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Abstract

The introduction of spatial logics in concurrency is motivated by a shift of focus
from concurrent systems towards distributed systems. Aiming at a deeper under-
standing of the essence of dynamic spatial logics, we study a minimal spatial logic
without quantifiers or any operators talking about names. The logic just includes
the basic spatial operators void, composition and its adjunct, and the next step
modality; for the model we consider a tiny fragment of CCS. We show that this
core logic can already encode its own extension with quantification over actions,
and modalities for actions. From this result, we derive several consequences. Firstly,
we establish the intensionality of the logic, we characterize the equivalence it in-
duces on processes, and we derive characteristic formulas. Secondly, we show that,
unlike in static spatial logics, the composition adjunct adds to the expressiveness
of the logic, so that adjunct elimination is not possible for dynamic spatial logics,
even quantifier-free. Finally, we prove that both model-checking and satisfiability
problems are undecidable in our logic. We also conclude that our results extend to
other calculi, namely the π-calculus and the ambient calculus.

Introduction

The introduction of spatial logics in concurrency has been motivated by a
recent shift of focus from monolithic concurrent systems towards distributed
computing systems. Such systems are by nature both concurrent and spatially
distributed, in the sense that they are composed from a number of separate
and independently observable units of behavior and computation. The central
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idea behind spatial logics is that for specifying distributed computations there
is a need to talk in a precise way not just about pure behaviors, as is the case
with traditional logics for concurrency, but about a richer model able to rep-
resent computation in a space. Such an increased degree of expressiveness is
necessary if we want to specify with and reason about notions like locations,
resources, independence, distribution, connectivity, and freshness. Spatial log-
ics have been proposed for π-calculi [4,3], and for the ambient calculus [11,10].
Spatial logics for manipulating and querying semi-structured data have also
been developed [9,8]. Closely related are the separation logics [21,20], intro-
duced with the aim of supporting local reasoning about imperative programs.

The simplest spatial logic for concurrency, we may argue, is the one obtained
by adding to boolean logic the very basic spatial connectives, namely void (0),
composition (− | −) and its logical adjunct (− � −), and then the dynamic
modality next step (�−). This logic, based essentially on spatial observations,
will be referred here by Lspat. The basic spatial connectives can be used to
specify the distribution of processes, 0 specifies the empty system (not to be
confused with the inactive system), and A | B specifies the systems that can
be partitioned in two parts, one satisfying property A and the other satisfying
property B.

A typical spatial property expressible in this logic is

1 � ¬ 0 ∧ ¬ (¬ 0 | ¬ 0)

A process satisfies 1 if and only if it is non void, and cannot be split as a
composition of two separate non void processes, in other words, if it is single-
threaded. A simple example of a property combining spatial and dynamic
operators is the one expressed by the formula

Annihilate � (¬ 0 | ¬ 0) ∧ �0

This formula specifies those processes that have (at least) two separate com-
ponents and may reduce (in one step) to the void system.

For the composition adjunct (sometimes also called guarantee), we have that
A � B is satisfied by those processes that, whenever composed with a process
satisfying property A, are guaranteed to satisfy property B.

Adjuncts allow the specification of contextual properties of systems. For in-
stance, consider the formula

Erasable � 1 ∧ (1 � �0)

Here, we use the De Morgan dual (existential version) of the composition ad-
junct, defined A � B � ¬ (A�¬B). This formula specifies the single-threaded
processes that can be composed with some other process to yield a system
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that may evolve to the empty system, after a single reduction step. The com-
position adjunct is a powerful operation, allowing the logic to perform quite
strong observations on processes. With the composition adjunct, logical valid-
ity can be internally defined in the sense that a process P satisfies the formula
(¬A)�⊥ if and only if every process satisfies the formula A [11]: a consequence
is that the validity-checking problem in logics containing Lspat is subsumed
by the model-checking problem. The composition adjunct also supports cer-
tain forms of specification akin to a comprehension principle: for example,
we may specify the set of all processes that have exactly an even number of
parallel components. This is perhaps not surprising since the semantics of the
composition adjunct involves a conditional quantification over all processes.

Adjunct-free spatial logics with modalities for behavioral observations (e.g., [2])
are also able to render many interesting contextual properties. For example,
the property Erasable just presented can be expressed by the formula

1 ∧ ∃x. 〈x〉0

using an action modality. For another example, consider the formula

NoRace � ¬∃x. (〈x〉� | 〈x〉� | 〈x〉�)

A process satisfies NoRace if it does not have an immediate race condition on
some communication channel.

Thus, one of the motivations for this work is to achieve a deeper understanding
about the relative expressiveness of these two approaches, the purely spatial
one, that builds on composition adjunct, and the spatial - behavioral one, that
restricts contextual observations to those expressible by behavioral modalities.

For the sake of simplicity and generality, we interpret Lspat in a rather small
fragment of choice-free CCS, a minimal calculus defined from the void process
0, parallel composition − | −, and action prefixing α.−. This calculus turns
out to conveniently abstract the kind of concurrent behavior present in both
π- and ambient calculi, in the broad sense that interactions are local, and
triggered by the presence of named capabilities.

At first, the logic Lspat seems quite weak, as far as expressiveness is concerned,
when compared to other spatial logics [11,4,2]. For instance, it provides no
constructs referring explicitly to names or actions, such as e.g., the action
modality 〈n〉A of behavioral logics, or the ambient match construction n[A]
in the ambient logic, therefore formulas of Lspat are always closed (in the sense
that they do not have free names or variables). As a consequence, satisfaction
of Lspat formulas is invariant under swapping of any pair of actions in processes
(a property usually called equivariance) because formulas cannot single out
specific actions or names in processes.
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Still, due to the presence of the � operator, the logic is able to make some
distinctions between actions, and substitution of actions (which are not men-
tioned in formulas) does not in general preserve satisfaction. For instance, let
P � α | β. Then P |= ¬�� for β �= α, but P{β←α} �|= ¬��.

These considerations lead to the general question of what is the largest relation
between processes which are indistinguishable by the logical equivalence: an-
swering this question crucially contributes to our understanding of the spatial
model induced on processes by the simplest combination of logical observa-
tions.

The study of expressiveness for spatial logics usually goes through the defi-
nition of an adequate spatial bisimilarity ≈ along the lines of [17], such that
P ≈ Q implies that P and Q are logically equivalent. However, this question
turns out to be a rather difficult one to answer for the case of dynamic spatial
logics, due to the presence of the composition adjunct operator � together
with the dynamic modality. Establishing the congruence of ≈ is key to en-
sure correctness of ≈, so that from P ≈ Q we conclude P | R ≈ Q | R. For
our logic however, such a property does not hold, due to equivariance. For
instance, the processes α. 0 and β. 0 are logically equivalent, but α. 0 | α. 0
and β. 0 | α. 0 are not. Hence, this general approach does not seem to work
well in this setting.

Despite many works about decidability of spatial logics, the question of model-
checking spatial logics for concurrency with adjunct has not been fully settled
yet. Results are known for some particular cases, where the logic includes just
� or � [11,2], but there seems to be no work about the interesting combination
of � and �, as far as decidability is concerned. However, we believe that this
issue lies at the heart and novelty of a purely spatial approach to verification
of distributed systems. On the one hand, image-finiteness of the reduction
relation gives a model-checking algorithm for adjunct-free logics [2]. On the
other hand, in the absence of name quantifiers and name revelation it is also
known that static fragments of spatial logics, that is spatial logics without
quantifiers and dynamic operators, are decidable [6], so there could be some
hope in obtaining decidability of model-checking for the whole of Lspat.

We may attempt to answer the questions about expressiveness and decidability
posed above by considering the extension Lmod of Lspat with the existential
quantifier and quantified action modalities; for Lmod, logical equivalence is
much clearly intensional (close to structural congruence), and one may adapt
the results of [13] to derive the undecidability of model-checking. But even if
the composition adjunct � induces undecidability, we need to raise the question
of what is its actual contribution to the expressiveness of the logic. In previous
work [19], Lozes has shown that in static spatial logics the adjunct connective
can be eliminated in behalf of the remaining connectives, in the sense that
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for any formula of such a logic there is a (possibly hard to find) logically
equivalent adjunct-free formula. For example, for the formula 1�(1 | 1) we have
the equivalent adjunct free formula 1. An interesting question is then whether
something similar happens in Lmod: we could conceive that the expressive
power of the composition adjunct could be somehow recovered by the presence
of action modalities, given that both kinds of constructs allow some contextual
observations to be made.

The logics Lmod and Lspat seem quite different as far as expressive power is
concerned. The first one seems clearly intensional (in the technical sense that
logical equivalence coincides with structural congruence), and undecidable.
But for the second, as discussed above, it would be reasonable to hope for de-
cidability, and expect a separation power coarser than structural congruence.
All this turns out not to be the case.

The main result of this paper is that Lmod admits the elimination of quanti-
fiers and action modalities in a precise sense (Theorem 2.1); on the way we
also show that equality is internally definable. Our quantifier elimination re-
sult builds on techniques which are quite specific to spatial logics, and relies
on a not obvious encoding of environments and valuations as processes, not
on more traditional skolemization techniques: recall that target language of
the encoding is the logic Lspat that does not contain variables or constants.
So, we actually have to faithful encode action modalities and quantifications
on actions by appropriate quantification on processes (using the composition
adjunct), interactions on processes (using the next step dynamic modality �),
and suitable structural observations on processes (e.g., counting) relying on the
basic spatial operators. Building on this surprising result, we then show that
Lspat and Lmod have the same separation power (Theorem 3.3), and the same
expressive power in a certain sense. As a consequence, we also characterize
the separation power of Lspat, showing that it coincides with structural con-
gruence modulo permutation of actions (Theorem 3.3). Quantifier elimination
is compositional and effective, allowing us to conclude that model-checking of
both Lspat and Lmod is undecidable (Theorem 5.4). A counterexample inspired
by a suggestion of Yang allows us then to prove that composition adjunct con-
tributes in a non-trivial way to the expressiveness of both logics, thus settling
a conjecture formulated in [19] about whether this connective could also be
eliminated in spatial logics for concurrency. We conclude with a generalization
of our results to the π-calculus and to the calculus of Mobile Ambients.

Related Work

Sangiorgi first showed [22] that observation of capabilities in the ambient calcu-
lus can be expressed inside spatial logics making use of the � and � operators.
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This result has since then been generalized to other calculi [4,18]. However,
in all such encodings, the use of quantifiers, and references to (some times
fresh) names using the revelation connective seems to be essential. From this
point of view, our work gives a tighter bound on the level of expressiveness
really needed to embed action modalities, since it does not use operators be-
yond those expected in every pure spatial logic. A related effort addressing
minimality was developed by Hirschkoff, aiming at a characterization of π-
calculus behavioral equivalences using a logic with composition adjunct but
no composition [16].

Adjunct elimination for a static spatial logic was first proved by Lozes in [19],
where a counterexample to adjunct elimination in the presence of quantifiers
was also presented. However, the particular counterexample given there makes
an essential use of name revelation, and thus only applies to calculi with re-
stricted names and related logical connectives. The counterexample presented
in this paper is much more general to spatial logics, since it does not rely on
such constructs.

Concerning decidability and model-checking of spatial logics, decidability of
model-checking for the adjunct-free ambient logic against the replication free
calculus was settled by Cardelli and Gordon in [11]. Validity and model-
checking of ambient calculus against spatial logics with existential quantifiers
was shown undecidable by Charatonik and Talbot [13]. The same authors also
extended the results of [11] to logics with constructs for restricted names, and
then with Gordon to the finite-control ambient-calculus [12].

Model-checking the π-calculus against full adjunct-free spatial logic with be-
havioral modalities, hidden and fresh name quantifiers, and recursive opera-
tors was shown to be decidable by Caires in [2], where it is also presented an
equational characterization of logical equivalence for such logic. Decidability
of validity in a static spatial logic for trees with adjunct was first shown by
Calcagno, Cardelli and Gordon in [6], building on techniques developed by
Calcagno, Yang and O’Hearn in [7]. More recently, Conforti and Ghelli proved
that similar results do not hold in spatial logics with operators for restricted
names [14].

No results about expressiveness and decidability of dynamic spatial logics so
crisp as the ones developed in this paper have been presented elsewhere, in the
sense that they apply to a minimal spatial logic for concurrency, and focus on
the crucial combination of the composition adjunct with the dynamic modality.
The elimination of quantifiers (although not of variables, as we also achieve
here) is an important topic of interest in classical logic, related to decidability
and complexity issues (e.g., see [1]). However, we believe that our work lies
completely out of this scope, as on the contrary we derive undecidability of
our logic from the elimination of quantifiers.
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1 Preliminaries

In this section, we introduce the process calculus and the spatial logics con-
sidered in this work. For the process calculus, we pick a fairly small fragment
of CCS.

Definition 1.1 Assume given an infinite set A of actions, ranged over by
α, β. Processes are defined by the following grammar:

α, β, γ ∈ A

P, Q, R ::= 0
∣∣∣ P | P

∣∣∣ α. P

Actions are given in pairs of distinct (co)actions, characterized by the invo-
lution co : A→A sending α into α, and such that α = α. The relation of
structural congruence is defined as the least congruence ≡ on processes such
that P | 0 ≡ P , P | Q ≡ Q | P , and P | (Q | R) ≡ (P | Q) | R. Structural
congruence represents identity of the static spatial structure of processes. Dy-
namics of processes is captured by labeled transitions.

Definition 1.2 Given the set L � {τ} ∪ A of labels, the relation of labeled
transition is defined by the rules

α. P
α−→P P

�−→P ′ ⇒ P | Q
�−→P ′ | Q

P
α−→P ′, Q α−→Q′ ⇒ P | Q

τ−→P ′ | Q′

Notice that
α−→ is closed under ≡, and that

τ−→ corresponds to the usual
relation of reduction, noted −→. A few technical notions will be useful. We
define the depth of a process P (maximal nesting of actions in a process P ) as
follows:

ds(0) = 0 ds(α. P ) = 1 + ds(P ) ds(P | Q) = max(ds(P ), ds(Q))

For any natural number K, let MK denote the set of all processes whose
depth does not exceed K: MK � {P | ds(P ) ≤ K}. Notice that M∞ �⋃

k∈N Mk coincides with the set of all processes. We also define the projection
(by truncation) πk : M∞→Mk, by induction on k by letting π0(P ) = 0,
πk+1 (0) � 0, πk(P | Q) � πk(P ) | πk(Q), and πk+1(α. P ) � α. πk(P ).

Having defined the intended process model, we turn to logics. The basic logic
we consider includes the basic spatial operators found in all spatial logics
namely: the composition operator |, the void operator 0, and the composition
adjunct operator � (guarantee). To these connectives, we add the temporal

7



P, v |=M ¬A if not P, v |=M A

P, v |=M A ∧ B if P, v |=M A and P, v |=M B

P, v |=M 0 if P ≡ 0

P, v |=M A | B if ∃Q, R. P ≡ Q | R and Q, v |=M A and R, v |=M B

P, v |=M A � B if ∀Q ∈ M, Q, v |=M A implies P | Q, v |=M B

P, v |=M ∃x.A if ∃α ∈ A. P, (v{x←α}) |=M A

P, v |=M �A if ∃P ′. P −→ P ′ and P ′, v |=M A

P, v |=M 〈x〉A if ∃P ′. P
v(x)−→P ′ and P ′, v |=M A

P, v |=M 〈x〉A if ∃P ′. P
v(x)−→P ′ and P ′, v |=M A

Fig. 1. Semantics of logical formulas

operator � (next step), to capture the dynamic behavior of processes. These
operators may be considered the core connectives for spatial logics for concur-
rency. We then consider the extension of the core with modalities for actions
(cf. Hennessy-Milner logic), and first-order quantifiers ranging over actions.

Definition 1.3 Given an infinite set X of variables, (x, y ∈ X) formulas are
given by:

A,B ::= A∧ B | A | B | ¬A | A � B | 0 | �A (Lspat)

| 〈x〉A | 〈x〉A | ∃x.A (Lmod)

We write Lspat for the set of formulas in the pure spatial fragment, and Lmod

for the set of all formulas. Free variables of formulas are defined as usual; we
say a formula is closed if it has no free variables.

Semantics is defined by a relation of satisfaction as shown in Fig. 1. Satisfaction
is expressed by the judgment form P, v |=M A where P is a process, M is a
set of processes, A a formula, and v is a valuation for the free variables of A.
A valuation is a mapping from a finite subset of X to A. For any valuation v,
we write v{x←α} for the valuation v′ such that v′(x) = α, and v′(y) = v(y)
if y �= x. By ∅ we denote the empty valuation. Notice that this definition
of satisfaction matches the usual one except for the presence of the index
M , which specifies the range of quantification for interpreting the adjunct
(see the clause for � in Fig. 1). This generalization is only a convenience for
our technical development; it is clear that |=M∞ corresponds to the standard
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non-relativized relation of satisfaction. So, we abbreviate P, v |=M∞ A by
P, v |= A, moreover, when the formula A is closed we abbreviate P, ∅ |=M A
by P |=M A. By default, the set of processes M is M∞, so that we may also
abbreviate P |=M∞ A by P |= A.

An action permutation is a bijection σ : A→A such that σ(α) = σ(α) and
the domain D(σ) � {α | σ(α) �= α} is finite. We write {α ↔ β} for the
action permutation that swaps α and β (and thus α with β).

Definition 1.4 (Action of permutations) Action permutations act on pro-
cesses as follows:

σ(0) � 0 σ(γ. P ) � σ(γ). σ(P ) σ(P | Q) � σ(P ) | σ(Q)

By σ(v) we denote the valuation such that (σ(v))(x) = σ(v(x)) for all x ∈ X.

Definition 1.5 Let ≡s be the binary relation on processes defined by P ≡s Q
if and only if there is an action permutation σ such that P ≡ σ(Q).

Satisfaction verifies the fundamental property of equivariance, which in our
present setting is formulated as follows.

Proposition 1.6 (Equivariance) Let P, v |=M A. For every action permu-
tation σ, if P ≡ σ(Q) then Q, σ(v) |=M A.

Proof: Induction on the structure of the formula A. �

We frequently refer to the logical equivalence relation =L induced on processes
by the logic L (where L is one of the logics Lspat or Lmod). The relation =L

is defined in the standard way by asserting P=LQ whenever for all closed
formulas A, we have P, ∅ |= A if and only if Q, ∅ |= A.

Besides the basic stock of primitive connectives, we also use a few derived ones:
we list their definition and formal meaning in Fig. 2. Notice in particular the
definition of equality and symmetry of actions, the remaining operators are
fairly standard (see [4]). The following technical notions of formula width and
depth are useful.

Definition 1.7 (Formula width) By w(A) we denote the maximal level of
nesting of composition connectives − | − in the formula A, defined by

w(0) � 0

w(A ∧ B) = w(A � B) � max (w(A),w(B))

w(A | B) � 1 + max (w(A),w(B))

w(�A) = w(¬A) = w(∃x.A) = w(〈x〉A) = w(〈x〉A) � w(A)
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� � 0 ∨ ¬ 0 ⊥ � ¬�

A ∨ B � ¬ (¬A ∧ ¬B) A ⇒ B � ¬A ∨ B

∀x.A � ¬∃x.¬A A‖B � ¬ (¬A | ¬B)

A � B � ¬ (A � ¬B) A∀ � A‖⊥

A∃ � A | � A� � (¬A) � ⊥

x = y �
(
(〈x〉0 | 〈y〉0) ⇒ �0

)�
x = y �

(
(〈x〉0 | 〈y〉0) ⇒ �0

)�

P, v |=M � if always

P, v |=M ⊥ if never

P, v |=M A∨ B if P, v |=M A or P, v |=M B

P, v |=M A ⇒ B if P, v |=M A implies P, v |=M B

P, v |=M ∀x.A if ∀α ∈ A. P, (v{x←α}) |=M A

P, v |=M A‖B if ∀Q, R. P ≡ Q | R implies Q, v |=M A or R, v |=M B

P, v |=M A � B if ∃Q ∈ M . Q |=M A and P | Q |=M B

P, v |=M A∀ if ∀Q, R. P ≡ Q | R implies Q, v |=M A

P, v |=M A∃ if ∃Q, R. P ≡ Q | R and Q, v |=M A

P, v |=M A� if ∀Q ∈ M . Q, v |=M A

P, v |=M x = y if v(x) = v(y) (for all M such that M1 ⊆ M)

P, v |=M x = y if v(x) = v(y) (for all M such that M1 ⊆ M)

Fig. 2. Definition and semantics of derived operators.

Definition 1.8 (Formula depth) We denote by ds(A) the maximal nesting
of dynamic modalities in the formula A, defined by

ds(0) = 0

ds(A∧ B) = ds(A | B) = ds(A � B) � max (ds(A), ds(B))

ds(�A) = ds(〈x〉A) = ds(〈x〉A) � ds(A) + 1

ds(¬A) = ds(∃x.A) � ds(A)

It is easy to see that a formula A cannot observe any property of a process that
can only manifests itself after a temporal horizon of ds(A) dynamic steps. As
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a consequence, the restriction to Mk of the denotation of a formula of depth
k completely characterizes such denotation, in the precise sense of:

Proposition 1.9 (Depth finiteness) For all formulas A ∈ Lmod, for all
k > ds(A), for all processes P , and for all valuations v,

P, v |=M∞ A if and only if πk(P ), v |=M∞ A if and only if πk(P ), v |=Mk
A.

This result is a consequence of the following technical lemma:

Lemma 1.10 (Reduction mimick) Let R be either
α−→ or −→. Then for

any k > 0, for any processes P, P ′

• if PRP ′, then there is P ′′ such that πk(P )RP ′′ and πk−1(P
′) ≡ πk−1(P

′′);
• if πk(P )RP ′, then there is P ′′ such that PRP ′′ and πk−1(P

′) ≡ πk−1(P
′′).

Proof: Case R =
α−→: assume first that P

α−→P ′. Then there are P1, P2

such that P ≡ α. P1 | P2 and P ′ ≡ P1 | P2. We set P ′′ = πk−1(P1) |
πkP2. Since πk(P ) ≡ α. πk−1(P1) | πk(P2), we have πk(P )

α−→P ′′. Moreover,
πk−1)(P ′′)≡πk−1(P1)|πk−1(P2

≡ πk−1(P
′). Assume now that πk(P )

α−→P ′. Then
there are P1, P2 such that πk(P ) ≡ α. πk−1(P1) | πk(P2) and P ≡ α. P1 | P2.
We set P ′′ ≡ P1 | P2, which gives both P

α−→P ′′ and πk−1(P
′) ≡ πk−1(P

′′).
Case of R =−→: assume first that P −→ P ′. Then there are α1, α2, P1, P2, P

′
1, P

′
2

such that α1 = α2, P ≡ P1 | P2, P ′ ≡ P ′
1 | P ′

2, and Pi
αi−→P ′

i . By the previ-
ous result, there are P ′′

i such that πk(Pi)
αi−→P ′′

i and πk−1(P
′
i ) ≡ πk−1(P

′′
i ). Set

P ′′ = P ′′
1 | P ′′

2 , then πk(P ) −→ P ′′ and πk−1(P
′′) ≡ πk−1(P

′). The converse
implication is proved exactly in the same way. �

Proof:(of Proposition 1.9) The second equivalence is established by a straight-
forward induction on A using the first equivalence. We sketch the proof by
induction on A for the first equivalence:
Case of (|): if P, v |= A1 | A2, then there are P1, P2 such that P ≡ P1 | P2

and Pi, v |= Ai. Then ds(A1) = ds(A2) = ds(A) < k, so we may apply
induction hypothesis and πk(Pi), v |= Ai. Since πk(P ) ≡ πk(P1) | πk(P2),
πk(P ), v |= A1 | A2. Conversely, if πk(P ), v |= A1 | A2, then there are P1, P2

such that P ≡ P1 | P2, πk(P ) ≡ πk(P1) | πk(P2), and πk(Pi), v |= Ai. By
induction hypothesis, Pi, v |= Ai, so P |=, v |= A1 | A2.
Case of (�): if P, v |= �A, then there is P ′ such that P −→ P ′ and P ′, v |= A.
Then ds(A) = ds(�A) − 1, so ds(A) < k − 1 and by induction hypothe-
sis πk−1(P

′), v |= A. Let P ′′ be the process obtained mimicking the reduc-
tion P −→ P ′ starting from πk(P ), so that πk(P ) −→ P ′′ and πk−1(P

′′) ≡
πk−1(P

′). Now by induction hypothesis P ′, v |= A implies πk−1(P
′), v |= A,

which is πk−1(P
′′), v |= A, which implies P ′′, v |= A. This finally shows that

πk(P ), v |= �A. Conversely, if πk(P ), v |= �A, then there is P ′′ such that
πk(P ) −→ P ′′ and P ′′, v |= A. Mimicking the same reduction, we have P ′
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such that P −→ P ′ and πk−1(P
′) ≡ πk−1(P

′′). Now by induction hypothesis,
P ′′, v |= A implies πk−1(P

′′), v |= A, which is πk−1(P
′), v |= A, which implies

P ′, v |= A. This finally shows that P, v |= �A. �

The process P1 | . . . | Pn is abbreviated by
∏

i=1...n Pi, and by P n we denote the
process

∏
i=1...n P . In the same way, we abbreviate the formula A1 | . . . | An

by
∏

i=1...n Ai, and An then denotes
∏

i=1...n A.

2 Elimination of quantifiers and action modalities

In this section, we prove the main result of the paper, stating that the spatial
logic Lmod, which contains quantifiers, variables and action modalities, can be
embedded into the core spatial logic Lspat, which does not seem to contain
related constructs. The embedding will be defined by a recursive map �−�K

that assigns to each Lmod formula A and natural number K a formula of �A�K

of Lspat. This result is expressed in a precise way the statement of the following
theorem.

Theorem 2.1 For any natural number K there is a recursively defined map
�−�K : Lmod → Lspat such that for any closed formula A ∈ Lmod with ds(A) <
K, we have:

∀P . P |= A if and only if πK(P ) |= �A�K

It is important to note that this result does not state that Lspat and Lmod have
exactly the same expressiveness, at least in the strict technical sense of “same
expressiveness”. However, we must remark that the denotation of any formula
A is completely characterized by its denotation on some subset of the models
Mk, following the depth finiteness property stated in Proposition 1.9. Hence,
the denotation of �A�K completely characterizes the denotation of A; this
close correspondence will be enough to show the undecidability and separation
power of Lspat (Theorem 3.3 and Theorem 5.4), and the independence of the
composition adjunct from the remaining logical connectives (Theorem 4.4).

The proof of Theorem 2.1 requires considerable build up. In particular, we
need to define Lspat formulas to characterize processes of several quite specific
structural forms, to be used for various purposes in our encoding of A into
�A�K . This exercise turns out to be quite interesting: by going through it one
gets a better understanding about what can be expressed in Lspat, in a not
obvious and certainly not trivial way.

We seek a reduction of a satisfaction judgment P, v |=MK
A, where A is any

Lmod formula, into a satisfaction judgment for a formula �A�K of Lspat that
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neither contains quantifiers, nor action modalities (and thus no occurrences of
variables whatsoever). The key idea is to represent the valuation v appearing
in P, v |=MK

A by a special process val(e, ν, w)K , to be composed with the
process P being tested for satisfaction. Here, the data e, ν and w are a tech-
nically more convenient representation of the valuation v, further explained
below. With this device, the addition to a valuation v of a (new) entry {x←α}
for the variable x as introduced in the satisfaction clause for ∃x.A

P, v |=M ∃x.A if ∃α ∈ A. P, (v{x←α}) |=M A

can be mimicked in the encoding �∃x.A�K by the addition to the context of a
certain process val(e, ν, w)K, using the existential adjunct −�− . The intent
is to obtain a correspondence property of the form

P, v |=MK
A if and only if P | val(e, ν, w)K |=M∞ �A�K

With relation to a valuation v and the process val(e, ν, w)K , ν and e are maps
e : X → N and ν : N → A, respectively called the environment and the naming.
These maps express a decomposition of the valuation v so that ν ◦ e = v. The
general idea is that for a valuation such as v = {x1 → α1, . . . , xn → αn}, we
will have e = {x1 → 1, . . . , xn → n} and ν = {1 → α1, . . . , n → αn}.

The encoding of a valuation into the process val(e, ν, w)K uses the notion
of row process. A row process row(n, α) (on the action α) is a thread of
the form α. α . . . α. 0, where the action α occurs precisely n times (so that
ds(row(n, α)) = n). This process is interesting since it can be characterized
by a Lspat formula. We will use row processes on α to represent each binding
of a valuation: bindings relative to different variables xi will be represented
by rows of different length e(i). In fact, we will not use a single row for each
binding, but a collection of 2w rows: this is related to the fact that we need to
have multiple copies of the valuation to deal with the interpretation of | .

Notice that, by imposing a bound K on the depth of the process P one consid-
ers, and encoding valuations by rows whose depth is strictly greater that K,
we can easily separate the valuation part from the process part that represents
the “real” model, in the “soup” P | val(e, ν, w)K.

We now proceed to define several interesting sets of processes by means of
appropriate logical formulas. We start by introducing, for each natural number
n > 0, Lspat formulas Thread(n) whose models are precisely the sequential
threads with the given number n of actions, in the way we also define the
derived modality ?.A.

1 � ¬ 0 ∧ (0 || 0) Thread(1) � 1 ∧ (1 � �0)

?.A � 1 ∧ (Thread(1) � �A) Thread(n + 1) � ?. Thread(n)

13



We have

Lemma 2.2 For all processes P , and sets of processes M such that M1 ⊆ M

P |=M 1 iff ∃α ∈ A. ∃Q. P ≡ α. Q

P |=M?.A iff ∃α ∈ A. ∃Q. P ≡ α. Q and Q |= A

P |=M Thread(1) iff ∃α ∈ A. P ≡ α. 0

P |=M Thread(k) iff ∃α1 ∈ A. . . . . ∃αk ∈ A. P ≡ α1. · · · . αk. 0

We now define (for each k ≥ 0) a formula Mk that characterizes the model
Mk, that is, such that we have P |= Mk if and only if P ∈ Mk.

M0 � 0 Mk+1 � (1 ⇒?.Mk)
∀

Using the � modality as an equality tester, we can then define a formula
Equals(k) that is satisfied by the processes which belong to Mk, and are com-
positions of guarded processes all with the same first action. From Equals(k)
we can then specify row processes as shown below

Equals(k) � Mk ∧
(
Thread(k + 1) �

(
(Thread(k + 1) | 1) ⇒ ��

)∀)
RowCol(0) � 0

RowCol(n + 1) �
(
Thread(n + 1) | Equals(1)

)
∧ �RowCol(n)

Row(n) � Thread(n) ∧ (� � RowCol(n))

We now prove

Lemma 2.3 For all k, and process P , we have:

P |= Mk iff P ∈ Mk

P |= Equals(k) iff P ∈ Mk and ∃α ∈ A. ∃n ≥ 0.

∃P1, . . . , Pn. P ≡ α. P1 | . . . | α. Pn

P |= Row(k) iff ∃α ∈ A. P ≡ row(k, α)

Building on these ingredients, we can now introduce our encoding of a valua-
tion v into the process val(e, ν, w)K. Given a valuation v = {x1 → α1, . . . , xn →
αn} with environment e = {x1 → 1, . . . , xn → n} and naming ν = {1 →
α1, . . . , n → αn}, we define

val(e, ν, w)K � ∏
i=1...|e| row(K + i, ν(i))2w

14



The parameter w specifies the number of rows of the appropriate length that
are needed to represent the environment entry for a variable x, and is related
to the number of occurrences of the − | − connective in the source formula.
Since interpreting − | − also splits the (encoding of the) valuation, we have
to provide enough copies (2w, where w is related to w(A)). We can also verify
the following important fact

Lemma 2.4 Let v, v′ and v′′ be valuations with the same domain, with de-
compositions (ν, e), (ν ′, e) and (ν ′′, e). Then, we have

val(e, ν, w + 1)K ≡ val(e, ν ′, w)K | val(e, ν ′′, w)K if and only if ν = ν ′ = ν ′′

Notice moreover that we can always filter out any undesirable interference of
the process val(e, ν, w)K with the parallel process P , since for any labeled-
transition reduct Q of val(e, ν, w)K, Q is not the proper encoding of any
valuation, since it does not have the right number of rows for each depth.
Using already defined properties, we define for each K, e and w the formulas

Val(e, w)K � ∏
i=1...|e|

(
Row(K + i)2w

∧ Equals(K + i)
)

ProcVal(e, w)K � MK | Val(e, w)K

We have the following characterization

Lemma 2.5 For any process P , environment e and naturals K, w ≥ 1

P |= Val(e, w)K iff ∃ν. P ≡ val(e, ν, w)K

P |= ProcVal(e, w)K iff ∃Q ∈ MK , ∃ν. P ≡ Q | val(e, ν, w)K

Hence, the formula ProcVal(e, w)K specifies a pair process-valuation, where
the process belongs to MK . Now we introduce formulas for querying specific
entries of the (encoding of the) valuation: selection of the action α associated
to the variable x is achieved by selecting the group of row processes of depth
e(x).

XRow(x, e)K � Row(K + e(x))

UsedXRow(x, e)K � Row(K + e(x) − 1)

EnvX(x, e, w)K � Equals(K+ | e |) ∧ (XRow(x, e)K)2w

The formula XRow(x, e)K matches one of the rows that represents the environ-
ment entry of the variable x. Then, the formula UsedXRow(x, e)K can be used
to check that such a row has lost exactly one action prefix (after a reduction
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�A∧ B�(e,w) � ProcVal(e, w)K ∧ �A�(e,w) ∧ �B�(e,w)

�¬A�(e,w) � ProcVal(e, w)K ∧ ¬ �A�(e,w)

�0�(e,w) � ProcVal(e, w)K ∧ Val(e, w)K

�A | B�(e,w) � ProcVal(e, w)K ∧ (�A�(e,w−1)

∣∣∣ �B�(e,w−1))

�A � B�(e,w) � ProcVal(e, w)K ∧(
�A�(e,w) �

(
ProcVal(e, w + 1)K ⇒ �B�(e,w+1)

))
��A�(e,w) � ProcVal(e, w)K ∧ ��A�(e,w)

�∃x.A�(e,w) � ProcVal(e, w)K ∧
(
EnvX(x, e′, w)K � �A�(e′,w)

)
where e′ = e{x← | e | +1}

�〈x〉A�(e,w) � ProcVal(e, w)K ∧

Test(e)K �
(
(TestMatchesX(x, e, w)K | �) ∧

�(UsedTest(e)K | �A�(e,w))
)

�〈x〉A�(e,w) � ProcVal(e, w)K ∧ �
(
UsedXRow(x, e)K |

(XRow(x, e)K � �A�(e,w))
)

Fig. 3. Encoding of Lmod into Lspat.

step takes place). It is easy to see that the formula EnvX(x, e, w)K can be used
to match the 2w rows that encode the environment entry for the variable x.

The action modalities 〈x〉A and 〈x〉A are interpreted in the encoding by for-
mulas that detect interactions between the process P being tested and the
valuation process val(e, ν, w)K, using the � operator. To encode the modality
〈x〉A we need to check for the presence of the complementary of the action
v(x). To this end, we specify a row longer than any other (with Test(e)), and
then check (using �) that it may react with some row of depth e(x) (with
UsedTest(e)): this means that the action assigned to e(x) is complementary of
the action on the test row specified by Test(e). Let then:

Test(e)K � Row(| e | +K + 2)

UsedTest(e)K � Row(| e | +K + 1)

TestMatchesX(x, e, w)K � (Test(e)K | EnvX(x, e, w)K) ∧ ��

We are now ready to present our encoding of formulas of Lmod into formulas
of Lspat.
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Definition 2.6 Let A ∈ Lmod be a formula, e an environment mapping the
free variables of A, and w, K be integers such that w > w(A), and K > 0.
Then, the formula �A�(e,w) ∈ Lspat is inductively defined as shown in Fig. 3.

We may note on the encoding of Fig.3 that the encoding is quite straight-
forward for the connectives of Lspat, since they are basically expressed by
themselves. Some attention is required only in taking into account the valua-
tion process, and the way its width is changed in the encoding of | and �. For
the encoding of connectives specific to Lmod, we require some more elaborated
machinery. Modalities are encoded by stimulating an interaction between the
process P and the valuation process, and an existential quantifier is expressed
by an extension of the valuation process, using the � connective.

The remaining of this section is devoted to the proof of the main Theorem 2.1,
that follows from Lemmas 2.2, 2.3, 2.5, and the following general result:

Lemma 2.7 (Correctness of the encoding) For all processes P , all for-
mulas A ∈ Lmod, all environments e declaring the free variables of A, all
integers w > w(A), and all K > 0 we have:

P, ∅ |=M∞ �A�(e,w) if and only if ∃Q ∈ MK , ∃ν.




P ≡ Q | val(e, ν, w)K

Q, ν ◦ e |=MK
A

Proof: By induction on A.

• (Cases of) A = A1 ∧ A2,¬A1, 0 straightforward.
• (Case of A = Aa | Ab) Assume first P, ∅ |=M∞ �A�(e,w). By Lemma 2.5,

there is P1 ∈ MK and ν such that P ≡ P1 | val(e, ν, w)K . Moreover, there
is a splitting P1 | val(e, ν, w)K ≡ Pa | Pb with Pε, ∅ |=M∞ Aε. By induction
hypothesis, each Pε contains a val(e, ν, w − 1)K . Due to the depth of the
rows, P1 does not contribute to that, so Pε ≡ P1,ε | val(e, ν, w − 1)K with
P1 ≡ P1,a | P1,b. By induction hypothesis, P1,ε, ν ◦ e |=MK

Aε, hence the
result. Conversely, if P ≡ P1 | val(e, ν, w)K with P1, ν ◦ e |=MK

A, there is
P1,a, P1,b such that P ≡ P1,a | P1,b and P1,ε, ν◦e |=MK

Aε, hence by induction

hypothesis P1,ε |=M∞ �Aε�(e, w) and P ≡
(
P1,a | val(e, w − 1,

)
K

) |
(
P1,b |

val(e, w − 1,
)

K
) |=M∞ �A�(e,w).

• (Case of A = A1 � A2) Assume first P, ∅ |=M∞ �A�(e,w). By Lemma 2.5,
there is P1 ∈ MK and ν such that P ≡ P1 | val(e, ν, w)K. To prove that
P1, ν ◦ e |=MK

A1 � A2, we pick some Q ∈ MK such that Q, ν ◦ e |=MK
A1.

Then by induction hypothesis Q | val(e, ν, w)K |=M∞ �A1�(e,w), and P |
Q | val(e, ν, w)K |=M∞ ProcVal(e, w + 1)K , so P | Q | val(e, ν, w)K |=M∞
�A2�(e,w+1). By induction hypothesis, we have P | Q | val(e, ν, w)K ≡ R1 |
val(e, ν ′, w)K with R1, ν

′ ◦ e |=MK
A2 Due to the depth of the rows in
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val(e, ν ′, w)K, one has necessarily ν = ν ′ and R1 ≡ P1 | Q, hence the result.
Assume now that P ≡ P1, ν ◦ e |=MK

A1 � A2. To prove that P, ∅ |=M∞
�A1 � A2�(e,w), we take Q ∈ M∞ such that Q |=M∞ �A1�(e,w). By induction
hypothesis, there is ν ′ such that Q ≡ Q1 | val(e, ν ′, w)K and Q1, ν

′ ◦ e |=MK

A1. If ν �= ν ′, then val(e, ν, w)K | val(e, ν ′, w)K �|=M∞ ProcVal(e, w + 1)K ,
so P | Q |=M∞ ProcVal(e, w + 1)K→�A2�(e,w+1). Otherwise, ν = ν ′ and by
hypothesis P1 | Q1, ν ◦ e |=MK

A2 , so by induction hypothesis P | Q |=M∞
�A2�(e,w+1).

• (Case of A = �A′) Assume first that P |=M∞ ��A′�. Then P ≡ P1 |
val(e, ν, w)K, and there is R such that P −→ R |=M∞ �A′�(e,w). By induction
hypothesis, R ≡ R1 | val(e, ν ′, w)K for some ν ′ and R1, ν

′ ◦ e |=MK
A′. If

val(e, ν, w)K takes part to this reduction, it decreases the size of one row
or two rows of different depth. So the number of copies of the deeper one
is not 2k any more, and this process is not congruent to val(e, ν ′, w)K. So
P1 −→ R1 and the result. Assume now P1, ν ◦ e |=MK

�A′ and let R1 be
such that R1, , ν ◦ e |=MK

�A′ and P1 −→ R1. Then P1 | val(e, ν, w)K −→
R1 | val(e, ν, w)K, so P |=M∞ ��A′�(e,w).

• (Case of A = ∃x.A′) Assume first that P |=M∞ �A�. Then there is an
action α such that row(K+ | e | +1, α)2w | P |= �A�, so by induction
hypothesis P | row(K+ | e | +1, α)2w ≡ val(e′, ν ′, w)K | P1 with P1, ν

′ ◦
e′ |=MK

A′. Due the difference of row depths, we have ν ′ = ν, | e′ |�→ α. So
P, ν ◦ e |=MK

A, and the result. Conversely, assume P, ν ◦ e |=MK
A. Then

there is an action α such that P, ν{x←α} |=MK
A. Let consider the process

R = row(K+ | e | +1, α)2w
. Then val(e, ν, w)K | R ≡ val(e′, ν ′, w)K with

e′ = e, x �→| e | +1 and ν ′ = ν, | e | +1 �→ α. By induction hypothesis,
P | val(e′, ν ′, w)K |=M∞ �A′�, so P | val(e, ν, w)K |=M∞ �A� and the result.

• (Case of A = 〈x〉A′) Assume first that P |=M∞ �A�. Then there is an
action α such that row(K+ | e | +2, α) | row(K + e(x), ν ◦ e(x)) −→. So
α = ν ◦ e(x). Moreover, there is P ′ such that P1 | val(e, ν, w)K | row(K+ |
e | +2, α) −→ P ′ and P ′, ν ◦ e |=M∞ UsedTest(e) | �A′�(e,w). So P ′ has a
row of depth K+ | e | +1, which is only possible if the reduction involved
row(K+ | e | +2, α). It cannot involve val(e, ν, w)K since P ′ contains
it unchanged, so it necessarily involve P1, that is P ′ = row(K+ | e |
+1, α) | val(e, ν, w)K | P ′

1 with P1
α−→P ′

1, hence the result. Assume now

that there is P ′
1 such that P1

ν◦e(x)−→ P ′
1; then adding the process row(K+ | e |

+2, ν ◦ e(x)) and performing the reduction we just described, we have that
P1 | val(ν, e, w)K , ∅ |=M∞ A.

• (Case of A = 〈x〉A′) Assume first that P |=M∞ �A�. Then there is P ′, α, β
such that P −→ P ′ | row(β, n− 1) and P ′ | row(α, n) |=M∞ �A′�(e,w), with
n = e(x). By induction hypothesis, P ′ | row(α, n) contains an environment,
so in order to have the right number of rows of each depth it must be that
a row of size n was absent in P ′, and one had an extra row of size n − 1.
Then it must be that a row of size n in P contributed to the reduction
P −→ P ′ | row(β, n − 1). Hence in the reduction the number of rows
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of size n decrease by one, the number of rows of size n − 1 increased by
one, and other rows remained 2w copies. Moreover, since rows of the same
depth always have the same action; we have at least two copies at each
size since w ≥ 1, so necessarily α = ν(n) and row(β, n − 1) is the row
that was generated by the reduction, that is β = α = ν(n). Since the
interaction did not involve any other row from the environment, it actually

must have involved P1. So there is P ′
1 such that P1

ν(n)−→P ′
1 and P ′ ≡ P ′

1 | env′,
where env′ is the environment val(e, ν, w)K from which a row of size n has
been picked up. Then P ′ | row(α, n) ≡ P ′

1 | val(e, ν, w)K so by induction
hypothesis P ′

1, ν ◦ e |=MK
A′, that is P1, ν ◦ e |=MK

〈x〉A′. Assume now

that P1, ν ◦ e |=MK
〈x〉A′. Then there is P ′

1 such that P1
ν(e(x))−→ P ′

1 and P ′
1, ν ◦

e |=MK
A′. Then by induction hypothesis P ′

1 | val(e, ν, w)K |=M∞ �A�′,
that is 1 | val(e, ν, w)K −→ P ′

1 | env′ | row(α, n − 1) where e(x) = n,
α = ν(n), and env′ is val(e, ν, w)K from which one row of size n has been
removed. So P ′

1 | env′ | row(α, n) |=M∞ �A�′ by induction hypothesis, that
is P1 | val(e, ν, w)K |=M∞ �A�.

�

We can now present the proof of our main Theorem 2.1.

Proof: Let A be a formula of Lmod. Set �A�K = �A�(∅,w) for some w
greater than the maximal nesting of | connectives in A. Then πK(P ) ≡
πK(P ) | val(∅, ∅, w)K, so by Lemma 2.7, πK(P ), ∅ |=M∞ �A�K if and only
if πK(P ), ∅ |=MK

A, which is equivalent to P, ∅ |=M∞ A by Proposition 1.9.
�

In the next section, as a first application of Theorem 2.1 we determine the
separation power of Lspat.

3 Separability of Lspat

As a first application of the main Theorem 2.1, we define characteristic for-
mulas and characterize the separation power of the logic Lspat (and thus of
Lmod). We conclude that Lspat is able to describe processes quite precisely, just
abstracting away from the identity of the particular names used by processes.
We start by introducing a characteristic formula C(P ) for any process P . For
any complementary pair of actions {α, α} occurring in P , we reserve a specific
variable xa, collected in the set {xα1 , . . . , xαn}.

χ(0) � 0 χ(α. P ) � 1 ∧ 〈xα〉χ(P )

χ(α. P ) � 1 ∧ 〈xα〉χ(P ) χ(P | Q) � χ(P ) | χ(Q)
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C(P ) � �∃xα1 . . .∃xαn . (
∧
i
=j

xαi
�= xαj

∧ xαi
�= xαj

) ∧ χ(P )�K

where we fix K = ds(P ). Recall that the abbreviations (x = y) and (x = y)
are defined in Fig.2, and notice indeed that C(P ) ∈ Lspat, while χ(P ) ∈ Lmod.

Lemma 3.1 Let P ∈ MK , let v be the valuation such that v(xαi
) = βi, for

pairwise distinct actions β1, . . . , βn, and let σ be the action permutation that
sends αi into βi. Then we have that Q, v |=MK

χ(P ) if and only Q ≡ σ(P ).

Proof: By induction on the structure of P . We detail the case of P = αj . P
′. If

Q, v |=MK
χ(P ) then Q, v |=MK

1 and Q, v |=MK
〈xαj

〉χ(P ′). This means that
Q ≡ βj . Q

′ and Q′, v |=MK
χ(P ′), where bj = v(xαj

). By inductive hypothesis,
Q′ ≡ σ(P ′). Since σ(αj) = βj we conclude Q ≡ σ(P ). Conversely, assume
Q ≡ σ(P ). This means that βj = σ(αj) and Q = βj . Q

′ where Q′ ≡ σ(P ′). By
inductive hypothesis, Q′, v |=MK

χ(P ′). Then, Q
βj−→Q′. Since Q, v |= 1, and

v(xαj
) = βj we conclude Q, v |=MK

〈xα〉χ(P ′) and then Q, v |=MK
χ(P ). �

Lemma 3.2 For all processes Q and P , Q |= C(P ) if and only if Q ≡s P .

Proof: Let K = ds(P ) and assume Q, ∅ |= C(P ). Then Q ∈ MK and thus
πK(Q) = Q. By Theorem 2.1 we have Q, ∅ |=MK

∃xα1 . . . .∃xαn . χ(P ), so there
are pairwise distinct actions βi such that v(xαi

) = βi and Q, v |=MK
χ(P ).

By Lemma 3.1, we conclude that Q ≡ σ(P ), where σ(αi) = βi. Conversely,
let Q ≡ σ(P ) for some action permutation σ; thus if P ∈ MK then also
Q ∈ MK . Let v(αi) = βi whenever σ(αi) = βi. By Lemma 3.1, we conclude
Q, v |=MK

χ(P ). Since the actions βi are pairwise distinct, by Theorem 2.1 we
conclude Q |= C(P ). �

We then conclude:

Theorem 3.3 The following statements are equivalent:

(1) P=Lmod
Q (2) P=LspatQ (3) Q, ∅ |= C(P ) (4) P ≡s Q

Proof: (1)⇒(2) because Lspat ⊂ Lmod, (2)⇒(3) since C(P ) ∈ Lspat and P |=
C(P ), (3)⇒(4) by Lemma 3.2, and (4)⇒(1) by Proposition 1.6. �

We thus conclude that the separation power of Lspat and Lmod on the tiny
CCS model is exactly the same, and logical equivalence on processes coincides
with structural congruence modulo action permutation.
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4 Expressiveness of Composition Adjunct

It is known [19] that in static spatial logics, that is spatial logics without
quantifiers and dynamic operators, the composition adjunct is not independent
of the remaining connectives, and can in fact be eliminated, in the sense that
for any formula of such a logic we can find a logically equivalent adjunct-
free formula. It is not hard to see that the composition adjunct cannot be
dispensed with in the core logic Lspat, because without it one is not allowed
to distinguish between threads of different length: if we pick A ∈ Lspat − {�},
we can verify by an easy induction on the structure of the formula A that
α. 0 |= A if and only if α. β. 0 |= A, for all α, β ∈ A.

In this section, we prove that the adjunct elimination property also does not
hold for the spatial logic Lmod. For this, we adapt an argument suggested by
Hongseok Yang: on the one hand, we define in Lmod a formula that says of a
process that its number of toplevel parallel components is even numbered, on
the other hand, we show that parity cannot be characterized by any adjunct-
free Lmod formula. We start by defining a few formulas:

�A � ¬�¬A

Top(x) � 〈x〉0

Fam � �⊥ ∧
(
1 ⇒ ∃x. Top(x)

)∀
∧ ∀x. ∀y. (Top(x) | Top(y) | �) ⇒ x �= y)

We can verify that P |= Fam if and only if P ≡ α1. 0 | . . . | αk. 0 for some
pairwise distinct k actions α1, . . . , αk such that P �→. We call a process of such
a form a family. The width of such a family P is defined to be the number
w(P ) = k of parallel threads in P . Notice that the requirement that a family
is deadlocked is not essential: it is just a means to simplify our proofs.

Now, we define a formula Even2 that is satisfied by processes that contain
exactly an even number of distinct actions at the second level (that is, behind
the first prefix).

Pair � 1 ∧ ∃xyz. 〈x〉(Top(y) | Top(z)) ∧ (y �= z)

Below(x) � 1 ∧ ∃z. 〈z〉〈x〉�

Even2 � (1 ⇒ Pair)∀ ∧ ∀x. ∀y. (Below(x) | Below(y) | �) ⇒ x �= y)

We can now verify that

P |= Even2 if and only if P ≡ α1. (β1,1. 0 | β1,2. 0) | · · · | αk. (βk,1. 0 | βk,2. 0)
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for some k actions α1, . . . , αk, and some pairwise distinct 2k actions β1,i, . . . , βk,i

for i = 1, 2. Now, if we compose a process P satisfying Fam in parallel with
a process Q satisfying Even2, we can check, using the formula Same in the
composition P | Q, that the actions that occur in the toplevel of process P
are exactly the same that appear in the second level of process Q :

Same � ∀x. (Top(x)∃ ⇔ Below(x)∃)

Hence we have the following result

Lemma 4.1 There is a closed formula Even ∈ Lmod such that for any process
P , we have that P |= Even if and only if P is a family and w(P ) is even.

Proof: Let Even � Fam ∧ (Even2 � Same). �

The key observation here is that the formula Even contains an essential use
of the composition adjunct operator. In fact, although the properties denoted
by the formulas Even2 and Fam can be expressed by appropriate adjunct-free
formulas of Lspat, the same situation does not hold for the parity property
expressed by Even. In the remainder of this section, we prove that there is no
formula of Lmod−{�} able to express the same property. The argument consists
in showing that any family P considered in Lmod − {�} admits a saturation
level from which it is always possible to add an extra parallel component to it
while preserving satisfaction. We first define sn(A) (the sticks number of the
formula A) to be the natural number defined by induction on A as follows:

sn(¬A) � sn(A) sn(A1 ∧ A2) � max(sn(A1), sn(A2))

sn(0) � 1 sn(A1 | A2) � sn(A1) + sn(A2)

sn(�A) � 0 sn(〈x〉.A) � sn(A)

sn(∃x.A) � sn(A) + 1 sn(〈x〉.A) � sn(A)

Given a family P and a valuation v, we write P\v for the subfamily of P
grouping the actions α that do not appear in the codomain of the valuation
v. More precisely, we define

P\v �
∏

{α. 0 : P ≡ α. 0 | Q and α, α �∈ codom(v)}

We then state and prove

Lemma 4.2 Let P be a family, let v be a valuation v : X ⇀ A, and let α ∈ A
be an action such that α, α �∈ codom(v) and (P | α. 0) is a family. Then, for
any �-free formula A ∈ Lmod such that w(P\v) ≥ sn(A) we have

P, v |= A if and only if P | α. 0, v |= A.
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Proof: By induction on A.

• (Cases of A = A1 ∧A2, A = ¬A1) Straightforward.
• (Case of A = 0) We have w(P ) ≥ 1 so neither P nor P | α satisfy A.
• (Case of A = A1 | A2). We assume first that P, v |= A. Then there is P1, P2

such that P ≡ P1 | P2 and Pi |= Ai, for i ∈ {1, 2}. Then

w(P\v) = w(P1\v) + w(P2\v) ≥ sn(A) = sn(A1) + sn(A2)

so there is some e ∈ {1, 2} such that w(Pe\v) ≥ sn(Ae). By induction
hypothesis then Pe | α |= Ae, so that P | α |= A. We assume now that
P | α |= A. Then there are Q1, Q2 such that P | α = Q1 | Q2 and Qi |= Ai.
Since α �∈ codom(v), w(P | α\v) = w(P\v) + 1, so

w(P | α\v) = w(Q1\v) + w(Q2\v) > sn(A) = sn(A1) + sn(A2)

and there is some e ∈ {1, 2} such that w(Qe\v) > sn(Ae). We pick some
α′ ∈ Qe with α′ �∈ codom(v), which is possible since w(Qe\v) ≥ 1. We note
Pe the family such that Qe{α ↔ α′} ≡ Pe | α. Then w(Pe\v) = w(Pe |
α\v) − 1 = w(Qe\(v{α ↔ α}′)) − 1 = w(Qe\v) − 1, hence w(Pe\v) ≥
sn(Ae). By equivariance (Proposition 1.6), we get from Qe, v |= Ae that
Pe | α, v |= Ae, and by induction hypothesis Pe, v |= Ae. Then we write
P | α = Q1{α ↔ α′} | Q2{α ↔ α′} = P1 | α | P2, which gives that
P, v |= A.

• (Case of A = �A1) Then both P and P | α do not satisfy A, because they
are deadlocked.

• (Case of A = ∃x.A1) We assume first that P, v |= A. Then there is β
such that for v′ = v, x �→ β, P, v′ |= A1. We may assume that β �∈ {α, α},
otherwise we would pick some fresh action β ′, and consider instead v′ =
v, x �→ β ′: then P = P{β ↔ β}′ and v′ = v{β ↔ β}′ (since β �∈ codom(v)),
so P, v′ |= A1 by Proposition 1.6. So we assume β �∈ {α, α}. We have
w(P | α\v′) = w(P\v′) + 1 ≥ w(P\v), so w(P | α\v′) ≥ sn(A1), and by
induction hypothesis P | α, v′ |= A1, that is P | α, v |= A. We assume
now that P | α, v |= A. Then there is β such that for v′ = v, x �→ β,
P | α, v′ |= A1. If β ∈ {α, α}, we may pick some other β ′ occurring in
P\v: then P{β ↔ β ′} = P by internal symmetry, and v′′ = v′{β ↔ β ′}, so
P | α, v′′ = P{β ↔ β ′}, v′{β ↔ β ′} |= A1 for v′′ = v, x �→ β ′. So we may
assume β �∈ {α, α}. Then w(P\v′) ≥ w(P\v)− 1 ≥ sn(A1), so by induction
hypothesis P, v′ |= A1, that is P, v |= A.

• (Case A = 〈x〉A1) Assume first that P, v |= A. Then there is P ′ such that

P
v(x)−→P ′ and P ′, v |= A1. w(P ′\v) = w(P\v) ≥ sn(A1), so by induction

hypothesis P ′ | α, v |= A1, that is P | α, v |= A. Assume now that P |
α, v |= A. Then there is P1 such that P | α

v(x)−→P1 with P1, v |= A1. Since

α �∈ codom(v) by assumption, P1 ≡ P ′ | α with P
v(x)−→P ′. We have w(P ′\v) =

w(P\v) ≥ sn(A1), so by induction hypothesis P ′, v |= A1, that is P, v |= A.
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(D, I) |=v A ∧ B if (D, I) |=v A and (D, I) |=v B

(D, I) |=v ¬A if not (D, I) |=v A

(D, I) |=v ∃x.A if there is d ∈ D. (D, I) |=v{x←d} A

(D, I) |=v p(x, y) if (v(x), v(y)) ∈ I

Fig. 4. Satisfaction of FOL

• (Case of A = 〈x〉.A1) the proof proceeds as in the previous case.

�

Theorem 4.3 There is no closed formula A ∈ Lmod − {�} that exactly char-
acterizes the set of all families P such that w(P ) is even.

Proof: By contradiction. If there exists such formula A, then we may take a
family P , and an extended family P | α with w(P ) ≥ sn(A). Then, by the
Lemma 4.2, we have P, ∅ |= A if and only if P | α, ∅ |= A, which is a
contradiction. �

We conclude that, unlike in static spatial logics, in the logic Lmod the com-
position adjunct operator is independent of the remaining operators, since
there are properties expressible with the composition adjunct that cannot be
expressed with action modalities and quantifiers. Hence,

Theorem 4.4 Lmod is strictly more expressive than Lmod − {�}.

5 Undecidability

In this section, we show that the validity-checking, satisfiability-checking and
model-checking problems for the logic Lspat (and hence for Lmod) are all unde-
cidable. These results are a consequence of our embedding of Lmod into Lspat

(Theorem 2.1), and of the fact that first-order logic can then be easily encoded
into Lmod along the lines of Charatonik and Talbot [13].

The language of first-order logic (FOL) is defined in the standard way from a
set V ars of individual variables (x, y). Without loss of generality we consider
a single binary predicate symbol p.

A,B ::= A∧ B | ¬A | ∃x.A | p(x, y)

A model for FOL is a pair (D, I) where D is a set of individuals (the domain
of the model), and I is a binary relation I ⊆ D × D. For our purposes it is
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enough to focus on finite models. Satisfaction of a FOL formula by a model is
defined in Fig. 4, using a valuation v that assigns each individual variable an
element of D.

We now show how to encode any FOL satisfaction judgment (D, I) |=v A into
a Lmod satisfaction judgment

M�(D, I)�,V�v� |= F�A�

by means of appropriate translations M�−�, V�−� and F�−�. We pick nat-
ural numbers K, E such that K > E > 2. To encode a model (D, I) into
a process M�(D, I)�, we start by assigning to each element d ∈ D a dis-
tinct action A(d) ∈ A, and define E�d� � row(E, A(d)). The domain D =
{d1, . . . , dn} is then represented by the process D�D� � E�d1� | . . . | E�dk�.
For the interpretation I, we represent each pair (d, e) ∈ I by the process
T �(d, e)� � A(d). A(e). 0. We then let I�I� � ∏

(d,e)∈I T �(d, e)� and finally

set M�(D, I)� � D�D� | I�I�. Notice that, by construction, we always have
M�(D, I)� ∈ MK .

Processes encoding FOL models can be characterized by a formula Model of
Lspat, which is defined by making use of our encoding of Lmod into Lspat as
follows

D(x) � Row(E) ∧ 〈x〉�

Diff � ∀x. ∀y. (〈x〉� | 〈y〉�) ⇒ x �= y)

Domain � Diff ∧
(
1 ⇒ ∃x. D(x)

)∀

Compat � ∀x. ∀y((〈x〉〈y〉0)∃ ⇒ (D(x)∃ ∧ D(y)∃))

Interp �
(
1 ⇒ Thread(2)

)∀

Model � MK ∧ �(Domain | Interp) ∧ Compat�K

The Row(n) and Thread(n) formulas were defined in Section 2. We can then
verify

Lemma 5.1 We have P |= Model if and only if there is a finite FOL model
(D, I) and M�(D, I)� ≡ P .

Proof: (if) As already remarked, we have P ≡ M�(D, I)� ∈ MK , hence
P |= MK . We can also check that P |=MK

(Domain | Interp)∧Compat), because
D�D� |= Domain and I�I� |= Interp. Since P ∈ MK , by Theorem 2.1(if) we
conclude that P |= Model.

(only if) If P |= Model we conclude that P ∈ MK and P |= �(Domain | Interp)∧
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Compat�K . By Theorem 2.1, we have P |=MK
(Domain | Interp) ∧ Compat.

This means that P ≡ PD | PI where PD |= Domain and PI |= Interp. In
turn, we conclude that PD ≡ row(E, α1) | · · · | row(E, αk), where the actions
αi are pairwise distinct. We can then construct a finite FOL model (D, I)
from PD and PI , by letting D = {α1, . . . , αk}, and I = {(d, e) : ∃R. PI ≡
A(d). A(e). 0 | R}. Since P |= Compat we indeed have I ⊆ D × D. �

Then, formulas of FOL are encoded into formulas of Lmod as follows

F�¬A� � ¬F�A�

F�∃x.A� � ∃x. (D(x)∃ ∧ A)

F�A∧ B� � F�A� ∧ F�B�

F�p(x, y)� �
(
1 ∧ 〈x〉〈y〉0

)∃
while, for valuations, we simply set V[v] to be the valuation such that V[v](x) =
A(v(x)). We can then prove

Lemma 5.2 Let v = {x1 �→ d1, . . . , xk �→ dk} be a valuation for A. Then we
have (D, I) |=v A if and only if M�(D, I)�,V�v� |=MK

F�A�.

Proof: By induction on the structure of formulas. We detail the case of A =
p(x, y). If (D, I) |= p(x, y) then (v(x), v(y)) ∈ I(p), and thus

I�I� ≡ A(v(x)). A(v(y)). 0 | R

for some R. Hence we have M�(D, I)�,V�v� |=MK
(1∧〈x〉〈y〉0)∃. Conversely, if

M�(D, I)�,V�v� |=MK
F�p(x, y)�, we conclude that M�(D, I)� ≡ α. β. 0 | R

for some R and α, β such that v(x) = α and v(y) = β. We conclude that
there are d, e ∈ D such that A(d) = α and A(e) = β and (d, e) ∈ I(p), by
construction of I�I�. Hence (D, I) |=v p(x, y). �

Proposition 5.3 Let A be a closed formula of FOL. Then the formula A is
satisfiable if and only if the Lspat formula Model ∧ �F�A��K is satisfiable.

Proof: Assume that the formula A is satisfiable. Then there is a FOL model
(D, I) such that (D, I) |= A. By Lemma 5.2, we have that M�(D, I)� |=MK

F�A�. By Theorem 2.1, we conclude M�(D, I)� |= �F�A��K , for M�(D, I)� ∈
MK . Since M�(D, I)� |= Model by Lemma 5.1, we conclude that Model ∧
�F�A��K is satisfiable. Conversely, if Model ∧ �F�A��K is satisfiable, then
there is a process P such that P |= Model (and thus P ∈ MK) and P |=
�F�A��K . By Theorem 2.1, we have that P, ∅ |=MK

F�A�, and by Lemma 5.1
we conclude that there is a finite model (D, I) such that P ≡ M�(D, I)�.
Hence M�(D, I)� |=MK

F�A�, so by Lemma 5.2 we conclude (D, I) |= A. �

As a corollary of Proposition 5.3, we conclude
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Theorem 5.4 The problems of validity-checking, satisfiability-checking, and
model-checking of Lspat formulas are all undecidable.

Proof: Follows from Proposition 5.3 and Trakhtenbrot’s Theorem [24]. �

6 Extension to the π-Calculus and Mobile Ambients

In this section, we briefly discuss how our results extend to richer models,
namely the π-calculus and the ambient calculus. We may pick any of these
calculi as models for the core logic Lspat, which is a fragment of both the
ambient logic of [11] and the π-calculus logic of [4]. We discuss first the case
of the ambient calculus without name restriction, and just with the open ca-
pability. In this case, we can show that Lspat can also encode, for processes
of bounded depth, its extension with the quantifier ∃x.A, and modalities of
the form 〈open x〉.A and x[A]. However, as we might expect, the symmetry
between input and output (Theorem 3.3(4)) does not carry over to the calcu-
lus of mobile ambients: for instance, the formula 1 ∧ �� may be satisfied
by the ambient n[P ], but not by the guarded ambient open n. P . For the π-
calculus, we may consider the extension of Lspat with the quantifier ∃x.A and
the modalities 〈x〉A and 〈x〉A, able to observe just the subjects of π-calculus
actions. In this case, we may also prove that this extension can be encoded in
Lspat for bounded depth processes, as we did for the other cases. From these
results, we conclude

Theorem 6.1 The model-checking and validity problems for the π-calculus
and the ambient calculus against Lspat are both undecidable.

We only sketch our proofs, since they are obtained by adapting to the ambient
calculus and to the π-calculus the constructions and arguments already shown
in detail for the fragment of CCS considered in the paper.

It should be clear that the basic ingredients of our encoding of Lmod in
Lspat (Theorem 2.1), in turn used to prove independence of adjunct (The-
orem 4.3), and undecidability (Theorem 5.4), are the definitions for the for-
mulas Thread(k), Row(k) and Mk, characterizing respectively threads, rows,
and the bounded interpretations Mk.

Thus, we just detail here how to provide counterparts to these formulas, by
taking in consideration each of the calculi now under consideration. It turns
out that for ambients this is quite easy, while for the case of the π-calculus,
because of name restriction and name passing, the development is slightly
more involved.
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The Calculus of Mobile Ambients

For simplicity, we consider the fragment of the Ambient calculus defined by
the following grammar:

P, Q ::= open n. P
∣∣∣ n[P ]

∣∣∣ P | Q
∣∣∣ 0

where a, n, m, p ranges over the set of names Λ. We assume given the reduction
relation P → P ′ as defined in [15]. We also define the depth ds(P ) of a process
P , and the set of models Mk as expected. We also consider the extension LAMB

mod

of Lspat:

A,B ::= A ∧ B | A | B | ¬A | A � B | 0 | �A (Lspat)

| 〈open x〉A | x[A] | ∃x.A (LAMB
mod )

Semantics for LAMB
mod specific connectives is defined as expected, relative to a

valuation v : X → Λ. We then have

P, v |=M ∃x.A iff ∃ n ∈ Λ. P, v{x←n} |=M A

P, v |=M x[A] iff ∃Q. P ≡ v(x)[Q] and Q, v |=M A

P, v |=M 〈open x〉A iff ∃Q. P
open v(x)−→ Q and Q, v |=M A

where P
open n−→ Q � ∃P . P ≡ open n. R | R′ and Q ≡ R | R′. We now show

how to mimick the encoding of Section 2 for the case of ambients: we encode
the valuation together with process P to be model-checked by defining “rows
processes” that exceed P in depth. Then using such rows we make the model-
checked process interact, so that we may encode the modalities x[A] and
〈open x〉A. We then define rows and threads as processes of the form:

threadopen(ã, n) � open a1. open a2 . . . open an. 0

rowopen(a, n) � open a. open a . . . open a︸ ︷︷ ︸
n times

. 0

The formulas shown in Fig. 5 show how we may characterise these processes
logically. The embedding of LAMB

mod into Lspat then follows the one in Section 2,
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Formula Encoding Interpretation

atom 1 � 1�0 ∃a. P ≡ open a

or P ≡ a[0]

testamb 1 ∧ �atom ∃a, b P ≡

a
[
open b | b[0]

]
1open atom ∧ testamb � ��0 ∃a. P ≡ open a

1amb atom ∧ 1open � �0 ∃a. P ≡ a[0]

ThrOp(1) 1amb � �0 ∃ã. P ≡

threadopen(ã, 1)

ThrOp(k + 1) 1 ∧ 1amb � �ThrOp(k) ∃ã. P ≡

threadopen(ã, k + 1)

M0 0 P ∈ M0

Mk+1

(
1 ⇒ atom � �Mk

)∀
P ∈ Mk+1

EqOp
(
1open � �⊥

)
∧

(
1amb � ∃ a, P̃ . P ≡

(1amb | 1⇒��)∀
)

open a. P1 |. . . | open a. Pn

RowOp(1) 1open ∃a. P ≡

rowopen(a, 1)

RowOp(k + 1) (1amb | 1open) �
(
(1amb | EqOp) ∃a. P ≡

∧ �
(
(RowOp(k) | 1open) rowopen(a, k + 1)

∧ EqOp
))

Fig. 5.

small differences only appear in encoding of modalities. We set

�∃x.A�(e,w) � ProcVal(e, w)K ∧
((

RowOp(| e | +1)
)2w

� �A�(e′,w)

)
where e′ = e{x← | e | +1}

�〈open x〉A�(e,w) � ProcVal(e, w)K ∧

RowOp(K + e(x))
∣∣∣ (

TestRow(K + e(x)) � ��A�(e,w)

)
�x[A]�(e,w) � (Val(e, w)K | Mk)

∧ �
(
RowOp(K + e(x) − 1)

∣∣∣
(RowOp(K + e(x)) � �A�(e,w))

)
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where TestRow(n) is the formula

TestRow(n)
def
= 1 ∧ (1amb | 1open ∧��) � �

(
1amb | RowOp(n) ∧ ��

)

which characterises processes of the form testproc(a, n)
def
= a[rowopen(a, n)].

We again prove the correctness of the embedding by induction on A. Differ-
ences with the proof of Lemma 2.7 happen only for the modality cases:

• A = 〈open x〉A′: Assume first that P |= �A�e,w. Then P ≡ Q | val(e, ν, w)K ,
and if Val′ is such that val(e, ν, w)K ≡ Val′ | rowopen(ν(K + e(x)),), then
there is some name a such that Q | Val′ | testproc(a, K + e(x)) −→ P ′

and P ′ |= �A′�e,w. By induction, P ′ |= ProcVal(e, w)K , so the testproc must
have been alterated by the reduction. Moreover, the other partner for the
reduction cannot be in Val′ since it would consume a row copy which would
be visible at end. So this must be the process, that is the reduction is
Q | Val′ | testproc(b, K + e(x)) −→ Q′ | Val′ | rowopen(a, K + e(x)) with

Q
open a−→Q′. Since Val′ | rowopen(a,≡)val(e, ν ′, w)K , this must be that ν = ν ′

and a = ν(e(x)), and the result by induction. Reciproquely, if P, ν ◦ e |=MK

A, then there is P ′ such that P
open a−→P ′ with a = ν ◦ e(x) and P ′, ν ◦ e |=′

A.
Then P | Val′ | Testproc(a, K + e(x)) −→ P ′ | val(e, ν, w)K , and P ′ |
val(e, ν, w)K |= �A′�e,w by induction, so that finaly P |= �A�e,w.

• A = x[A′]: Assume first that P |= �A�e,w. Then P ≡ Q | val(e, ν, w)K with
Q single, there is a, b, P ′ such that P −→ P ′ | rowopen(a, K + e(x)−1), and
P ′ | rowopen(b, K +e(x)) |= �A′�e,w. By induction, P ′ | rowopen(b, K +e(x))
contains a process val(e, ν ′, w)K , and again the only way to have this is to
have ν = ν ′ and b = ν(K + e(x)). This says that a row of depth K + e(x)
was consumed by the reduction but not any other, so that Q ≡ a[Q′], P ′ ≡
Q′ | Val′ with val(e, ν, w)K ≡ Val′ | rowopen(a, K + e(x) + 1), a = b = ν(x),
and the result. Reciproquely, if P, ν ◦e |=MK

A, then there is a, P ′ such that
P ≡ a[P ′], P ′, ν ◦ e |=MK

A′, and ν ◦ e(x) = a. So P | val(e, ν, w)K −→ P ′ |
Val′ | rowopen(a, K+e(x)−1), and P ′ | Val′ | rowopen(a, K+e(x)) |= �A′�e,w

by induction, that is P | val(e, ν, w)K |= �A�e,w.

The π-calculus

Without loss of generality, we consider a fragment of the π-calculus, the choice-
free finite synchronous π-calculus [23], with abstract syntax given by:

P ::= n(m). P
∣∣∣ nm. P

∣∣∣ (νn)P
∣∣∣ P | P

∣∣∣ 0

where n, m, p ranges over the set of pure names Λ. We assume defined in the
standard way the relation P → P ′ of reduction, and the relation of P

α−→P ′

30



of labeled transition, over the set of labels τ (internal reduction), nm (input),
and nm (output). We will adopt the convention that the case P

nm−→P ′ where
m �∈ fn(P ) corresponds to a bound output (usually written n(m)), and the
case P

nm−→P ′ where m �∈ fn(P ) corresponds to a bound input (usually written
n(m)).

We consider the logics Lspat and Lmod exactly as defined in Section 1, but
where we now consider quantifiers and modalities to range over commitments
n, n ∈ C, where n ∈ Λ. Semantics for the Lmod specific connectives interpreted
over the π-calculus is defined as expected, with relation to a valuation v : X →
C. We thus define

P, v |=M ∃x.A if ∃α ∈ C. P, (v{x←α}) |=M A

P, v |=M 〈x〉.A if ∃P ′, n ∈ Λ. P
v(x)n−→P ′ and P ′, v |=M A

Hence, our action modalities only observe the subject of π-calculus actions.
To embed Lmod into Lspat in the case of the π-calculus, we use some slightly
different (when compared with the one developed in Section 2) notions of
thread and row process. These notion, defined below, are completely equivalent
for our purposes as the ones previously given for CCS and Mobile Ambients,
but build on some particularities of the π-calculus model.

Instead of defining a thread of size k “syntactically”, as in Section 2, in the
current setting we consider a thread of size k to be a π-calculus process P
satisfying the following property:

Every labeled transition sequence of maximal length for P is of the form

P = P0
α1−→P1

α2−→P2 → · · · αk−→Pk

where αi �= τ and Pi |= 1, for all i = 0, . . . , k − 1, and Pk |= 0.

By a labeled transition sequence of maximal length we mean a transition
sequence that cannot be further extended by a labeled transition step. Notice
that this notion of thread allows for some nondeterminism, in the sense that
a thread of size k can offer two different sequences of k actions. This does
not interfere with our intended usage for threads, namely the definition of row
processes. We consider a row of size k on the commitment α to be a π-calculus
process P satisfying the following property:

Every labeled transition sequence of maximal length for P is of the form

P = P0
α−→P1

α−→P2 → · · · α−→Pk

where Pi |= 1, for all i = 0, . . . , k − 1, and Pk |= 0.
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Rows can be defined by filtering threads on the same action, but the π-calculus
can admit quite complex implementations for threads, due to the presence of
name restriction. Therefore, it seems quite difficult to characterize thread and
row processes in the π-calculus “syntactically”, but we can do it logically. We
start by defining the following abbreviations.

�A � ¬�¬A

piAct � 1 ∧ �⊥ ∧ (1 � �0)

piThr(0) � 0

piThr(k + 1) � 1 ∧ �⊥ ∧ (piAct � �piThr(k)) ∧ (piAct � �piThr(k))

AllAct � (1 ⇒ piAct)∀

inact � (�⊥) � �⊥

Shh � 1 ∧ �⊥ ∧ (piAct � �(1 ∧ inact))

Equals � AllAct ∧
(
Shh �

(
(Shh | 1) ⇒ ��

)∀)
Reds(0) � 0

Reds(n + 1) � �Reds(n)

piRow(n) � piThr(n) ∧ ((AllAct ∧ �⊥ ∧ ¬Equals) � ¬Reds(n))

By analyzing the previous definitions, we can show that P |= piRow(k) if and
only if P is a row of size k on some action α, and P |= piThr(k) if and only if P
is a thread of size k. Hence, the constructions above gives us suitable notions
of row process and thread process of depth k in the π-calculus.

From these ingredients, we can then develop a counterpart of Theorem 2.1;
given the previous definitions specific for the π-calculus model, the encoding
of Lmod into Lspat is the same as the one in Fig 3. We can then obtain results
analogous to those presented in Section 4 and 5.

7 Concluding Remarks

We have studied a core spatial logic for concurrency, aiming at a better un-
derstanding of the relative role of the very basic logical operations present in
most logics of this family. In particular, we have shown that quantifiers and
action modalities can be embedded, and that the composition adjunct plays
a key role in the expressiveness of this logic; these results allowed us to also
prove its undecidability. Ours results are expected to hold for most process
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calculi, even in the presence of recursion or replication. In this light, we believe
that minimality of Lspat could be established in a precise sense.

The logics Lspat and Lmod have not been shown to have the same expressiveness
in the strict technical sense. However, we believe this is the case for their ex-
tension with freshness quantifiers and a free name occurrence predicate. Since
Theorem 3.3(4) does not hold for calculi with name restriction, an interesting
issue is to get a better understanding of the (coarser) spatial equivalence in
the absence of logical operations dealing with restricted names.

Although the composition adjunct operation is certainly important for gen-
eral context/system specifications, our work shows that the automated veri-
fication of concurrent systems using spatial logics that make essential use of
the composition adjunct seems to be unfeasible. An important issue is then
whether other expressive and tractable forms of contextual reasoning inspired
by the composition adjunct, and extending those already provided by decid-
able behavioral-spatial logics, can be identified.
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and Davide Sangiorgi for all the rich exchanges and encouragement; and Luca
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about quantifier elimination. This collaboration was supported by FET IST
2001-33310 Profundis. E. Lozes was also funded by an “Eurodoc” grant from
Région Rhône Alpes.
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