
Separation logic preserves the expressive power of
classical logic

Short Presentation

Lozes Etienne LIP - ENS Lyon
46,allée d’Italie - 69364 Lyon - FRANCE

elozes@ens-lyon.fr

ABSTRACT
This paper compares separation logic to a classical fragment
of it. We prove that they are equally expressive, and that
the separative power is obtained using only monotonic as-
sertions.

1. INTRODUCTION
Imperative programming languages manipulating pointers

allow one to change the value a variable refers to without
explictly mentioning this variable. Such multiple accesses
to data make the axiomatic semantics [3] of these programs
difficult to handle using classical logic as an assertion lan-
guage [5]. Separation logic [6] is a proposal for an extension
of the assertion language that nicely handles the subtleties
of pointer manipulation. It provides two new connectives: a
separative conjunction P ∗Q asserting that P and Q hold in
separate parts of the memory, and a separating implication
P −∗ Q allowing one to introduce ‘spatial hypotheses’ about
the memory. In [6], the example proof of an in-place rever-
sal of a list turns out to require complex invariants in the
standard classical logic, whereas it has a simple formulation
in separation logic.

So separation logic offers more concise and meaningful
assertions than classical logic. We may raise the question
whether it also provides new assertions, that is assertions
that cannot be formulated in classical logic. For several ex-
amples, classical logic provides a formulation of any given in-
variant, although usually through costly and poorly scalable
methods, as the list reversal example shows. In other words,
separation logic should have the same expressive power as
classical logic. Our aim in this work is to give a formal
account of this intuition, at least for a simple though signif-
icant assertion language.

We consider the spatial assertion language presented in
[6], but we exclude some features, such as recursion, quan-
tification over values, and expressions with lookup in order
to keep the proof simple. We define a classical fragment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPACE’04 Venezia, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

excluding the connectives ∗ and −∗ and prove it to be as
expressive as the whole language. The proof relies on the
use of an intensional model equivalence along the lines of [2,
4]

In Section 2 we collect all definitions of the assertion lan-
guages; Section 3 defines the intensional equivalence and
discusses its structural properties; Section 4 gives the essen-
tial facts to establish the translation from separation logic in
our classical fragment, and Section 5 gives some concluding
remarks.

2. DEFINITIONS
We consider the assertion language presented in [6], but

we exclude the universal quantifier, recursion and lookup.
We assume a countable set Var of variables, ranged over

with x, y, and a set Loc of locations such that Loc ⊆ N. Ex-
pressions and assertions are defined by the following gram-
mar:

e ::= x+ n | nil
P ::= (e 7→ e) | e = e | emp | ⊥ | P⇒P

| P ∗ P | P −∗ P

We write v(P) for the set of variables occuring in P . As-
sertions express properties of memory states, modelled as a
pair consisting of a store and a heap, as follows:

Val
def
= Loc t {nil}

Store
def
= Var → Val

Heap
def
= Loc ⇀fin Val

State
def
= Stack×Heap

where ⇀fin stands for a partial function with finite domain.
We range over stores with s, over heaps with h, and over
states with σ. We note σ1⊥σ2 for s1 = s2 and dom(h1) ∩
dom(h2) = ∅, and, when this holds, σ1 ∗ σ2 is the state
defined by keeping the same store and by setting h1∗h2(x) =
h1(x) or h2(x). We note σ ≤ σ′ the partial order defined if
there is a state σ1 such that σ ∗ σ1 = σ′, and σ1 ∧ σ2 for the
meet of σ1, σ2.

We note [[e]]σ for the evaluation of e in σ, that is [[x+n]]σ =
s(x) + n and [[nil]]σ = nil. The condition for a state σ to
match an assertion P , written σ |=P , is defined inductively
by:

σ |= ⊥ never
σ |= (e 7→ e′) iff dom(h) = {[[e]]σ} and

h([[e]]σ) = [[e′]]σ
σ |= e1 = e2 iff [[e1]]σ = [[e2]]σ
σ |= emp iff dom(h) = ∅
σ |= P1⇒P2 iff σ|=P1 implies σ|=P2

σ |= P1 ∗ P2 iff there exist σ1 and σ2 such that
σ = σ1 ∗ σ2; σ1|=P1 and σ2|=P2

σ |= P1 −∗ P2 iff for all σ1 such that σ⊥σ1,
σ1|=P1 implies σ ∗ σ1|=P2

We may define as usual the connectives ∧,∨,>,¬ ,⇔ in
the obvious way. We also introduce two monotonic1 asser-
tions:

(e ↪→ e′)
def
= (e 7→ e′) ∗ >

size ≥ n
def
= ¬ emp ∗ . . . ∗ ¬ emp| {z }

n times

In the remainder, we take these as primitive, which allows
us to encode e 7→ e′ and emp assertions by boolean combina-
tions (on the contrary, it is not possible to encode (e ↪→ e′)
and size ≥ n from e 7→ e′ and emp using boolean combina-
tions – this point is also discussed in conclusion). We call
classical fragment the set of assertions given by the following
grammar:

P ::= P⇒P | ⊥ | (e ↪→ e′) | e1 = e2 | size ≥ n .

We will note w(P) for the maximal n such that size ≥ n is
a subassertion of P , and E(P) for the set of subexpressions
of P . We call pointing assertion an assertion of the form
e ↪→ e′, equality assertion one of the form e1 = e2, and size
assertion one of the form size ≥ n; any such assertion is said
to be atomic.

Our main result is the following:

Theorem 2.1. For all assertion P , there exists a classi-
cal assertion P ′ such that |=P ⇔ P ′.

At the same time, we also prove the following result: the
monotonic (indeed atomic) fragment is as separative as the
whole language, that is if two states satisfy the same mono-
tonic assertions, then they satisfy the same assertions.

3. INTENSIONAL EQUIVALENCE
Before presenting the definition of the intensional equiva-

lence, some interesting properties of atomic classical asser-
tions are worth mentioning:

• Pointing assertions and equality assertions are stable,
that is if σ, σ′|=P and there is τ s.t. τ ≥ σ, σ′, then
σ ∩ σ′|=P . We hence may define, given a statisfiable
theory Φ of pointing or equality assertions and a model
σ, the minimal submodel σΦ such that σΦ ≤ σ and
σΦ|=Φ.

• Pointing assertions are local, that is σ ∗ σ′|=P implies
σ|=P or σ′|=P .

• Equality assertions are global, that is σ|=P implies
σ′|=P when σ′ ≤ σ or σ′ ≥ σ. In other words, equality
assertions depend only on the store.

1or intuitionistic, using the terminology of [6], that is asser-
tions P such that σ|=P implies σ′|=P for all σ′ ≥ σ.

Note that the last two points would fail when considering
expressions with lookup.

The encoding is based on a notion of equivalence between
states that is reminiscent of intensional bisimilarity in the
context of process algebras [2]. Let E be a finite set of
expressions, and w and integer. We say that two states σ and
σ′ are intensionally equivalent for E,w, written σ ≈E,w σ′,
if for all classical assertion P with E(P) ⊆ E and w(P) ≤ w
σ|=P ⇔ σ′|=P .
Remarks:

• This definition amounts to say that σ and σ′ satisfy
the same atomic classical assertions P with E(P) ⊆ E
and w(P) ≤ w.

• Let us write w(σ) =]dom(h). Given three natural
numbers a, b, w, we write a =w b if either a = b or
a, b ≥ w. Then σ ≈E,w σ′ iff w(σ) =w w(σ′) and σ, σ′

satisfy the same pointing and equality assertions with
expressions in E.

We now state some structural properties of ≈E,w:

Lemma 3.1 (Composition). For all σ1, σ2, σ
′
1, σ

′
2 such

that σ1⊥σ2 and σ′1⊥σ′2, if σ1 ≈E,w σ′1 and σ2 ≈E,w σ′2
then σ1 ∗ σ2 ≈E,w σ′1 ∗ σ′2.

Proof. The theory of equality assertions of σ1 ∗σ2 is the
same as for σ1 and σ2, and the theory of pointing assertions
of σ1 ∗ σ2 is the union of the theories for σ1 and σ2. As
for size assertions, we have w1 =w w2, w

′
1 =w w′2 implies

w1 + w2 =w w′1 + w′2. 2

Lemma 3.2 (Orthogonalisation). For all σ1, σ2, σ
′
1

such that σ1⊥σ2, and σ1 ≈E,w σ′1, there is σ′2 such that
σ2 ≈E,w σ′2 and σ′1⊥σ′2.

Proof. Since σ1 ≈E,w σ′1, for all variables x, y ∈ v(E),
it holds that s(x) = s(y) iff s′(x) = s′(y). Let ψ :
s(v(E)) → s′(v(E)) be the bijective function such that ψ ◦
s(x) = s′(x) for all x ∈ v(E). Let σ′2 be defined with the
same store s′ as σ′1, and the heap h′2 = hdef ∗ hgarb, as
follows:

1) dom(hdef) = ψ(s(v(E))∩dom(h2)), and for all x ∈ v(E)∩
s−1(dom(h2)), h

′
2 ◦ ψ ◦ s(x) = ψ ◦ h2 ◦ s(x);

2) dom(hgarb) and codom(hgarb) are taken fresh, with the
only condition that w(hgarb) = w(h2)− w(hdef).

Then dom(h′1) ∩ dom(h′2) = dom(h′1) ∩ dom(h′def) =
ψ(dom(h1) ∩ dom(h2) ∩ s(v(E))) = ∅, so σ′1⊥σ′2. Moreover
σ2, σ

′
2 satisfy the same equality assertions since this was al-

ready the case for σ1, σ
′
1 with the same stores. They also

satisfy the same pointing assertions by construction, and
w(σ∗σ2) = w(σ1)+w(σ2) =w w(σ′1)+w(σ2) = w(σ′1∗σ′2).

2

Lemma 3.3 (Arithmetic splitting). For all n1, n2,m1,
m2,m

′, w such that n1 + m1 + n2 + m2 =2w n1 + n2 +
m′, there are m′

1,m
′
2 such that m′ = m′

1 + m′
2 and nε +

mε =w nε +m′
ε (ε = 1, 2).

Proof. If n1 + m1 < w and n2 + m2 < w we have the
standard equality and the lemma is trivial. Otherwise we
may assume by symmetry that n1 + m1 ≥ w. We then
set m′

2 = max(0,min(m2, w − n2)) and m′
1 = m′ − m′

2.

Then n2 + m′
2 = n2 + m2 or = w, and in both cases n2 +

m′
2 =w n2 +m2. Substracting n2 +m′

2 in n1 +m1 + n2 +
m2 =2w n1 +n2 +m′, we get n1 +m′−m′

2 =w n1 +m1 +
m2 −m′

2 ≥ n1 +m1 ≥ w, so n1 +m′
1 =w n1 +m1. 2

Lemma 3.4 (Splitting). For all σ, σ′ such that σ ≈E,2w

σ′, if σ = σ1 ∗σ2, then there are σ′1, σ
′
2 such that σ′ = σ′1 ∗σ′2

and σε ≈E,w σ′ε (ε = 1, 2).

Proof. Let Φε be the theory of pointing assertions satis-
fied in σε. Then σ′Φ1⊥σ

′
Φ2 (by equality assertions), and the

pointing assertions satisfied by σ′Φε
are exactly Φε. We then

have σ′ = σ′Φ1 ∗ σ
′
Φ2 ∗ τ

′, σε = σΦε ∗ τε with τ ′, τ1, τ2 some
states having an empty theory of pointing assertions. The
size measure condition is then w1+w2+w(τ1)+w(τ2) =2w w1+
w2+w(τ ′) where wε = w(σΦε) = w(σ′Φε

). Applying Lemma 3.3,
we have a spliting τ ′ = τ ′1∗τ ′2 such that wε+w(τε) =w wε+
w(τ ′ε). Then σ′ε = σΦε ∗ τ ′ε establishes the lemma. 2

4. TRANSLATION
Given an assertion P , we define its splitting degree, spl(P),

by induction as follows:

spl(e 7→ e′) = 1
spl(e1 = e2) = −∞

spl(⊥) = −∞
spl(emp) = 0

spl(P1⇒P2) = max
`
spl(P1), spl(P2)

´
spl(P1 −∗ P2) = max

`
spl(P1), spl(P2)

´
spl(P1 ∗ P2) = max

`
spl(P1), spl(P2)

´
+ 1

Proposition 4.1 (Correction). If σ ≈E,w σ′ and P

is an assertion such that E(P) ⊆ E, 2spl(P) ≤ w, then

σ |=P ⇔ σ′ |=P .

Proof. By induction on P :

• if σ|=(e 7→ e′), then σ|=(e ↪→ e′), and so σ′|=(e ↪→ e′).
Moreover w(σ) = 1 =2 w(σ′), so w(σ′) = 1, that is
σ′|=(e 7→ e′).

• σ|=e1 = e2 iff σ′|=e1 = e2 by definition of ≈E,w.

• σ|=emp iff σ|=¬ (size ≥ 1), that is iff σ′|=¬ (size ≥ 1)
since w ≥ 1.

• the cases for assertions ⊥ and P1⇒P2 are straightfor-
ward by induction.

• the case of assertion P1 ∗ P2 follows from Lemma 3.4.

• if σ|=P1 −∗ P2, we consider σ′1⊥σ′ such that σ′1|=P1,
and prove that σ′1 ∗ σ′|=P2. By Lemma 3.2, there is
σ1 ≈E,w σ′1 such that σ1⊥σ. By induction, σ1|=P1, so
σ ∗ σ1|=P2. By Lemma 3.1, σ1 ∗ σ ≈E,w σ′1 ∗ σ′, so
by induction σ′ ∗ σ′1|=P2.

2

We write ΦE,w for the set of atomic assertions P such that
E(P) ⊆ E and w(P) ≤ w. For E finite, ΦE,w is finite as
well. This has two important consequences:

Proposition 4.2 (Precompactness). For all w and
all finite E, ≈E,w has only finitely many classes.

Proof. A class is represented by a subset Φ ⊆ ΦE,w of
atomic assertions that are the ones satisfied by any state of
the class. So there are less than 2]ΦE,w distinct classes. 2

Proposition 4.3 (Characteristic formula). For all

state σ, for all E,w, there is a classical assertion F
(E,w)
σ

such that

∀σ′. σ′|=F (E,w)
σ iff σ ≈E,w σ′ .

Proof. Take^
σ|=P,P∈ΦE,w

P ∧
^

σ 6|=P,P∈ΦE,w

¬P .

2

We may now establish Theorem 2.1 noticing that any as-
sertion P is equivalent to the classical assertion:_

C∈State/≈E,w
,C|=P

F
(E,n)
C ,

where finiteness of this disjunction is ensured by Proposi-
tion 4.2.

5. CONCLUSION
We defined a classical fragment of the separation logic,

excluding both ∗ and −∗ , and proved it to be as expressive
as the full separation logic. Our approach shows also that
all the separative power of the logic lies in the monotonic
fragment.

An elimination property for a connective equivalent to
−∗ has been previously established for another spatial logic
[4]. For the separation logic, it is even possible to elimi-
nate spatial conjunction, which cannot hold for other spa-
tial logics where multiple copies of the same structure may
coexist. The use of equality assertions is essential for that
(Lemmas 3.2 and 3.4), since the ∗ connective does express
distinctions between pointers. For instance, x ↪→ −∗y ↪→ −
says that x 6= y. Equalities would probably play also an es-
sential role in an encoding involving quantifiers, as a coun-
terexample in [4] tends to show.

When defining our classical fragment, we had to move
from the assertions e 7→ e′ and emp to e ↪→ e′ and size ≥ n
in order to capture the ∗ connective. This would not happen
for an assertion language with lookup and quantifiers, where
the only necessary atomic assertions are equality assertions.

We do not study effectiveness of the translation, but it
could probably be proved. However, our approach seems in-
dependent from decidability issues since, if we admit that it
extends to logics with quantifiers, we could establish equiva-
lence between a logic that admits a decidable model-checking
problem (the classical one) and a logic that does not have
it (as established in [1]). This also happens in the setting
of [4].

We do not know wether our result remains true for richer
assertion languages and wheter our proof is the right strat-
egy to look at this problem. However, we conjecture that
the classical logic should always be liable to express any
separative assertion.

6. REFERENCES
[1] C. Calcagno, H. Yang, and P. O’Hearn. Computability

and Complexity Results for a Spatial Assertion
Language for Data Structures. In Proceedings of
FSTTCS ’01, volume 2245 of LNCS. Springer Verlag,
2001.

[2] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability,
Expressiveness and Decidability in the Ambients Logic.
In 17th IEEE Symposium on Logic in Computer
Science, pages 423–432. IEEE Computer Society, 2002.

[3] C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM, pages
12(10):576–580, october 1969.

[4] E. Lozes. Adjunct elimination in the static ambient
logic. In Proceedings of Express ’03, 2003.

[5] J. Reynolds. Intuitionistic reasoning about shared
mutable data structure, 2000.

[6] J. Reynolds. Separation logic: a logic for shared
mutable data structures. 2002.

