
Elimination of Quantifiers and Undecidability
in Spatial Logics for Concurrency

Luı́s Caires1 andÉtienne Lozes2

1 Departamento de Inforḿatica FCT/UNL, Lisboa, Portugal
2 LIP, École Normal Suṕerieure de Lyon, France

Abstract. The introduction of spatial logics in concurrency is motivated by a shift of focus from
concurrent systems towards distributed systems. Aiming at a deeper understanding of the essence of
dynamic spatial logics, we study a minimal spatial logic without quantifiers or any operators talking
about names. The logic just includes the basic spatial operators void, composition and its adjunct, and
the next step modality; for the model we consider a tiny fragment of CCS. We show that this core logic
can already encode its own extension with quantifiers, and modalities for actions. From this result, we
derive several consequences. Firstly, we establish the intensionality of the logic, we characterize the
equivalence it induces on processes, and we derive characteristic formulas. Secondly, we show that,
unlike in static spatial logics, the composition adjunct adds to the expressiveness of the logic, so that
adjunct elimination is not possible for dynamic spatial logics, even quantifier-free. Finally, we prove
that both model-checking and satisfiability problems are undecidable in our logic. We also conclude
that our results extend to other calculi, namely theπ-calculus and the ambient calculus.

Introduction

The introduction of spatial logics in concurrency has been motivated by a recent shift of focus
from monolithic concurrent systems towards distributed computing systems. Such systems are by
nature both concurrent and spatially distributed, in the sense that they are composed from a number
of separate and independently observable units of behavior and computation. Many key properties
and concepts related to distributed systems, like locations, resources, independence, distribution,
connectivity, and freshness, can be explained in spatial terms. The central idea behind spatial logics
is that for specificying distributed computations there is a need to talk in a precise way not just about
pure behaviors, as is the case with traditional logics for concurrency, but about a richer model able
to represent computation in a space. Such an increased degree of expressiveness is necessary if we
want to specify with and reason about notions of the kind mentioned above. Spatial logics have been
proposed forπ-calculi [2, 4, 3], and for the ambient calculus [10, 9]. Spatial logics for manipulating
and querying semi-structured data have also been developed [8, 7]. Closely related are the separation
logics [19, 18], introduced with the aim of supporting local reasoning about imperative programs.

The simplest spatial logic for concurrency, we may argue, is the one obtained by adding to
boolean logic the very basic spatial connectives, namely void (0), composition (− | −) and its logical
adjunct (− .−), and then the dynamic modality next step (♦−). This logic, based on purely spatial
observations, will be referred from now on byLspat.

The basic spatial connectives can be used to specify the distribution of processes,0 specifies
the empty system (not to be confused with the inactive system), andA | B specifies the systems
that can be partitioned in two parts, one satisfyingA and the other satisfyingB. For the adjunct,
A . B is satisfied by those processes that, whenever composed with a process satisfyingA, are
guaranteed to satisfyB. A simple example of a property combining spatial and dynamic operators
is the one expressed by the formula(¬ 0 | ¬ 0) ∧ ♦0; it specifies those processes that have (at least)
two separate components and may reduce to the empty system. Adjuncts allow the specification of
contextual properties,e.g., consider the formula1∧ (1 I ♦0), that uses the existential version of the
adjunct definedA I B , ¬ (A . ¬B). This formula specifies the single-thread processes that can
be composed with some other process to yield a system than may evolve to the empty system, after

2 Lúıs Caires and́Etienne Lozes

a single reduction step. Adjunct-free spatial logics with behavioral observations (e.g.,[1]) are also
able to render some kinds of contextual properties. For example, the property just presented can be
expressed by the formula1 ∧ ∃x. 〈x〉0, using an action modality. Thus, one of the motivations for
this work is to get a deeper understanding about the relative expressiveness of these approaches.

For the sake of simplicity and generality, we interpretLspat in a rather small fragment of choice-
free CCS. This calculus turns out to conveniently abstract the kind of concurrent behavior present
in bothπ- and ambient calculi, in the broad sense that interactions are local, and triggered by the
presence of named capabilities.

At first, Lspat seems quite weak, as far as expressiveness is concerned, when compared to other
spatial logics. For instance, it provides no constructs referring to names or actions (likee.g., the
action modality〈n〉A of behavioral logics, or the ambient match constructionn[A] in the ambi-
ent logic), therefore formulas ofLspat are always closed. As a consequence, satisfaction ofLspat

formulas is invariant under swapping of any pair of actions in processes (a property usually called
equivariance) because formulas cannot single out specific actions or names. Still, due to the presence
of the♦ operator, the logic is able to make some distinctions between actions, and substitution of
actions does not in general preserve satisfaction. For instance, letP , α | β. ThenP |= ¬♦> for
β 6= α, but P{β←α} 6|= ¬♦>. These considerations lead to the general question of what is the
largest relation between processes which are indistinguishable by the logical equivalence: answering
this question crucially contributes to our understanding of the spatial model induced on processes
by the simplest combination of logical observations.

However, this question turns out to be a rather difficult one to answer, due to the presence of
the composition adjunct operator.. The adjunct is quite powerful, allowing the logic to perform
quite strong observations on processes. With adjunct, validity can be internally defined [10] (thus
validity-checking is subsumed by model-checking), and use certain forms of specification akin to
a comprehension principle (for example, we may specify the set of all processes that have an even
number of parallel components). The study of expressiveness for spatial logics usually goes through
the definition of an adequate spatial bisimilarity≈ along the lines of [15]. Then, establishing the
congruence of≈ is key to ensure correctness of≈, so that fromP ≈ Q we concludeP | R ≈ Q | R.
For our logic however, such property does not hold, due to equivariance. For instance, the processes
α.0 andβ.0 are logically equivalent, butα.0 | α.0 andβ.0 | α.0 are not. Hence, this approach
does not work well in this setting.

Despite many works about decidability of spatial logics, the question of model-checking spatial
logics for concurrency with adjunct has not been fully settled. Results are known for some cases,
where the logic includes just. or ♦ [10, 1], but there seems to be no work about the interesting
combination of. and♦, as far as decidability is concerned. However, we believe that this issue lies
at the heart and novelty of a purely spatial approach to verification of distributed systems. On the
one hand, image-finiteness of the reduction relation gives a model-checking algorithm for adjunct-
free logics [1]. On the other hand, in the absence of name quantifiers and name revelation it is also
known that static fragments are decidable [5], so there could be some hope in obtaining decidability
of model-checking the whole ofLspat.

We may answer these questions considering the extensionLmod of Lspat with the existential
quantifier and quantified action modalities; forLmod, logical equivalence is much clearly inten-
sional, and one may adapt the results of [12] to derive the undecidability of model-checking. But
even if. induces undecidability, we may ask the question of its actual contribution to the expres-
siveness of the logic. In previous work [17], Lozes has shown that in static spatial logics, that is
spatial logics without quantifiers and dynamic operators, the adjunct connective can be eliminated
in behalf of the remaining connectives, in the sense that for any formula of such a logic there is
a (possibly hard to find) logically equivalent adjunct-free formula. An interesting question is then
whether something similar happens inLmod: we could possibly think that the expressive power of
the adjunct could somehow be recovered by the presence of action modalities, given that both kinds
of constructs allow some contextual observations to be made.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 3

SoLmod andLspat seem quite different as far as expressive power is concerned. The first one
seems clearly intensional (in the technical sense that logical equivalence coincides with structural
congruence), and undecidable. But for the second, as discussed above, it would be reasonable to
hope for decidability, and expect a separation power coarser than structural congruence. All this
turns out not to be the case.

The key result of this paper is thatLmod admits the elimination of quantifiers and action modal-
ities in a precise sense (Theorem 2.1); on the way we also show that equality is internally definable.
Building on this surprising result, we then show thatLspat andLmod have the same separation
power (Theorem 3.3), and expressiveness in a certain sense. As a consequence, we also characterize
the separation power ofLspat, showing that it coincides with structural congruence modulo permu-
tation of actions (Theorem 3.3). Quantifier elimination is compositional and effective, allowing us to
conclude that model-checking of bothLspat andLmod is undecidable (Theorem 5.4). A counterex-
ample inspired by a suggestion of Yang allows us then to prove that composition adjunct contributes
in a non-trivial way to the expressiveness of both logics, thus settling a conjecture formulated in [17]
about whether this connective could also be eliminated in spatial logics for concurrency.
Related Work. Sangiorgi first showed [21] that observation of capabilities in the ambient calculus
can be expressed inside spatial logics making use of the. and♦ operators. This result has since then
be generalized to other calculi [4, 16]. However, in all such encodings, the use of quantifiers, and
references to (some times fresh) names using the revelation connective seems to be essential. From
this point of view, our work gives a tighter bound on the level of expressiveness really needed to
embed action modalities, since it does not use operators beyond those expected in every pure spatial
logic. A related effort addressing minimality is being developed by Hirschkoff, characterizingπ-
calculus behavioral equivalences with a logic with composition adjunct [14].

Adjunct elimination for a static spatial logic was first proved in [17], where a counterexample
to adjunct elimination in the presence of quantifiers was also presented. However, the particular
counterexample given there makes an essential use of name revelation, and thus only applies to
calculi with hidden names and related logical connectives. The counterexample presented here is
much more general to spatial logics, since it does not rely on such constructs.

Concerning decidability and model-checking of spatial logics, decidability of model-checking
for the adjunct-free ambient logic against the replication free calculus was settled by Cardelli and
Gordon in [10]. Validity and model-checking of ambient calculus against spatial logics with exis-
tential quantifiers was shown undecidable by Charatonik and Talbot [12]. The same authors also ex-
tended the results of [10] to logics with constructs for restricted names, and then with Gordon to the
finite-control ambient-calculus [11]. Model-checking theπ-calculus against full adjunct-free spatial
logic with behavioral modalities, hidden and fresh name quantifiers, and recursion was shown to be
decidable in [1]. Decidability of validity in a static spatial logic for trees with adjunct was first shown
by Calcagno, Cardelli and Gordon in [5], building on techniques of [6]. More recently, Conforti and
Ghelli proved that similar results do not hold in logics with operators for restricted names [13].

To our best knowledge, no results about expressiveness and decidability of dynamic spatial logics
so crisp as ours have been presented, in the sense that they apply to a minimal spatial logic for
concurrency, and focus on the crucial combination of the composition adjunct with the dynamic
modality. The elimination of quantifiers (although not of variables,as we also achieve here) is an
important topic of interest in classical logic, related to decidability and complexity issues (e.g.,
see [20]). However, we believe our work lies completely out of this scope, as on the contrary we
derive undecidability of our logic from the elimination of quantifiers.

1 Preliminaries

In this section, we introduce the process calculus and spatial logics considered in this work. For the
process calculus, we pick a fairly small fragment of CCS.

4 Lúıs Caires and́Etienne Lozes

P, v |=M ¬A if not P, v |=M A
P, v |=M A ∧ B if P, v |=M A andP, v |=M B
P, v |=M 0 if P ≡ 0

P, v |=M A | B if ∃Q, R. P ≡ Q | R andQ, v |=M A andR, v |=M B
P, v |=M A . B if ∀Q ∈M, Q, v |=M A impliesP | Q, v |=M B
P, v |=M ∃x.A if ∃α ∈ A. P, (v{x←α}) |=M A
P, v |=M ♦A if ∃P ′. P −→ P ′ andP ′, v |=M A
P, v |=M 〈x〉.A if ∃P ′. P

v(x)−→P ′ andP ′, v |=M A

P, v |=M 〈x〉.A if ∃P ′. P
v(x)−→P ′ andP ′, v |=M A

Fig. 1.Semantics of formulas

Definition 1.1. Assume given an infinite setA of actions, ranged over byα, β. Processesare defined
by the grammar: P,Q,R ::= 0 | P | Q | α.P .

Actions are given in pairs of distinct (co)actions, characterized by the involutionco : A→A sending
α into α, and such thatα = α. The relation ofstructural congruenceis defined as the least con-
gruence≡ on processes such thatP | 0 ≡ P , P | Q ≡ Q | P , andP | (Q | R) ≡ (P | Q) | R.
Structural congruence represents identity of the spatial structure of processes. Dynamics is captured
by labeled transitions.

Definition 1.2. Given the setL , {τ} ∪ A of labels, the relation oflabeled transitionis defined by
the rules

α.P α−→P P
`−→P ′ ⇒ P | Q

`−→P ′ | Q P
α−→P ′, Q

α−→Q′ ⇒ P | Q
τ−→P ′ | Q′

Notice that
α−→ is closed under≡, and that

τ−→ corresponds to the usual relation ofreduction, noted
−→. We define thedepthof a processP (maximal nesting of actions in a processP) by letting
ds(0) = 0, ds(α.P) = 1 + ds(P), andds(P | Q) = max(ds(P), ds(Q)). LetMK denote the set of
all processes whose depth does not exceedK: MK , {P | ds(P) ≤ K}. ThenM∞ ,

⋃
k∈N Mk

coincides with the set of all processes. We also define the projection (by truncation)πk : M∞→Mk,
by induction onk by lettingπ0(P) = πk(0) , 0, πk(P | Q) , πk(P) | πk(Q), andπk+1(α.P) ,
α.πk(P).

Having defined the intended process model, we turn to logics. The logic we consider includes
the basic spatial operators found in all spatial logics namely: the composition operator|, the void
operator0, and the composition adjunct operator. (guarantee). To these connectives, we add the
temporal operator♦ (next step), to capture the dynamic behavior of processes. These operators may
be considered the core connectives for spatial logics for concurrency. We then consider the extension
of the core with modalities for actions (cf. Hennessy-Milner logic), and quantifiers ranging over
actions.

Definition 1.3. Given an infinite setX of variables,(x, y ∈ X) formulas are given by:

A,B ::= A ∧ B | A | B | ¬A | A . B | 0 | ♦A (Lspat)
| 〈x〉.A | 〈x〉.A | ∃x.A (Lmod)

We writeLspat for the set of formulas in the pure spatial fragment, andLmod for the set of all
formulas.Free variablesof formulas are defined as usual; we say a formula isclosedif it has no free
variables. Semantics is defined in Fig. 1 by a relation of satisfaction.Satisfactionis expressed by
P, v |=M A whereP is a process,M is a set of processes,A a formula, andv is a valuation for the
free variables ofA. A valuationis a mapping from a finite subset ofX to A. For any valuationv, we
write v{x←α} for the valuationv′ such thatv′(x) = α, andv′(y) = v(y) if y 6= x. By ∅ we denote

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 5

> , 0 ∨ ¬ 0 ⊥ , ¬>
A ∨ B , ¬ (¬A ∧ ¬B) A ⇒ B , ¬A ∨ B
∀x.A , ¬∃x.¬A A‖B , ¬ (¬A | ¬B)

A I B , ¬ (A . ¬B) A∀ , A‖⊥
A∃ , A | > A` , (¬A) .⊥
x = y ,

`
(〈x〉. 0 | 〈y〉. 0)⇒ ♦0

´`
x = y ,

`
(〈x〉. 0 | 〈y〉. 0)⇒ ♦0

´`
P, v |=M > if always
P, v |=M ⊥ if never
P, v |=M A ∨ B if P, v |=M A or P, v |=M B
P, v |=M A ⇒ B if P, v |=M A impliesP, v |=M B
P, v |=M ∀x.A if ∀α ∈ A. P, (v{x←α}) |=M A
P, v |=M A‖B if ∀Q, R. P ≡ Q | R impliesQ, v |=M A or R, v |=M B
P, v |=M A I B if ∃Q ∈M . Q |=M A andP | Q |=M B
P, v |=M A∀ if ∀Q, R. P ≡ Q | R impliesQ, v |=M A
P, v |=M A∃ if ∃Q, R. P ≡ Q | R andQ, v |=M A
P, v |=M A` if ∀Q ∈M . Q, v |=M A
P, v |=M x = y if v(x) = v(y) (whenM1 ⊆M)

P, v |=M x = y if v(x) = v(y) (whenM1 ⊆M)

Fig. 2.Definition and semantics of derived operators.

the empty valuation. Notice that this definition of satisfaction matches the usual one except for the
presence of the indexM , which specifies the range of quantification for interpreting the adjunct (see
clause for.). This generalization is only a convenience for our technical development; it is clear
that |=M∞ corresponds to the standard non-relativized relation of satisfaction. So, we abbreviate
P, v |=M∞ A by P, v |= A, moreover, when the formulaA is closed we abbreviateP, ∅ |=M A
by P |=M A. By default, the set of processesM is M∞, so that we may abreviateP |= A for
P |=M∞ A.

An action permutationis a bijectionσ : A→A such thatσ(α) = σ(α). We write{α ↔ β}
for the action permutation that swapsα andβ. Satisfaction verifies the fundamental property of
equivariance, which in our present setting is formulated as follows.

Definition 1.4. Let≡s be the binary relation on processes defined byP ≡s Q if and only if there is
an action permutationσ such thatP ≡ σ(Q).

Proposition 1.5 (Equivariance).Let P, v |=M A. For every action permutationσ, if P ≡ σ(Q)
thenQ, σ(v) |=M A.

We frequently refer to the logical equivalence of processes induced by the logic L (where L is either
Lspat or Lmod). The relation=L is defined by settingP=LQ if for all closed formulasA, we have
P, ∅ |= A if and only if Q, ∅ |= A.

Besides the basic stock of primitive connectives, we also use a few derived ones: we list their
definition and formal meaning in Fig. 2. Byw(A) we denote the maximal level of nesting of com-
position| in the formulaA, and byds(A) the maximal nesting of dynamic modalities in the formula
A, defined by

w(0) = 0
w(A ∧ B) = w(A . B) = max (w(A), w(B))
w(A | B) = 1 + max (w(A), w(B))
w(♦A) = w(¬A) = w(∃x.A) =

w(〈x〉A) = w(〈x〉A) = w(A)

ds(0) = 0
ds(A ∧ B) = ds(A | B) =

ds(A . B) = max (ds(A), ds(B))
ds(♦A) = ds(〈x〉A) =

ds(〈x〉A) = ds(A) + 1
ds(¬A) = ds(∃x.A) = ds(A)

6 Lúıs Caires and́Etienne Lozes

It is easy to see that a formulaA cannot inspect the part of the process that lies deeper than the depth
of A. As a consequence, the restriction toMk of the denotation of a formula of depthk completely
charaterizes its denotation, in the precise sense of:

Proposition 1.6 (Depth finiteness).For all formulasA ∈ Lmod, for all k > ds(A), and for all
processesP ,

P |=M∞ A if and only if πk(P) |=M∞ A if and only if πk(P) |=Mk
A.

Notations. The processP1 | . . . | Pn is abbreviated by
∏

i=1...n Pi, and byPn we denote the
process

∏
i=1...n P . In the same way, we abbreviate the formulaA1 | . . . | An by

∏
i=1...nAi, and

An then denotes
∏

i=1...nA.

2 Elimination of quantifiers and action modalities

In this section we prove that, quite surprisingly, the logicLmod, which contains quantifiers and vari-
ables, can be embedded into the core logicLspat, which does not seem to contain related constructs,
in the sense of the following main result:

Theorem 2.1. For any closed formulaA ∈ Lmod and any natural numberK > ds(A), we can
efectively construct a formulaJAKK ∈ Lspat such that for all processesP :

P |= A if and only if πK(P) |= JAKK

Notice that this result does not state thatLspat andLmod have the same expressiveness in the usual
sense, however, we should note that the denotation of a formulaA is completely characterized by its
denotation on some subset of the modelsMk, in the sense of Proposition 1.6. Hence, the denotation
of JAKK completely characterizes the denotation ofA; this close correspondence will be enough to
show the undecidability and separability ofLspat, and independence of the composition adjunct.

The proof of Theorem 2.1 requires considerable build up. In particular, we need to defineLspat

formulas to characterize processes of several forms, to be used for various purposes in our encoding
of A into JAKK . This exercise turns out to be quite interesting: by going through it we get a better
understanding about what can be expressed inLspat, in a sometimes not really obvious way.

We want to reduce a satisfaction judgmentP, v |=MK
A, whereA is anyLmod formula, into

a satisfaction judgment for a formulaJAKK of Lspat that neither contains quantifiers, nor action
modalities (and thus no occurrences of variables whatsoever). The key idea is to represent the val-
uationv appearing inP, v |=MK

A by a certain processval(e, ν, w)K , to be composed with the
processP being tested for satisfaction. More concretely, we encode the pairP, v by a process of the
form P | val(e, ν, w)K , whereval(e, ν, w)K encodes the valuation, andν ◦ e = v is a decomposi-
tion of the valuationv into certain mapse : X→ N andν : N→ A, respectively calledenvironment
andnaming, andw is a natural number. The role of these data will be explained below.

The encoding of valuations makes use of the notion ofrow process. A row processrow(n, α)
is a sequential process of the formα.α . . . α.0, where the actionα occurs preciselyn times (so
thatds(row(n, α)) = n). This process is interesting since it can be characterized logically, and we
will use rows to represent bindings between variables (represented by rows of different length) and
actionsα. Moreover, by imposing a boundK on the depth of the processP one considers, we can
easily separate the valuation part from the process that represents the “real” model, in the “soup”
P | val(e, ν, w)K .

We start by introducing formulas whose models are precisely the sequential threads with a given
number of actions, in the way we also define the derived modality?.A.

1 , 0 ∧ (0 || 0) Thread(1) , 1 ∧ (1 I ♦0)
?.A , 1 ∧ (Thread(1) I ♦A) Thread(n + 1) , ?. Thread(n)

We have

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 7

Lemma 2.2. For all processesP , andM such thatM1 ⊆M

P |=M 1 iff ∃α ∈ A.∃Q.P ≡ α.Q
P |=M Thread(1) iff ∃α ∈ A. P ≡ α.0
P |=M?.A iff ∃α ∈ A.∃Q. P ≡ α.Q andQ |= A
P |=M Thread(k) iff ∃α1 ∈ A.∃αk ∈ A. P ≡ α1. · · · .αk.0

We now give (for eachk ≥ 0) a formulaMk that characterizes the modelMk, that is, such that we
haveP |=Mk if and only if P ∈Mk.

M0 , 0 Mk+1 , (1⇒?.Mk)∀

Using the♦ modality as an equality tester, we define a formulaEquals(k) that is satisfied by the of
processes which belong toMk, and are compositions of guarded processes all with thesamefirst
action. We may then specify rows using appropriate formulas

Equals(k) ,Mk ∧ (Thread(k + 1) I
(
(Thread(k + 1) | 1)⇒ ♦>

)∀)
RowCol(0) , 0
RowCol(n + 1) ,

(
Thread(n + 1) | Equals(1)

)
∧ ♦RowCol(n)

Row(n) , Thread(n) ∧ (> I RowCol(n))

We now prove

Lemma 2.3. For all k, and processP , we have:

P |=Mk iff P ∈Mk

P |= Row(k) iff ∃α ∈ A. P ≡ row(k, α)
P |= Equals(k) iff P ∈Mk and∃α ∈ A.∃n ≥ 0.

∃P1, . . . , Pn. P ≡ α.P1 | . . . | α.Pn

We can now explain our encoding of a valuationv into a certain process. First, we decomposev into
two functionsν ande such thatv = ν ◦ e. An environmente is a partial injective function from
variables to an initial segment[1, . . . , n] of the natural numbers. We note bye{x←n} the extension
of e with x 7→ n, and | e | is the maximal value ofe, that, is the number of variables already
allocated. Anamingν is a function from[1, . . . , n] to A. Notice that the decompositionv = ν ◦ e
is not unique, but will be given by the order in which existential quantified variables are introduced
in their scopes. For any namingν and environmente the processval(e, ν, w)K is

val(e, ν, w)K ,
∏

i=1...|e| row(K + i, νi)2
w

The parameterw specifies the number of rows of the appropriate length that are needed to repre-
sent the environment entry for a variablex, and is related to the number of occurrences of| in the
source formulas. Since interpreting| also splits the (encoding of the) valuation, we have to provide
enough copies (2w, wherew is related tow(A)). Note that we can always filter out any undesirable
interference ofval(e, ν, w)K with the parallel processP , since for any labeled-transition reduct
Q of val(e, ν, w)K , Q is not an environment since it does not have the right number of rows for
each depth. Likewise, for any namingsν, ν′, ν′′, we haveval(e, ν, w + 1)K ≡ val(e, ν′, w)K |
val(e, ν′′, w)K if and only if ν = ν′ = ν′′. Using already defined properties, we set

Val(e, w)K ,
∏

i=1...|e|
(
Row(K + i)2

w

∧ Equals(K + i)
)

ProcVal(e, w)K , MK | Val(e, w)K

Lemma 2.4. For any processP , environmente and naturalsK, w ≥ 1

P |= Val(e, w)K iff ∃ν. P ≡ val(e, ν, w)K

P |= ProcVal(e, w)K iff ∃Q ∈MK ,∃ν. P ≡ Q | val(e, ν, w)K

8 Lúıs Caires and́Etienne Lozes

JA ∧ BK(e,w) , ProcVal(e, w)K ∧ JAK(e,w) ∧ JBK(e,w)

J¬AK(e,w) , ProcVal(e, w)K ∧ ¬ JAK(e,w)

J0K(e,w) , ProcVal(e, w)K ∧ Val(e, w)K

JA | BK(e,w) , ProcVal(e, w)K ∧ (JAK(e,w−1)

˛̨
JBK(e,w−1))

JA . BK(e,w) , ProcVal(e, w)K ∧`
JAK(e,w) .

`
ProcVal(e, w + 1)K ⇒ JBK(e,w+1)

´´
J♦AK(e,w) , ProcVal(e, w)K ∧ ♦JAK(e,w)

J∃x.AK(e,w) , ProcVal(e, w)K ∧
`
EnvX(x, e′, w)K I JAK(e′,w)

´
wheree′ = e{x← | e | +1}

J〈x〉.AK(e,w) , ProcVal(e, w)K ∧
Test(e)K I (TestMatchesX(x, e, w)K | >) ∧

♦(UsedTest(e)K | JAK(e,w)))

J〈x〉.AK(e,w) , ProcVal(e, w)K ∧
♦

`
UsedXRow(x, e)K | (XRow(x, e)K I JAK(e,w))

´
Fig. 3.Encoding ofLmod intoLspat.

The formulaProcVal(e, w)K specifies a pair process-valuation, where the process belongs toMK .
Now we introduce formulas to match specific entries of the (encoding of the) valuation: selection of
the actionα associated to the variablex is achieved by filtering the set of row processes of depth
e(x). To implement this properties we define the following formulas:

XRow(x, e)K , Row(K + e(x))
UsedXRow(x, e)K , Row(K + e(x)− 1)

EnvX(x, e, w)K , Equals(K+ | e |) ∧ (XRow(x, e)K)2
w

XRow(x, e)K allows us to select one of the rows that represents the environment entry of the variable
x. UsedXRow(x, e)K checks that such a row has lost an action prefix (after a reduction step takes
place).EnvX(x, e, w)K matches all the rows that encode the environment entry for the variablex.
To encode the modality〈x〉A we need to check for the presence of the complementary of the action
v(x). To this end, we specify a row bigger than any other (withTest(e)), and then check (using♦)
that it may react with some row of depthe(x) (with UsedTest(e)). Let then:

Test(e)K , Row(| e | +K + 2)
UsedTest(e)K , Row(| e | +K + 1)

TestMatchesX(x, e, w)K , (Test(e)K | EnvX(x, e, w)K) ∧ ♦>

We are now ready to present our encoding of formulas ofLmod into formulas ofLspat.

Definition 2.5. LetA ∈ Lmod be a formula,e an environment mapping the free variables ofA,
and w,K be integers such thatw > w(A), andK > 0. Then, the formulaJAK(e,w) ∈ Lspat is
inductively defined in Fig. 3.

Theorem 2.1 follows from Lemmas 2.2, 2.3, 2.4, and the following general result:

Lemma 2.6 (Correctness of the encoding).For all processesP , all formulasA ∈ Lmod, all
environmentse declaring the free variables ofA, all integersw > w(A), and allK > 0 we have:

P, ∅ |=M∞ JAK(e,w) if and only if ∃Q ∈MK ,∃ν.
{

P ≡ Q | val(e, ν, w)K

Q, ν ◦ e |=MK
A

Proof. (Sketch, see appendix for details) By induction onA. For the connectives ofLspat, the
encoding is quite natural: in the case of|, the environment is split in two equal parts, and tested
for a sound recombination byProcVal(e, w)K . For ., we must check that the composition of the

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 9

two environments coming from the left and right of. is actually an environment. This holds if both
environments are defined with the same namingν. For the case of♦, any reduction involving the
environment is excluded, because otherwise the resulting environment would be ill-formed. For the
other connectives, the encoding also involves our abbreviations: the encoding of the quantifier∃x.A
relies on representing the quantification over actions into a quantification (usingI) over processes
that represent environment entries. For action modalities, one checks for interactions between the
process and a row corresponding to the selected variable.

We can thus present the proof of Theorem 2.1.

Proof. Let A be a formula ofLmod. SetJAKK = JAK(∅, w) for somew greater than the max-
imal nesting of| connectives inA. ThenπK(P) ≡ πK(P) | val(∅, ∅, w)K , so by Lemma 2.6,
πK(P), ∅ |=M∞ JAKK if and only if πK(P), ∅ |=MK

A, which is equivalent toP, ∅ |=M∞ A by
Proposition 1.6.

3 Separability of Lspat

As a first application of the main Theorem 2.1, we define characteristic formulas and characterize
the separation power of the logicLspat (and thus ofLmod). We conclude thatLspat is able to
describe processes quite precisely, just abstracting away from the identity of the particular names
used by processes. We start by introducing a characteristic formulaC(P) for any processP . For any
complementary pair of actions{α, α} occurring inP , we reserve a specific variablexa, collected in
the set{xα1 , . . . , xαn

}. We have

χ(0) , 0 χ(α.P) , 1 ∧ 〈xα〉χ(P)
χ(α.P) , 1 ∧ 〈xα〉χ(P) χ(P | Q) , χ(P) | χ(Q)

C(P) , J∃xα1 . . .∃xαn . (
∧
i 6=j

xαi 6= xαj ∧ xαi 6= xαj) ∧ χ(P)KK

whereK = ds(P). Recall thatx = y andx 6= y are defined in Fig.2, and notice thatC(P) ∈ Lspat,
while χ(P) ∈ Lmod.

Lemma 3.1. Let P ∈ MK , let v be the valuation such thatv(xαi) = βi, for pairwise distinct
actionsβ1, . . . , βn, and letσ be the action permutation that sendsαi into βi. Then we have that
Q, v |=MK

χ(P) if and onlyQ ≡ σ(P).

Proof. Induction onP (see appendix).

Lemma 3.2. For all processesQ andP , Q |= C(P) if and only ifQ ≡s P .

Proof. By Lemma 3.1 and Theorem 2.1 (see appendix).

We then conclude:

Theorem 3.3. The following statements are equivalent:

(1) P=Lmod
Q (2) P=Lspat

Q (3) Q, ∅ |= C(P) (4) P ≡s Q

Proof. (1)⇒(2) becauseLspat ⊂ Lmod, (2)⇒(3) sinceC(P) ∈ Lspat andP |= C(P), (3)⇒(4)
by Lemma 3.2, and(4)⇒(1) by Proposition 1.5.

10 Lúıs Caires and́Etienne Lozes

4 Expressiveness of Composition Adjunct

It is known that in static spatial logics, that is spatial logics without quantifiers and dynamic opera-
tors, the adjunct connective is not independent of the remaining connectives, and can in fact be elimi-
nated, in the sense that for any formula of such a logic we can find a logically equivalent adjunct-free
formula [17]. It is not hard to see that adjunct cannot be dispensed with inLspat, because without
adjunct one is not allowed to distinguish threads of different lenght: if we pickA ∈ Lspat − {.},
we can verify by an easy induction onA thatα. 0 |= A if and only if α.β. 0 |= A, for all α, β ∈ A.

In this section, we prove that the adjunct elimination property does not hold for the spatial logic
Lmod. For this, we adapt a scheme suggested by Yang: on the one hand, we define inLmod a formula
that says of a process that its number of toplevel parallel components is even, on the other hand, we
show that parity cannot be characterized by adjunct-free formulas. We start by defining the following
formulas (where�A , ¬♦¬A):

Top(x) , 〈x〉0
Fam , �⊥ ∧

(
1⇒ ∃x.Top(x)

)∀ ∧ ∀x.∀y. (Top(x) | Top(y) | >)⇒ x 6= y)

We can verify thatP |= Fam if and only if P ≡ α1.0 | . . . | αk.0 for some pairwise distinctk
actionsα1, . . . , αk such thatP 6→. We call a process of such a form afamily. The width of such
a family P is defined to be the numberw(P) = k of parallel threads inP . Now, we can define a
formulaEven2 that is satisfied by processes that contain exactly an even number of distinct actions
at the second level.

Pair , 1 ∧ ∃xyz. 〈x〉(Top(y) | Top(z)) ∧ (y 6= z)
Below(x) , 1 ∧ ∃z. 〈z〉〈x〉>
Even2 , (1⇒ Pair)∀ ∧ ∀x.∀y. (Below(x) | Below(y) | >)⇒ x 6= y)

HenceP |= Even2 if and only if P ≡ α1. (β1,1 | β1,2) | · · · | αk. (βk,1 | βk,2) for somek actions
α1, . . . , αk, and some pairwise distinct2k actionsβ1,i, . . . , βk,i for i = 1, 2. Now, if we compose
a processP satisfyingFam in parallel with a processQ satisfyingEven2, we can check (inP | Q)
that the actions that occur in the toplevel ofP are exactly the same that appear in the second level
of Q using the formulaSame:

Same , ∀x. (Top(x)∃ ⇔ Below(x)∃)

Hence we have the following result

Lemma 4.1. There is a closed formulaEven ∈ Lmod such that for any processP , we have that
P |= Even if and only ifP is a family andw(P) is even.

Proof. Let Even , Fam ∧ (Even2 I Same).

A key observation is that the formulaEven contains an essential use of the composition adjunct op-
erator. In fact, although the properties denoted by the formulasEven2 andFam can be expressed by
appropriate adjunct-free formulas ofLspat, the same situation does not hold for the parity property
expressed byEven. In the remainder of this section, we prove that there is no formula ofLmod−{.}
able to express the same property. The argument consists in showing that any familyP considered
in Lmod − {.} admits a saturation level from which this is always possible to add an extra paral-
lel component to it while preserving satisfaction. We first definesn(A) (the sticks numberof the
formulaA) to be the natural number defined by induction onA as follows:

sn(¬A) , sn(A) sn(A1 ∧ A2) , max(sn(A1), sn(A2))
sn(0) , 1 sn(A1 | A2) , sn(A1) + sn(A2)
sn(♦A) , 0 sn(〈x〉.A) , sn(A)
sn(∃x.A) , sn(A) + 1 sn(〈x〉.A) , sn(A)

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 11

A,B ::= A ∧ B | ¬A | ∃x.A | p(x, y)

(D, I) |=v A ∧ B if (D, I) |=v A and(D, I) |=v B
(D, I) |=v ¬A if not (D, I) |=v A
(D, I) |=v ∃x.A if ∃ d ∈ D. (D, I) |=v{x←d} A
(D, I) |=v p(x, y) if (v(x), v(y)) ∈ I(p)

Fig. 4.First-Order Logic

Given a familyP and a valuationv, we writeP\v for the subfamily ofP of the actionsα that do
not appear in the codomain of the valuationv. More precisely, we defineP\v ,

∏
{α | P ≡

α | Q andα, α 6∈ codom(v)}. We then have:

Lemma 4.2. Let P be a family, letv be a valuationv : X ⇀ A, and letα ∈ A be an action such
that α, α 6∈ codom(v) and (P | α) is a family. Then, for any.-free formulaA ∈ Lmod such that
w(P\v) ≥ sn(A) we have

P, v |= A if and only if P | α, v |= A.

Proof. By induction onA (see appendix).

Theorem 4.3. There is no closed formulaA ∈ Lmod − {.} that exactly characterizes the set of all
familiesP with w(P) even.

Proof. By contradiction: ifA was a such formula, then we may take a familyP and an extended
family P | α with w(P) ≥ sn(A). Then by previous lemma,P, ∅ |= A if and only ifP | α, ∅ |= A,
which is a contradiction.

We thus conclude that in the logicLmod the composition adjunct operator is independent of the
remaining operators, in particular there are properties expressible with the composition adjunct that
cannot be expressed with action modalities and quantifiers.

5 Undecidability

In this section, we show that the validity-, satisfiability- and model-checking problems for the logic
Lspat (and henceLmod) are all undecidable. These results are a consequence of our embedding of
Lmod into Lspat (Theorem 2.1), and the fact that first-order logic can then be easily encoded into
Lmod along the lines of [12]. The language of first-order logic (FOL) and its semantics if defined as
usual (see Fig. 4). Formulas are build from a set ofV ars of individual variables (x, y), and finite
setPred of predicate symbols (p, q). For simplicity, we consider but binary predicate symbols. A
model for FOL is a pair(D, I) whereD is a set of individuals (the domain of the model), andI is
a mapping assigning to each predicate symbolp ∈ Pred a binary relationI(p) ⊆ D ×D. For our
purposes it is enough to focus on finite models. Satisfaction of a FOL formula in a model(D, I) is
defined in Fig. 4, using a valuationv that assigns each individual variable an element ofD.

We now show how to faithfully encode any FOL satisfaction judgment(D, I) |=v A into aLmod

satisfaction judgmentMJ(D, I)K,VJvK |= FJAK, by means of appropriate translationsMJ−K,
VJ−K andFJ−K. We pick a natural numberE > 1, and assign to each predicate symbolp ∈ Preds
a distinct natural numberCode(p) > E. We also fixK such thatK > Code(p), for all p ∈ Preds.
To encode a model(D, I) into a processMJ(D, I)K, we start by assigning each elementd ∈ D a
distinct actionA(d) ∈ A, and defineEJdK , row(E,A(d)). The domainD = {d1, . . . , dn} is then
represented by the processDJDK , EJd1K | . . . | EJdkK. For the interpretationI, we represent each
pair (d, e) ∈ I(p) by the process

T (p)J(d, e)K , α. (row(Code(p), β) | A(d).0 | A(e).A(e).0)

12 Lúıs Caires and́Etienne Lozes

whereα, β are some actions. We then letIJIK ,
∏

p∈Preds

∏
(d,e)∈I(p) T (p)J(d, e)K and then set

MJ(D, I)K , DJDK | IJIK. By construction, we always haveMJ(D, I)K ∈ MK . The processes
representing FOL models as we have just defined can be logically characterized by a formulaModel
of Lspat as follows:

Dom(x) ,
(
Row(E) ∧ 〈x〉>

)∃
Diff , ∀x.∀y. (〈x〉> | 〈y〉> | >)⇒ x 6= y)

Domain , Diff ∧
(
1⇒ ∃x.Dom(x)

)∀
Interp ,

(
1⇒ ∃z. 〈z〉(Some | Row(1) | Row(2))

)∀
Some ,

∨
p∈Preds Row(Code(p)) Compat , ∀x. ((∃z. 〈z〉(〈x〉> | Some))∃ ⇒ Dom(x)∃)

Model ,MK ∧ J(Domain | Interp) ∧ CompatKK

Lemma 5.1. We haveP |= Model if and only if there is a finite FOL model(D, I) such that
MJ(D, I)K ≡ P .

Proof. Interpreting the formulaModel (see appendix).

Now, formulas of FOL are encoded into formulas ofLmod as follows

FJ¬AK , ¬JAK FJ∃x.AK , ∃x. (Dom(x) ∧A)

FJA ∧ BK , FJAK ∧ FJBK FJp(x, y)K ,
`
∃z. 〈z〉(Row(Code(p)) | 〈x〉0 | 〈y〉〈y〉0)

´∀
Finally, for valuations we setV[v](x) = A(v(x)). We can then show

Lemma 5.2. Let v = {x1 7→ d1, . . . , xk 7→ dk} be a valuation forA. Then we have(D, I) |=v A
if and only ifMJ(D, I)K,VJvK |=MK

FJAK.

Proof. See appendix.

Proposition 5.3. LetA be a closed formula of FOL. Then the formulaA is satisfiable if and only if
theLspat formulaModel ∧ JFJAKKK is satisfiable.

Proof. By Lemma 5.2, Lemma 5.1 and Theorem 2.1 (see Appendix).

As a corollary of Proposition 5.3, we conclude

Theorem 5.4. The problems of validity-checking, satisfiability-checking, and model-checking of
Lspat formulas are all undecidable.

Proof. Follows from Proposition 5.3 and Trakhtenbrot’s Theorem [22].

6 Extension to theπ-Calculus and Ambients

In this section, we briefly discuss how our results extend to richer models, namely theπ-calculus
and the ambient calculus. We may pick any of these calculi as models for the core logicLspat,
which is a fragment of both the ambient logic of [10] and theπ-calculus logic of [4]. We discuss
first the case of the ambient calculus without name restriction, and just with theopen capability. In
this case, we can show thatLspat can also encode, for processes of bounded depth, its extension
with the quantifier∃x.A, and modalities of the form〈open x〉.A andx[A]. However, as we might
expect, the symmetry between input and output (Theorem 3.3(4)) does not carry over to ambients:
for instance, the formula1 ∧ ♦> may be satisfied by the ambientn[P], but not by the guarded
ambientopen n.P For theπ-calculus, we may consider the extension ofLspat with the quantifier
∃x.A and the modalities〈x〉A and〈x〉A, able to observe just the subjects ofπ-calculus actions.
In this case, we may also prove that this extension can be encoded inLspat for bounded depth
processes, as we did for the other cases. From these results, we conclude

Theorem 6.1. The model-checking and validity problems for theπ-calculus and the ambient calcu-
lus againstLspat are both undecidable.

Proof: See Appendix.
We should remark that Takhtenbrot also allows us to conclude that there is no complete proof system
for validity of Lspat formulas over any of these calculi.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 13

7 Concluding Remarks

We have studied a core spatial logic for concurrency, aiming at a better understanding of the rela-
tive role of the very basic logical operation present in most logics of this family. In particular, we
have shown that quantifiers and action modalities can be embedded, and that the composition ad-
junct plays a key role in the expressiveness of this logic; these results allowed us to also prove its
undecidability. In this light, we believe that minimality ofLspat could be established in a precise
sense.Lspat andLmod have not been shown to have the same expressiveness in the strict technical
sense. However, we believe this is the case for their extension with freshness quantifiers and a free
name occurrence predicate. Since Theorem 3.3 does not hold for calculi with name restriction, an
interesting issue is to get a better understanding of the (coarser) spatial equivalence in the absense
of logical operations dealing with restricted names.

Although the composition adjunct is certainly important for general context/system specifica-
tions, our work shows that the automated verification of concurrent systems using logics that rely on
the composition adjunct seems to be not feasible. An important issue is then whether other expres-
sive and tractable forms of contextual reasoning inspired by the composition adjunct and extending
those already provided by behavioral-spatial logics can be identified.

We thank Hongseok Yang for the illuminating discussion that prompted our counterexample
in Section 5. We thank Lúıs Monteiro, Daniel Hirschkoff and Davide Sangiorgi for all the rich
exchanges and encouragement; and Luca Cardelli for many related discussions. E. Jeandel provided
some references about quantifier elimination. This collaboration was supported by FET IST 2001-
33310 Profundis. E. Lozes was also funded by an “Eurodoc” grant fromRégion Rĥone Alpes.

References

1. L. Caires. Behavioral and Spatial Properties in a Logic for the Pi-Calculus. In Igor Walukiwicz, editor,
Proc. of Foundations of Software Science and Computation Structures’2004, number 2987 in Lecture Notes
in Computer Science. Springer Verlag, 2004.

2. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In N. Kobayashi and B.C. Pierce,
editors,10th Symposium on Theoretical Aspects of Computer Science, volume 2215 ofLecture Notes in
Computer Science, pages 1–30. Springer-Verlag, 2001.

3. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). InCONCUR 2002 (13th International
Conference), Lecture Notes in Computer Science. Springer-Verlag, 2002.

4. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I).Information and Computation,
186(2):194–235, 2003.

5. C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding Validity in a Spatial Logic of Trees. InACM
Workshop on Types in Language Design and Implementation, pages 62–73, New Orleans, USA, 2003.
ACM Press.

6. C. Calcagno, H. Yang, and O’Hearn. Computability and complexity results for a spatial assertion language
for data structures. In R. Hariharan, M. Mukund, and V. Vinay, editors,FSTTCS’2001, volume 2245.
Springer-Verlag, 2001.

7. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating Trees with Hidden Labels. In A. D. Gordon, editor,
Proceedings of the First International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS ’03), Lecture Notes in Computer Science. Springer-Verlag, 2003.

8. L. Cardelli and G. Ghelli. A Query Language Based on the Ambient Logic. In D. Sands, editor,10th
European Symposium on Programming (ESOP 2001), volume 2028 ofLecture Notes in Computer Science,
pages 1–22. Springer-Verlag, 2001.

9. L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In S. Abramsky, editor,Typed Lambda
Calculi and Applications, number 2044 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

10. L. Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambients. In27th ACM
Symp. on Principles of Programming Languages, pages 365–377. ACM, 2000.

11. W. Charatonik, A. D. Gordon, and J.-M. Talbot. Finite-control mobile ambients. In D. Metayer, editor,
11th European Symposium on Programming (ESOP 2002), number 2305 in Lecture Notes in Computer
Science. Springer-Verlag, 2002.

14 Lúıs Caires and́Etienne Lozes

12. W. Charatonik and J.-M. Talbot. The decidability of model checking mobile ambients. InProceedings of
the 15th Annual Conference of the European Association for Computer Science Logic, Lecture Notes in
Computer Science. Springer-Verlag, 2001.

13. G. Conforti and G. Ghelli. Decidability of Freshness, Undecidability of Revelation. In Igor Walukiwicz,
editor,Proc. of Foundations of Software Science and Computation Structures’2004, number 2987 in Lec-
ture Notes in Computer Science. Springer Verlag, 2004.

14. D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes, 2004.
15. D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decidability in the Ambient

Logic. In Third Annual Symposium on Logic in Computer Science, Copenhagen, Denmark, 2002. IEEE
Computer Society.

16. D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality results for the spatial logics. InProc. of
FSTTCS’2003, LNCS. Springer Verlag, 2003.

17. E. Lozes. Adjunct elimination in the static Ambient Logic. InProc. of EXPRESS’2003, 2003. to appear
in ENTCS, Elsevier.

18. P. O’Hearn. Resources, Concurrency, and Local Reasoning (Abstract). In D. Schmidt, editor,Proc. of
ESOP’2004, Lecture Notes in Computer Science, pages 1–2. Springer, 2004.

19. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InThird Annual Sympo-
sium on Logic in Computer Science, Copenhagen, Denmark, 2002. IEEE Computer Society.

20. M.-F. Roy S. Basu, R. Pollack. On the combinatorial and algebraic complexity ofquantifier elimination.
volume IEEE Symposium on Foundations of Computer Science, 1994.

21. D. Sangiorgi. Extensionality and Intensionality of the Ambient Logics. In28th Annual Symposium on
Principles of Programming Languages, pages 4–13. ACM, 2001.

22. B.A. Trakhtenbrot. The impossibility of an algorithm for the decision problem for finite models.Dokłady
Akademii Nauk SSR, pages 70:569–572, 1950.

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 15

Appendix (Proofs)

For Section 2

Proof of Lemma 2.6

Proof. By induction onA.

– (Cases of)A = A1 ∧ A2,¬A1, 0 straightforward.
– (Case ofA = Aa | Ab) Assume firstP, ∅ |=M∞ JAK(e,w). By Lemma 2.4, there isP1 ∈ MK

andν such thatP ≡ P1 | val(e, ν, w)K . Moreover, there is a splittingP1 | val(e, ν, w)K ≡
Pa | Pb with Pε, ∅ |=M∞ Aε. By induction hypothesis, eachPε contains aval(e, ν, w − 1)K .
Due to the depth of the rows,P1 do not contribute to that, soPε ≡ P1,ε | val(e, ν, w−1)K with
P1 ≡ P1,a | P1,b. By induction hypothesis,P1,ε, ν ◦ e |=MK

Aε, hence the result. Conversely,
if P ≡ P1 | val(e, ν, w)K with P1, ν ◦ e |=MK

A, there isP1,a, P1,b such thatP ≡ P1,a | P1,b

andP1,ε, ν◦e |=MK
Aε, hence by induction hypothesisP1,ε |=M∞ JAεK(e, w) andP ≡

(
P1,a |

val(e, w − 1,
)
K

) |
(
P1,b | val(e, w − 1,

)
K

) |=M∞ JAK(e,w).
– (Case ofA = A1 . A2) Assume firstP, ∅ |=M∞ JAK(e,w). By Lemma 2.4, there isP1 ∈

MK and ν such thatP ≡ P1 | val(e, ν, w)K . To prove thatP1, ν ◦ e |=MK
A1 . A2,

we pick someQ ∈ MK such thatQ, ν ◦ e |=MK
A1. Then by induction hypothesisQ |

val(e, ν, w)K |=M∞ JA1K(e,w), andP | Q | val(e, ν, w)K |=M∞ ProcVal(e, w + 1)K , so
P | Q | val(e, ν, w)K |=M∞ JA2K(e,w+1). By induction hypothesis,P | Q | val(e, ν, w)K ≡
R1 | val(e, ν′, w)K with R1, ν

′ ◦ e |=MK
A2 Due to the depth of the rows inval(e, ν′, w)K ,

one has necessarilyν = ν′ and R1 ≡ P1 | Q, hence the result. Assume now thatP ≡
P1, ν ◦ e |=MK

A1 .A2. To prove thatP, ∅ |=M∞ JA1 .A2K(e,w), we takeQ ∈M∞ such that
Q |=M∞ JA1K(e,w). By induction hypothesis, there isν′ such thatQ ≡ Q1 | val(e, ν′, w)K and
Q1, ν

′ ◦e |=MK
A1. If ν 6= ν′, thenval(e, ν, w)K | val(e, ν′, w)K 6|=M∞ ProcVal(e, w+1)K ,

so P | Q |=M∞ ProcVal(e, w + 1)K→JA2K(e,w+1). Otherwise,ν = ν′ and by hypothesis
P1 | Q1, ν ◦ e |=MK

A2 , so by induction hypothesisP | Q |=M∞ JA2K(e,w+1).
– (Case ofA = ♦A′) Assume first thatP |=M∞ J♦A′K. ThenP ≡ P1 | val(e, ν, w)K , and there

is R such thatP −→ R |=M∞ JA′K(e,w). By induction hypothesis,R ≡ R1 | val(e, ν′, w)K

for someν′ andR1, ν
′ ◦ e |=MK

A′. If val(e, ν, w)K takes part to this reduction, it decreases
the size of one row or two rows of different depth. So the number of copies of the deeper one
is not2k any more, and this process is not congruent toval(e, ν′, w)K . SoP1 −→ R1 and the
result. Assume nowP1, ν ◦ e |=MK

♦A′ and letR1 be such thatR1, , ν ◦ e |=MK
♦A′ and

P1 −→ R1. ThenP1 | val(e, ν, w)K −→ R1 | val(e, ν, w)K , soP |=M∞ J♦A′K(e,w).
– (Case ofA = ∃x.A′) Assume first thatP |=M∞ JAK. Then there is an actionα such that

row(K+ | e | +1, α)2
w | P |= JAK, so by induction hypothesisP | row(K+ | e |

+1, α)2
w ≡ val(e′, ν′, w)K | P1 with P1, ν

′◦e′ |=MK
A′. Due the difference of row depths, we

haveν′ = ν, | e′ |7→ α. SoP, ν ◦ e |=MK
A, and the result. Conversely, assumeP, ν ◦ e |=MK

A. Then there is an actionα such thatP, ν{x←α} |=MK
A. Let consider the processR =

row(K+ | e | +1, α)2
w

. Thenval(e, ν, w)K | R ≡ val(e′, ν′, w)K with e′ = e, x 7→| e | +1
andν′ = ν, | e | +1 7→ α. By induction hypothesis,P | val(e′, ν′, w)K |=M∞ JA′K, so
P | val(e, ν, w)K |=M∞ JAK and the result.

– (Case ofA = 〈x〉A′) Assume first thatP |=M∞ JAK. Then there is an actionα such that
row(K+ | e | +2, α) | row(K + e(x), ν ◦ e(x)) −→. Soα = ν ◦ e(x). Moreover, there
is P ′ such thatP1 | val(e, ν, w)K | row(K+ | e | +2, α) −→ P ′ andP ′, ν ◦ e |=M∞

UsedTest(e) | JA′K(e,w). SoP ′ has a row of depthK+ | e | +1, which is only possible if the
reduction involvedrow(K+ | e | +2, α). It cannot involveval(e, ν, w)K sinceP ′ contains it
unchanged, so it necessarily involveP1, that isP ′ = row(K+ | e | +1, α) | val(e, ν, w)K | P ′

1

with P1
α−→P ′

1, hence the result. Assume now that there isP ′
1 such thatP1

ν◦e(x)−→ P ′
1; then adding

the processrow(K+ | e | +2, ν ◦ e(x)) and performing the reduction we just described, we
have thatP1 | val(ν, e, w)K , ∅ |=M∞ A.

16 Lúıs Caires and́Etienne Lozes

– (Case ofA = 〈x〉A′) Assume first thatP |=M∞ JAK. Then there isP ′, α, β such thatP −→
P ′ | row(β, n − 1) and P ′ | row(α, n) |=M∞ JA′K(e,w), with n = e(x). By induction
hypothesis,P ′ | row(α, n) contains an environment, so in order to have the right number of
rows of each depth it must be that a row of sizen was absent inP ′, and one had an extra
row of sizen − 1. Then it must be that a row of sizen in P contributed to the reduction
P −→ P ′ | row(β, n − 1). Hence in the reduction the number of rows of sizen decrease by
one, the number of rows of sizen − 1 increased by one, and other rows remained2w copies.
Moreover, since rows of the same depth always have the same action; we have at least two
copies at each size sincew ≥ 1, so necessarilyα = ν(n) androw(β, n− 1) is the row that was
generated by the reduction, that isβ = α = ν(n). Since the interaction did not involve any other

row from the environment, it actually must have involvedP1. So there isP ′
1 such thatP1

ν(n)−→P ′
1

andP ′ ≡ P ′
1 | env′, whereenv′ is the environmentval(e, ν, w)K from which a row of sizen

has been picked up. ThenP ′ | row(α, n) ≡ P ′
1 | val(e, ν, w)K so by induction hypothesis

P ′
1, ν ◦ e |=MK

A′, that isP1, ν ◦ e |=MK
〈x〉A′. Assume now thatP1, ν ◦ e |=MK

〈x〉A′.

Then there isP ′
1 such thatP1

ν(e(x))−→ P ′
1 andP ′

1, ν ◦ e |=MK
A′. Then by induction hypothesis

P ′
1 | val(e, ν, w)K |=M∞ JAK′, that is1 | val(e, ν, w)K −→ P ′

1 | env′ | row(α, n− 1) where
e(x) = n, α = ν(n), andenv′ isval(e, ν, w)K from which one row of sizen has been removed.
SoP ′

1 | env′ | row(α, n) |=M∞ JAK′ by induction hypothesis, that isP1 | val(e, ν, w)K |=M∞

JAK.

Proof of Lemma 3.1

Proof. Induction Hypothesis onP . We detail the case ofP = αj .P ′. If Q, v |=MK
χ(P) then

Q, v |=MK
1 andQ, v |=MK

〈xαj 〉χ(P ′). This means thatQ ≡ βj .Q′ andQ′, v |=MK
χ(P ′),

wherebj = v(xαj
). By inductive hypothesis,Q′ ≡ σ(P ′). Sinceσ(αj) = βj we concludeQ ≡

σ(P). Conversely, assumeQ ≡ σ(P). This means thatβj = σ(αj) andQ = βj .Q′ whereQ′ ≡
σ(P ′). By inductive hypothesis,Q′, v |=MK

χ(P ′). Then, we haveQ
βj−→Q′. SinceQ, v |= 1, and

v(xαj) = βj we concludeQ, v |=MK
〈xα〉χ(P ′) and thenQ, v |=MK

χ(P).

Proof of Lemma 3.2

Proof. Let K = ds(P) and assumeQ, ∅ |= C(P). ThenQ ∈ MK and thusπK(Q) = Q. By
Theorem 2.1 we haveQ, ∅ |=MK

∃xα1∃xαn .χ(P), so there are pairwise distinct actionsβi

such thatv(xαi) = βi andQ, v |=MK
χ(P). By Lemma 3.1, we conclude thatQ ≡ σ(P), where

σ(αi) = βi. Conversely, letQ ≡ σ(P) for some action permutationσ; thus if P ∈ MK then also
Q ∈ MK . Let v(αi) = βi wheneverσ(αi) = βi. By Lemma 3.1, we concludeQ, v |=MK

χ(A).
Since the actionsβi are pairwise distinct, by Theorem 2.1 we concludeQ |= C(P).

For Section 4

Proof of Lemma 4.2

Proof. By induction onA.

– (Cases ofA = A1 ∧ A2,A = ¬A1) Straightforward.
– (Case ofA = 0) We havew(P) ≥ 1 so neitherP norP | α satisfyA.
– (Case ofA = A1 | A2). We assume first thatP, v |= A. Then there isP1, P2 such that

P ≡ P1 | P2 andPi |= Ai, for i ∈ {1, 2}. Then

w(P\v) = w(P1\v) + w(P2\v) ≥ sn(A) = sn(A1) + sn(A2)

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 17

so there is somee ∈ {1, 2} such thatw(Pe\v) ≥ sn(Ae). By induction hypothesis thenPe |
α |= Ae, so thatP | α |= A. We assume now thatP | α |= A. Then there areQ1, Q2 such
thatP | α = Q1 | Q2 andQi |= Ai. Sinceα 6∈ codom(v), w(P | α\v) = w(P\v) + 1, so

w(P | α\v) = w(Q1\v) + w(Q2\v) > sn(A) = sn(A1) + sn(A2)

and there is somee ∈ {1, 2} such thatw(Qe\v) > sn(Ae). We pick someα′ ∈ Qe with α′ 6∈
codom(v), which is possible sincew(Qe\v) ≥ 1. We notePe the family such thatQe{α ↔
α′} ≡ Pe | α. Thenw(Pe\v) = w(Pe | α\v)−1 = w(Qe\(v{α↔ α}′))−1 = w(Qe\v)−1,
hencew(Pe\v) ≥ sn(Ae). By equivariance (Proposition 1.5), we get fromQe, v |= Ae that
Pe | α, v |= Ae, and by induction hypothesisPe, v |= Ae. Then we writeP | α = Q1{α ↔
α′} | Q2{α↔ α′} = P1 | α | P2, which gives thatP, v |= A.

– A = ♦A1. Then bothP andP | α do not satisfyA, because they are deadlocked.
– A = ∃x.A1. We assume first thatP, v |= A. Then there isβ such that forv′ = v, x 7→ β,

P, v′ |= A1. We may assume thatβ 6∈ {α, α}, otherwise we would pick some fresh action
β′, and consider insteadv′ = v, x 7→ β′: then P = P{β ↔ β}′ and v′ = v{β ↔ β}′
(sinceβ 6∈ codom(v)), so P, v′ |= A1 by Proposition 1.5. So we assumeβ 6∈ {α, α}. We
havew(P | α\v′) = w(P\v′) + 1 ≥ w(P\v), sow(P | α\v′) ≥ sn(A1), and by induction
hypothesisP | α, v′ |= A1, that isP | α, v |= A. We assume now thatP | α, v |= A. Then
there isβ such that forv′ = v, x 7→ β, P | α, v′ |= A1. If β ∈ {α, α}, we may pick some
otherβ′ occurring inP\v: thenP{β ↔ β′} = P by internal symetry, andv′′ = v′{β ↔ β′},
so P | α, v′′ = P{β ↔ β′}, v′{β ↔ β′} |= A1 for v′′ = v, x 7→ β′. So we may assume
β 6∈ {α, α}. Thenw(P\v′) ≥ w(P\v)− 1 ≥ sn(A1), so by induction hypothesisP, v′ |= A1,
that isP, v |= A.

– A = 〈x〉A1. Assume first thatP, v |= A. Then there isP ′ such thatP
v(x)−→P ′ andP ′, v |=

A1. w(P ′\v) = w(P\v) ≥ sn(A1), so by induction hypothesisP ′ | α, v |= A1, that is

P | α, v |= A. Assume now thatP | α, v |= A. Then there isP1 such thatP | α
v(x)−→P1

with P1, v |= A1. Sinceα 6∈ codom(v) by assumption,P1 ≡ P ′ | α with P
v(x)−→P ′. We have

w(P ′\v) = w(P\v) ≥ sn(A1), so by induction hypothesisP ′, v |= A1, that isP, v |= A.
– A = 〈x〉.A1 proceeds in the same way.

For Section 5

Proof Lemma of 5.1

Proof. (if) As already remarked, we haveP ≡ MJ(D, I)K ∈ MK , henceP |=MK . We can also
check thatP |=MK

(Domain | Interp) ∧ Compat), becauseDJDK |= Domain andIJIK |= Interp.
SinceP ∈ MK , by Theorem 2.1(if) we conclude thatP |= Model. (only if) If P |= Model we
conclude thatP ∈ MK andP |= J(Domain | Interp) ∧ CompatKK . By Theorem 2.1(only if), we
haveP |=MK

(Domain | Interp) ∧ Compat.
This means thatP ≡ PD | PI wherePD |= Domain andPI |= Interp. In turn, we conclude

that PD ≡ row(E,α1) | · · · | row(E,αk), where the actionsαi are pairwise distinct. We can
then construct a finite FOL model(D, I) from PD and PI , by letting D = {α1, . . . , αk}, and
I(p) = {(d, e) : ∃R,α, β.PI ≡ α. (A(d).0 | A(e).A(e).0 | row(Code(p), β)) | R}, for all
p ∈ Preds. SinceP |= Compat we indeed haveI(p) ⊆ D ×D.

Proof of Lemma 5.2

Proof. By an easy induction on the structure of formulas. We detail the case ofA = p(x, y). If
(D, I) |= p(x, y) then(v(x), v(y)) ∈ I(p), and thus

IJIK ≡ α. (row(Code(p), β) | A(v(x)).0 | A(v(y)).A(v(y)).0) | R

18 Lúıs Caires and́Etienne Lozes

for someα, β andR. Hence we have

MJ(D, I)K,VJvK |=MK

(
∃z. 〈z〉(Row(Code(p)) | 〈x〉0 | 〈y〉〈y〉0)

)∀
Conversely, ifMJ(D, I)K,VJvK |=MK

FJp(x, y)K, we conclude that

MJ(D, I)K ≡ α. (row(Code(p), δ) | β.0 | γ. γ.0) | R

for someR andα, β, γ, δ such thatv(x) = β andv(y) = γ. We conclude that

IJIK ≡ α. (row(Code(p), δ) | β.0 | γ. γ.0) | R′

, and so there ared, e ∈ D such thatA(d) = β andA(e) = γ and(d, e) ∈ I(p), by construction of
IJIK. Hence(D, I) |=v p(x, y).

Proof of Theorem 5.3

Proof. Assume that the formulaA is satisfiable. Then there is a FOL model(D, I) such that
(D, I) |= A. By Lemma 5.2, we have thatMJ(D, I)K |=MS

FJAK. By Theorem 2.1, we con-
cludeMJ(D, I)K |= JFJAKKK , forMJ(D, I)K ∈MK . SinceMJ(D, I)K |= Model by Lemma 5.1,
we conclude thatModel ∧ JFJAKKK is satisfiable. Conversely, ifModel ∧ JFJAKKK is satisfiable,
then there is a processP such thatP |= Model (and thusP ∈ MK) andP |= JFJAKKK . By Theo-
rem 2.1, we have thatP, ∅ |=MK

FJAK, and by Lemma 5.1 we conclude that there is a finite model
(D, I) such thatP ≡ MJ(D, I)K. HenceMJ(D, I)K |=MK

FJAK, so by Lemma 5.2 we conclude
(D, I) |= A.

For Section 6

Proof of Theorem 6.1

We only sketch our proof, since it is obtained by adapting to the ambient calculus and to theπ-
calculus the constructions and reasoning shown in detail for the fragment of CCS considered in the
paper.

It should be clear that the basic ingredients of our encoding ofLmod in Lspat (Theorem 2.1),
in turn used to prove independence of adjunct (Theorem 4.3), and then and undecidability (Theo-
rem 5.4), are the definitions for the formulasThread(k), Row(k) andMk, characterizing respec-
tively threads, rows, and the submodelsMk.

Thus we just detail how to provide counterparts to these formulas, by taking in consideration
each of the models now under consideration. It turns out that for ambients this is quite easy, while
for the case of theπ-calculus, because of name restriction and passing, it is slightly more involved.

Mobile Ambients

For simplicity, we consider the fragment of the Ambient calculus defined by the following grammar:

P,Q ::= open n.P
∣∣ n[P]

∣∣ P | Q
∣∣ 0

wherea, n, m, p ranges over the set of namesΛ. We assume given the reduction relationP → P ′

as defined in [10]. We also define the depthds(P) of a processP , and the set of modelsMk as
expected. We also consider the extensionLamb

mod of Lspat:

A,B ::= A ∧ B | A | B | ¬A | A . B | 0 | ♦A (Lspat)
| 〈open x〉A | x[A] | ∃x.A (Lamb

mod)

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 19

Semantics forLamb
mod specific connectives is defined as expected, relative to a valuationv : X → Λ.

We then have

P, v |=M ∃x.A iff ∃ n ∈ Λ. P, v{x←n} |=M A
P, v |=M x[A] iff ∃Q. P ≡ v(x)[Q] andQ, v |=M A
P, v |=M 〈open x〉A iff ∃Q. P

open v(x)−→ Q andQ, v |=M A

whereP
open n−→ Q , ∃P .P ≡ open n.R | R′ andQ ≡ R | R′. We now show how to mimick

the encoding of Section 2 for the case of ambients: we encode the valuation together with process
P to be model-checked by defining “rows processes” that exceedP in depth. Then using such
rows we make the model-checked process interact, so that we may encode the modalitiesx[A] and
〈open x〉A. We then define rows and threads as processes of the form:

threadopen(ã, n) , open a1. open a2 . . . open an. [0]
rowopen(a, n) , open a. open a . . . open a︸ ︷︷ ︸

n times

. [0]

The formulas shown in Fig. 5 show how we may characterise these processes logically. The embed-

Formula Encoding Interpretation
atom 1 I 1♦0 ∃a. P ≡ open a or P ≡ a[0]

testamb 1 ∧ ♦atom ∃a, b P ≡ a
ˆ
open b | b[0]

˜
1open atom ∧ testamb I ♦♦0 ∃a. P ≡ open a
1amb atom ∧ 1open I ♦0 ∃a. P ≡ a[0]

ThrOpen(1) 1amb I ♦0 ∃ea. P ≡ threadopen(ea, 1)
ThrOpen(k + 1) 1 ∧ 1amb I ♦ThrOpen(k) ∃ea. P ≡ threadopen(ea, k + 1)

M0 0 P ∈M0

Mk+1

`
1⇒ atom I ♦Mk

´∀
P ∈Mk+1

EqOp
`
1open . �⊥

´
∧

`
1amb I ∃ a, eP .`

1amb | 1⇒♦>)∀ P ≡ open a. P1 | . . . | open a. Pn

RowOpen(1) 1open ∃a. P ≡ rowopen(a, 1)

RowOpen(k + 1) (1amb | 1open) I
“
(1amb | EqOp)

∧ ♦
`
(RowOpen(k) | 1open) ∧ EqOp

´”
∃a. P ≡ rowopen(a, k + 1)

Fig. 5.

ding ofLamb
mod intoLspat then follows the one in Section 2, small differences only appear in encoding

of modalities. We set

J∃x.AK(e,w) , ProcVal(e, w)K ∧
((

RowOpen(| e | +1)
)2w

I JAK(e′,w)

)
wheree′ = e{x← | e | +1}

J〈open x〉AK(e,w) , ProcVal(e, w)K ∧
RowOpen(K + e(x))

∣∣ (
TestRow(K + e(x)) I ♦JAK(e,w)

Jx[A]K(e,w) , ProcVal(e, w)K ∧ (Val(e, w)K | 1)
∧ ♦

(
RowOpen(K + e(x)− 1)

∣∣ (RowOpen(K + e(x)) I JAK(e,w))
)

whereTestRow(n) is the formula

TestRow(n) def= 1 ∧ (1amb | 1open ∧ ♦>) I ♦
(
1amb | RowOpen(n) ∧ ♦>

)
which characterises processes of the formtestproc(a, n) def= a[rowopen(a, n)].

20 Lúıs Caires and́Etienne Lozes

We again prove the correctness of the embedding by induction onA. Differences with the proof
of Lemma 2.6 happen only for the modality cases:

– A = 〈open x〉A′: Assume first thatP |= JAKe,w. ThenP ≡ Q | val(e, ν, w)K , and if
Val′ is such thatval(e, ν, w)K ≡ Val′ | rowopen(ν(K + e(x)),), then there is some name
a such thatQ | Val′ | testproc(a,K + e(x)) −→ P ′ and P ′ |= JA′Ke,w. By induction,
P ′ |= ProcVal(e, w)K , so thetestproc must have been alterated by the reduction. More-
over, the other partner for the reduction cannot be inVal′ since it would consume a row copy
which would be visible at end. So this must be the process, that is the reduction isQ | Val′ |
testproc(b, K + e(x)) −→ Q′ | Val′ | rowopen(a,K + e(x)) with Q

open a−→ Q′. SinceVal′ |
rowopen(a,≡)val(e, ν′, w)K , this must be thatν = ν′ anda = ν(e(x)), and the result by in-
duction. Reciproquely, ifP, ν◦e |=MK

A, then there isP ′ such thatP
open a−→ P ′ with a = ν◦e(x)

and P ′, ν ◦ e |=′
A. ThenP | Val′ | Testproc(a,K + e(x)) −→ P ′ | val(e, ν, w)K , and

P ′ | val(e, ν, w)K |= JA′Ke,w by induction, so that finalyP |= JAKe,w.
– A = x[A′]: Assume first thatP |= JAKe,w. ThenP ≡ Q | val(e, ν, w)K with Q single, there

is a, b, P ′ such thatP −→ P ′ | rowopen(a,K + e(x)− 1), andP ′ | rowopen(b, K + e(x)) |=
JA′Ke,w. By induction,P ′ | rowopen(b, K + e(x)) contains a processval(e, ν′, w)K , and again
the only way to have this is to haveν = ν′ andb = ν(K + e(x)). This says that a row of depth
K + e(x) was consumed by the reduction but not any other, so thatQ ≡ a[Q′], P ′ ≡ Q′ |
Val′ with val(e, ν, w)K ≡ Val′ | rowopen(a,K + e(x) + 1), a = b = ν(x), and the result.
Reciproquely, ifP, ν ◦ e |=MK

A, then there isa, P ′ such thatP ≡ a[P ′], P ′, ν ◦ e |=MK
A′,

andν ◦ e(x) = a. So P | val(e, ν, w)K −→ P ′ | Val′ | rowopen(a,K + e(x) − 1), and
P ′ | Val′ | rowopen(a,K +e(x)) |= JA′Ke,w by induction, that isP | val(e, ν, w)K |= JAKe,w.

The π-calculus

We consider the choice-free finite synchronousπ-calculus, given by:

P ::= n(m).P
∣∣ n(m).P

∣∣ (νn)P
∣∣ P | P

∣∣ 0

wheren, m, p ranges over the set of namesΛ, and we assume defined in the standard way the
relationP → P ′ of reduction, and the relation ofP

α−→P ′ of labeled transition, over the set of
labelsτ , n(m), andn(m), where we assume that the caseP

n(m)−→P ′ wherem 6∈ fn(P) corresponds
to a bound output. We then consider the logicsLspat andLmod exactly as defined in Section 1,
but where we now consider quantifiers and modalities to range overcommitmentsn, n ∈ C, where
n ∈ Λ. Semantics forLmod specific connectives over theπ-calculus is defined as expected, relative
to a valuationv : X→ C. We have

P, v |=M ∃x.A if ∃α ∈ C. P, (v{x←α}) |=M A

P, v |=M 〈x〉.A if ∃P ′, n ∈ Λ. P
v(x)(n)−→ P ′ andP ′, v |=M A

P, v |=M 〈x〉.A if ∃P ′, n ∈ Λ. P
v(x)〈n〉−→ P ′ andP ′, v |=M A

To embedLmod intoLspat in the case ofπ, we use a slightly different (when compared with the one
developed in Section 2) notion of row, but completely equivalent for our purposes, and that makes
use of the particulars of theπ-calculus model. So, instead of letting a row of sizek be a sequential
thread on the same actionα, in this case we consider a row of sizek holding the actionα to be a
π-processP such that the following hold:

– For alln, β, we haveP
β−→P0 → P1 → · · · → Pn → Q if and only if

• n = k, β = α, Q ≡ 0, and

• For all i ∈ {0, . . . , k}, there are nò 6= τ andR such thatPi
`−→R, and

Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency 21

• P |= 1, and for alli ∈ {0, . . . , k} we havePi |= 1.

ProcessesP satisfying this specification are said to be rows of sizek on α. Such processes exist in
theπ-calculus because of the possibility of synchronizations on restricted channels,e.g.,

row(p, 2) , p(z). (νn)(n.0 | n(x). (νm)(m.0 | m(y).0))

Of course, many other implementations exist, for example we could also have

row(p, 2) , p(z). (νn)(n(n).0 | n(x). (xx.0 | x(y).0))

It seems quite difficult to characterize all these processes “intensionally”, but we can do it logically
as follows (let�A , ¬♦¬A):

piAct , 1 I ♦0
piRow(k) , 1 ∧�⊥ ∧ (piAct I ♦piThread(k))
Grow , ¬ 0 | ¬ 0 | ¬ 0
piNoExternal , ((1 ∧�⊥) . ¬♦Grow)
piThread(0) , 0
piThread(n + 1) , 1 ∧ (♦>) ∧ piNoExternal ∧�piThread(n)

We can then show thatP |= piRow(k) if and only if P is a row of sizek on some actionα. We also
have thatP0 |= piThread(k) whenever

– For alln, we haveP0 → P1 → · · · → Pn → Q if and only if

• n = k, Q ≡ 0, and

• For all i ∈ {0, . . . , k}, Pi |= 1 and there are nò 6= τ andR such thatPi
`−→R.

The constructions above gives us suitable notions of row and thread of depthk. Notice that unlike
for the rows defined in Section 2, the name associated to a row is just the first action (the other
transitions of a row are always reductions). This is not a problem, because only the first action of a
row is actually used in testing for the value of the variable it represents in the encoding of valuations.

From these ingredients, we can then develop a counterpart of Theorem 2.1; given the previous
definitions specific for theπ-calculus model, the encoding ofLmod intoLspat is the same as the one
in Fig 3. We can then obtain results identical to those presented in Section 4 and 5.

