global computing only for limited fields and has not been fully applied to the general
setting.

Without the ambition of being exhaustive, we now review some of the approaches
to model check properties of nominal calculi. The MWB provides a model checking
functionality. This is based on the implementation of the tableau-based proof system
[25, 26] for the π-µ calculus, an extension of the propositional µ-calculus in which it is
possible to express name parameterisation and quantifications over names. The MCC
system also provides a model checking facility for the π-µ calculus.

The HD-automata Laboratory (HAL) [32] supports verification by model checking
of properties expressed as formulae of a suitable modal logic, a high level logic with
modalities indexed by π-calculus actions. This logic, although expressive enough to
describe interesting safety and liveness properties of π-calculus specifications, is less
expressive than the π-µ calculus. The construction of the HAL model checker takes di-
rect advantage of the finite representation of π-calculus specifications presented in [62].
In particular, a HAL module translates these logical formulae into classical modal logic
formulae and the translation is driven by the finite state representation of the system
(the π-calculus process) to be verified.

The most relevant examples of application of model checking techniques and nom-
inal calculi are those of the verification of security protocols [56, 20]. Several prototyp-
ical tools based on nominal calculi have been in fact designed and implemented [60,
55, 27, 38]. Indeed, nominal calculi provide a solid formal context for expressing many
facets of cryptographic protocols in natural way. For instance, many authentication pro-
tocols rely on nonce-challenges where a fresh sequence of bit must be generated; the

6 G. Ferrari, U. Montanari, and E. Tuosto

correctness of these protocols relies on the uniqueness of the nonces used in a given ses-
sion. This can be easily modelled in nominal calculi, e.g. the π-calculus, where freshly
generated names can be expressed and dealt with. An advantage of using model check-
ing is that, when the protocol does not satisfy the security property, then the counterex-
ample is the attack that an intruder could perform.

The main drawback of these approaches is that they require a finite state space
while, in general, the generation of fresh names easily leads to infinite state spaces,
if no countermeasure for garbage-collecting and reusing names is adopted. In practice,
this problem has been faced by imposing strong conditions that limit the generality
of the analysis. In particular, finitary systems, namely systems with infinite behaviour
which can be finitely represented, are not considered. For instance, the analysis are per-
formed on instances of protocols where only a limited number of participants is apriori
fixed and in general recursion or iteration is forbidden. Hence, model checking security
properties for nominal calculi can only deal with protocol sessions where a finite num-
ber of participants run in parallel and all the participants are non-recursive processes.
Recently, symbolic ad-hoc model checkers have been proposed to overcome these is-
sues e.g., [5, 82, 9, 2]. Despite the technical differences, all these approaches check a
given property by generating a “symbolic” state space, where states collect constraints
over the names involved in the execution. If there is a reachable state that violates the
property, but whose constraints hold, then an attack is found. The symbolic techniques
exploited in these approaches enforce efficiency both in the size of the generated state
space and in the visit of it, but they still require finite state space.

4 History-Dependent Automata

History Dependent automata (HD-automata in brief) are one of the proposal based on
the syntax-free approach. HD-automata are an operational model for history depen-
dent formalisms, namely those formalisms accounting for systems whose behaviour at
a given time might be influenced by some “historical” information which is too expen-
sive to be included explicitly in the states. HD-automata allow for a compact represen-
tation of agent behaviour by collapsing states differing only for the renaming of local
names and encompass the main characteristics of name-passing calculi, namely cre-
ation/deallocation of names. Basically, HD-automata associate a “history” to the names
of the states appearing in the computation, in the sense that it is possible to reconstruct
the associations which have led to the state containing the name. Clearly, if a state
is reached in two different computations, different histories could be assigned to its
names. Process calculi exhibiting causality, localities and mobility, and Petri nets, can
be translated (preserving bisimilarity) to HD-automata [71].

Different versions of HD-automata have been defined [71, 63, 64, 34]. When han-
dling causality, locality and the link mobility exhibited by the synchronous π-calculus
without matching, the simplest version can be easily translated to ordinary automata.
However, in general, a larger number of states is necessary for representing HD-autom-
ata with ordinary automata. The front-end towards the π-calculus and the translation
algorithm have been implemented in the HAL toolkit, which relies on the JACK verifi-
cation environment for handling the resulting ordinary automata.

Model Checking for Nominal Calculi 7

In a second version, states of HD-automata are equipped with name symmetries
which further reduce the size of the automata [64] and which guarantee the existence
of the minimal realization. The minimal automata are computed using a partition re-
finement algorithm [34]. They have a very important practical fall-out: for instance, the
problem of deciding bisimilarity is reduced to the problem of computing the minimal
transition system [67, 29, 49]. Moreover, the minimal automaton is indistinguishable
from the original one with respect to many behavioural properties (e.g., bisimilarity)
and properties expressed in most modal or temporal logics. The minimisation algo-
rithm, naturally suggested by the coalgebraic framework, has been implemented in the
Mihda toolkit [36] within the European project PROFUNDIS. Other versions of HD-
automata can be equipped with algebraic operations [61], thus relying on an algebraic-
coalgebraic, namely bialgebraic, theory.

Similarly to ordinary automata, HD-automata consist of states and labelled transi-
tions, their peculiarity being that states and transitions are equipped with names which
are no longer dealt with as syntactic components of labels, but become an explicit part of
the operational model. Noteworthy, names in states of HD-automata have local mean-
ing which requires a mechanism for describing how names correspond each other along
transitions.

Graphically, we can represent such correspondences using “wires” that connect
names of label, source and target states of transitions as in Figure 1, where a tran-

σ d

s1 d1

lab *

s

s3

s2

l1

d2

Fig. 1. A HD-automaton transition

sition from source state s to destination state d is depicted. State s has three names, s1,
s2 and s3 while d has two names d1 and d2 which correspond to name s1 of s and to
the new name �, respectively. The transition is labelled by lab and exposes two names:
name l1 and � the former corresponding to name s2 of s and the latter to a fresh name
denoted as �. Notice that name s3 is “deallocated” along such transition.

4.1 Minimising HD-Automata: An Informal Presentation

We report the formal definitions for named sets and named functions for representing
finite HD-automata. These are the basic concepts upon which the partition refinement
algorithm for HD-automata has been defined. For the sake of conciseness we give here
only an incomplete definition. The interested reader is referred to [36] for a full presen-
tation.

Definition 1 (Named Sets). Let N be a denumerable set of names. A named set is a
pair 〈Q,g〉 where Q is a totally-ordered set and g : Q → ⋃

N∈℘fin(N)
sym(N) assigns a

(finite) group of permutations over a finite set of names to elements in Q. For q ∈ Q, |q|
denotes the carrier of q defined as dom(ρ), where ρ ∈ g(q).

8 G. Ferrari, U. Montanari, and E. Tuosto

Definition 2 (Named Functions). Let N � be N ∪ {�} where � is an element not in
N . Given two named sets 〈Q,g〉 and 〈Q′,g′〉, a named function H : 〈Q,g〉 → 〈Q′,g′〉
consists of a pair of functions 〈h,Σ〉 where h : Q → Q′ and Σ : Q →℘fin(N → N �) such
that for all q ∈ Q and σ ∈ Σ(q)

– σ is injective, σ(|h(q)|) ⊆ |q|∪{�} and σ|N \|h(q)| is the identity;

– σ;g(q) ⊆ Σ(q);
– g(h(q));σ = Σ(q).

Named sets and functions form a category, NS, since named functions can be com-
posed and identity named functions can be easily defined (see [36] for details). Given
a set of labels L, if ℘fin() is the finite power set functor on category Set, we define
the functor ℘L on named sets as ℘L(〈Q,g〉) = 〈℘fin(L×Q),g′〉 where g′(B) contains all
those permutations ρ such that Bρ = B (Bρ is element-wise application of ρ to B).

Definition 3. A HD-automaton over L is a coalgebra for the functor ℘L.

The most important operation for minimising HD-automata is the normalisation
which removes redundant transitions. In nominal calculi, redundancy is strictly con-
nected to the concept of active names. A name n is inactive for an agent P if it is not
used in the future behaviour of P.

In π-calculus, if P is bisimilar to (νn)P we say that n is inactive in P (otherwise n is
active in P) and a transition P

xn−→ Q is redundant (in the early semantics of π-calculus)
when n is inactive in P. Deciding whether a name is active is as difficult as decid-
ing bisimilarity. The importance of redundancy emerges when we try to establish the
equivalence of states that have different numbers of free names. For instance, consider

P
def= x(u).(νv)(v̄z + ūy) and Q

def= x(u).ūy, which differ only for a deadlocked alterna-
tive. They are bisimilar only if, for any name substituted for u, their continuations re-
main bisimilar. However, the input transition P

xz−→ cannot be matched by Q when con-
sidering only the necessary input transitions of agents, namely those where the acquired
name is either a fresh name or one of the free names of the agent (as required for a fi-
nite representation of the transition system). Thus, unless the above transition of P is
recognised as redundant and removed, the automata for P and Q would not be bisimilar.
Redundant transitions occur when LTSs of π-calculus processes are compiled to HD-
automata and are removed during the minimisation algorithm, since it is not possible to
leave them out at compiling time1.

The minimisation algorithm relies on functor T consisting of the composition of the
normalisation functor and ℘L. Consider a T -coalgebra 〈D,K : D → T (D)〉, the minimi-
sation algorithm is defined by the two equations below.

1 In general, deciding whether a free input transition is redundant or not is equivalent to decide
whether a name is active or not; therefore, it is as difficult as deciding bisimilarity.

Model Checking for Nominal Calculi 9

H(0)
def= 〈q 	→ ⊥,q 	→ /0〉, where dom(H(0)) = D (1)

H(i+1)
def= K;T (Hi). (2)

In words, all the states of automaton K are initially considered equivalent, indeed, the
kernel of H0 gives rise to a single equivalence class containing the whole dom(K). At
the generic (i + 1)-th iteration, the image through T of the i-th iteration is composed
with K as prescribed in (2). The algorithm stops when the fixpoint H̄ of (2) is reached.
Then H̄ is the unique final coalgebra morphism and states mapped together by it are
bisimilar.

Theorem 1 (Convergence [36]). The iterative algorithm described by (1) and (2) is
convergent on finite state automata.

4.2 The PROFUNDIS Web

In the last years distributed applications over the World-Wide Web, have attained wide
interest. Recently, the Web is exploited as a service distributor and applications are
no longer monolithic but rather made of components (i.e., services). Applications over
the Web are developed by combining and integrating Web services. The Web service
framework has emerged as the standard and natural architecture to realize the so called
Service Oriented Computing (SOC) [24, 68]. In [33] a Web-service infrastructure was
developed integrating verification toolkits for checking properties of mobile systems
and related higher-level toolkits for verifying security protocols. The development of
the verification infrastructure has been performed inside the PROFUNDIS project (see
URL http://www.it.uu.se/profundis) within the Global Computing Initiative of
the European Union. For this reason we called it the PROFUNDIS WEB, PWeb for
short. The current prototype implementation of the PWeb infrastructure can be exer-
cised on-line at the URL http://jordie.di.unipi.it:8080/pweb.

Beyond the current prototype implementation, we envisage the important role that
will be played by PWeb service coordination. Indeed, service coordination provides
several benefits:

– Model-based verification. The coordination rules impose constraints on the exe-
cution flow of the verification session thus enabling a model-based verification
methodology where several descriptions are manipulated together.

– Modularity. The verification of the properties of a large software system can be re-
duced to the verification of properties over subsystems of manageable complexity:
the coordination rules reflect the semantic modularity of system specifications.

– Flexibility. The choice of the verification toolkits involved in the verification ses-
sion may depend on the specific verification requirements.

The PWeb implementation has been conceived to support reasoning about the be-
haviour of systems specified in some dialect of the π-calculus. It supports the dy-
namic integration of different verification techniques (e.g. standard bisimulation check-
ing and symbolic techniques for cryptographic protocols). The PWeb integrates several
independently-developed toolkits, e.g., Mihda [35, 36] and several tools for verifying

http://www.it.uu.se/profundis
http://jordie.di.unipi.it:8080/pweb

10 G. Ferrari, U. Montanari, and E. Tuosto

cryptographic protocols, like TRUST [82] and STA [5]. The PWeb has been designed
by targeting also the goal of extending available verification environments (Mobility
Workbench [83], HAL [31, 32]) with new facilities provided as Web services.

The core of the PWeb is a directory service. A PWeb directory service is a com-
ponent that maps the description of the Web services into the corresponding network
addresses and has two main facilities: the publish facility, invoked to make a toolkit
available as Web service, and the query facility, used to discover available services. For
instance, Mihda publishes the reduce service which accepts a (XML description of)
HD-automaton describing the behaviour of a π-calculus agent. Once invoked, reduce
performs the minimisation of the HD-automaton.

The service discovery mechanisms are exploited by the trader engine which ma-
nipulates pools of services distributed over several PWeb directory services. It can be
used to obtain a Web service of a certain type and to bind it inside the application. The
trader engine gives to the PWeb directory service the ability of finding and binding
web services at run-time without “hard-coding” the name of the web service inside the
application code. The following code describes the use of a simple trader for the PWeb
directory.

import Trader
offers = Trader.query("reducer")
mihda = offers[0]

The code asks the trader for a reduce service and selects the first of them. The
trader engine allows one to hide network details in the service coordination code. A
further benefit is given by the possibility of replicating the services and maintaining a
standard access modality to the Web services under coordination.

The fundamental technique enabling the dynamic integration of services is the sep-
aration between the service facilities (what the service provides) and the mechanisms
that coordinate the way services interact (service coordination). An example of service
coordination for checking whether a process A is a model for a formula F is as follows

hd = mihda.compile(A)
reduced_hd = mihda.reduce(hd)
reduced_hd_fc2 = mihda.Tofc2(reduced_hd)
aut = hal.unfold(reduced_hd_fc2)
if hal.check(aut, F):

print ’ok’
else:

print ’ko’

Variables mihda and hal have been linked by the trader engine to the required ser-
vices (acquired as illustrated before). Now, the compile service of mihda is invoked
yielding an HD-automaton (stored in hd). Next, hd is minimised by invoking the ser-
vice reduce of Mihda; and afterward it is transformed into the FC2 format by a HAL
service. Finally, the HAL service unfold generates an ordinary automaton from the
FC2 representation of the automaton and prints a message which depends on whether
the system satisfies the formula F or not. This is obtained by invoking the HAL model
checking facility check.

Model Checking for Nominal Calculi 11

5 A Borrowed Context Semantics for the Open π-Calculus

The version of the π-calculus implemented in the Mihda toolkit does not rely on a sym-
bolic semantics. This fact makes unnecessarily large the number of states, due to the
existence of different input transitions for different instantiations of the input variable.
While a symbolic semantics for a syntax-based version of HD-automata for the open
π-calculus has been defined in [72], it might be convenient to define a symbolic se-
mantics for the ordinary syntax-free HD-automata. More generally, in Service Oriented
Computing (SOC) [24, 68] one would like to have more sophisticated mechanisms than
service call and parameter passing for modelling the phase of service discovery and
binding. The SOC paradigm is the emerging technology to design and develop global
computing systems: several research activities have addressed the theoretical founda-
tions of the SOC paradigm by exploiting formal frameworks based on process cal-
culi [12, 51, 14, 11] (see also [81] for an informal presentation on the usefulness of
nominal calculi to design workflow business processes).

When looking for a generalisation of parameter passing, logic programming unifi-
cation comes to mind, or rather constraint programming, when service level agreements
involve nonfunctional issues. When the binding occurs, not only the callee is instanti-
ated, but also the caller. The instantiation that must be applied to the caller is formally
analogous to a missing context that must be borrowed by a process in order to undergo
a reduction. In this line of thought, some recent works about systematic methods for
deriving LTSs from reduction rules look relevant. In particular, the approach we follow
relies on the notion of reactive system, introduced by Leifer and Milner [53, 52], used
by Jensen and Milner in [48] for deriving a LTS for bigraphs and further developed by
Sassone, Lack and Sobocinski [76, 78, 50] using G-categories and adhesive categories.

In this section we will consider a simplified version of open π-calculus and we
will develop a semantics for it using the notion of reactive systems. While the corre-
sponding bisimilarity semantics turns out to be finer, we think that this exercise shows
the feasibility of employing context borrowing for modelling symbolic semantics. The
generality of the reactive system approach gives some hope that interesting abstractions
of the SOC paradigm could also be modelled that way. Note however that the transi-
tion system which can be derived from reactive rules in our development is not really
suitable for a HD-automata implementation, since new names are never forgotten, thus
making the transition systems infinite in all but the most trivial cases. We comment in
Section 6 about possible solutions of this problem.

5.1 Open π-Calculus

One of main peculiarities of the π-calculus is the richness of its observational seman-
tics. Initially, it came equipped with the early and the late observational semantics [59]
which differ each other in the way they deal with name instantiation. Symbolic se-
mantics [42] generalises standard operational semantics by keeping track of equalities
among names: transitions are derived in the context of such constraints. The main ad-
vantage of the symbolic semantics is that it yields a smaller transition system. The idea
of symbolic semantics has been exploited to provide a finitary characterisation of open

12 G. Ferrari, U. Montanari, and E. Tuosto

Table 1. Semantics of π−

(PRE) α.p
α−→ p (SUM) p

µ−→ p′

p+q
µ−→ p′

(PAR) p
µ−→ p′

p | q
µ−→ p′ | q

if bn(µ)∩ fn(q) = /0 (COM) p
āb−→ p′ q

a′(c)−→ q′

p | q
a=a′
−→ p′ | q′{b/c}

(REP)
p | p!

µ−→ q

p!
µ−→ q

bisimilarity [74] which, differently from the early and the late semantics, is a congru-
ence with respect to the contexts of the π-calculus.

We consider a subset of the π-calculus without neither matching nor restriction op-
erators. Given a numerable infinite and totally ordered set of names N = {a1,a2, . . .},
the set P of π− processes is defined by the grammar

p,q ::= 0
∣∣ µ.p

∣∣ p | q
∣∣ p+q

∣∣ p! α ::= āb
∣∣ a(b).

As usual, name a is free in āb and a(b), while b is free just in the former case and bound
in the latter. Moreover, a is called the subject and b the object of the action. Considering
a(b).p, the occurrences of b in p are bound, free names are defined as usual and fn(p)
indicates the set of free names of process p. Differently than in the full π-calculus, only
the input prefix binds names. Processes are considered equivalent up-to α-renaming of
bound names.

The operational rules for the semantics of π− are those reported in Table 1 together
with the symmetric rules for (PAR) and (SUM). The rules specify an LTS whose labels
(denoted as µ) are either actions or fusions. The only non-standard rule is (COM) which
states that an output āb and an input a′(c) can synchronise provided that a and a′ are
fused. Notice that, if a and a′ are the same, a = a′ is the identity fusion, denoted as ε,
which corresponds to the usual silent action τ.

The transition system of π− resulting from specification rules in Table 1 is the same
as the one obtained by applying the LTS rules of [74] to π−. The only differences
between the two LTSs are in the syntax of the labels and in the rule (COM). In [74] the
labels are pairs (M,µ) or (M,τ) where M are sequences of fusions. It is easy to see that
our label µ corresponds to (µ,τ) if µ is a fusion label and to (/0,µ) if it is an action label.
The communication rule of [74] is

p
(M,āb)	−→ p′ q

(N,a′(c))	−→ q′

p | q
(L,τ)	−→ p′ | q′{b/c}

L =
{

MN[a = a′], if a �= a′

MN, if a = a′

which resembles rule (COM) of Table 1. However it is considerably more complex since
it must also collect the fusions due to matchings.

Proposition 1. Under the label correspondende illustrate above, let p ∈ P be a π−
process, then p

µ−→ q if, and only if, the same transition can be derived from the transition
system in [74] (changing µ with the corresponding label of [74]).

Model Checking for Nominal Calculi 13

Proof. The (⇒) part trivially follows by induction on the length of the proof of p
µ−→ q.

The (⇐) part follows by observing that the length of the fusions in labels of [74] is one,
since π− lacks the matching operator. ��

We recast the definition of open bisimulation given in [74] for π−.

Definition 4 (Open Bisimulation). A symmetric relation S ⊆ P × P is an open bisim-
ulation if whenever pSq,

– if p
α−→ p′ then there is q′ such that q

α−→ q′ and p′Sq′;
– if p

ε−→ p′ then there is q′ such that q
ε−→ q′ and p′Sq′;

– if p
a=b−→ p′ then there is q′ such that (q a=b−→ q′ ∨q

ε−→ q′)∧σa=b(p′)Sσa=b(q′),

where σa=b is a substitution that maps a to b (or viceversa) and leaves the other names
unchanged. Two processes p and q are open bisimilar, written p ∼ q, when there is an
open bisimulation relating them.

In order to compare the ordinary bisimilarity ∼ with the one arising from the Leifer
and Milner approach, it is convenient to introduce an additional bisimilarity for π−.

Definition 5 (Syntactical Bisimilarity). The syntactical bisimilarity relation � for π−
is obtained by simplifying the last condition of Definition 4 with

if p
a=b−→ p′ then there is q′ such that q

a=b−→ q′ and σa=b(p′)Sσa=b(q′).

It is immediate to see that � is finer than or equal to ∼. In fact its conditions for match-
ing transition labels are more demanding than those for ∼.

Theorem 2 (Open Versus Syntactical Bisimilarity). We have � ⊆ ∼.

An equivalence relation relating terms of an algebra is said a congruence if it is
preserved by all the operation of the algebra, or, equivalently, if it is preserved in all
the contexts of the language. In [74], ∼ has been proven to be a congruence for the
π-calculus.

5.2 Reactive Systems

A systematic method for deriving bisimulation congruence from reduction rules has
been proposed by Leifer and Milner in [53, 52], on turn inspired by [79], where the
idea of interpreting p

c−→ q as “in the context c, p reacts and becomes q” has been
proposed. Also, the approach of observing contexts imposed on agents at each step has
been introduced in [65], yielding the notion of dynamic bisimilarity. Following [28],
we will call borrowed context the context c. The basic idea of [53, 52] is to express
“minimality” conditions for electing the context c among the (possibly infinite) ones
that allow p to react. These conditions have been distilled by [53] in the notion of
relative push-out (RPO) in categories of reactive systems. The RPO construction is
reminiscent of the unification process of logic programming, which in fact can be given
an interactive semantics in much the same style [13].

14 G. Ferrari, U. Montanari, and E. Tuosto

We want to apply this approach to a reduction semantics of π− that reflects its LTS
semantics, therefore, we collect here the main definitions and results of the RPO ap-
proach. We remark that Definitions 6, 7, 8 and Theorem 3 are borrowed from [53, 52]
(aside from some minor notational conventions).

Let C be an arbitrary category whose arrows are denoted by f , g, h, k and whose
objects by m, n. Hereafter, f ;g will indicate arrow composition.

m

g0

���������������

g1

���������������

f0

���������� f1

����������

(a)

m

h0

��

g0

���������������

h

��

h1

��

g1

���������������

f0

���������� f1

����������

(b)

m

h′
��

��������
		

h′
0
���

���

h′
1

����

����
��

k

h0

��

g0

���������������

h

��

h1

��

g1

���������������

f0

���������� f1

����������

(c)

Fig. 2. Diagrams for Definitions 6

Definition 6 (Relative Push-Out and Idem Push-Out). Consider the commuting di-
agram in Figure 2(a) consisting of f0;g0 = f1;g1. A triple 〈h0,h1,h〉 is an RPO if di-
agram in Figure 2(b) commutes and for any triple 〈h′

0,h
′
1,h

′〉 satisfying f0;h′
0 = f1;h′

1
and h′

i;h′ = gi, for i = 0,1 there exists a unique k such that diagram Figure 2(c) com-
mutes. Diagram (a) is an idem push-out (IPO) if 〈g0,g1, id〉 is an RPO.

Definition 7 (Reactive System). A reactive system is a category C with the following
extra components:

– a distinguished (not necessarily initial) object �;
– a set of pairs of arrows (l : � → m,r : � → m) called reaction rules;
– a subcategory D of reactive contexts with the property that if d;d′ is an arrow of

D, then both d and d′ are arrows in D.

The IPO construction yields the definition of labelled transition out of a reduction
semantics and the corresponding observational semantics.

Definition 8 (Labelled Transition and Bisimulation). We write a
f � a′ iff there

exist a reaction rule (l,r) and a reactive context d such that

f ������
d��				

�
a

��

l

���
is an IPO and

a′ = r;d.
A symmetric binary relation S ⊆ ⋃

m C[�,m] × ⋃
m C[�,m], where C[x,y] is the set of

all the arrows from x to y of category C, is a bisimulation over
f � iff for (a,b) ∈ S,

if a
f � a′ then there is b′ such that b

f � b′ and (a′,b′) ∈ S.

Model Checking for Nominal Calculi 15

The central result of [53] can be stated as follows:

Theorem 3. The largest bisimulation over
f � is a congruence provided that C has

all redex-RPOs.

The category C has all redex-RPOs when for all reaction rules (l,r), all arrow a, f and

all contexts d such that a; f = l;d then the square

f ������
d��				

�
a

��

l

���
has an RPO.

5.3 A Reactive System for the Open π-Calculus

We shall specify a reactive system semantics for π− taking actions and name substi-
tutions as reactive contexts and by defining rules in such a way that the LTS will be
essentially the same as the one defined in Section 5.1. However, the observational se-
mantics resulting from the RPO approach considers labels as purely syntactical items
and transitions can match only if they have identical labels. In the definition of open
bisimilarity, instead, a proper fusion can be matched by an ε label. Thus it cannot be
expected that the two bisimilarity relations coincide. In fact, we will show that the
bisimilarity arising from the RPO approach is finer than open bisimilarity.

The reduction semantics of π− is specified with rules of the form P;µ → q, where µ
is an action or a fusion, q ∈ P and P is a normalised process (formally defined below). A
rule P;µ → q corresponds to a π− transition P

µ−→ q, the only difference being that in the
reactive system approach processes must be typed by (a natural number larger or equal
than) the largest index of their free variables. Normalised processes can be thought of
as being processes where all the occurrences of free variables are replaced by differ-
ent variables {a1, . . . ,an} ordered in some standard way. Normalised processes give a
logic programming flavour to the reduction semantics. In fact, they are reminiscent of
predicate symbols, while processes correspond to goals: as goals are instantiations of
predicate symbols, any process p ∈ P can be regarded as the instantiation of a nor-
malised process P. This amounts to say that, whenever p and P;µ (i.e., the instance
and the head of the clause) unify, then a transition for p can be deduced. They unify
whenever P is the normalised process of p. Moreover, the label is the borrowed context,
which turns out either to be µ whenever µ is an action or to be a fusion not implied by
the substitution mapping P to p, or else to be ε if it is implied.

Let p ∈ P, we assume given two functions p̂ and σp such that

fn(p̂) = {a1, . . . ,an}, ˆ̂p = p̂, p = σp(p̂), p = σ(q) =⇒ p̂ = q̂ ∧ σp = σ◦σq,

where σp : fn(p̂) → fn(p) and σ : fn(q) → fn(p) are surjective name substitutions ho-
momorphically extended to π− agents (σ() stands for the extension of σ to agents). It
is easy to show that p̂ is a linear process, namely each free variable occurs exactly once.
Indeed, let x ∈ N occur twice in p ∈ P and assume by absurd that p̂ = p. Now, consider
p′ ∈ P to be the term obtained by replacing in p the first and the second occurrence
of x with y and z, respectively. Then p = σ(p′), where σ = {y 	→ x,z 	→ x}, thus by
definition, p̂ = p̂′. But there is no σp′ such that p′ = σp′(p̂′) = σp′(p).

16 G. Ferrari, U. Montanari, and E. Tuosto

Notice that ˆ and σ only involve syntactical aspects of agents, therefore they can be
easily defined on the syntax trees of π−. For instance, p̂ might be defined as the agent
having the same syntax tree of p where the i-th leaf is named by ai, assuming that leaves
are ordered according to a depth-first visit: substitution σp is defined accordingly. The
order of leaves is arbitrary and different definitions might be possible, however, all of
them differ only for a permutation of (the indexes of) fn(p̂).

Definition 9 (Normalised Processes). The processes that are fixpoints of ˆ are the nor-
malised processes and are ranged over by P.

Before defining PAC, the category we work with, we specify its (basic) arrows
where the underlying objects are elements of the set ω� = ω ∪ {�} consisting of the
natural numbers plus a distinguished element �.

Definition 10 (Basic Arrows). We define the following basic arrows.
A normalised agent arrow Pm : � → m is a pair consisting of a normalised process P
and a natural number m ∈ ω such that, for any an ∈ fn(P), n ≤ m. We write P instead
of Pm when fn(P) contains exactly m names.
A fusion arrow from m to n is a surjective substitution from {a1, . . . ,am} to {a1, . . . ,an}
written as σ : m → n.
Action arrows are π− actions parameterised on ω, more precisely

ām
i a j : m → m am

i : m → m+1 i, j ≤ m

that respectively correspond to output and input transitions with the object name in the
latter case being am+1.
A sequence arrow γ : m0 → m1 is a tuple 〈µ1, . . . ,µk,σ〉 where k ≥ 0, for each 0 < i ≤ k,
µi : mi−1 → mi is an action arrow and σ : mk → m′ is a fusion arrow. In addition,
we require that, if σ(ai) = σ(a j) with i < j, then name a j does not appear in actions
µ1, . . . ,µk. Notice that for k = 0 we obtain fusion arrows while for k = 1 and σ = idm

we obtain action arrows.
A process arrow p : � → m is a tuple 〈P,µ1, . . . ,µk,σ〉 where P : � → m0 is a normalised
agent arrow and 〈µ1, . . . ,µk,σ〉 is a sequence arrow such that dom(µ1) = m0. Notice
that for k = 0, and σ = idm0 we obtain normalised agent arrows.

Definition 11 (Process-Action-Context Category). The process-action-context cate-
gory PAC is the category having as objects elements of ω� and as morphisms:

1. the identity arrows id� : � → � and idm : m → m, the latter being the identity sub-
stitution on {a1, . . . ,am};

2. the normalised agent arrows, the fusion arrows and the action arrows as genera-
tors; and

3. the arrows freely generated by 2 under the composition operation ; subject to the
usual associativity and identity axioms and, in addition, to the following axioms:

σ : n → m am
i : m → m+1

σ;am
i = an

h;σ′ , h =min
l

{σ(al) = ai} σ′ = σ[n+1 	→ m+1]

σ : n → m ām
i a j : m → m

σ; ām
i a j = ān

hak;σ
, h =min

l
{σ(al) = ai} k =min

l
{σ(al) = a j}

Model Checking for Nominal Calculi 17

(σ[n+1 	→ m+1] stands for the function that behaves as σ for any a ∈ {a1, . . . ,an}
and maps an+1 to am+1).

The arrows of PAC can be given an intuitive standard representation that will be useful
later in the proofs.

Proposition 2. The arrows of PAC are exactly the process arrows, the sequence arrows
and the identity arrow id�.

Proof. First, observe that: (a) a normalised agent arrow is a process arrow with an empty
sequence of actions and an identity substitution. (b) A fusion arrow σ is a sequence
arrow with no action arrows and with σ as the fusion arrow; this also yields the identities
idm where m ∈ ω. (c) Similarly, action arrows are sequence arrows with a single action
arrow and the identity substitution. Now, we prove that the composition of a process
(resp. sequence) arrow with a sequence arrow yields a process (resp. sequence) arrow.
Consider p : � → m and γ : m → n be the process arrow 〈P,µ1, . . . ,µh,σ〉 and the sequence
arrow 〈µ′

1, . . . ,µ
′
k,σ

′〉. By definition p;γ = 〈P,µ1, . . . ,µh,σ,µ′
1, . . . ,µ

′
k,σ

′〉, and, observing
that the two last axioms in 3 of Definition 11, allows to “exchange” a fusion arrow
with an action arrow, we trivially conclude that p;γ = 〈P,µ1, . . . ,µh,µ′′

1 , . . . ,µ
′′
k ,σ

′′;σ′〉,
for suitable µ′′

1 , , . . . ,µ
′′
k and σ′′. We remark that if, at any stage, two names are fused,

say ai and a j with i < j, then a j is replaced by ai by definition and this guarantees
that 〈P,µ1, . . . ,µh,µ′′

1 , . . . ,µ
′′
k ,σ

′′;σ′〉 is a process arrow. The prove is the same when
considering composition between two sequence arrows.

The proof is concluded by showing that different arrows cannot be equated by ax-
ioms. In other words, we prove that the standard representation of an arrow is unique
(up to identities). Indeed, by inspecting the initial part of the proof we see that equality
between two arrow can be proved only by shifting back and forth fusion arrows or in-
troducing/cancelling identities. In the former case, any shift uniquely determines both
the action and the fusion arrow of the equated arrows (Definition 11). ��

As already mentioned, in the above definitions we have introduced typed versions
(the type is a natural number m) of normalised agents and actions (substitutions are
already typed), such that their names are in {a1, . . . ,am}. This is apparently required by
the “box and wires” structure of category PAC. We continue defining typed versions of
ordinary processes and of fusions.

Given a π− agent p and a natural number m such that m ≥ max{k | ak ∈ fn(p)}, we
denote as pm : � → m the arrow p̂n;σ where n = |fn(p̂)|+m−|fn(p)| and σ : n → m is
defined as:

– σ(ai) = σp(ai), if i ∈ fn(p̂),
– σ bijective and index monotone when restricted to i �∈ fn(p̂) (where σ is index

monotone if σ(ai) = σ(ah), σ(a j) = σ(ak) and i ≤ j implies h ≤ k).

Basically, pm represents the agent p in terms of a normalised process with n variables.
Given a fusion ai = a j and m ∈ ω, with i < j ≤ m, the substitution [ai = a j]m : m → m−1
is defined as follows:

[ai = a j]m(ak) =

⎧⎨
⎩

ak, k < j
ai, k = j
ak−1, j < k ≤ m

18 G. Ferrari, U. Montanari, and E. Tuosto

γ̂1

��

γ′
����������

γ̂3

��

γ̂2

��

γ
��

�

p

��

 q

�������

(a)

γ′
1

��

γ′
����������

γ′
3

��

γ′
2

��

γ
��

�

p

��

 q

�������

(b)

γ̂1

��

γ′
�������

γ̂3

��

γ̂2

��

γ
��

γ1

��

 γ2

�������

(c)

Fig. 3. Diagrams for proofs in Theorem 4

In words, [ai = a j]m maps the initial m names to the initial m − 1 by replacing a j with
ai and mapping the names greater that a j to their predecessors.

Definition 12 (PAC Reaction Rules). The reaction rules are those generated by the
following inference rules where m ≥ |fn(P)|:

P
āb−→ q

Pm; āmb =⇒ qm

P
a(am+1)−−−→ q

Pm;am =⇒ qm+1

P
ai=a j−−→ q i �= j

Pm; [ai = a j]m =⇒ qm; [ai = a j]m

P
ε−→ q

Pm =⇒ qm

Definition 12 specify the reduction rules of PAC which rely on the LTS semantics of
π−. Take the first rule; it states that, if a normalised process P makes an output transition
to q, then, in PAC, the corresponding arrow composed with the (output) action arrow
(considered in at least |fn(P)| variables m) reduces to the arrow representing q in m
variables. Basically, the same can be said for the input and fusion transitions, aside that
the former introduces the new variable am+1 while the latter eliminates a variable. The
last rule is just the special case of fusing a name with itself (i.e., P; id is the lhs of the
reduction).

Theorem 4. PAC has redex relative pushouts (RPOs).

Proof. We must prove that, given a reaction rule q =⇒ r, for any process arrow p and
any sequence arrows γ, γ′ such that p;γ′ = q;γ, there exist three sequence arrows γ̂1, γ̂2

and γ̂3 that satisfy the following conditions:

a. the diagram in Figure 3(a) commutes, and
b. for any sequence arrows γ′

1, γ′
2 and γ′

3 such that the diagram in Figure 3(b) com-

mutes, there is a unique γ̂ such that both

γ̂1

��

γ′
1

�������
γ̂

��

γ̂2

��

γ′
2

��

 and

γ̂
��

γ̂3

�������
γ′

3

��

com-

mute.

Model Checking for Nominal Calculi 19

Let us remark that the reduction contexts are all the arrows of PAC, however, for redex
RPOs, γ and γ′ can only be sequence arrows. Moreover, since p;γ′ = q;γ, for Propo-
sition 2, p and q are process arrows that are the composition of the same normalised
linear arrow, say P with two sequence arrows. Hence, without loss of generality, it suf-
fices to prove that there are arrows γ̂1, γ̂2 and γ̂3 forming an RPO for any diagram as in
Figure 3(c).

The proof continues by case analysis.

– First assume that γ2 is an identity fusion arrow and consider the commuting diagram
below.

γ′
�������

γ
��

γ1

��

 id

�������

We prove that γ̂1 = id, γ̂2 = γ1 and γ̂3 = γ′ is an RPO. Indeed,
condition a) trivially holds because the external square commutes
by hypothesis. Consider three sequence arrows γ′

1, γ′
2 and γ′

3 such
that γ′ = γ′

1;γ′
3, γ = γ′

2;γ′
3 and γ1;γ′

1 = γ′
2. Then, assuming γ̂ = γ′

3
we obtain that the commutativity of the triangles corresponding to

condition b) holds. Finally, uniqueness of γ̂ is guaranteed by observing that γ̂1 is the
identity.

– Let γ2 is a generic fusion arrow σ. By Proposition 2, there is a sequence arrow γ′′

such that σ;γ = γ′′. Hence, we can equivalently prove that

γ′ ����
γ′′��

γ1

��

id

����

has an RPO,

which hold by the previous case.
− Finally, assume that γ2 is an action arrow µ. By hypothesis, γ1;γ′ = µ;γ, then, by

Proposition 2,
• either γ1 = µ;γ′

1
• or γ1 is the identity and γ′ = µ;γ′′.

In the former case, the proof reduces to show that

γ′ ����
γ′′��

γ′
1

��

id

����
has an RPO, which hold

by the previous case. While, in the latter case, the redex diagram is

γ′ ����
γ��

id

��

 µ

����

and,

proceeding as before, it is easy to see that µ, id and γ constitute an RPO.
��

Definition 13 (Labelled Transitions). The diagram in Figure 3(a) is an IPO when

it is an RPO and γ̂1 = γ′, γ̂2 = γ and γ̂3 = id. We write p
γ′

� r;γ when there is a
reduction rule q =⇒ r and the diagram Figure 3(a) is an IPO. This defines a LTS. The
corresponding bisimilarity according to Definition 8 is denoted as �.

The results in [53] and Theorem 12 guarantee the following corollary.

Corollary 1. Bisimilarity relation � is a congruence.

20 G. Ferrari, U. Montanari, and E. Tuosto

The LTS of Definition 13 is essentially the same as in Section 5.1 indeed, the states
are π− processes and it is possible to show that the IPOs of PAC characterise the tran-
sitions of [74]. Thus bisimilarity relation � essentially coincides with syntactic bisimi-
larity �.

Theorem 5 (� Is �). Relation �, which is defined on process arrows pm, when re-
stricted to those pm with m = max{k | ak ∈ fn(p)}, coincides with �.

Notice that, due to the missing restriction operator, two agents with different sets of free
names cannot be bisimilar. Thus, observing actions or typed actions does not make a
difference.

From Theorem 2 we know that � is finer than or equal than ∼. It is easy to see that
it is finer from this example. Consider the following processes

p = (āb | a′(c))+(d̄e | d(f)) q = āb.a′(c)+a′(c).āb+(d̄e | d(f)),

then p ∼ q because the synchronisation between āb and a′(c) in a context that identifies
a and a′ is matched by the (unique) synchronisation of q. On the contrary, p �� q because

the transition p a=a′
� cannot be matched by q. We can thus conclude the following fact.

Theorem 6. Relation � when restricted to those pm with m = max{k | ak ∈ fn(p)}, is
finer than ∼.

6 Conclusions

In the paper we surveyed some of the approaches for model checking nominal calculi,
focusing on HD-automata and on the existing toolkits for handling them. We also intro-
duced a simplified version of open π-calculus and we proposed a bisimilarity semantics
for it based on a reactive system with observed borrowed contexts. This approach has
been proposed by Leifer and Milner [53, 52] and further developed by Sassone, Lack
and Sobocinski [76, 78, 50] using G-categories and adhesive categories. The generality
of the reactive system approach gives some hope that interesting abstractions of the
SOC paradigm could also be modelled that way.

However we noticed that the transition system we obtain in this manner is not re-
ally suitable for a HD-automata implementation, since new names are never forgotten.
To avoid this problem, it might be necessary to take advantage of the extended theory
developed by Sassone, Lack and Sobocinski [76, 78, 50]. In particular, the actions of
nominal calculi which forget names could be represented as cospans of suitable ad-
hesive categories. In fact several expressive graph-like structures can be represented
by adhesive categories and the existing theory guarantees that the categories of their
cospans have the all redex-RPOs property [77].

Acknowledgements

The authors thank Vladimiro Sassone and Pawel Sobocinski for their helpful comments
on an earlier draft of this paper.

Model Checking for Nominal Calculi 21

References

1. M. Abadi and A. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Inf.
and Comp., 148(1):1–70, January 1999.

2. G. Baldi, A. Bracciali, G. Ferrari, and E. Tuosto. A Coordination-based Methodology for
Security Protocol Verification. In WISP, ENTCS, Bologna, Italy, June 2004. Elsevier. To
appear.

3. T. Ball and S. Rajamani. The SLAM Toolkit. In G. Berry, H. Comon, and A. Finkel, editors,
CAV, volume 2102 of LNCS, pages 260–264. Springer, 2001.

4. N. Benton, L. Cardelli, and C. Fournet. Modern Concurrency Abstractions for C#. TOPLAS,
26(5):269–304, Sept. 2004.

5. M. Boreale and M. Buscemi. A Framework for the Analysis of Security Protocols. In
L. Brim, P. Jančar, M. Křetinský, and A. Kučera, editors, CONCUR, volume 2421 of LNCS,
pages 483–498. Springer, Aug. 2002.

6. M. Boreale and R. De Nicola. A Symbolic Semantics for the π-calculus. Inf. and Comp.,
126(1):34–52, April 1996.

7. A. Bouali, S. Gnesi, and S. Larosa. The Integration Project for the JACK Environment. In
EATCS Bull., volume 54, pages 207–223. Centrum voor Wiskunde en Informatica (CWI),
1994.

8. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The FC2TOOLS Set. In R. Alur and
T. Henzinger, editors, CAV, volume 1102 of LNCS, pages 441–445, New Brunswick, NJ,
USA, 1996. Springer.

9. A. Bracciali, A. Brogi, G. Ferrari, and E. Tuosto. Security Issues in Component Based
Design. In U. Montanari and V. Sassone, editors, ConCoord: International Workshop on
Concurrency and Coordination, volume 54 of ENTCS, Lipari Island - Italy, July 2001. Else-
vier.

10. G. Brat, K. Havelund, S. Park, and W. Visser. Model Checking Programs. Automated Soft-
ware Engineering, 10(2):203–232, 2003.

11. R. Bruni, C. Laneve, and U. Montanari. Orchestrating Transactions in Join Calculus. In
L. Brim, P. Jancar, M. Kretinsky, and A. Kucera, editors, CONCUR, volume 2421 of LNCS,
pages 321–336. Springer, 2002.

12. R. Bruni, H. Melgratti, and U. Montanari. Theoretical Foundations for Compensations in
Flow Composition Languages. In POPL, 2005. To appear.

13. R. Bruni, U. Montanari, and F. Rossi. An Interactive Semantics of Logic Programming.
Theory and Practice of Logic Programming., 1(6):647–690, 2001.

14. M. Butler and C. Ferreira. An Operational Semantics for StAC, a Language for Modelling
Long-Running Business Transactions. In R. De Nicola, G. Ferrari, and G. Meredith, editors,
COORDINATION, volume 2949 of LNCS, pages 87–104. Springer, 2004.

15. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Inf. and Comp., 186,
2003.

16. L. Caires and L. Cardelli. A Spatial Logic for Concurrency II. TCS, 322(3):517–565, Sept.
2004.

17. G. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving and Causal
(Extended Abstract). Inf. and Comp., 190(2):136–178, May 2004.

18. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
19. E. Clarke and J. Wing. Formal Methods: State of the Art and Future Directions. ACM

Computing Surveys, 28(4):626–643, December 1996.
20. S. Clarke, Edmund M. Jha and W. Marrero. Using State Space Exploration and a Nautural

Deduction Style Message Derivation Engine to Verify Security Protocols. In In Proc. IFIP
Working Conference on Programming Concepts and Methods (PROCOMET), 1998.

22 G. Ferrari, U. Montanari, and E. Tuosto

21. R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems. TOPLAS, 15(1):36–72, Jan. 1993.

22. S. Conchon and F. Le Fessant. Jocaml: Mobile Agents for Objective-Caml. In International
Symposium on Agent Systems and Applications, pages 22–29, Palm Springs, California, Oct.
1999.

23. J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, S. Corina, Robby, and H. Zheng. Bandera:
Extracting Finite-state Models from Java Source Code. In International Conference on Soft-
ware Engineering, pages 439–448, Limerick, Ireland, June 2000.

24. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in Web Services.
CACM, 46(10):29–34, 2003.

25. M. Dam. Model Checking Mobile Processes. Inf. and Comp., 129(1):35–51, 1996.
26. M. Dam. Proof Systems for π-Calculus Logics. Logic for concurrency and synchronisation,

pages 145–212, 2003.
27. G. Denker and J. Millen. CAPSL Integrated Protocol Environment. Technical report, Com-

puter Science Laboratory, SRI International, Menlo Park, CA, 1999.
28. H. Ehrig and B. König. Deriving Bisimulation Congruences in the DPO Approach to Graph

Rewriting. In I. Walukiewicz, editor, FoSSaCS, volume 2987, pages 151–166. LNCS, 2004.
29. J. Fernandez. An Implementation of an Efficient Algorithm for Bisimulation Equivalence.

Science of Computer Programming, 13(2–3):219–236, May 1990.
30. J. Fernandez and L. Mounier. On-the-fly Verification of Behavioural Equivalences and Pre-

orders. In K. Larsen and A. Skou, editors, CAV, volume 575 of LNCS, pages 181–191.
Springer, July 1991.

31. G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An Automata Based
Verification Environment for Mobile Processes. In E. Brinksma, editor, TACAS, volume 1217
of LNCS, pages 275–289. Springer, April 1997.

32. G. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A Model Checking Verification Environ-
ment for Mobile Processes. TOPLAS, 12(4):1–34, 2004.

33. G. Ferrari, S. Gnesi, U. Montanari, R. Raggi, G. Trentanni, and E. Tuosto. Verification on
the WEB. In J. Augusto and U. Ultes-Nitsche, editors, VVEIS, pages 72–74, Porto, Portugal,
April 2004. INSTICC Press.

34. G. Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for Name Passing
Calculi: A Co-algebraic Formulation. In M. Nielsen and U. Engberg, editors, FOSSACS
2002, volume 2303 of LNCS, pages 129–143. Springer, 2002.

35. G. Ferrari, U. Montanari, and E. Tuosto. From Co-algebraic Specifications to Implementa-
tion: The Mihda toolkit. In F. de Boer, M. Bonsangue, S. Graf, and W. de Roever, editors,
FMCO, volume 2852 of LNCS, pages 319 – 338. Springer, November 2002.

36. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-automata for the
π-Calculus in a Polymorphic λ-Calculus. TCS, 2004. To appear.

37. M. Fiore, G. Plotkin, and D. Turi. Abstract Syntax and Variable Binding (Extended Abstract).
In LICS, pages 193–202, Trento, Italy, July 1999. IEEE.

38. P. Fiore and M. Abadi. Computing Symbolic Models for Verifying Cryptographic Protocols.
In Computer Security Foundations Workshop, CSFW, pages 160–173, Cape Breton, Nova
Scotia, Canada, June 2001. IEEE.

39. R. Focardi and R. Gorrieri. A Classification of Security Properties. J. of Computer Security,
3(1), 1995.

40. M. Gabbay and A. Pitts. A New Approach to Abstract Syntax Involving Binders. In
G. Longo, editor, LICS, pages 214–224, Trento, Italy, July 1999. IEEE.

41. A. Gordon. Notes on Nominal Calculi for Security and Mobility. In R. Focardi and R. Gor-
rieri, editors, FOSAD, volume 2171 of LNCS, pages 262–330. Springer, September 2002.

42. M. Hennessy and H. Lin. Symbolic Bisimulations. TCS, 138(2):353–389, February 1995.

Model Checking for Nominal Calculi 23

43. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In POPL, pages
58–70. ACM Press, 2002.

44. D. Hirschkoff. On the Benefits of Using the up-to Techniques for Bisimulation Verification.
In W. Cleaveland, editor, TACAS, volume 1579 of LNCS, pages 285–299, Amsterdam, March
1999. Springer.

45. G. Holzmann. The Model Checker Spin. TSE, 23(5):279–295, May 1997.
46. G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley,

Sept. 2003.
47. K. Honda. Elementary Structures in Process Theory (1): Sets with Renaming. MSCS,

10(5):617–663, 2000.
48. O. Jensen and R. Milner. Bigraphs and Transitions. In POPL, pages 38–49. ACM Press,

2003.
49. P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes and Three Problem of

Equivalence. Inf. and Comp., 86(1):272–302, 1990.
50. S. Lack and P. Sobociń ski. Adhesive Categories. In I. Walukiewicz, editor, FoSSaCS, volume

2987 of LNCS, pages 273–288, Barcelona, March 2004. Springer.
51. C. Laneve and G. Zavattaro. Foundations of Web Transactions. In FoSSaCS, LNCS, 2005.

To appear.
52. J. Leifer. Operational Congruences for Reactive Systems. PhD thesis, Computer Laboratory,

University of Cambridge, Cambridge, UK, 2001.
53. J. Leifer and R. Milner. Deriving Bisimulation Congruences for Reactive Systems. In

C. Palamidessi, editor, CONCUR, volume 1877 of LNCS, pages 243–258, University Park,
PA, USA, August 22-25 2000. Springer.

54. H. Lin. Complete Inference Systems for Weak Bisimulation Equivalences in the π-Calculus.
Inf. and Comp., 180(1):1–29, January 2003.

55. G. Lowe. Towards a Completeness Result for Model Checking of Security Protocols. In
CSFW. IEEE, 1998.

56. W. Marrero, E. Clarke, and S. Jha. Model Checking for Security Protocols. In Formal
Verification of Security Protocols, 1997.

57. K. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.
58. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
59. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Inf. and

Comp., 100(1):1–40,41–77, September 1992.
60. J. Mitchell, M. Mitchell, and U. Ster. Automated analysis of cryptographic protocols using

murφ. In CSFW, pages 141–151. IEEE, 1997.
61. U. Montanari and M. Buscemi. A First Order Coalgebraic Model of π-Calculus Early Obser-

vational Equivalence. In L. Brim, P. Jančar, M. Křetinský, and A. Kučera, editors, CONCUR,
volume 2421 of LNCS, pages 449–465. Springer, Aug. 2002.

62. U. Montanari and M. Pistore. Checking Bisimilarity for Finitary π-Calculus. In I. Lee and
S. Smolka, editors, CONCUR, volume 962 of LNCS, pages 42–56, Philadelphia, PA, USA,
Aug. 1995. Springer.

63. U. Montanari and M. Pistore. History Dependent Automata. Technical report, Computer
Science Department, Università di Pisa, 1998. TR-11-98.

64. U. Montanari and M. Pistore. π-Calculus, Structured Coalgebras, and Minimal HD-
Automata. In M. Nielsen and B. Roman, editors, MFCS, volume 1983 of LNCS. Springer,
2000. An extended version will be published on Theoretical Computer Science.

65. U. Montanari and V. Sassone. Dynamic Congruence vs. Progressing Bisimulation for CCS.
Fundamenta Informaticae, 16:171–196, 1992.

66. R. Needham. Names. Addison-Wesley (Mullender Ed.), 1989.
67. R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal on Comput-

ing, 16(6):973–989, December 1987.

24 G. Ferrari, U. Montanari, and E. Tuosto

68. M. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Directions. In
Web Information Systems Engineering (WISE’03), LNCS, pages 3–12. Springer, 2003.

69. D. Park. Concurrency and Automata on Infinite Sequences. In Theoretical Computer Sci-
ence, 5th GI-Conf., volume 104 of LNCS, pages 167–183. Springer, Karlsruhe, March 1981.

70. J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile
Processes. In LICS. IEEE, 1998.

71. M. Pistore. History Dependent Automata. PhD thesis, Computer Science Department, Uni-
versità di Pisa, 1999.

72. M. Pistore and D. Sangiorgi. A Partition Refinement Algorithm for the π-Calculus. Inf. and
Comp., 164(2):467–509, 2001.

73. D. Sangiorgi. On the Bisimulation Proof Method (Extended Abstract). In J. Wiedermann and
P. Hájek, editors, MFCS, volume 969 of LNCS, pages 479–488, Prague, August-September
1995. Springer.

74. D. Sangiorgi. A Theory of Bisimulation for the π-Calculus. Acta Informatica, 33(1):69–97,
1996.

75. D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes. Cambridge
University Press, 2002.

76. V. Sassone and P. Sobociński. Deriving Bisimulation Congruences using 2-categories.
Nordic J. of Computing, 10(2), 2003.

77. V. Sassone and P. Sobociński. Congruences for Contextual Graph-Rewriting. Technical
Report RS-14, BRICS, June 2004.

78. V. Sassone and P. Sobociński. Locating Reaction with 2-Categories. TCS, 2004. To appear.
79. P. Sewell. From Rewrite Rules to Bisimulation Congruences. LNCS, 1466, 1998.
80. P. Sewell. Applied π – A Brief Tutorial. Technical Report 498, Computer Laboratory,

University of Cambridge, Aug. 2000.
81. H. Smith and P. Fingar. Workflow is Just a Pi process. Available at

http://www.bpm3.com/picalculus, 2003.
82. V. Vanackére. The TRUST protocol analyser. Automatic and Efficient Verification of Cryp-

tographic Protocols. In VERIFY02, 2002.
83. B. Victor and F. Moller. The Mobility Workbench — A Tool for the π-Calculus. In D. Dill,

editor, CAV, volume 818 of LNCS, pages 428–440. Springer, 1994.
84. P. Yang, C. Ramakrishnan, and S. Smolka. A Logical Encoding of the π-Calculus: Model

Checking Mobile Processes Using Tabled Resolution. STTT, 6(1):38–66, July 2004.

http://www.bpm3.com/picalculus

	Summary
	Verification via Semantics Equivalence
	Model Checking
	History-Dependent Automata
	Minimising HD-Automata: An Informal Presentation
	The PROFUNDIS Web

	A Borrowed Context Semantics for the Open -Calculus
	Open -Calculus
	Reactive Systems
	A Reactive System for the Open -Calculus

	Conclusions

