Elimination of Quantifiers and Undecidability
in Spatial Logics for Concurrency

Luis Caire$ andEtienne Loze%

1 Departamento de Inforatica FCT/UNL, Lisboa, Portugal
2 LIP, Ecole Normal Sugrieure de Lyon, France

Abstract. The introduction of spatial logics in concurrency is motivated by a shift of focus from
concurrent systems towards distributed systems. Aiming at a deeper understanding of the essence of
dynamic spatial logics, we study a minimal spatial logic without quantifiers or any operators talking
about names. The logic just includes the basic spatial operators void, composition and its adjunct, and
the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic
can already encode its own extension with quantifiers, and modalities for actions. From this result, we
derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the
equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that,
unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that
adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove
that both model-checking and satisfiability problems are undecidable in our logic. We also conclude
that our results extend to other calculi, namelythealculus and the ambient calculus.

Introduction

The introduction of spatial logics in concurrency has been motivated by a recent shift of focus
from monolithic concurrent systems towards distributed computing systems. Such systems are by
nature both concurrent and spatially distributed, in the sense that they are composed from a number
of separate and independently observable units of behavior and computation. Many key properties
and concepts related to distributed systems, like locations, resources, independence, distribution,
connectivity, and freshness, can be explained in spatial terms. The central idea behind spatial logics
is that for specificying distributed computations there is a need to talk in a precise way not just about
pure behaviors, as is the case with traditional logics for concurrency, but about a richer model able
to represent computation in a space. Such an increased degree of expressiveness is necessary if we
want to specify with and reason about notions of the kind mentioned above. Spatial logics have been
proposed forr-calculi [2, 4, 3], and for the ambient calculus [10, 9]. Spatial logics for manipulating
and querying semi-structured data have also been developed [8, 7]. Closely related are the separation
logics [19, 18], introduced with the aim of supporting local reasoning about imperative programs.
The simplest spatial logic for concurrency, we may argue, is the one obtained by adding to
boolean logic the very basic spatial connectives, namely @jd¢émposition ¢ | —) and its logical
adjunct > —), and then the dynamic modality next st€p-(). This logic, based on purely spatial
observations, will be referred from now on By,,q;.
The basic spatial connectives can be used to specify the distribution of prodespesifies
the empty system (not to be confused with the inactive system),/ah# specifies the systems
that can be partitioned in two parts, one satisfyitignd the other satisfying. For the adjunct,
A > B is satisfied by those processes that, whenever composed with a process satisfgirg
guaranteed to satisfy. A simple example of a property combining spatial and dynamic operators
is the one expressed by the form@ta0 | —0) A O0; it specifies those processes that have (at least)
two separate components and may reduce to the empty system. Adjuncts allow the specification of
contextual propertie®.g, consider the formula A (1 » $0), that uses the existential version of the
adjunct definedd » B £ - (A - B). This formula specifies the single-thread processes that can
be composed with some other process to yield a system than may evolve to the empty system, after

2 Luis Caires andEtienne Lozes

a single reduction step. Adjunct-free spatial logics with behavioral observagang1]) are also

able to render some kinds of contextual properties. For example, the property just presented can be
expressed by the formulan 3z. (x)0, using an action modality. Thus, one of the motivations for

this work is to get a deeper understanding about the relative expressiveness of these approaches.

For the sake of simplicity and generality, we interpfej,. in a rather small fragment of choice-
free CCS. This calculus turns out to conveniently abstract the kind of concurrent behavior present
in both - and ambient calculi, in the broad sense that interactions are local, and triggered by the
presence of named capabilities.

At first, L£,,.: S€€MSs quite weak, as far as expressiveness is concerned, when compared to other
spatial logics. For instance, it provides no constructs referring to names or actions.jkihe
action modality(n).A of behavioral logics, or the ambient match constructigrl] in the ambi-
ent logic), therefore formulas af,,: are always closed. As a consequence, satisfactiabyof;
formulas is invariant under swapping of any pair of actions in processes (a property usually called
equivariance) because formulas cannot single out specific actions or names. Still, due to the presence
of the ¢ operator, the logic is able to make some distinctions between actions, and substitution of
actions does not in general preserve satisfaction. For instande 3et: | 3. ThenP = - (T for
B # «, but P{8—a} = - OT. These considerations lead to the general question of what is the
largest relation between processes which are indistinguishable by the logical equivalence: answering
this question crucially contributes to our understanding of the spatial model induced on processes
by the simplest combination of logical observations.

However, this question turns out to be a rather difficult one to answer, due to the presence of
the composition adjunct operatsr The adjunct is quite powerful, allowing the logic to perform
guite strong observations on processes. With adjunct, validity can be internally defined [10] (thus
validity-checking is subsumed by model-checking), and use certain forms of specification akin to
a comprehension principle (for example, we may specify the set of all processes that have an even
number of parallel components). The study of expressiveness for spatial logics usually goes through
the definition of an adequate spatial bisimilarityalong the lines of [15]. Then, establishing the
congruence of is key to ensure correctnessef so that fromP ~ @ we concludeP | R =~ Q | R.

For our logic however, such property does not hold, due to equivariance. For instance, the processes
«.0 andg. 0 are logically equivalent, but. 0 | @.0 and3. 0 | @. 0 are not. Hence, this approach
does not work well in this setting.

Despite many works about decidability of spatial logics, the question of model-checking spatial
logics for concurrency with adjunct has not been fully settled. Results are known for some cases,
where the logic includes just or ¢ [10, 1], but there seems to be no work about the interesting
combination of> and{, as far as decidability is concerned. However, we believe that this issue lies
at the heart and novelty of a purely spatial approach to verification of distributed systems. On the
one hand, image-finiteness of the reduction relation gives a model-checking algorithm for adjunct-
free logics [1]. On the other hand, in the absence of name quantifiers and name revelation it is also
known that static fragments are decidable [5], so there could be some hope in obtaining decidability
of model-checking the whole a,,;.

We may answer these questions considering the extersign of L,,,: with the existential
quantifier and quantified action modalities; f6f,.q, logical equivalence is much clearly inten-
sional, and one may adapt the results of [12] to derive the undecidability of model-checking. But
even ife- induces undecidability, we may ask the question of its actual contribution to the expres-
siveness of the logic. In previous work [17], Lozes has shown that in static spatial logics, that is
spatial logics without quantifiers and dynamic operators, the adjunct connective can be eliminated
in behalf of the remaining connectives, in the sense that for any formula of such a logic there is
a (possibly hard to find) logically equivalent adjunct-free formula. An interesting question is then
whether something similar happensan,.q: we could possibly think that the expressive power of
the adjunct could somehow be recovered by the presence of action modalities, given that both kinds
of constructs allow some contextual observations to be made.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 3

S0 L0q and L, Seem quite different as far as expressive power is concerned. The first one
seems clearly intensional (in the technical sense that logical equivalence coincides with structural
congruence), and undecidable. But for the second, as discussed above, it would be reasonable to
hope for decidability, and expect a separation power coarser than structural congruence. All this
turns out not to be the case.

The key result of this paper is th4t,, . admits the elimination of quantifiers and action modal-
ities in a precise sense (Theorem 2.1); on the way we also show that equality is internally definable.
Building on this surprising result, we then show th&y,,; and £,,,,q have the same separation
power (Theorem 3.3), and expressiveness in a certain sense. As a consequence, we also characterize
the separation power df,,,., showing that it coincides with structural congruence modulo permu-
tation of actions (Theorem 3.3). Quantifier elimination is compositional and effective, allowing us to
conclude that model-checking of bofy,,,; and£,,,.q is undecidable (Theorem 5.4). A counterex-
ample inspired by a suggestion of Yang allows us then to prove that composition adjunct contributes
in a non-trivial way to the expressiveness of both logics, thus settling a conjecture formulated in [17]
about whether this connective could also be eliminated in spatial logics for concurrency.

Related Work. Sangiorgi first showed [21] that observation of capabilities in the ambient calculus
can be expressed inside spatial logics making use of &mel) operators. This result has since then

be generalized to other calculi [4, 16]. However, in all such encodings, the use of quantifiers, and
references to (some times fresh) names using the revelation connective seems to be essential. From
this point of view, our work gives a tighter bound on the level of expressiveness really needed to
embed action modalities, since it does not use operators beyond those expected in every pure spatial
logic. A related effort addressing minimality is being developed by Hirschkoff, characterizing
calculus behavioral equivalences with a logic with composition adjunct [14].

Adjunct elimination for a static spatial logic was first proved in [17], where a counterexample
to adjunct elimination in the presence of quantifiers was also presented. However, the particular
counterexample given there makes an essential use of name revelation, and thus only applies to
calculi with hidden names and related logical connectives. The counterexample presented here is
much more general to spatial logics, since it does not rely on such constructs.

Concerning decidability and model-checking of spatial logics, decidability of model-checking
for the adjunct-free ambient logic against the replication free calculus was settled by Cardelli and
Gordon in [10]. Validity and model-checking of ambient calculus against spatial logics with exis-
tential quantifiers was shown undecidable by Charatonik and Talbot [12]. The same authors also ex-
tended the results of [10] to logics with constructs for restricted names, and then with Gordon to the
finite-control ambient-calculus [11]. Model-checking thealculus against full adjunct-free spatial
logic with behavioral modalities, hidden and fresh name quantifiers, and recursion was shown to be
decidable in [1]. Decidability of validity in a static spatial logic for trees with adjunct was first shown
by Calcagno, Cardelli and Gordon in [5], building on techniques of [6]. More recently, Conforti and
Ghelli proved that similar results do not hold in logics with operators for restricted names [13].

To our best knowledge, no results about expressiveness and decidability of dynamic spatial logics
SO crisp as ours have been presented, in the sense that they apply to a minimal spatial logic for
concurrency, and focus on the crucial combination of the composition adjunct with the dynamic
modality. The elimination of quantifiers (although not of variables,as we also achieve here) is an
important topic of interest in classical logic, related to decidability and complexity issugs (
see [20]). However, we believe our work lies completely out of this scope, as on the contrary we
derive undecidability of our logic from the elimination of quantifiers.

1 Preliminaries

In this section, we introduce the process calculus and spatial logics considered in this work. For the
process calculus, we pick a fairly small fragment of CCS.

4 Luis Caires andEtienne Lozes

PvEMm A ifnotPovEMm A

PvlE=Ey AANB if Pv =y AandPyv =y B

P,v =m0 fP=0

PuvEy A|B if3Q,R. P=Q | RandQ,v =um AandR,v Eu B
PuvlEn AvB ifVQ € M, Q,v =m AimpliesP | Q,v =y B
PovkEy 3z A ifdacA P (v{z—a}) Eu A

Polm OA 3P P— PandP vEnm A

P (@). A if 3P PYOP and P, v ar A

Pv b (@). A if 3P PYEP andP’ v =y A

Fig. 1. Semantics of formulas

Definition 1.1. Assume given an infinite s&f actions ranged over by, 5. Processeare defined
by the grammar: P,Q,R = 0 | P|Q | «.P.

Actions are given in pairs of distinct (co)actions, characterized by the involotioA— A sending

« into @, and such thatt = «. The relation ofstructural congruencés defined as the least con-
gruence= on processes such th&t|0 = P, P |Q = Q| P,andP | (Q | R) = (P | Q) | R.
Structural congruence represents identity of the spatial structure of processes. Dynamics is captured
by labeled transitions.

Definition 1.2. Given the seL = {7} U A of labels the relation oflabeled transitiors defined by
the rules

a.P-%P PSP =P|Q-5P|Q PSP .Q-5Q =P|Q-P | Q

Notice that— is closed undes=, and that— corresponds to the usual relationrefluction noted
—. We define thedepthof a process” (maximal nesting of actions in a proceBg3 by letting
ds(0) = 0,ds(a. P) = 1 +ds(P), andds(P | Q) = max(ds(P),ds(Q)). Let Mk denote the set of
all processes whose depth does not exdged/x = {P | ds(P) < K}. ThenMq = Uy ey Mi
coincides with the set of all processes. We also define the projection (by truneatiody ., — Mj,,
by induction onk by letting o (P) = m(0) £ 0, 7. (P | Q) £ m(P) | m(Q), andmyy 1 (. P) 2
Q. T (P)

Having defined the intended process model, we turn to logics. The logic we consider includes
the basic spatial operators found in all spatial logics namely: the composition operh@woid
operator0, and the composition adjunct operatofguarantee). To these connectives, we add the
temporal operatof (next step), to capture the dynamic behavior of processes. These operators may
be considered the core connectives for spatial logics for concurrency. We then consider the extension
of the core with modalities for actionsf(Hennessy-Milner logic), and quantifiers ranging over
actions.

Definition 1.3. Given an infinite seX of variables,(x, y € X) formulas are given by:

A,B:I: A/\B | AlB | _‘A ‘A>B|O|<>A (*Cspat)
| (). A | @).A| Jz. A (Limod)

We write L, for the set of formulas in the pure spatial fragment, &nd,, for the set of all
formulas.Free variableof formulas are defined as usual; we say a formutddsedif it has no free
variables. Semantics is defined in Fig. 1 by a relation of satisfacBatisfactionis expressed by
P,v E=pr AwhereP is a process) is a set of processeg, a formula, and is a valuation for the
free variables of4. A valuationis a mapping from a finite subset Xfto A. For any valuation, we
write v{z«—a} for the valuation,’ such that/(z) = «, andv’(y) = v(y) if y # . By §) we denote

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 5

T 20v-0 € LT

AVB 2 - (wAA-B) A=>B2-AVB

V. A £ -32.-A AlB 2-(-A|-B)

Ap» B2 - (A>-B) AV A YL

AT E2AT AW 2 (=A> L

z=y 2 ((z).0](7).0) = 00)" =7 2 ((2).0](1).0) = 00)"
PuvlEuT if always

PovEn L if never

PvlEum AVEB if PovkEwmAorPuvEnB
PvEm A=B if PvkEy AimpliesPv =y B
PovEyVz. A if VYaeA P (v{z—a})Enu A

Pv =y AlB if VQ,R. P=Q]|RimpliesQ,v=m AorR,vEm B
PvEy A»B if 3QeM. QEv AandP |Qu B

Py A7 if VQ,R. P=Q | RimpliesQ,v =um A

PvEy A if 3Q,R. P=Q|RandQ,v=n A

Pv = A if VQeM. QuEnmA

PvEmz=y if w(z)=v(y) (whenM; C M)

PvEvz=Y%y if w(x)=uv(y) (whenM; C M)

Fig. 2. Definition and semantics of derived operators.

the empty valuation. Notice that this definition of satisfaction matches the usual one except for the
presence of the inde)/, which specifies the range of quantification for interpreting the adjunct (see
clause fon>). This generalization is only a convenience for our technical development; it is clear
that =5, corresponds to the standard non-relativized relation of satisfaction. So, we abbreviate
Pv Eu, Aby P v = A, moreover, when the formuld is closed we abbreviat®, () =5, A
by P =y A. By default, the set of processag is M, so that we may abreviate = A for
Py, A

An action permutatioris a bijections : A—A such thatr(@) = o(a). We write {a < (}
for the action permutation that swapsand 5. Satisfaction verifies the fundamental property of
equivariance, which in our present setting is formulated as follows.

Definition 1.4. Let=, be the binary relation on processes definedby, Q if and only if there is
an action permutatiom such thatP = o(Q).

Proposition 1.5 (Equivariance).Let P,v =5, A. For every action permutation, if P = ¢(Q)
then@, o (v) Eur A.

We frequently refer to the logical equivalence of processes induced by the logic L (where L is either
Lopat OF L0q). The relation=g, is defined by setting”=,Q if for all closed formulas4, we have
P)E Aifandonly if Q,0 = A.

Besides the basic stock of primitive connectives, we also use a few derived ones: we list their
definition and formal meaning in Fig. 2. By(.A) we denote the maximal level of nesting of com-
position| in the formula4, and byds(.4) the maximal nesting of dynamic modalities in the formula
A, defined by

wo) = 3582 :z?) ds(A | B)

WA R B) = W(A® B) = mas (w() wiE) EAN Y

WA | B) =1+ max (WA), WE)) ds<§f§§4§fﬁ(&>,§ (eslA), a5t
w(

ds((z)A) = ds(A) + 1

B)
OA) = (—\ A)=w(Tz. A) =
)A) ds(=A) = ds(3z. A) = ds(A)

w((z W((Z)A) = W(A)

6 Luis Caires andEtienne Lozes

Itis easy to see that a formukacannot inspect the part of the process that lies deeper than the depth
of A. As a consequence, the restrictionMt. of the denotation of a formula of depthcompletely
charaterizes its denotation, in the precise sense of:

Proposition 1.6 (Depth finiteness)For all formulas A € L,,.q, for all & > ds(.A), and for all
processes’,

P =y A ifand only if m(P) =, A ifand only if 7 (P) =, A.

Notations. The process; | ... | P, is abbreviated by[[,_, ,, P, and byP" we denote the
procesy[,_, , P.Inthe same way, we abbreviate the formda| ... | A, by[[,_, ,, A, and
A" then denote$],_, , A

2 Elimination of quantifiers and action modalities

In this section we prove that, quite surprisingly, the lo§ig.q, which contains quantifiers and vari-
ables, can be embedded into the core laljig,:, which does not seem to contain related constructs,
in the sense of the following main result:

Theorem 2.1. For any closed formulad € £,,,q and any natural numbeK > ds(.A), we can
efectively construct a formulpA] x € Lspq: such that for all processeB:

P E A ifandonlyif rx(P) E [Alx

Notice that this result does not state tia},. andL,,,q have the same expressiveness in the usual
sense, however, we should note that the denotation of a forshid@ompletely characterized by its
denotation on some subset of the mod#ls, in the sense of Proposition 1.6. Hence, the denotation
of [A] x completely characterizes the denotationdotthis close correspondence will be enough to
show the undecidability and separability©§,.., and independence of the composition adjunct.

The proof of Theorem 2.1 requires considerable build up. In particular, we need to degfine
formulas to characterize processes of several forms, to be used for various purposes in our encoding
of A into [A] k. This exercise turns out to be quite interesting: by going through it we get a better
understanding about what can be expressetljn,, in a sometimes not really obvious way.

We want to reduce a satisfaction judgméiv =, A, whereA is any £,,,,q formula, into
a satisfaction judgment for a formufed] x of L,,.: that neither contains quantifiers, nor action
modalities (and thus no occurrences of variables whatsoever). The key idea is to represent the val-
uationv appearing inP,v =y, A by a certain processal(e, v, w) g, to be composed with the
processP being tested for satisfaction. More concretely, we encode thefaiby a process of the
form P | val(e, v, w) k, whereval(e, v, w) i encodes the valuation, am e = v is a decomposi-
tion of the valuatiorv into certain maps : X — N andv : N — A, respectively calleénvironment
andnaming andw is a natural number. The role of these data will be explained below.

The encoding of valuations makes use of the notiorouf process. A row procesow (n, «)
is a sequential process of the fommc . .. «. 0, where the actiomx occurs precisely: times (so
thatds(row(n, «)) = n). This process is interesting since it can be characterized logically, and we
will use rows to represent bindings between variables (represented by rows of different length) and
actionsa.. Moreover, by imposing a bound on the depth of the proce$sone considers, we can
easily separate the valuation part from the process that represents the “real” model, in the “soup”
P | val(e,v,w)k.

We start by introducing formulas whose models are precisely the sequential threads with a given
number of actions, in the way we also define the derived modality

1 20A(0]0) Thread(1)
?.A21 A (Thread(1) » 0.A) Thread(n + 1)

1A (1»00)
?. Thread(n)

Y
Y

We have

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 7

Lemma 2.2. For all processesd?, and M such thatM; C M

PEyl iff JacAdJQ.P=a.Q
P =y Thread(l) iff JaeA P=a.0
PEuT. A iff JaeAJQ P=a.QandQ = A

P =y Thread(k) iff Jag € AL. .. Jar €A P=aq.--- .y.0

We now give (for eactt > 0) a formulaM,, that characterizes the mod#fy, that is, such that we
haveP = M, if and only if P € M.

MoE20 My = (1 =2 My)Y

Using the¢ modality as an equality tester, we define a fornkdaals(k) that is satisfied by the of
processes which belong d;, and are compositions of guarded processes all wittsdimeefirst
action. We may then specify rows using appropriate formulas

Equals(k 2 My A (Thread(k +1) » ((Thread(k +1) | 1) = 0T)")
RowCol(0) 20
RowCol(n + 1) £ (Thread(n + 1) | Equals(1)) A ORowCol(n)

Row(n) Thread(n) A (T » RowCol(n))
We now prove

Lemma 2.3. For all k£, and process’, we have:

P = M iff PeM,;

P |= Row(k) iff JaeA P=row(k,a)

P = Equals(k) iff P e Mjand3a e A.3n > 0.
le,...,Pn. P = Oz.Pl | |OéPn

We can now explain our encoding of a valuatioimto a certain process. First, we decompoeto

two functionsr ande such thaty = v o e. An environment is a partial injective function from
variables to an initial segmefit, . . . , n] of the natural numbers. We note bjyx<n} the extension

of e with z +— n, and| e | is the maximal value o¢, that, is the number of variables already
allocated. Anamingv is a function from[1, ..., n] to A. Notice that the decompositian = v oe

is not unique, but will be given by the order in which existential quantified variables are introduced
in their scopes. For any namingand environment the processal(e, v, w)k is

val(e,v,w)x = Hizl_,,|e|r0W(K+i7Vi)2w

The parametew specifies the number of rows of the appropriate length that are needed to repre-
sent the environment entry for a variableand is related to the number of occurrencesiofthe
source formulas. Since interpretinhglso splits the (encoding of the) valuation, we have to provide
enough copies2(, wherew is related tov(.A)). Note that we can always filter out any undesirable
interference ofval(e, v, w)x with the parallel proces®, since for any labeled-transition reduct

Q of val(e,v,w)k, @ is not an environment since it does not have the right number of rows for
each depth. Likewise, for any namingsy/, v”, we haveval(e,v,w + 1) = val(e, v, w)k |

val(e, v, w)k if and only if v = v/ = v”. Using already defined properties, we set

Val(e,w)k 2 liey. e (Row(K +i)*" A Equals(K +1))
ProcVal(e,w)x = My | Val(e,w)x
Lemma 2.4. For any process’, environment and naturalsk, w > 1

P E Val(e,w)x iff Jv. P = val(e,v,w)k
P E ProcVal(e,w)g iff 3Q € Mg, Jv. P = Q | val(e,v,w)k

8 Luis Caires andEtienne Lozes

[AA Bﬂ(e,w) = ProcVal(e,w)x A [[.A]](e w) A [[B]](e w)
[=Alewy = ProcVal(e,w)x A= [A](e,w)
[0l ¢e,w) £ ProcVal(e,w)x /\Val(e w) K
[A]Blewy 2 Procval(e,w)ic A (AL | Bliew 1)
[A> Ble,wy = ProcVal(e,w)x
([Al e w) > (ProcVaI(e,w + Dk = [Ble,ws1)))
[[OA]](E,H)) £ ProcVaI(e, w)K A <>[[.A]](e,w)
[B3z. Al(e,wy = ProcVal(e,w)x A (EnvX(z, e, w)x » [A] (e’ w))
wheree’ = e{z« | e | +1}
[(z). Al e,y = ProcVal(e,w)x A
Test(e) x » (TestMatchesX(z,e,w)x | T) A
O(UsedTest(e)k | [Al(e,w)))
[(@). Al e,y = ProcVal(e,w)x A

O (UsedXRow(z,)k | (XRow(z,e)x » [A](e,u)))

Fig. 3. Encoding 0fL,,,04 INtO Lspat-

The formulaProcVal(e, w) . specifies a pair process-valuation, where the process belodgg to

Now we introduce formulas to match specific entries of the (encoding of the) valuation: selection of
the actiona associated to the variableis achieved by filtering the set of row processes of depth
e(z). To implement this properties we define the following formulas:

XRow(z, €) i
UsedXRow(z, €) i
EnvX(z, e, w) g

Row (K + e(x))
Row(K +e(x) — 1) ,
Equals(K+ | e|) A (XRow(z,e)x)?"

> > >

XRow(z, e) i allows us to select one of the rows that represents the environment entry of the variable
x. UsedXRow(z, e) i checks that such a row has lost an action prefix (after a reduction step takes
place).EnvX(z, e, w) xk matches all the rows that encode the environment entry for the variable

To encode the modalityr).A we need to check for the presence of the complementary of the action
v(z). To this end, we specify a row bigger than any other (Witst(e)), and then check (using)

that it may react with some row of deptliz) (with UsedTest(e)). Let then:

Test(e) x
UsedTest(e)
TestMatchesX(z, e, w)

Row(| e | +K +2)
Row(| e | +K +1)
(Test(e)i | EnvX(z,e,w)) A OT

> 1> >

We are now ready to present our encoding of formula&,gf, into formulas ofL ;.

Definition 2.5. Let A € £,,,q be a formula,e an environment mapping the free variablesAf
andw, K be integers such that > w(A), and K > 0. Then, the formuld A] . .,) € Lspas IS
inductively defined in Fig. 3.

Theorem 2.1 follows from Lemmas 2.2, 2.3, 2.4, and the following general result:

Lemma 2.6 (Correctness of the encoding)For all processesP, all formulas A € L,,.q, all
environments declaring the free variables oA, all integersw > w(A), and all X > 0 we have:

P=Q|valle,v,w)k
Q,voelnm, A
Proof. (Sketch, see appendix for details) By induction .dn For the connectives of,,.., the

encoding is quite natural: in the case|pthe environment is split in two equal parts, and tested
for a sound recombination biyrocVal(e, w) k. For>, we must check that the composition of the

PO Ewm. [Alew ifandonlyif HQEMK,HV-{

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 9

two environments coming from the left and rightrois actually an environment. This holds if both
environments are defined with the same namingor the case of, any reduction involving the
environment is excluded, because otherwise the resulting environment would be ill-formed. For the
other connectives, the encoding also involves our abbreviations: the encoding of the quantifier

relies on representing the quantification over actions into a quantification (m$ioger processes

that represent environment entries. For action modalities, one checks for interactions between the
process and a row corresponding to the selected variable.

We can thus present the proof of Theorem 2.1.

Proof. Let A be a formula ofC,,.q. Set[A]x = [A](0,w) for somew greater than the max-
imal nesting of| connectives ind. Thenng (P) = mx(P) | val(0, 0, w)k, so by Lemma 2.6,
7k (P),0 Eum.,. [Alk if and only if 7x (P),0 =, A, which is equivalent taP, () =5, A by
Proposition 1.6.

3 Separability of Lspar

As a first application of the main Theorem 2.1, we define characteristic formulas and characterize
the separation power of the logi€;,.: (and thus ofL,,.q). We conclude that,,: is able to
describe processes quite precisely, just abstracting away from the identity of the particular names
used by processes. We start by introducing a characteristic fofi{dita for any proces$. For any
complementary pair of actiodsy, @} occurring inP, we reserve a specific variahlg, collected in

the sef{z,,,...,Zq, }. We have

x(0) 20 x(a.
@ P)21A@a)x(P) x(P1Q)=x(P)|x(Q)

=

C(P) % [B3xa, .. Ia,. ()\ Ta, # Ta; A Ta, # Tay) AX(P)]x
i#]

whereK = ds(P). Recall thatt = y andz # y are defined in Fig.2, and notice tt@&{P) € Lspq:,
while x(P) € L4

Lemma3.1. Let P € Mg, let v be the valuation such that(z,,) = g, for pairwise distinct
actionsf, ..., B,, and leto be the action permutation that sends into 8;. Then we have that
Q,v E=my, x(P) ifand only@ = o(P).

Proof. Induction onP (see appendix).
Lemma 3.2. For all processes) and P, @ |= C(P) ifand only if@Q =, P.
Proof. By Lemma 3.1 and Theorem 2.1 (see appendix).

We then conclude:

Theorem 3.3. The following statements are equivalent:
(1) P=¢,,,,Q@ () P=¢,.Q B)QIECP) P = Q

Proof. (1)=(2) becauselpor C Liod, (2)=(3) sinceC(P) € Lspq andP = C(P), (3)=(4)
by Lemma 3.2, an@4)=-(1) by Proposition 1.5.

10 Luis Caires andtienne Lozes

4 Expressiveness of Composition Adjunct

It is known that in static spatial logics, that is spatial logics without quantifiers and dynamic opera-
tors, the adjunct connective is not independent of the remaining connectives, and can in fact be elimi-
nated, in the sense that for any formula of such a logic we can find a logically equivalent adjunct-free
formula [17]. It is not hard to see that adjunct cannot be dispensed with,inn, because without
adjunct one is not allowed to distinguish threads of different lenght: if we gick L, — {>},
we can verify by an easy induction ohthata. 0 = Aifand only ifa. 5.0 = A, forall o, 5 € A.

In this section, we prove that the adjunct elimination property does not hold for the spatial logic
Lmoq- FOr this, we adapt a scheme suggested by Yang: on the one hand, we défing mformula
that says of a process that its number of toplevel parallel components is even, on the other hand, we
show that parity cannot be characterized by adjunct-free formulas. We start by defining the following
formulas (WheréJA £ — (- A):

Top(x) £ ()0
Fam 20LA (1= 3z Top(ac))v AVz.Vy. (Top(z) | Top(y) | T) = x # y)

We can verify thatP = Fam ifand only if P = ;.0 | ... | ax. 0 for some pairwise distinct
actionsag, . . ., i such thatP 4. We call a process of such a fornfamily. The width of such

a family P is defined to be the number(P) = k of parallel threads irP. Now, we can define a
formulaEven2 that is satisfied by processes that contain exactly an even number of distinct actions
at the second level.

Pair 21 A Jzyz. (z)(Top(y) | Top(2)) A (y # 2)

Below(x) £ 1 A 3z (2){(z)T

Even2 £ (1 = Pair)” A Vx.Vy. (Below(z) | Below(y) | T) = x # y)
HenceP = Even2ifandonly if P = . (B11 | B12) | -+ | ak. (Br1 | Brk.2) for somek actions
aq,...,ax, and some pairwise distin@k actionsf, ;, ..., B for ¢ = 1,2. Now, if we compose

a process” satisfyingFam in parallel with a proces§ satisfyingEven2, we can check (irP | Q)
that the actions that occur in the toplevel®fare exactly the same that appear in the second level
of Q using the formulé&ame:

Same £ Vz. (Top(x)? < Below(x)?)

Hence we have the following result

Lemma 4.1. There is a closed formul&ven € L,,,q such that for any procesB, we have that
P = Even if and only if P is a family andw(P) is even.

Proof. Let Even = Fam A (Even2 » Same).

A key observation is that the formulaven contains an essential use of the composition adjunct op-
erator. In fact, although the properties denoted by the forntulas2 andFam can be expressed by
appropriate adjunct-free formulas 6f,,:, the same situation does not hold for the parity property
expressed bfven. In the remainder of this section, we prove that there is no formulz,gf; — {>}

able to express the same property. The argument consists in showing that anyHasnimgidered

in L..a — {>} admits a saturation level from which this is always possible to add an extra paral-
lel component to it while preserving satisfaction. We first defimg4) (the sticks numbenf the
formula.A) to be the natural number defined by inductiondas follows:

sn(=.A) £sn(A) sn(A; A Az) £ max(sn(Ap),sn(Az))
sn(0) 21 sn(A; | As) 2 sn(Ap) +sn(Ap)
sn(QA) = sn((z). A) £ sn(A)

sn(3z. A) £sn(A)+1 sn((z). A) £ sn(A)

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 11

ABu=AANB | “A | 3z. A | p(z,y)

) lEw AAB i (D, 1) =0 Aand(D, 1) =, B
) v A if not(D, 1) =, A

)y 3. A if 3de D.(D,1) Eyipeay A

) Eo p(z,y) if (v(z),v(y)) € I(p)

Fig. 4. First-Order Logic

Given a family P and a valuation, we write P\v for the subfamily ofP of the actionsy that do
not appear in the codomain of the valuatienMore precisely, we defin®\v = [[{a | P =
a | Q anda, @ ¢ codom(v)}. We then have:

Lemma 4.2. Let P be a family, letv be a valuationv : X — A, and leta € A be an action such
that o, @ ¢ codom(v) and (P | «) is a family. Then, for anyg-free formulad € L,,.q such that
w(P\v) > sn(A) we have

PovpEA ifandonlyif P |a, v E A
Proof. By induction onA (see appendix).

Theorem 4.3. There is no closed formuld € £,,,,; — {>} that exactly characterizes the set of all
families P with w(P) even.

Proof. By contradiction: if.A was a such formula, then we may take a fanfilyand an extended
family P | awith w(P) > sn(A). Then by previous lemma,) = Aifandonlyif P | o, = A,
which is a contradiction.

We thus conclude that in the logi€,,,; the composition adjunct operator is independent of the
remaining operators, in particular there are properties expressible with the composition adjunct that
cannot be expressed with action modalities and quantifiers.

5 Undecidability

In this section, we show that the validity-, satisfiability- and model-checking problems for the logic
Lspar (@and hencel,,,q) are all undecidable. These results are a consequence of our embedding of
Lmod INto Lgpq: (Theorem 2.1), and the fact that first-order logic can then be easily encoded into
Lm0q along the lines of [12]. The language of first-order logic (FOL) and its semantics if defined as
usual (see Fig. 4). Formulas are build from a seVaf-s of individual variables «, v), and finite
set Pred of predicate symbolsy(¢). For simplicity, we consider but binary predicate symbols. A
model for FOL is a paif D, I) whereD is a set of individuals (the domain of the model), anid
a mapping assigning to each predicate symbel Pred a binary relation/ (p) C D x D. For our
purposes it is enough to focus on finite models. Satisfaction of a FOL formula in a fiedg) is
defined in Fig. 4, using a valuatianthat assigns each individual variable an elemeridof

We now show how to faithfully encode any FOL satisfaction judgniént/) =, A into aLl,,.q
satisfaction judgment[(D,)], V[v] = F[A], by means of appropriate translationd[—],
V[-] andF[—]. We pick a natural numbet > 1, and assign to each predicate symbal Preds
a distinct natural numbe¥'ode(p) > E. We also fixK{ such that’X > Code(p), for all p € Preds.
To encode a modé€ID, I) into a process\[(D, I)], we start by assigning each elemént D a
distinct actionA(d) € A, and define€[d] £ row(E, A(d)). The domainD = {d,...,d,} is then
represented by the proceB§D] = £[d1] | ... | £[dx]. For the interpretatior, we represent each
pair (d, e) € I(p) by the process

T(p)[(d,e)] = a. (row(Code(p), 3) | A(d).0 | A(e). A(e).0)

12 Luis Caires andtienne Lozes

wherea, 3 are some actions. We then [EfI] £ [epreas Hiaeyer) 7 ()[(d,)] and then set
M([(D,I)] £ D[D] | Z[I]. By construction, we always havet[(D, I)] € M. The processes
representing FOL models as we have just defined can be logically characterized by a fdudella
of Lpq+ as follows:

Dom(z) £ (Row(E) A <x>T)3 Diff SV Vy. ()T | ()T | T) =z #vy)

Domain £ Diff A (1 = 3z. Dom(ac))v Interp £ (1= 3z.(z)(Some | Row(1) | Row(2)))v

Some £ Vyepreas Row(Code(p)) Compat 2 Vz. ((3z. (z)({x)T | Some))? = Dom(z)7)
Model £ Mg A [(Domain | Interp) A Compat] i

Lemma5.1. We haveP = Model if and only if there is a finite FOL modé€lD, I') such that
M[(D,I)] = P.

Proof. Interpreting the formuldlodel (see appendix).
Now, formulas of FOL are encoded into formulas®yf,,, as follows

FI-Al 2 -[A] F[3z. A] £ 3z.(Dom(z) A A)
FIANB] 2 FIAIAFIB] Flp(z,y)] 2 (32 (2) (Row(Code(p)) | (x)0 | (y)(1)0))”

Finally, for valuations we séf[v](z) = A(v(x)). We can then show

Lemma5.2. Letv = {x1 — di,...,z — di} be a valuation ford. Then we havéD,I) =, A
if and only if M[(D,)], V[v] Eum. FILA]-

Proof. See appendix.

Proposition 5.3. Let A be a closed formula of FOL. Then the formuas satisfiable if and only if
the £,pq: formulaModel A [F[A]] x is satisfiable.

Proof. By Lemma 5.2, Lemma 5.1 and Theorem 2.1 (see Appendix).

As a corollary of Proposition 5.3, we conclude

Theorem 5.4. The problems of validity-checking, satisfiability-checking, and model-checking of
Lspq: formulas are all undecidable.

Proof. Follows from Proposition 5.3 and Trakhtenbrot's Theorem [22].

6 Extension to thewr-Calculus and Ambients

In this section, we briefly discuss how our results extend to richer models, nametycideulus

and the ambient calculus. We may pick any of these calculi as models for the coreClggic
which is a fragment of both the ambient logic of [10] and thealculus logic of [4]. We discuss
first the case of the ambient calculus without name restriction, and just witiptinecapability. In

this case, we can show thét,,. can also encode, for processes of bounded depth, its extension
with the quantifiedz. A, and modalities of the fornfopen z). .4 andz[A]. However, as we might
expect, the symmetry between input and output (Theorem 3.3(4)) does not carry over to ambients:
for instance, the formula A QT may be satisfied by the ambienfP], but not by the guarded
ambientopen n. P For ther-calculus, we may consider the extension(gf,; with the quantifier

Jz. A and the modalitiegz).A and (z).A, able to observe just the subjectsmtalculus actions.

In this case, we may also prove that this extension can be encodég,jnfor bounded depth
processes, as we did for the other cases. From these results, we conclude

Theorem 6.1. The model-checking and validity problems for thealculus and the ambient calcu-
lus against_,,,; are both undecidable.

Proof: See Appendix.
We should remark that Takhtenbrot also allows us to conclude that there is no complete proof system
for validity of £, formulas over any of these calculi.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 13

7 Concluding Remarks

We have studied a core spatial logic for concurrency, aiming at a better understanding of the rela-
tive role of the very basic logical operation present in most logics of this family. In particular, we
have shown that quantifiers and action modalities can be embedded, and that the composition ad-
junct plays a key role in the expressiveness of this logic; these results allowed us to also prove its
undecidability. In this light, we believe that minimality @f;,,; could be established in a precise
senseL;yq: andL,,,q have not been shown to have the same expressiveness in the strict technical
sense. However, we believe this is the case for their extension with freshness quantifiers and a free
name occurrence predicate. Since Theorem 3.3 does not hold for calculi with name restriction, an
interesting issue is to get a better understanding of the (coarser) spatial equivalence in the absense
of logical operations dealing with restricted names.

Although the composition adjunct is certainly important for general context/system specifica-
tions, our work shows that the automated verification of concurrent systems using logics that rely on
the composition adjunct seems to be not feasible. An important issue is then whether other expres-
sive and tractable forms of contextual reasoning inspired by the composition adjunct and extending
those already provided by behavioral-spatial logics can be identified.

We thank Hongseok Yang for the illuminating discussion that prompted our counterexample
in Section 5. We thank Lis Monteiro, Daniel Hirschkoff and Davide Sangiorgi for all the rich
exchanges and encouragement; and Luca Cardelli for many related discussions. E. Jeandel provided
some references about quantifier elimination. This collaboration was supported by FET IST 2001-
33310 Profundis. E. Lozes was also funded by an “Eurodoc” grant Region Rlbne Alpes

References

1. L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In Igor Walukiwicz, editor,
Proc. of Foundations of Software Science and Computation Structures’20@wer 2987 in Lecture Notes
in Computer Science. Springer Verlag, 2004.

2. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part 1). In N. Kobayashi and B.C. Pierce,
editors,10th Symposium on Theoretical Aspects of Computer Scigaltene 2215 ofLecture Notes in
Computer Scienc@ages 1-30. Springer-Verlag, 2001.

3. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I'C®RNCUR 2002 (13th International
Conference)Lecture Notes in Computer Science. Springer-Verlag, 2002.

4. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part Ihformation and Computatign
186(2):194-235, 2003.

5. C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding Validity in a Spatial Logic of TreesAdN
Workshop on Types in Language Design and Implementapages 62—73, New Orleans, USA, 2003.
ACM Press.

6. C. Calcagno, H. Yang, and O’Hearn. Computability and complexity results for a spatial assertion language
for data structures. In R. Hariharan, M. Mukund, and V. Vinay, editB&TTCS'2001volume 2245.
Springer-Verlag, 2001.

7. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hidden Labels. In A. D. Gordon, editor,
Proceedings of the First International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS 'Q3)ecture Notes in Computer Science. Springer-Verlag, 2003.

8. L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. In D. Sands, dditbr,
European Symposium on Programming (ESOP 20@ilyme 2028 of_ecture Notes in Computer Sciepnce
pages 1-22. Springer-Verlag, 2001.

9. L. Cardelliand A. Gordon. Logical Properties of Name Restriction. In S. Abramsky, eQifmed Lambda
Calculi and Applicationsnumber 2044 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

10. L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambients27th ACM
Symp. on Principles of Programming Languagesges 365—-377. ACM, 2000.

11. W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile ambients. In D. Metayer, editor,
11th European Symposium on Programming (ESOP 20@&nber 2305 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.

14

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Luis Caires andtienne Lozes

. W. Charatonik and J.-M. Talbot. The decidability of model checking mobile ambienByoteedings of

the 15th Annual Conference of the European Association for Computer Science lLlexgiore Notes in
Computer Science. Springer-Verlag, 2001.

G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of Revelation. In Igor Walukiwicz,
editor, Proc. of Foundations of Software Science and Computation Structures’806#ber 2987 in Lec-
ture Notes in Computer Science. Springer Verlag, 2004.

D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes, 2004.

D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decidability in the Ambient
Logic. In Third Annual Symposium on Logic in Computer Sciei@apenhagen, Denmark, 2002. |IEEE
Computer Society.

D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality results for the spatial logics.Prbt. of
FSTTCS’2003LNCS. Springer Verlag, 2003.

E. Lozes. Adjunct elimination in the static Ambient Logic.Rroc. of EXPRESS’2002003. to appear

in ENTCS, Elsevier.

P. O'Hearn. Resources, Concurrency, and Local Reasoning (Abstract). In D. Schmidt,Reditonf
ESOP’2004 Lecture Notes in Computer Science, pages 1-2. Springer, 2004.

J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structur@irthAnnual Sympo-
sium on Logic in Computer Sciend@openhagen, Denmark, 2002. IEEE Computer Society.

M.-F. Roy S. Basu, R. Pollack. On the combinatorial and algebraic complexity ofquantifier elimination.
volume IEEE Symposium on Foundations of Computer Science, 1994.

D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics28th Annual Symposium on
Principles of Programming Languaggzages 4-13. ACM, 2001.

B.A. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite moDelstady
Akademii Nauk SSRages 70:569-572, 1950.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 15

Appendix (Proofs)

For Section 2

Proof of Lemma 2.6
Proof. By induction onA.

— (Cases ofd = A; A Az, — Ay, 0 straightforward.

— (Case ofA = A, | Ay) Assume firstP,) [=1s,, [A](e,w)- By Lemma 2.4, there i®, € My
andv such thatP = P, | val(e, v, w) k. Moreover, there is a splitting, | val(e,v,w)x =
P, | P, with P.,0 =5 Ac. By induction hypothesis, eadh contains aval(e, v,w — 1) k.
Due to the depth of the row$); do not contribute to that, sB. = P, . | val(e, v, w — 1) g with
P, = Py, | P1. By induction hypothesisP; , v o e =p,. Ae, hence the result. Conversely,
if P= P, |valle,v,w)g With Py,voe =), A, thereisP, ,, Py suchthatP = Py, | Py
andP; ,voe =, Ae, hence by induction hypothesiy . =as [Ac](e, w) andP = (P1,a |
val(e,w —1,)) | (Prp | val(e,w —1,)) Ear [Alew)-

— (Case ofA = A; > Ay) Assume firstP,) =nr.. [Al(e,w)- By Lemma 2.4, there i) €
Mg andv such thatP = Py | val(e,v,w)k. To prove thatP,v o e =y Ar > A,
we pick some) € Mg such thatQ,v o e |y, Air. Then by induction hypothesi® |
val(e,v,w)k Fu. [Aile,w), @ndP | Q | val(e,v,w)k Fum. ProcVal(e,w + 1)k, SO
P| Q| val(e,v,w)k Fum.. [A2](ew+1)- By induction hypothesisP | Q | val(e,v,w)x =
Ry | val(e, V', w)k with Ry,v' o e =pr,. A2 Due to the depth of the rows iml(e, v/, w) g,
one has necessariy = v/ and Ry = P, | Q, hence the result. Assume now that =
Py,voe =y, A Ay To prove thatP, § =iy [Ar > Az (e.w), We takeQ € M., such that
Q Fu. [A1](ew)- By induction hypothesis, thereis such that) = @ | val(e, ', w)k and
Q1,V oe Eny A1 If v #£ YV, thenval(e, v, w) i | val(e, v, w) i . ProcVal(e,w+1)g,
SOP | Q Fum,, ProcVal(e,w + 1)k —[A2](c,wt1)- Otherwisep = v/ and by hypothesis
Py | Q1,voe =, Az, S0 by induction hypothesB | Q =i, [A2](e,wt1)-

— (Case ofd = (. A") Assume first thaP =y, [O.A']. ThenP = P, | val(e, v, w)x, and there
is R such thatP — R {=p [A’](e,w)- By induction hypothesisk = R, | val(e, v/, w)k
for somev’ and Ry, v o e =y, A'. If val(e, v, w) i takes part to this reduction, it decreases
the size of one row or two rows of different depth. So the number of copies of the deeper one
is not2* any more, and this process is not congruentat(e, v, w) k. SOP; — R; and the
result. Assume nowP, v o e =y, O.A" and letR; be such thaf?,,v o e [=p, OA" and
P, — R;.ThenP; | val(e, v, w)K — Ry | val(e, v, w)K, SsoP ':]woc [Q.A/]](e’w).

— (Case ofA = Jz. A") Assume first that” 5. [A]. Then there is an action such that
row(K+ | e | +1,0)?" | P = [A], so by induction hypothesi® | row(K+ | e |
+1,0)?" = val(e/,V/,w)k | P with P, v/o¢’ =5, A’. Due the difference of row depths, we
haver = v,| ¢/ |— a. SOP,voe =y, A, and the result. Conversely, assufe o e =,
A. Then there is an action such thatP, v{z—a} =, A. Let consider the process =
row(K+ | e | +1,0)?". Thenval(e,v,w)x | R = val(e/, V', w)k With e’ = e,z —| e | +1
andv’ = v,| e | +1 — «. By induction hypothesisP | val(e’,v,w)x .. [A], sO
P | val(e,v,w)k En.. [A] and the result.

— (Case ofA = (x)A’) Assume first that”> =), [.A]. Then there is an action such that
row(K+ | e | +2,a) | row(K + e(z),v o e(x)) —. Soa = v o e(z). Moreover, there
is P’ such thatP, | val(e,v,w)k | row(K+ | e | +2,a) — P’ andP',voe Epr_
UsedTest(e) | [A'](c,w).- SOP’ has a row of depti+ | e | +1, which is only possible if the
reduction involvedrow (K+ | e | +2, «). It cannot involveval(e, v, w) i sinceP’ contains it
unchanged, so it necessarily involi?g, thatisP’ = row(K+ | e | +1,«) | val(e,v,w)k | P|

voe(x)

with P,—5 P/, hence the result. Assume now that ther®jisuch that?, ">’ P/; then adding
the processow (K + | e | +2,v o e(x)) and performing the reduction we just described, we
have thatP1 | val(u, e, w)K,] ':]\,{oc A.

16 Luis Caires andtienne Lozes

— (Case ofd = (z).A") Assume first thaP 5. [A]. Then there is”’, o, 3 such thatP —
P’ | row(B,n — 1) and P" | row(a,n) En. [A'l(ew), With n = e(z). By induction
hypothesis,P’ | row(a,n) contains an environment, so in order to have the right number of
rows of each depth it must be that a row of sizavas absent inP’, and one had an extra
row of sizen — 1. Then it must be that a row of size in P contributed to the reduction
P — P’ | row(f,n — 1). Hence in the reduction the number of rows of sizdecrease by
one, the number of rows of size— 1 increased by one, and other rows remaif&dcopies.

Moreover, since rows of the same depth always have the same action; we have at least two

copies at each size sinae> 1, so necessarilg = v(n) androw (3, n — 1) is the row that was
generated by the reduction, thatlis= o = v(n). Since the interaction did not involve any other

row from the environment, it actually must have involigd So there isP] such thatP; @P{

andP’ = P/ | enV/, whereenv’ is the environmental(e, v, w) k. from which a row of size:
has been picked up. The® | row(«a,n) = P | val(e, v, w)x so by induction hypothesis
Plivoe Eun, A, thatisPi,voe Eay (T)A. Assume now thafy,v o e [, (T)A'.

Then there isP] such thatpl”ﬁ))P{ andP/,v o e =y, A'. Then by induction hypothesis

P} | val(e,v,w)k Eum,. [A],thatis; | val(e,v,w)x — P| | envV’ | row(a, n — 1) where
e(x) =n,a = v(n), andenv’ isval(e, v, w) . from which one row of size has been removed.
SoP| | env' | row(a,n) Ea, [A]’ by induction hypothesis, that B, | val(e, v, w)x Far.,
[A].

Proof of Lemma 3.1

Proof. Induction Hypothesis oP. We detail the case aP = «;. P". If Q,v =, x(P) then
Q,v Fuy 1andQ,v g (2q,)x(P'). This means tha®) = 3;. Q" andQ',v e x(P'),
whereb; = v(z,,). By inductive hypothesis)’ = o(P’). Sinceo(a;) = ; we concludeR
o(P). Conversely, assum@ = o(P). This means that;, = o(a;) and@ = 5;. Q" where@Q’ =
o(P’). By inductive hypothesisQ’, v =17, x(P'). Then, we have)—-Q’. SinceQ,v = 1, and
v(za,;) = fB; we conclude), v =y, (za)x(P') and themQ, v =g, x(P).

Proof of Lemma 3.2

Proof. Let K = ds(P) and assumé&),(= C(P). ThenQ € Mg and thusrk(Q) = Q. By

Theorem 2.1 we hav€®), 0 Ear. Jza, ... 324, . X(P), So there are pairwise distinct actiofis
such thatw(z,,) = 6; andQ,v =, x(P). By Lemma 3.1, we conclude th& = o(P), where
o(a;) = B;. Conversely, let) = o(P) for some action permutatiom; thus if P € My then also
Q € Mg. Letv(a;) = ; whenevero(o;) = §;. By Lemma 3.1, we conclud®@, v =y, x(A).

Since the actiong; are pairwise distinct, by Theorem 2.1 we concld@@le= C(P).

For Section 4

Proof of Lemma 4.2
Proof. By induction onA.

— (Cases ofd = A; A Az, A = - A;) Straightforward.

— (Case of4 = 0) We havew(P) > 1 so neitherP nor P | « satisfy.A.

— (Case ofA = A; | A2). We assume first thaP,v = A. Then there isP;, P, such that
P=P | P,andP; = A;, fori € {1,2}. Then

w(P\v) = w(P1\v) + w(Py\v) > sn(A) =sn(A;) + sn(Az)

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 17

so there is some € {1, 2} such thatw(P.\v) > sn(A.). By induction hypothesis thef. |
a E A, sothatP | o | A. We assume now tha | « = .A. Then there ar€);, Q- such
thatP | « = Q1 | Q2 andQ; = A;. Sincea ¢ codom(v), w(P | a\v) = w(P\v) + 1, so

w(P | a\v) = w(@Q1\v) + w(Q2\v) > sn(A) = sn(A1) + sn(A;)

and there is some € {1, 2} such thatw(Q.\v) > sn(A.). We pick somey’ € Q. with o/ ¢
codom(v), which is possible since/(Q.\v) > 1. We noteP, the family such that).{a <
o'} = P. | a.Thenw(P.\v) = w(P, | a\v) —1 = w(Q.\(v{a < a})) -1 =w(Q:\v) —1,
hencew(P.\v) > sn(A.). By equivariance (Proposition 1.5), we get fraj,v E A, that
P, | a,v = A., and by induction hypothesiB,,v = A.. Then we writeP | a = Q:{a <
o'} | Qa{a — o'} = Py | a | Py, which gives thatP, v = A.

— A= 0A;. Then bothP and P | a do not satisfy4, because they are deadlocked.

- A = Jx. A;. We assume first thaP,v = A. Then there is3 such that for”’ = v,z — 3,
P,v' = A;. We may assume that ¢ {a, @}, otherwise we would pick some fresh action
@', and consider instead = v,z — (':thenP = P{8 < g} andv’ = v{f < g}
(since ¢ codom(v)), so P,v' |= A; by Proposition 1.5. So we assunie¢ {«,a}. We
havew(P | a\v') = w(P\v') +1 > w(P\v), sow(P | a\v') > sn(A;), and by induction
hypothesisP | a,v’ | Aj, thatisP | «,v E A. We assume now tha® | a,v = A. Then
there isg such that fon' = v,z — 3, P | a,v' = Ay If B € {a, @}, we may pick some
other’ occurring inP\v: then P{5 < ('} = P by internal symetry, and” = v'{§ < ('},
SOP | a,v’ = P{f « f'Hv{B <« '} E A forv” = v,z — . So we may assume
B ¢ {a,a}. Thenw(P\v') > w(P\v) — 1 > sn(A;), so by induction hypothesiB, v = Ay;,
thatisP,v = A.

- A = (x)A;. Assume first tha?,v = A. Then there isP’ such thatP“ ™) P’ and Pv =
Ai. w(P"\v) = w(P\v) > sn(A;), so by induction hypothesi®’ | a,v | A;, that is

P | o,v = A. Assume now thaf’ | o,v = A. Then there isP; such thatP | " p

with P, v = A;. Sincea ¢ codom(v) by assumptionP; = P’ | « with P"Lp. We have
w(P"\v) = w(P\v) > sn(A;), so by induction hypothesiB’, v = A, thatisP, v |= A.
- A= (T). A; proceeds in the same way.

For Section 5

Proof Lemma of 5.1

Proof. (if) As already remarked, we have = M[(D, I)] € Mg, henceP = M. We can also
check thatP =jy,. (Domain | Interp) A Compat), becaus@[D] = Domain andZ[I] |= Interp.
SinceP € Mg, by Theorem 2.1(if) we conclude th& = Model. (only if) If P = Model we
conclude thatP € Mgk andP = [(Domain | Interp) A Compat] x. By Theorem 2.1(only if), we
haveP =y, (Domain | Interp) A Compat.

This means thaP = Pp | P; where Pp = Domain and P; = Interp. In turn, we conclude
that Pp = row(E,a1) | --- | row(E, o), where the actions,; are pairwise distinct. We can
then construct a finite FOL modéD, I') from Pp and Py, by letting D = {aq,...,a;}, and
I(p) = {(d,e) : AR, e, 3. P = . (A(d).0 | A(e). A(e).0 | row(Code(p),3)) | R}, for all
p € Preds. SinceP |= Compat we indeed havé(p) C D x D.

Proof of Lemma 5.2

Proof. By an easy induction on the structure of formulas. We detail the case of p(z,y). If
(D, 1) = p(z,y) then(v(z),v(y)) € I(p), and thus

I[I] = e (row(Code(p), B) | A(v(x))- 0| A(v(y)). A(v(y)).0) | R

18 Luis Caires andtienne Lozes

for someq, 3 andR. Hence we have

MI(D, DL V] Fare (32 (2)(Row(Code(p)) | (20 | (5)(9)0))”
Conversely, itM[(D, I)], V[v] Eum, Flp(z,y)]. we conclude that
M(D,)] = a. (row(Code(p),0) | 5.0 | ~.7.0) | R
for someR andc, 3,7, ¢ such that/(x) = 8 andv(y) = . We conclude that
I[I] = a. (row(Code(p),d) | 3.0 | v.~7.0) | R

, and so there aré e € D such thatd(d) = 5 andA(e) = v and(d, e) € I(p), by construction of
Z[I]. Hence(D,I) =, p(z,y).

Proof of Theorem 5.3

Proof. Assume that the formulad is satisfiable. Then there is a FOL modd), I) such that
(D,I) = A. By Lemma 5.2, we have thaU{[(D,I)] Ewms F[A]. By Theorem 2.1, we con-
cludeM[(D,I)] E [FlAll k. for M[(D,I)] € Mk. SinceM[(D, I)] = Model by Lemma 5.1,
we conclude thaModel A [F[A]] x is satisfiable. Conversely, Model A [F[A]] x is satisfiable,
then there is a proceg3 such thatP = Model (and thusP € Mx) andP = [F[A]]x. By Theo-
rem 2.1, we have tha®, (| =5, F[A], and by Lemma 5.1 we conclude that there is a finite model
(D, I) such thatP = M[(D,I)]. HenceM[(D, I)] =, F[A], so by Lemma 5.2 we conclude
(D,I) = A

For Section 6

Proof of Theorem 6.1

We only sketch our proof, since it is obtained by adapting to the ambient calculus ands#e the
calculus the constructions and reasoning shown in detail for the fragment of CCS considered in the
paper.

It should be clear that the basic ingredients of our encoding,@f; in Lspq: (Theorem 2.1),
in turn used to prove independence of adjunct (Theorem 4.3), and then and undecidability (Theo-
rem 5.4), are the definitions for the formul@gread(k), Row(k) and My, characterizing respec-
tively threads, rows, and the submodéfs.

Thus we just detail how to provide counterparts to these formulas, by taking in consideration
each of the models now under consideration. It turns out that for ambients this is quite easy, while
for the case of the-calculus, because of name restriction and passing, it is slightly more involved.

Mobile Ambients

For simplicity, we consider the fragment of the Ambient calculus defined by the following grammar:
P,Q := openn.P | n[P] | P|Q | 0

wherea, n, m, p ranges over the set of namdsWe assume given the reduction relatiBn— P’
as defined in [10]. We also define the degtiP) of a processP, and the set of modeld/, as
expected. We also consider the extensigi} of L4

AB:= AAB |JA|B| -A |ApB|0|0A (Lspat)
| (openz)A | z[A] | z. A (camb

mod

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 19

Semantics forz?™b specific connectives is defined as expected, relative to a valuatioh — A.

mod

We then have

PvEydz. A iff IneAd Po{zen} by A
P,v =y z]A] iff 3Q. P =v(z)[Q] andQ,v Ear A
open v(m)

P,v =p (open z) A iff 3Q. P QandQ,v = A

whereP " Q £ JP. P = open n.R| R and@Q = R | R'. We now show how to mimick

the encoding of Section 2 for the case of ambients: we encode the valuation together with process
P to be model-checked by defining “rows processes” that exdeaa depth. Then using such

rows we make the model-checked process interact, so that we may encode the madaljtasd

(open z).A. We then define rows and threads as processes of the form:

threadopen(a, n)
rowopen(a, n)

open aj.open as . ..open a,. [0]
open a.open a. ..open a. 0]

> 1>

n times

The formulas shown in Fig. 5 show how we may characterise these processes logically. The embed-

Formula Encoding Interpretation
atom 1» 100 Ja. P = open aor P = a|0]
testamb 1 A Qatom Ja,b P = alopen b | b[0]]
lopen atom A testamb » 00 Ja. P = open a
lamb atom A lopen » (0 Ja. P = a|0]
ThrOpen(1) lamb » OO0 Ja. P = threadopen(a, 1)
ThrOpen(k + 1) 1 A lamb » ¢ThrOpen(k) Ja. P = threadopen(a, k + 1)
Mo 0 P e My
Mk.»,_l (1 = atom » <>./\/lk>V P € My
EqOp (1open > DJ_) A (1amb> Ja, P.
(lamb | 1=0T)Y P = opena.Py|...|opena.P,
RowOpen(1) lopen Ja. P = rowopen(a, 1)
RowOpen(k +1)| (lamb | lopen) » ((lamb | EqOp)
A O ((RowOpen(k) | lopen) A Equ)) Ja. P = rowopen(a, k + 1)

Fig. 5.

ding of £¢™% into L., then follows the one in Section 2, small differences only appear in encoding

mod

of modalities. We set

[Fz. Al (e,u) £ ProcVal(e,w)x A ((RowOpen(| € | +1))2w > [Alerw))
wheree’ = e{z— | e | +1}
[(open) A] ¢,y = ProcVal(e,w)x /\
RowOpen(K + e(z)) | (TestRow(K + e(z)) » O[Al (e,u)
ProcVal(e,w)x A (Val(e,w)k | 1)
A ¢ (RowOpen(K + e(xz) — 1) | (RowOpen(K + e(z)) » [Al e,w)))

(1>

[2[Allew)

whereTestRow(n) is the formula

TestRow(n) LA (lamb | lopen A OT) » O(lamb | RowOpen(n) A OT)

which characterises processes of the foestproc(a,n) def a[rowopen(a, n)].

20 Luis Caires andtienne Lozes

We again prove the correctness of the embedding by inductiof. @ifferences with the proof
of Lemma 2.6 happen only for the modality cases:

— A = (open z)A’: Assume first thatP = [A]c.. ThenP = Q | val(e,v,w)g, and if
Val’ is such thatval(e,v,w)x = Val' | rowopen(v(K + e(z)),), then there is some name
a such thatQ | Val' | testproc(a, K + e(z)) — P’ and P’ = [A’]c.. By induction,
P’ E ProcVal(e,w)k, SO thetestproc must have been alterated by the reduction. More-
over, the other partner for the reduction cannot b¥aH since it would consume a row copy
which would be visible at end. So this must be the process, that is the reductoh &’ |
testproc(b, K + e(z)) — Q' | Val' | rowopen(a, K + e(z)) with Q2=5"Q’. SinceVal’ |
rowopen(a, =)val(e, ', w) i, this must be that = v’ anda = v(e(x)), and the result by in-
duction. Reciproquely, iP, voe =y, ‘A, then there is?’ such thatP”™™" P’ with a = voe(z)
andP',voe '::4 ThenP | Val' | Testproc(a, K + e(z)) — P’ | val(e,v,w)g, and
P’ | val(e,v,w) i = [A']e. by induction, so that finaly? = [A]e. .-

- A = z[A']: Assume first thal’ = [A]...,. ThenP = Q | val(e, v, w)x with Q single, there
is a, b, P! such thatP — P’ | rowopen(a, K + e(xz) — 1), andP’ | rowopen(b, K + e(z)) E
[A']e.w- By induction,P’ | rowopen(b, K + ¢(z)) contains a processl(e, v/, w) x, and again
the only way to have this is to have= +/ andb = v(K + e(x)). This says that a row of depth
K + e(x) was consumed by the reduction but not any other, so¢hat «[Q’'], P’ = Q' |
Val” with val(e, v, w)x = Val’ | rowopen(a, K + e(x) + 1), a = b = v(x), and the result.
Reciproquely, ifP, v o e =y, A, then there is, P’ such thatP = a[P'], P',voe Ep, A,
andv oe(x) = a. SOP | val(e,v,w)x — P’ | Val' | rowopen(a, K + e(z) — 1), and
P’ | Val' | rowopen(a, K +e(x)) | [A']e. by induction, thatis? | val(e, v, w) k = [Ae.w-

The w-calculus

We consider the choice-free finite synchronausalculus, given by:
P = n(m).P|n(m).P|(wn)P|P|P|0

wheren, m,p ranges over the set of namds and we assume defined in the standard way the
relation P — P’ of reduction, and the relation d?P—— P’ of labeled transition, over the set of
labelst, n(m), andn(m), where we assume that the cades P’ wherem ¢ fn(P) corresponds

to a bound output. We then consider the logits,.: and £,,.q exactly as defined in Section 1,
but where we now consider quantifiers and modalities to rangeamremitments,, 7 € C, where

n € A. Semantics foL,,, .4 specific connectives over thecalculus is defined as expected, relative
to a valuatiorv : X — C. We have

PovEydz. A if JaeC. P, (v{z—a}) Epy A
Py (2). A f 3P ne A PP2Y P and P vy A

() (n

Py @) A if3P ne A P28 P andP v =y A

To embed’,,,q iNto L,,q: in the case ofr, we use a slightly different (when compared with the one
developed in Section 2) notion of row, but completely equivalent for our purposes, and that makes
use of the particulars of the-calculus model. So, instead of letting a row of sizbe a sequential
thread on the same actian in this case we consider a row of sizéholding the actiony to be a
m-processP such that the following hold:

— Foralln, 3, we haveP—>>P, — P, — --- — P, — Q if and only if
en=FkpB=a @=0,and
e Foralli € {0,...,k}, there are nd # 7 and R such thatPiLR, and

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 21

e PE1,andforalli € {0,...,k} we haveP; = 1.

Processe® satisfying this specification are said to be rows of ¢ize «. Such processes exist in
the-calculus because of the possibility of synchronizations on restricted chaengls,

row(p,2) £ p(2). (vn)(@. 0 | n(x). (vm) (7.0 | m(y).0))
Of course, many other implementations exist, for example we could also have
row(p,2) = p(2). (vn)(@(n).0 | n(z). (Fz.0 | z(y).0))

It seems quite difficult to characterize all these processes “intensionally”, but we can do it logically
as follows (letJ.A £ - - A):

piAct £21» 00
piRow (k) £ 1 AOL A (piAct » OpiThread(k))
Gl’OW é‘|0|ﬁ0|‘|0

L

piNoExternal (1AOL) > = OGrow)
piThread(0) 20
piThread(n + 1) £ 1 A (OT) A piNoExternal A OpiThread(n)

We can then show thdt = piRow(k) if and only if P is a row of sizek on some actiomx. We also
have thatP) = piThread(k) whenever

— For alln, we havePy — P, — --- — P, — @Q if and only if
e n==Fk Q=0,and
e Foralli € {0,...,k}, P, = 1and there are n6+# 7 andR such thatP,— R,

The constructions above gives us suitable notions of row and thread of kejdttice that unlike

for the rows defined in Section 2, the name associated to a row is just the first action (the other

transitions of a row are always reductions). This is not a problem, because only the first action of a

row is actually used in testing for the value of the variable it represents in the encoding of valuations.
From these ingredients, we can then develop a counterpart of Theorem 2.1; given the previous

definitions specific for the-calculus model, the encoding 6f,,,4 into L, is the same as the one

in Fig 3. We can then obtain results identical to those presented in Section 4 and 5.

