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ABSTRACT
We define an information flow type system for a sequen-
tial JVM-like language that includes classes, objects, and
exceptions. Furthermore, we show that it enforces non-
interference. Our work provides, to our best knowledge,
the first analysis that has been shown to guarantee non-
interference for a realistic low level language.

Categories and Subject Descriptors
D.3 [Programming Languages]: Miscellaneous

General Terms
Security, Languages, Verification

Keywords
Confidentiality, Type Systems, Low Level Languages

1. INTRODUCTION
The Java security architecture combines static and dy-

namic mechanisms to enforce innocuousness of applications;
however it lacks of appropriate mechanisms to guarantee
stronger properties w.r.t. confidentiality, integrity, or re-
source control. The purpose of this article is to introduce
a mechanism for enforcing confidentiality of applications, in
the form of an information flow type system for a represen-
tative fragment of the JVM, and to show that the type sys-
tem guarantees non-interference, a high-level security prop-
erty that guarantees the absence of illicit information flows
during a program execution. In a nutshell, our notion of
non-interference assumes variables to be either public (low)
or secret (high), and requires that the initial values of secret
variables do not influence the final values of public variables.

While information flow type systems have been thoroughly
studied in the context of high-level languages, see e.g. [1]
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for an information flow type system for Java, there is no
previous analysis that has been shown to guarantee non-
interference for a realistic assembly language. In fact, ex-
isting works either prove the correctness of information flow
type systems for very simple assembly languages, or define
information flow type systems for large fragments of the
JVM, but do not establish their correctness. In contrast,
our analysis is proven correct, and encompasses some major
features of the JVM: objects, exceptions, and method calls.
The work builds upon known techniques, especially from [1]
and [2], but solves a number of non-trivial difficulties due to
the complexity of the language. Due to space constraints, it
is not possible to present all difficulties and their solutions in
detail, and we omit method calls, except for a brief sketch,
focusing on objects and exceptions.

In addition to soundness, the main features of our anal-
ysis are its decidability and compatibility w.r.t. bytecode
verification (however, our analysis does not assume that pro-
grams are accepted by the bytecode verifier, see Section 5.4),
and its relative accuracy (like every static analysis, it will
reject correct programs; however we have shown that Java
programs accepted by the analysis in [1] are compiled into
programs that are accepted by our analysis, see Section 6).

Following [17], we opt for an incremental presentation,
and analyze fragments of the JVM in layers:

• JVMI includes basic operations to manipulate operand
stacks as well as conditional and unconditional jumps.
The type system and its soundness proof are adapted
from our earlier work [2]. One of the main difficulties
is to calculate the range of branching statements (we
circumvent the problem by defining our type system
relative to a control dependence region analysis, with
the added benefit of achieving a parametric analysis of
varying precision);

• JVMO is an object-oriented extension of JVMI which
includes features dynamic object creation, instance field
accesses and updates. The main complication of this
layer is to adapt the definition of non-interference so
as to keep track of the security levels of the new ob-
jects created in the heap. We adopt the solution of [1],
which studies information flow for a Java-like language
(without exceptions), and define indistinguishability
relative to a partial bijection on memory locations;

• JVME extends JVMO with exceptions. Our goal here
is to show how exceptions can be handled in an infor-
mation flow analysis for a low-level language. There-
fore, we stick to a simple setting with only one kind



instr ::= prim op primitive operation
| push v push value on top of stack
| pop pop value from top of stack
| load x load value of x on stack
| store x store top of stack in x
| ifeq j conditional jump
| goto j unconditional jump
| return return

where op is + or ×, v ∈ V, x ∈ X , and j ∈
�
.

Figure 1: Instruction set for JVMI

of exceptions, and show how a sound type system that
accommodates exceptions can be obtained simply by
a mild adaptation of the control dependence region
analysis.1

Further language features, decidability issues, and the rela-
tionship between our type systems and bytecode verification
are briefly discussed in Section 5.

Preliminaries. For every function f ∈ A → B, x ∈ A and
v ∈ B, we let f ⊕{x 7→ v} denote the unique function f ′ s.t.
f ′(y) = f(y) if y 6= x and f ′(x) = v.

Further, we let A? denote the set of A-stacks for every set
A. We use hd and tl and :: and ++ to denote the head and
tail and concatenation and cons operations on stacks.

Throughout the paper, we assume given a set X of local
variables, and a partial order S of security levels. For sim-
plicity, we assume that S = {L, H} with L ≤ H, where H
is the high level for confidential data, and L is the low level
for observable data.

2. THE JVMI SUBMACHINE: SYNTAX AND
SEMANTICS

In this section, we define an information flow type sys-
tem for a simple assembly language. Most definitions are
adapted from [2].

2.1 Programs, memory model and operational
semantics

A JVMI program P is given by its list of instructions,
taken from the instruction set of Figure 1, and its set X
of local variables. We let PP = {1 . . . n} denote the set of
program points of P , where n is the length of the instruction
list of P .

Then, the set StateI of JVMI states is defined as the set
of triples 〈i, ρ, s〉, where i ∈

�
is the program counter that

points to the next instruction to be executed; ρ ∈ X → V is
a mapping from local variables to values, where the the set
V of values is defined as � ; s ∈ V? is an operand stack.

Finally, the operational semantics, which formalizes one-
step execution of the JVMI , is given in Figure 2 as a relation
; such that ;⊆ StateI × (StateI + V). We let ;

? denote
the transitive closure of ;, and write P, ρ ⇓ v as a shorthand
for 〈1, ρ, ε〉 ;

? v.

1Designing precise information flow type systems for lan-
guages with several kinds of exceptions has been studied
notably in [13, 15]. Dealing with different kinds of excep-
tions at the level of the JVM is left for future work, see

P [i] = prim op op ∈ � n1 op n2 = n

〈i, ρ, n1 :: n2 :: s〉 ; 〈i + 1, ρ, n :: s〉

P [i] = pop

〈i, ρ, v :: s〉 ; 〈i + 1, ρ, s〉

P [i] = load x

〈i, ρ, s〉 ; 〈i + 1, ρ, ρ(x) :: s〉

P [i] = store x

〈i, ρ, v :: s〉 ; 〈i + 1, ρ⊕{x 7→ v}, s〉

P [i] = goto j

〈i, ρ, s〉 ; 〈j, ρ, s〉

P [i] = ifeq j n 6= 0

〈i, ρ, n :: s〉 ; 〈i + 1, ρ, s〉

P [i] = ifeq j

〈i, ρ, 0 :: s〉 ; 〈j, ρ, s〉

P [i] = push n

〈i, ρ, s〉 ; 〈i + 1, ρ, n :: s〉

P [i] = return

〈i, ρ, v :: s〉 ; v

Figure 2: Operational Semantics for JVMI

2.2 Non-Interference
Non-interference is defined relative to a mapping vt : X →

S that expresses the security policy by assigning a security
level to local variables2.

Definition 1 (non-interfering JVMI program).

1. The indistinguishability relation v ∼k v′ (where v, v′ ∈
V and k ∈ S) is defined as k = H∨v = v′. The relation
is extended pointwise to maps3: for ρ, ρ′ : X → V, we
have ρ ∼vt ρ′ if for all x ∈ X , ρ(x) ∼vt(x) ρ′(x).

2. A program P is non-interfering, written NI(P ), if for
every ρ, ρ′, v, v′, we have that P, ρ ⇓ v, and P, ρ′ ⇓ v′,
and ρ ∼ ρ′ imply v ∼L v′, i.e. v = v′.

The above definition assumes that an attacker has the ability
to see the initial memory of the program, and its final result.
It is a variant of termination-insensitive information flow
adapted to the JVMI .

2.3 Type System
In this section, we define an information flow type sys-

tem that guarantees non-interference. The type system is
described by an abstract transition relation that operates
on annotated programs, i.e. programs with extra security
annotations.

2.3.1 Control dependence region
The type system is parameterized by abstract control de-

pendence regions. These regions are used by the type sys-
tem to prevent implicit flows of information. A control de-
pendence region computes (an over-approximation of) the
range of branching instructions. Formally, we define for
every program P its set of conditional control points as

Section 5.
2We assume that the security level of local variables is fixed
throughout execution. Such an assumption restricts the pos-
sibility of reusing variables throughout execution. However,
it should be possible to extend the results of this paper to
allow variable reuse.
3Strictly speaking, we should write ∼vt, but usually we sim-
ply write ∼ since there is no risk of confusion.



PP] = {i ∈ PP | P [i] = ifeq j} and assume given two
functions

region : PP] → ℘(PP)
jun : PP] ⇀ PP

that respectively compute the control dependence region
and the junction point of an instruction at a given program
point.

The successor relation 7→⊆ PP × PP of a program p is
defined by the clauses (we write i 7→ j instead of i, j ∈7→):

• if p[i] = goto j, then i 7→ j;

• if p[i] = ifeq j, then i 7→ i + 1 and i 7→ j;

• if p[i] = return, then i has no successors, which we
write i 7→;

• otherwise, i 7→ i + 1.

We let 7→? be the reflexive and transitive closure of 7→. Fur-
thermore, we assume the functions to satisfy some min-
imal properties, which are required in the proof of non-
interference. Intuitively these properties state that the suc-
cessors of a branching instructions i are in its region and a
successor instruction that is not in its region is a junction
point (i.e. an instruction that in any execution is a successor
of i) or a successor of this (unique) junction point.

Property 1. [Safe Over Approximation Property - SOAP]
Let i ∈ PP].

• If i′ 7→ i′′, and i′ ∈ region(i) or i′ = i, then i′′ ∈
region(i) or i′′ = jun(i);

• If i 7→? i′, and i′ ∈ PP] ∩ region(i) then region(i′) ⊆
region(i);

• If jun(i) is defined, then jun(i) 6∈ region(i) and for all
i′ s.t. i 7→? i′ then i′ 7→? jun(i) or jun(i) 7→? i′.

Note that it is always possible to find functions region and
jun that satisfy the SOAP property, simply by defining the
region of a program point as the whole set of all program
points of the program. While such a choice is possible, it is
not judicious since the precision of the type system directly
depends on the precision of these functions.

2.3.2 Abstract transition relation
In the sequel, we let ST be S?, and SE be PP → S.

Elements of ST and SE are called stack types and security
environments respectively. The set tstate of (security) types
is defined as ST × SE .

The type system is defined through an abstract transition
system, which manipulates pairs st, se where: st is a stack
type that records the security level of values in the operand
stack, and se is a security environment which provides for
each program point an upper bound for the security level of
the regions in which it is included. The transfer rules are of
the form

constraints

i ` st, se ⇒ st′, se′
constraints

i ` st, se ⇒

and determine typing constraints for instructions to be exe-
cuted, and their successors, see Figure 3; in particular, they
prevent direct flows and also indirect flows by forbidding
assignments to low variables in high regions. We briefly
comment on the essential rules.

• The transfer rule for an instruction store x prevents
direct flows by requiring that the value on top of the
operand stack has a security level k such that k ≤
vt(x). By requiring that se(i) ≤ vt(x), the rule to-
gether with the rule for ifeq also prevents implicit flows:
se(i) will be H if the store instruction is under the in-
fluence of a high ifeq.

• The transfer rule for ifeq updates the security environ-
ment (for program points in the control dependence
region of the ifeq instruction) and the operand stack,
so as to prevent implicit flows. The following example
illustrates the need for lifting the operand stack.

Example 1.

1 push 1
2 store xL

3 load xL

4 push 0
5 load yH

6 ifeq 8
7 store yH

8 store xL

This program is interfering because the value of yH

may leak to xL. This program is rejected by the type
system parameterized by region(6) = {7} thanks to the
ifeq rule which lifts the operand stack.

• The transfer rule for return requires se(i) = L, so as to
avoid that programs return from inside an high ifeq,
which could lead to an indirect flow. In addition, the
rule requires that the value on top of the operand stack
has a security level L, since it will be observed by the
attacker. The following example illustrates the need
for preventing return instructions in high regions.

Example 2.

1 push 3
2 store xL

3 load yH

4 ifeq 7
5 push 2
6 return

7 push 4
8 load xL

9 return

This program is interfering because of a return in a high
ifeq. This program is rejected by the type system (pa-
rameterized, for example, by region(4) = {5, 6, 7, 8, 9})
thanks to the ifeq rule which lifts the security environ-
ment, and to return rule which prevents the program
from returning in a high security environment.

2.3.3 Typability
Although not essential for our purposes, we opt for a poly-

variant analysis as in [6] and consider judgments of the form

S ` P where S : PP → ℘(tstate); in the sequel we write Si

instead of S(i). Further, S ` P is set to hold iff (ε, se1) ∈ S1

for some se1 and for all i, j ∈ PP and all (st, se) ∈ Si:

1. i 7→ j ⇒ ∃(st′, se′) ∈ Sj . i ` (st, se) ⇒ (st′, se′);



P [i] = goto j

i ` st, se ⇒ st, se

P [i] = store x se(i) t k ≤ vt(x)

i ` k :: st, se ⇒ st, se

P [i] = prim op

i ` k1 :: k2 :: st, se ⇒ k1 t k2 t se(i) :: st, se

P [i] = load x

i ` st, se ⇒ (vt(x) t se(i)) :: st, se

P [i] = pop

i ` k1 :: st, se ⇒ st, se

P [i] = ifeq j

i ` k :: st, se ⇒ liftk(st), liftk(se, region(i))

P [i] = push n

i ` st, se ⇒ se(i) :: st, se

P [i] = return se(i) t k = L

i ` k :: st, se ⇒

where t denotes the lub of two security levels, and for every k ∈ S

• liftk is the point-wise extension to stack types of λl. k t l;

• liftk(se, R) is the point-wise extension to all program points
in R of λl. k t l.

Figure 3: Transfer rules for instructions in JVMI

2. i 67→ implies i ` (st, se) ⇒.

The first property requires that every time there is a possible
step from i to j then there is also an abstract step from
i to j using the transfer rules of the abstract semantics.
This is needed to assure that every possible step done by
the operational semantics verifies the constraints imposed
by the transfer rules of the abstract semantics. Likewise, the
second requirement is to assure that constraints for return

are verified. We say a program P is typable, written ` P , if
there exists S s.t. S ` P .

2.3.4 Soundness
The type system is sound, as stated in the proposition

below. Note that the proposition does not assume that P
passes the standard bytecode verification, but is true a for-
tiori for programs that do.

Proposition 1. Let P be a typable JVMI program. Then
P is non-interfering.

Soundness is established by a general method, whose idea
is to define a notion of state indistinguishability that cap-
tures some appropriate invariant, and thus is preserved un-
der execution (the latter has different meanings depending
whether a “high” instruction or a “low” instruction is ex-
ecuted, the level of the instruction being determined by
a security environment). The main difficulty in defining
state indistinguishability resides in defining a good notion
of operand stack indistinguishability: in order to account
for high branching instructions, indistinguishability between
states must encompass states that have operand stacks of
different length. Indistinguishability between operand stacks
is needed to establish the lemmas that claim that during ex-
ecution indistinguishability of states is invariant. Then, the

instr ::= . . .
| new C create new object in the heap
| getfield f load value of field f on stack
| putfield f store top of stack in field f

Figure 4: Instruction set for JVMO

P [i] = new C o = fresh(h, C)

〈i, ρ, s, h〉 ; 〈i + 1, ρ, o :: s, h⊕{o 7→ defaultC}〉

P [i] = getfield f o ∈ dom(h) h(o)(f) = v

〈i, ρ, o :: s, h〉 ; 〈i + 1, ρ, v :: s, h〉

P [i] = return

〈i, ρ, v :: s, h〉 ; v, h

P [i] = putfield f o ∈ dom(h) f ∈ dom(h(o))

〈i, ρ, v :: o :: s, h〉 ; 〈i + 1, ρ, s, h⊕{o 7→ h(o)⊕{f 7→ v}}〉

Figure 5: Operational Semantics for additional
JVMO instructions

lemmas are established by a case analysis on the instruc-
tion being executed and its semantics, using the region safe
over-approximation and inclusion properties.

3. JVMO: THE OBJECT-ORIENTED
EXTENSION OF JVMI

The object-oriented extension JVMO of JVMI includes
instance fields, creation of new instances, and null pointers.
However, we do not deal with object constructors—we as-
sume objects are automatically initialized with default val-
ues.

3.1 Programs, memory model and operational
semantics

Programs are similar to JVMI programs, but also come
equipped with a set C of class names, and a set F of field
names. In addition, the set of JVMO values is defined as
V = � ∪L∪{null}, where L is an (infinite) set of locations.
JVMO programs use an extended set of instructions, given
in Figure 4. Then, the set StateO of JVMO states is defined
as an extension of JVMI states 〈i, ρ, s, h〉, where i, ρ, and s
are defined as in JVMI and h is a heap, that accommodates
dynamically created objects. Heaps are modeled as a partial
function h : L ⇀ O, where the set O of objects is modeled
as F ⇀ V, i.e. as the set of finite functions—i.e. partial
functions with finite domains—from F to V. We let Heap

be the set of heaps.
The operational semantics for the new instructions of JVMO

relies on an allocator function fresh : Heap×C → L, and on a
function default : C → O. It is given in Figure 5 as a relation
; such that ;⊆ StateO×(StateO +(V×Heap)). We let ;

?

denote the transitive closure of ; and write P, µ, h ⇓ v, h′

as a shorthand for 〈1, µ, ε, h〉 ;
? v, h′.

3.2 Non-Interference
Non-interference is defined relative to mappings vt : X →

S and ft : X → S that express the security policy by assign-



ing a security level to local variables and fields respectively.
Following [1], we consider that heaps with different alloca-
tions of “high” objects (i.e. objects that have been created
in a high security environment) may be indistinguishable by
an attacker; therefore indistinguishability is defined relative
to a partial bijection β on locations.

Definition 2 (non-interfering JVMO program).

1. Value indistinguishability v ∼β,l v′, where v, v′ ∈ V
and l ∈ S, is defined by the clauses:

null ∼β,L null v ∼β,H v′

v ∈ �
v ∼β,L v

v, v′ ∈ L β(v) = v′

v ∼β,L v′

Value indistinguishability is extended pointwise to local
variable maps.

2. Two heaps h1 and h2 are indistinguishable (w.r.t. β),
written h1 ∼β h2, if:

• dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2);

• for every o ∈ dom(β), we have dom(h1(o)) =
dom(h2(β(o)));

• for every f ∈ dom(h1)(o), we have h1(o)(f) ∼β,ft(f)

h2(β(o))(f).

3. A program P is non-interfering, written NI(P ), if for
every µ, µ′ ∈ X → V, and h, h′, hf , h′

f ∈ Heap and
v, v′ ∈ V, and partial bijection β on locations, we have
P, µ, h ⇓ v, hf and P, µ′, h′ ⇓ v′, h′

f and µ ∼β µ′ and
h ∼β h′ imply hf ∼β′ h′

f and v ∼β′,L v′ for some
partial bijection β′ ⊇ β.

Note that the definition of non-interference allows for β to
be extended, in order to handle objects that are dynamically
created during execution.

3.3 Type System
The type system for the JVMO is defined similarly to that

of the JVMI .

3.3.1 Control dependence region
The successor relation is extended with the clause i 7→ i+1

for all new instructions. The SOAP properties remain as for
the JVMI .

3.3.2 Abstract transition relation
The abstract transition system of the JVMO extends that

of the JVMI with the typing transfer rules of Figure 6.

• The transfer rule for new adds to the stack type the
security level of the current program point, which is
intuitively the security level of the newly created ob-
ject.

• The transfer rule for putfield requires that k1 ≤ ft(f)
in order to prevent an explicit flow from a high value
to a low field. The constraint se(i) ≤ ft(f) prevents
an implicit flow caused by an assignment to a low field
in a high security environment. Finally, the constraint

P [i] = new C

i ` st, se ⇒ se(i) :: st, se

P [i] = putfield f k1 t se(i) t k2 ≤ ft(f)

i ` k1 :: k2 :: st, se ⇒ st, se

P [i] = getfield f

i ` k :: st, se ⇒ (ft(f) t se(i)) :: st, se

Figure 6: Additional transfer rules for JVMO

k2 ≤ ft(f) prevents that distinct assignments to low
fields are performed due to the class of the object can-
not be statically determined. For example, if the tar-
get object has been created or loaded in a high environ-
ment, then the type system disallows an assignment to
a low field. The following example illustrates the need
for this last constraint.

Example 3.

1 load yH

2 ifeq 5
3 new C

4 goto 6
5 new D
6 push 1
7 putfield f

Program above is interfering if both C and D have a
low field f in common. Indeed, the newly created object
of class C or the newly created object of class D will
have their field f assigned the value 1 depending on the
value of yH . The program is rejected by the type system
(parameterized, for example, by region(2) = {3, 4, 5})
thanks to the ifeq rule which lifts the security envi-
ronment, the new rule which treats the new objects as
high, and the putfield rule which prevents field assign-
ments for high objects in low security environments.
Note that pushing the putfield instruction within the
branches of the ifeq would still result in an interfering
program, that will also be rejected by the type system
for similar reasons.

3.3.3 Typability
Typability is defined as for the JVMI , and we use the

same notation, i.e. ` P , to denote that P is typable.

3.3.4 Soundness
The type system is sound. The proof is similar to that of

Proposition 1.

Proposition 2. Let P be a typable JVMI program. Then
P is non-interfering.

4. THE EXCEPTION-HANDLING
EXTENSION JVME OF JVMO

In this section, we introduce JVME , an extension of JVMO

with an exception handling mechanism. As mentioned in
the introduction, the main objective of this section is to
illustrate how exceptions are handled in an information flow
type system for a low-level language.



4.1 Background and motivation
The purpose of this section is to briefly describe the ex-

ception handling mechanism of the JVM, and compare in-
formally the difference between an information flow type
system for exceptions at source and bytecode levels.

4.1.1 Exception handling in the JVM
In a Java-like language, catching exceptions is handled

with the command try {S1} catch {S2}, where (roughly
speaking) S1 is the piece of code that might produce an
exception and S2 is the code that is executed in the case
that S1 actually throws an exception. At the level of the
JVM, there is no command equivalent to try . . . catch; in-
stead, there is an exception table, i.e. a list of tuples to in-
dicate which is the set of instructions that might produce an
exception (starting program point and final program point
of S1) and, in case an exception is thrown, which is the set
of instructions to execute to handle the exception (starting
program point of S2).

Consider the program P :

try{ yH .f = v ; yH .f
′′ = v; }catch{ this.f

′ = v
′ }

The corresponding compiled program is shown as in Exam-
ple 4. Its exception table consists of a single handler 〈3, 4, 9〉.

4.1.2 Non-interference with exceptions
At the source code level, information leakage is prevented

by considering for commands typing judgments of the form `
c : τ, τ ′ cmd, where τ ′ is a bound on the guards of exceptions
(in contrast to typing judgments of the form ` c : τ cmd for
the fragment without exceptions [1]).4 At the bytecode level,
such implicit flows are prevented in a much more direct way,
namely by modifying the definition of regions so that they
account for exceptions.

Let us return to the example above. The source program
is interfering because the assignment yH .f may throw an
exception, skipping the assignment to yH .f ′′, and causing
an assignment to this.f ′. In Example 4, we explain why the
compiled program is rejected by our type system.

4.2 Programs, memory model and operational
semantics

Programs are similar to JVMO models. However, the in-
struction set of the JVMO is extended with the bytecode
throw and we assume that C contains a distinguished class
Throwable; for the sake of simplicity, our semantics gener-
ates a single kind of exception namely a Throwable object,
as in [8].

Furthermore, we assume that programs come equipped
with a list of exception handlers of the form 〈b, e, t〉, and
a partial function Handler : PP ⇀ E that selects the ap-
propriate handler for a given program point. Intuitively,
if Handler(l) = 〈b, e, t〉, then l ∈ [b, e) and also the con-
trol is transfered to t if the execution at l raises an excep-
tion. We write Handler(l) ↑ if Handler(l) is not defined, and
Handler(l) ↓ otherwise.

Then, the memory model for JVME is the same as JVMO ,
and we let StateE be the set of JVME -states (note that heaps
may contain Throwable objects). Finally, the operational
semantics is defined in Figure 7 as a relation ; such that
;⊆ StateE × (StateE + (V × Heap) + {Abnormal}).
4We use such a type system in our ongoing work on type-
preserving compilation, see Section 6.2.

P [i] = getfield f o = null

o′ = fresh(h,Throwable) Handler(i) = 〈b, e, t〉

〈i, ρ, o :: s, h〉 ; 〈t, ρ, o :: ε, h⊕{o′ 7→ defaultThrowable}〉

P [i] = putfield f o = null

o′ = fresh(h,Throwable) Handler(i) = 〈b, e, t〉

〈i, ρ, v :: o :: s, h〉 ; 〈t, ρ, v :: o :: s, h⊕{o′ 7→ defaultThrowable}〉

P [i] = throw Handler(i) = 〈b, e, t〉

〈i, ρ, o.s, h〉 ; 〈t, ρ, o :: ε, h〉

P [i] = getfield f o = null Handler(i) ↑

〈i, ρ, o :: s, h〉 ; Abnormal

P [i] = putfield f o = null Handler(i) ↑

〈i, ρ, v :: o :: s, h〉 ; Abnormal

P [i] = throw Handler(i) ↑

〈i, ρ, o.s, h〉 ; Abnormal

Figure 7: Operational Semantics for JVME

Note that our semantics does not raise an exception in
case the program is stuck due to stack underflow, or ille-
gal field access or update; instead, the execution gets stuck.
Stuck executions are not considered in our definition of non-
interference, so they are harmless for our results. Further-
more, it is the purpose of bytecode verification to ensure
that no such stuck states occur during execution.

4.3 Non-Interference
Non-interference and state indistinguishability are defined

is a similar way as for the JVMO, but we need to account
for abnormal termination.

Definition 3 (non-interfering JVME program).

1. Let R = (V×Heap)+{Abnormal}. For r, r′ ∈ R and
partial bijection β on locations, the relation r ∼β,L r′

is defined by the clauses Abnormal ∼β,L Abnormal,
and

v ∼β,L v′ h ∼β,L h′

v, h ∼β,L v′, h′

2. A program P is non-interfering, written NI(P ), if for
every µ, µ′ ∈ X → V, and h, h′ ∈ Heap and v, v′ ∈ V,
and partial bijection β, we have P, µ, h ⇓ v, hf and
P, µ′, h′ ⇓ v′, h′

f and µ ∼β µ′ and h ∼β h′ imply h ∼β′

h′ and v ∼β′,L v′ for some partial bijection β′ ⊇ β.

4.4 Type System

4.4.1 Control dependence region
The main difficulty in extending the type system to JVME

is to adapt the definition of control dependence regions.
Firstly, we define PP] as the set

{i ∈ PP | P [i] = ifeq j∨P [i] = putfield f ∨P [i] = getfield f}

Secondly, the definition of successor is extended with the
following clauses:



• p[i] = throw and Handler(i) = 〈b, e, t〉, then i 7→ t;
otherwise, i 7→;

• if p[i] = putfield f , or p[i] = getfield f and furthermore
Handler(i) = 〈b, e, t〉, then i 7→ t.5

To the exception of these modifications, the SOAP proper-
ties remain as for the JVMI .

4.4.2 Abstract transition system
The abstract transition system of the JVME extends that

of the JVMO with the typing transfer rules of Figure 8.

• The new transfer rules deal with instructions that can
throw an exception in a similar way as an ifeq instruc-
tion, in the sense that they lift the program points in
the region of the instruction and the operand stack.
The justification for the lift is the same as for ifeq:
since a branching in the execution is possible, both
branches must be considered with the same level of
security.

• For instructions which may raise an exception, but for
which the exception is handled, we add two rules to
transform the security type for the normal case and
for the exceptional case, as in the operational seman-
tics. Implicit flows are avoided because the region of
an instruction i that can throw an exception must con-
tain both the code for the handler and all successors
of i until the junction point (between the code of the
exception an the successors of i) is reached. The fol-
lowing example illustrates the need of including in the
control dependence region all successors of i until the
junction point.

Example 4.

1 load yH

2 push v
3 putfield f
4 load yH

5 push v
6 putfield f ′′

7 push v
8 return

9 load this
10 push v′

11 putfield f ′

12 goto 7

Program above is interfering if f, f ′, f ′′ are low, if the
exception table is 〈3, 4, 9〉. In a normal execution, the
field f ′′ is assigned the value v, while in an exceptional
execution that part of the code is never reached and
instead the field f ′ is assigned the value v′. Since f ′′

is observable and yH is high, there is an implicit flow
from yH to f ′′. The type system (parameterized, for
example, by region(3) = {4, 5, 6, 9, 10, 11, 12}) rejects
this program, since the instruction putfield f ′′ is in the
region of putfield f , and the transfer rule for the former
lifts the security environment to high, and the transfer
rule for the latter rejects the field assignment.

5Note that we still have i 7→ i + 1 if p[i] = putfield f , or
p[i] = getfield f , so putfield and getfield instructions may
have one or two successors.

P [i] = putfield f ft(f) ≥ k1 (se(i) t k2) = L Handler(i) ↑

i ` k1 :: k2 :: st, se ⇒ liftk2
(st), liftk2

(se, region(i))

P [i] = putfield f ft(f) ≥ k1 t se(i) t k2 Handler(i) ↓

i ` k1 :: k2 :: st, se ⇒ k2 :: ε, liftk2
(se, region(i))

P [i] = getfield f (se(i) t k) = L Handler(i) ↑

i ` k :: st, se ⇒ liftk((ft(f) t se(i)) :: st), liftk(se, region(i))

P [i] = getfield f Handler(i) ↓

i ` k :: st, se ⇒ k :: ε, liftk(se, region(i))

P [i] = throw (se(i) t k) = L Handler(i) ↑

i ` k :: st, se ⇒ k :: ε, se

P [i] = throw Handler(i) ↓

i ` k :: st, se ⇒ k :: ε, se

Figure 8: Additional transfer rules for JVME

• For instructions which may raise an exception, and for
which the exception is not handled, we require that the
security environment at the corresponding program
point is low, to prevent information leakage from rais-
ing within a high region an exception that escapes this
region. We also require that the value which throws
an exception has a low security level. The following
example illustrates the need for this last constraint.

Example 5.

1 load yH

2 push v
3 puftield f

Program above is interfering because, if yH is null the
assignment to the low field f is never performed. The
type system rejects this program, since the instruction
putfield f requires that ft(f) ≥ vt(yH).

4.4.3 Typability
Typability is defined as for the JVMI and JVMO, and we

use the same notation, i.e. ` P , to denote that P is typable.

4.5 Soundness
Throughout this section, we assume that P is a typable

program.

Theorem 1. NI(P ).

In order to prove soundness, we first need to define an ap-
propriate notion of indistinguishability between states. We
have already defined indistinguishability between local vari-
able maps and heaps, so we only need to define indistin-
guishability between operand stacks. We write high (s, st)
if s and st have the same length n and st[i] = H for every
i, 1 ≤ i ≤ n.

Definition 4.

1. Let s, s′ ∈ V? and st, st′ ∈ ST . Then s ∼β,st,st′ s′ is



defined inductively:

high (s, st) high (s′, st′)

s ∼st,st′ s′

s ∼st st′ s′ v ∼β,k v′

v :: s ∼β,k::st,k::st′ v′ :: s′

2. Two states s = 〈i, ρ, os, h〉 and s′ = 〈i′, ρ′, os′, h′〉 are
indistinguishable w.r.t. st, st′ ∈ ST , and a partial
bijection β, written s ∼β,st,st′ s′ iff ρ ∼β ρ′, and
os ∼β,st,st′ os′, and h ∼β h′.

Note that indistinguishability between operand stacks does
not require that the two operand stacks are of the same
length. This more permissive definition of indistinguishabil-
ity is required for the proof of Lemma 1 to go through.

The proof of soundness relies on two lemmas, each of
which is proven by a double case analysis on the instruc-
tion to be executed and on its semantics.

Lemma 1. [One-Step Noninterference in High-Level En-
vironments] Consider two states s = 〈i, ρ, os, h〉 and s′ =
〈i′, ρ′, os′, h′〉 and let (st, se) ∈ Si. Assume that s ; s′ and
high(os, st) and that i ∈ region(j) for some j s.t. for all
i′ ∈ region(j) se(i′) = H and s ∼id,st,st s. Then there exists
(st′, se) ∈ Si′ such that high(os′, st′), and s ∼id,st,st′ s′.

Note that Lemma 1 does not deal with abnormal termina-
tion, since the type system prevents typable programs to
terminate abnormally in a high level environment.

Lemma 2. [One-Step Noninterference in Low-Level Envi-
ronments] Let s1 = 〈i, ρ1, os1, h1〉 and s2 = 〈i, ρ2, os2, h2〉, be
states, and let (st1, se), (st2, se) ∈ Si. Assume that s1 ; s′1,
and s2 ; s′2, and s1 ∼β,st1,st2 s2 for some partial bijection
β on locations. Then one of the following holds:

• s′1 = 〈i′1, ρ
′
1, os

′
1, h

′
1〉 and s′2 = 〈i′2, ρ

′
2, os

′
2, h

′
2〉, and

there exist (st′1, se
′) ∈ Si′

1
and (st′2, se

′) ∈ Si′
2

s.t.

s′1 ∼β′,st′
1
,st′

2
s′2, for some β′ such that β′ ⊇ β. Fur-

thermore, one of the following holds:

1. i′1 = i′2;

2. high(os′1, st
′
1) and high(os′2, st

′
2), and for every j ∈

region(i) se′(j) = H.

• s′1, s
′
2 ∈ R and Then s′1 ∼β,L s′2.

The proof is based on a general method, which has been
used in [2], and formalized in the Coq proof assistant [7].

Proof of Proposition 1. Consider the two execution
paths

s1 ; s2 ; . . . ; sn1

s′1 ; s′2 ; . . . ; s′n2

where

• s1 = 〈1, ρ, ε〉, and s′1 = 〈1, ρ′, ε〉;

• ρ ∼ ρ′;

• sn1
, sn2

∈ R.

By invoking Lemma 2 as long as it applies, we conclude for
some maximal q that sq, s

′
q ∈ R, in which case we are done,

or that sq = 〈iq , µq, osq, hq〉 and s′q = 〈i′q , µ
′
q, os

′
q , h

′
q〉, and

that there exist β′ such that β′ ⊇ β, and (stq, seq) ∈ Siq and
(st′q, se

′
q) ∈ Siq such that sq ∼β′,stq ,st′q

s′q with high (osq, stq)

and high (os′q, st
′
q), and seq(iq) = se′q(i

′
q) = H.

By invoking Lemma 1 as long as it applies on each re-
duction sequence starting from sq and s′q, we can conclude
that there exist sq1 = 〈iq1 , µq1 , osq1 , hq1 〉 and and there ex-
ist s′q2 = 〈i′q2 , µ′

q2 , os′q2 , h′
q2 〉, and (stq1 , seq1 ) ∈ Siq1

and

(st′q2 , se
′
q2) ∈ Siq2

s.t. sq ∼id,stq,stq1
sq1 and s′q ∼id,st′q ,st′q2

sq2 . Using the SOAP property, one concludes that iq1 = i′q2 .
Furthermore, by some transitivity result for the indistin-
guishability relation we have sq1 ∼β′,stq1

,st′q2
s′q2 , so we can

apply Lemma 2 again.

5. DISCUSSION
In this section we briefly discuss extensions, limitations

and decidability issues of our type system.

5.1 Method calls
Although we do not provide details here, we have extended

our analysis to methods, and shown its soundness. The ex-
tension is compatible with the modularity of bytecode ver-
ification, and assumes that methods come equipped with a
security signature

~k1
k3,k4−→ k2

that gives the expected security level of its arguments ~k1, of
its result k2, and its effect k3 on the global store, and the
maximal security level of the security environment where an
exception not handled in the method might be thrown (note
that [1] uses a similar notion of signature, but only considers
~k1, k2, k3 are as in [1] as exceptions are not part of their
language).

The main difficulties are first to extend state indistin-
guishability so that it relates states whose frame stacks are
of different lengths (which is required to handle high method
calls, i.e. method calls that have a high effect on the heap),
second to handle information leakages caused by dynamic
method dispatch, and third of all, to control information
leakage through exceptions that escape from the method in
which they are raised and that are thus propagated to other
methods. The first point is dealt using similar ideas as for
operand stack indistinguishability, and the second point is
handled as in [1], and the third point is handled using k4.

5.2 System exceptions and multiple exceptions
Our operational semantics does not deal with system ex-

ceptions such as OutOfMemory exceptions, and hence our
notion of non-interference does not need to deal with system
exceptions. If we assume the heap to be bounded, informa-
tion leakages may be caused by OutOfMemory exceptions,
as illustrated by the program (where x is high):

load x
ifeq 5
new C

goto 3
return

One brutal solution would be to prevent dynamic object
creation in high-level environments; another rather brutal



solution would be to split the heap into a high-level part,
and a low-level part, so as to avoid that object allocation
leaks information.

Besides, our operational semantics only considers one kind
of exception. It is unimportant for the setting of the JVME

not to have several kind of exceptions (because putfield and
getfield only raise null pointer exceptions), but it is crucial
to account for different kinds of exceptions larger fragments
of the JVM.

We have not yet attempted to consider the possibility
of having several exceptions, since our focus was rather on
how to design a sound informal flow type system for a low-
level language with a simple exception handling mechanism.
However, we believe that it should be possible to adapt ex-
isting work, and in particular the work of Myers [13], which
we briefly describes below.

In the JIF prototype, developed by Myers [13], the static
checker determines for each expression its path label, that
collects the different levels of information transmitted by dif-
ferent possible termination paths (normal termination, ter-
mination through a return, and termination through differ-
ent kinds of exception). This fine-grained labeling is appeal-
ing when dealing with different kinds of exceptions: throw-
ing and catching exceptions does not necessarily taint sub-
sequent computations.

It should be possible for our type system to allow several
types of exceptions by adapting the path labels of [13] to
our setting. To this end, it will be necessary to let control
dependence regions depend on the kind of exception that a
given instruction might throw, and by tracking information
about which exceptions can be thrown in our type system.

5.3 Subroutines
Finally, we have extended our type system with subrou-

tines, i.e. jsr and ret instructions. The main complexity here
is that subroutines yield a complex successor relation, and
that the control dependence regions cannot be computed
syntactically any longer(see [6] to further explanation about
the complexity of verifying programs with subroutines) . In-
stead we need to rely on an address type system, whose ab-
stract states consist of a stack of address types, and of a
map that assigns to every register an address type, where
an address type is defined as {Ret j | j ∈

� +} ∪ {δ}. The
typing transfer rules are of the form

constraints

a, i ` st, se ⇒ st′, se′

constraints

a, i ` st, se ⇒

where a is an abstract state.
We have not proved soundness of our type system for two

reasons. Firstly, the analysis requires two passes over the
program: a first pass to compute the control dependence
regions, and another pass for the information flow analysis.
Secondly, the type system becomes rather complex, and we
believe that machine-checked proofs are required.

5.4 Decidability issues and relation to byte-
code verification

Our information flow type system is decidable, and the
typability of a program might be decided using Coglio’s
variant [6] of Kildall’s algorithm—alternatively, and as long

as we do not deal with polymorphic subroutines, we could
adopt a simpler type system and stick to Kildall’s original
algorithm [10].

Proposition 3. Let P be a JVME program. Then it is
decidable whether ` P holds, provided we impose an upper
bound on the length of the operand stack (remark that we
impose an upper bound on the length of the operand stack
and not the stack of method calls).

The proof follows from the termination of Coglio’s analy-
sis, and from the fact that it characterizes typable programs.

In addition, since the analysis is done methodwise, our
information flow type system is compatible with bytecode
verification algorithms [11], with which it will need to be
combined to handle more complex fragments of the JVM,
including fragments that consider different forms of excep-
tions.

6. CONCLUSION
We have defined an information flow type system that

ensures termination-insensitive non-interference for a repre-
sentative sequential fragment of the JVM. By focusing on
one mainstream language that is used for mobile code, we
hope to contribute to the applicability of information flow
(although, as pointed in [20], there are other important chal-
lenges to address).

6.1 Related work
Sabelfeld and Myers [16] provide an excellent survey of

the literature on non-interference. We refer to their survey
for a more complete overview of related work and only focus
on very closely related work; in particular, we do not discuss
static analyses of object-oriented programs in any detail.

Non-interference for low-level languages has been studied
by Zdancewick and Myers [19] for a λ-calculus with jumps,
and by Barthe, Rezk and Basu [2] for a simple assembly
language, and more recently by Bonelli, Compagnoni and
Medel [5] again for a simple assembly language, using linear
continuations for computing control dependence regions.

Besides, Lanet et al., see e.g. [4], develop a method to
detect illicit flows for a sequential fragment of the JVM. In
a nutshell, they proceed by specifying in the SMV model
checker a symbolic transition semantics of the JVM that
manipulates security levels, and by verifying that an invari-
ant that captures the absence of illicit flows is maintained
throughout the (abstract) program execution. Their ap-
proach has been refined by Bernardeschi and De Francesco,
see e.g. [3], for a subset of the JVM that includes jumps,
subroutines but no method invocation, exceptions, or in-
structions for heap manipulation. However, these works do
not provide a proof of non-interference.

Recently, Genaim and Spoto [9] propose an information
flow analysis for Java Bytecode, using abstract interpreta-
tion and boolean functions. However, their system does not
consider objects.

Non-interference for Java is considered by Banerjee and
Naumann for a non-trivial fragment of Java [1]; variants of
their results have been machine-checked independently by
Strecker [18] and Naumann [14]. The JIF prototype, devel-
oped by Myers [13], provides an information flow analysis
for a very rich fragment of Java; however, its complexity
is such that non-interference for JIF has not been studied
formally.



Non-interference for CAML has also been studied by Pot-
tier and Simonet [15]. They provide a non-interference sound-
ness proof for their type system, which encompasses most
major features of CAML, including exceptions. In their
work, a security level is associated with every exception
name as in [13].

Safety type systems for low-level languages have been stud-
ied e.g. by Morrisett et al. [12], who formalized idealized
versions of a Type Assembly Language (TAL), and proved
type safety results.

6.2 Ongoing and future work
Using the type system of this paper (and its extension

with method calls), and an extension of the type system
of [1] to Middleweight Java with exceptions, we have ex-
tended our earlier results on information flow types pre-
serving compilation [2] and derived non-interference for the
source language (joint work with D. Naumann). While this
result shows that our analysis is sufficiently accurate to ac-
cept a large class of programs, we believe that it can be made
more precise by combining it with effect systems that pro-
vide additional information about the exceptional behavior
of programs, or with assertions. E.g. the program in Exam-
ple 5 is always rejected because field access could throw an
exception; however, we may know from the enclosing con-
text that no exception will be thrown, and an effect system
or an assertion could guide the information flow type system
into accepting the program.

Using the Coq proof assistant [7], we have also formalized
with a general framework to establish non-interference for
low-level languages, and instantiated our framework to the
JVMI (joint work with F. Kammüller). In the future, we
would like to cover larger sequential fragments of the JVM,
including the JVME and its extension with subroutines, ar-
rays, and method calls.

A more ambitious objective would be to address the con-
current aspects of the JVM; however, most works on infor-
mation flow type systems for concurrent languages adopt
a more restrictive notion of non-interference, and prelimi-
nary investigations are required to understand whether one
can get a meaningful definition of termination-insensitive
non-interference in a concurrent setting, or whether one can
adapt our type system to other notions of non-interference
that are better fitted for concurrent settings.
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