
A Correct Abstract Machine for Safe Ambients?

Daniel Hirschkoff1, Damien Pous1, and Davide Sangiorgi2

1 ENS Lyon, France
2 Università di Bologna, Italy

Abstract. We describe an abstract machine, called GcPan, for the dis-
tributed execution of Safe Ambients (SA), a variant of the Ambient Cal-
culus (AC).
Our machine improves over previous proposals for executing AC, or vari-
ants of it, mainly through a better management of special agents (for-
warders), created upon code migration to transmit messages to the target
location of the migration.
We establish the correctness of our machine by proving a weak bisimilar-
ity result with a previous abstract machine for SA, and then appealing
to the correctness of the latter machine.
More broadly, this study is a contribution towards understanding issues
of correctness and optimisations in implementations of distributed lan-
guages encompassing mobility.

Introduction

In recent years there has been a growing interest for core calculi encompassing
distribution and mobility. In particular, these calculi have been studied as a
basis for programming languages. Examples include Join [9], Nomadic Pict [19],
Kells [2], Ambients [6], Klaim [16].

In this paper we study issues of correctness and optimisations in implementa-
tions of such languages. Although our technical work focuses on Ambient-based
calculi, we believe that the techniques can be of interest for the study of other
languages: those mentioned above, and more broadly, distributed languages with
mobility.

The underlying model of the Ambient calculus is based on the notion of
location, called ambient. Terms in Ambient-based calculi describe configurations
of locations and sub-locations, and computation happens as a consequence of
movement of locations. The three primitives for movement allow: an ambient to
enter another ambient (In), an ambient to exit another ambient (Out), a process
to dissolve an ambient boundary and obtain access to its content (Open).

A few distributed implementations of Ambient-like calculi have appeared [10,
11, 17]. The study of implementations is important to understand the usefulness
of the model from a programming language point of view. Such studies have
shown that the open primitive, the most original one in the Ambient model, is
also the most difficult to implement.

? Work supported by european FET - Global Computing project Profundis.

Another major difficulty for a distributed implementation of an ambient-like
language is that each movement operation involves ambients on different hier-
archical levels. For instance, the ambients affected by an out operation are the
moving ambient and its initial and final parents; before the movement is trig-
gered, they reside on three different levels. In [4, 5] locks are used to synchronise
all ambients affected by a move. In a distributed setting, however, this lock-based
policy can be expensive. For instance, the serialisations introduced diminish the
parallelism of the whole system. In [10] the synchronisations are simulated by
means of protocols of asynchronous messages. The abstract machine Pan [11]
has two main differences. The first is that the machine executes typed Safe Am-
bients [13] (SA) rather than untyped Ambients. Typed SA is a variant of the
original calculus that eliminates certain forms of interference in ambients, called
grave interferences. These arise when an ambient tries to perform two different
movement operations at the same time, as for instance n[in h.P | out n.Q | R].
The second reason for the differences in Pan is the separation between the logi-
cal structure of an ambient system and its physical distribution. Exploiting this,
the interpretation of the movement associated to the capabilities is reversed:
the movement of the open capability is physical, that is, the location of some
processes changes, whereas that of in and out is only logical, that is, some
hierarchical dependencies among ambients may change, but not their physical
location. Intuitively, In and Out reductions are acquisition of access rights, and
Open is exercise of them.

In Pan, the implementation of Open exploits forwarders – a common tech-
nique in distributed systems – to retransmit messages coming from the inside of
an ambient that has been opened. These lead to two major problems:

– persistence: along the execution of the Pan, some forwarders may become
useless, because they will never receive messages. However, these are never
removed, and thus keep occupying resources (very often in examples, the am-
bients opened are leaves, and opening them introduces useless forwarders).

– long communication paths: as a consequence of the opening of several ambi-
ents, forwarder chains may be generated, which induce a loss of performance
by increasing the number of network messages.

In this paper, we introduce GcPan, an abstract machine for SA that is
more efficient than Pan. The main improvements are achieved through a better
management of forwarders, which in the GcPan enjoy the following properties:

– finite lifetime: we are able to predict the number of messages that will be
transmitted by a forwarder, so that we can remove the latter once these
messages have all been treated;

– contraction of forwarder chains: we enrich the machine with a mechanism
that allows us to implement a union-find algorithm to keep forwarder chains
short, so as to decrease the number of messages exchanged.

The basis of the algorithms we use (e.g., Tarjan’s union-find algorithm [18])
are well-known. However, adapting them to Ambient-like calculi requires some
care, due to the specific operations proposed by these languages.

We provide a formal description of our machine, and we establish a weak
bisimilarity result between Pan and GcPan. We then rely on the correctness
of the Pan w.r.t. the operational semantics of SA, proved in [11], to deduce
correctness w.r.t. SA.

An original aspect of our analysis w.r.t. the proof in [11] is that we com-
pare two abstract machines, rather than an abstract machine and a calculus.
This involves reasoning modulo ‘administrative reduction steps’ on both sides of
the comparison to establish the bisimulation results. However, the fact that, in
the GcPan, chains of forwarders are contracted using the union-find algorithm
prevents us from setting up a tight correspondence between the two machines.
This moreover entails that standard techniques for simplifying proofs of weak
bisimilarity results (such as those based on the expansion preorder and up-to
techniques) are not applicable. As a consequence, the bisimulation proof in which
the two machines are compared is rather long and complex. Still, deriving the
correctness w.r.t. SA through a comparison with Pan is simpler than directly
proving the correctness of our machine w.r.t. SA. This holds because Pan and
GcPan are both abstract machines, with a number of common features.

We believe that our study can also be of interest outside Ambient-based
formalisms. For instance, the use of forwarders is common in distributed pro-
gramming (see e.g. [7, 9]). However, little attention has been given to formal
specification and correctness proofs of the algorithms being applied. The formal-
isation of the management and optimisations of forwarders that we provide and,
especially, the corresponding correctness proof should be relevant elsewhere.

Outline of the paper. We present the design principles of the GcPan in Sect. 1.
We then give the formal definition of the machine in Sect. 2, and describe the
correctness proof in Sect. 3. Sect. 4 gives concluding remarks.

1 The Machine: Design Principles

We introduce the Safe Ambients (SA) calculus [14] and the Pan abstract ma-
chine [11]. We then present our ideas to remedy to some inefficiencies of Pan.

1.1 Safe Ambients

The SA calculus is an extension of the Mobile Ambients calculus [6] in which a
tighter control of movements is achieved though co-capabilities. The four main
reduction rules are:

a[in b.P | Q] | b[in b.R | S] 7−→ b[a[P | Q] | R | S] (IN)
b[a[out b.P | Q] | out b.R | S] 7−→ a[P | Q] | b[R | S] (OUT)

open b.P | b[open b.Q | R] 7−→ P | Q | R (OPEN)
〈M〉 | (x)P 7−→ P{M/x} (COM)

Co-capabilities and the use of types (notably those for single-threadedness)
make it possible to exclude grave interferences, that is, interferences among pro-
cesses that can be regarded as programming errors (as opposed to an expected

form of non-determinism). A single-threaded (ST) ambient can engage in at most
one external interaction, at any time its local process has only one thread (or
active capability). In the sequel, when mentioning well-typed processes, this will
be a reference to the type system of [14]. One of the benefits of the absence of
grave interferences is that it is possible to define simpler abstract machines and
implementations for ambient-based calculi: some of the synchronisation mecha-
nisms needed to support grave interferences in a distributed setting [10] are not
necessary (other possible benefits of SA, concerning types and algebraic theory,
are discussed in [14]).

The modifications that yield typed SA have also computational significance.
In the Mobile Ambient interaction rules, an ambient may enter, exit, or open
another ambient. The latter ambient undergoes the action; it has no control on
when the action takes place. In SA this is rectified: a movement is triggered only
if both participants agree. Further, the modifications do not seem to exclude
useful programming examples. In some cases the SA programs can actually be
simpler, due to the tighter control over interferences. We refer to [14] for details.

1.2 The Pan

The Pan [11] separates the logical distribution of ambients (the tree structure
given by the syntax) from their physical distribution (the actual sites they are
running on). An ambient named n is represented as as a located agent h: n[P]k,
where h is the physical location, k the location of the parent of the ambient, and
P is its local process. There can be several ambients named n, but a location h
uniquely identifies an ambient. The physical distribution is flat, so that the SA
process a[b[c[] | P] | d[Q]] is represented by the parallel composition (also called
net) h1: a[]root ‖ h2: b[P]h1

‖ h3: c[]h2
‖ h4: d[Q]h1

. For the sake of simplicity,
and when this does not lead to confusion, we sometimes use a to refer to the
location of an ambient named a.

In the Pan, an ambient has only access to its parent location and to its
local process: it does not know its sub-ambients. This simplifies the treatment
of ambient interactions: communication between locations boils down to the
exchange of asynchronous messages (while manipulating lists of child locations
would mean setting many synchronisation points along computation).

In the Pan an ambient interaction is decomposed into three steps: an ambient
that wants to move first sends a request message to its parent and enters in wait
state. The father ambient then looks for a valid match to this request, and,
upon success, sends appropriate completion messages back, using the location
names contained in the request messages. The scenarios corresponding to the
three kinds of movement are depicted in Fig. 1, where white squares (resp. grey
squares) represent locations (resp. locations in wait state), and arrows indicate
messages.

We remark that, for In and Out moves, the decision is taken by the parent
of the moving ambient. Also note that in the Out move, the grandparent, that
actually receives a new child, does not take part in any interaction: this follows

Fig. 1. Simulation of the SA reductions by the Pan.

the design of Pan, in which the relation between parent and child ‘goes upwards’.
Moreover, performing an In or Out movement does not trigger any physical
migration in the Pan, only the logical distribution of ambients is affected.

On the other hand, in an Open move, the code of the process that is local
to the ambient being opened (a in Fig. 1) is sent to the parent ambient (via a
reg message). Indeed, b has no access to its children, and hence it cannot inform
them to send their requests to b instead of a. The solution adopted in the Pan

is to use forwarders: any message reaching a will be routed to b by an agent
represented by a triangle in Fig. 1, and denoted by ‘h B k’ in the following (h
and k being the locations associated respectively to a and b).

The logical structure of the Pan is hence a tree whose nodes are either located
ambients or forwarders. Request (resp. completion) messages are transmitted
upwards (resp. downwards) along the tree.

The design ideas that we have exposed entail two major drawbacks in the
execution of the Pan: persistence of forwarders (even when there are no sub-
ambients and therefore no message can reach the forwarder), and long forwarder
chains which generate an overload in terms of network traffic.

1.3 The GcPan

We now explain how we address the problems exposed above, and what influence
our choices have on the design of the Pan.

Counters. A forwarder can be thought of as a service provided to the children
of an opened ambient. Our aim is to be able to bring this service to an end
once there are no more children using it. At the same time, we wish to preserve
asynchrony in the exchange. For this, GcPan agents are enriched with a kind
of reference counter. Forwarders have a finite lifetime, at the end of which they
are garbage collected. The lifetime of a forwarder intuitively corresponds to the
number of locations that point to it. A counter is decremented each time a

Fig. 2. Depth and local counting. Fig. 3. Problem with depth counting.

message is forwarded. If the counter is zero, then the forwarder is a leaf in the
logical structure of the net and can safely be removed.

We can think of two ways of associating a lifetime to a forwarder (Fig. 2):

– (depth counting) The most natural idea is probably to decorate each located
ambient with the number of immediate sub-ambients it has. In doing this, we
ignore forwarders, because request messages that are routed via forwarders
can only be emitted by located ambients. This solution seems however dif-
ficult to implement, due to the asynchrony in the model. This is illustrated
by Fig. 3: if the ambient marked ‘*’ is opened, the counters along the whole
forwarders chain should be updated before any of the children can send a
message.

– (local counting) In our approach, we only consider the immediate children of
a location (hence the name local), including forwarders. As a consequence, we
may well have the situation where several sub-ambients are ‘hidden’ under a
forwarder, so that the counter at a given location has no direct relationship
with the number of sub-ambients. The difficulty described above does not
arise in this setting: the forwarders chain remains unaffected by the opening,
a located ambient becomes a forwarder, and this does not affect the counting.

Synchronisation problems and blocked forwarders. In the local approach,
one has to be careful in transmitting request messages. Consider for instance the
forwarder marked ‘*’ on the right of Fig. 2: each ambient marked with a circle
can send a request message. The intermediate forwarder cannot forward directly
these two requests, since the ‘*-forwarder’ is willing to handle only one message.
In the GcPan, an agent can send only one message to a given forwarder, and
whenever this message is sent, the agent commits to relocate itself if the agent
it was talking to turns out to be a forwarder.

Implementing this policy is easy for located ambients, that enter a wait state
just after emitting a request message. We only have to decorate completion mes-
sages with the appropriate information for relocation. For forwarders, we need
to devise a similar blocking mechanism: once a forwarder has transmitted a re-
quest message, it enters a blocked state and waits for a go

B
completion message,

which contains the name of the location to which the next request should be for-
warded. Fig. 4 illustrates this (blocked forwarders are represented by reversed,
grey triangles): message {N} is emitted by the grey ambient, and then routed
towards the parent location, which has the effect of blocking forwarders along

Fig. 4. Relocation of forwarders.

the way. When {N} reaches the parent ambient, go
B

messages are generated so
that forwarders can resume execution, just below the parent ambient. This way,
short communication paths between locations are maintained: at the end of the
scenario, message {M} is closer to its destination, without having been routed
yet. The technique we use is based on Tarjan’s union-find algorithm [18].

Remark 1 (Communication protocols). We comment on the way messages are
transmitted in the GcPan:

– (race situations) Having blocked forwarders leads to race situations: consider
the scenario of Fig. 4, where messages {M} and {N} are sent at the bottom
of a chain of forwarders. When {N} goes through the lowest forwarder, {M}
has to wait for the arrival of the former at the top of the chain, so that
a go

B
message is emitted to rearrange forwarders (following the union-find

algorithm). The loss, from {M}’s point of view, is limited: once {N} has
entered the parent location, {M} can reach the latter in three steps (the
go

B
message plus two routing steps).

– (relocation strategy) In the GcPan, the ambient that sits at the end of a
forwarder chain broadcasts a relocation message (go

B
) to all blocked for-

warders in the chain. In a previous version of our machine, this message was
propagated back along the chain, unblocking the forwarders in a sequential
fashion. We prefer the current solution because it brings more asynchrony
(race situations introduced a delay of n + 2 because the relocation message
had to go trough the whole chain in order to unblock all forwarders). On
the other hand, request messages carry more information in our approach
(we need to record the set of forwarders that have been crossed). However,
in practise, we observe that long chains of forwarders are very unlikely to be
produced in our machine, thanks to the contraction mechanism we adopt.
Consequently, such messages have in most cases a rather limited size.

Updating counters along SA movements. Going back to the GcPan tran-
sitions corresponding to the basic SA moves (the match transitions of Fig. 1), we
need to be able to maintain coherent counters along the three kinds of movement.
This is achieved as follows (the names we use correspond to Fig. 1):

In: The overall result of the transition will be that c decrements its counter,
and b increments its counter upon reception of the OKin completion.

Open: counters do not need to be modified.

Fig. 5. Counters along an Out move: first approach.

Fig. 6. Counters along an Out move: our approach.

Out: in the Pan, the match between the capability and the co-capability is
done at b, and the grandparent c is not aware of the movement. In the
GcPan, b decrements its counter, a is unaffected, but, a priori, c has to
increment its counter, since it receives a new child, a.

A possibility would be to let b pass the control on the move along to c, that
is then in charge of sending the completion messages: this solution is represented
in Fig. 5. Adopting this protocol means introducing a new kind of message in
the machine (message DoOut in Fig. 5, from parent to grandparent), and having
two agents in wait state (the child and the parent) while the control is at the
grandparent location.

We chose a different solution, that does not use an additional kind of message
and in which interaction is more local and asynchronous. It is depicted in Fig. 6:
at b, we create a new forwarder that collects the parent (b) and the child (a)
under a unique agent, so that the grandparent counter does not need to be
updated. It may seem rather counterproductive to add a new form of forwarder
creation this way, considering that our goal in designing the GcPan is precisely
to erase as many forwarders as possible. We can however observe that:

– the created forwarder has a lifetime of 2, which is short;
– from the point of view of the implementation, the forwarder is created on

the parent site, so that the extra communication between the parent and the
forwarder will be local.

2 Formal Definition of the Machine

2.1 GcPan Nets

The syntax of the terms of the GcPan (referred to as GcPan nets, or simply
nets) is presented on Table 1. Agents in the GcPan are either located ambients

a, b, m, n, .. ∈ Names h, k, .. ∈ Locations p, q, .. ∈ Names ∪ Locations
i, j, .. ∈ N x, y, .. ∈ V ariables

Networks:

A := 0 (empty net)
| Agent (agent)
| h{Msg} (emission)
| A1 ‖ A2 (composition)
| (νp)A (restriction)

Agent := h Bi k (forwarder)
| hCi (blocked forwarder)
| hi: n[P]k (located ambient)

Msg := req/E (request)
| compl (completion)

req := in n, h (agent at h wants to enter n)
| in n, h (agent at h, named n, accepts entrance)
| out n, h (agent at h wants to leave n)
| open n, h (agent at h, named n, accepts opening)

compl := go h (request completed, go to h)
| go

B
h (relocate forwarder to h)

| OKin h (request in completed, go to h)
| mig h (request open completed, migrate to h)
| regs P (add P to the local processes)

Processes:

P := 0
˛

˛ P1 | P2

˛

˛ (x)P
˛

˛ (νn)P
˛

˛ X
˛

˛ M.P
˛

˛ rec X.P
˛

˛ M [P]
˛

˛ wait.P
˛

˛ 〈M〉
˛

˛ {req}

M := x
˛

˛ n
˛

˛ out M
˛

˛ in M
˛

˛ open M
˛

˛ in M
˛

˛ open M
˛

˛ out M

Table 1. GcPan Syntax

(hi: n[P]k is the ambient n[P] running at h, whose parent is located at k),
blocked or running forwarders (hCi is a blocked forwarder at h, while h Bi k is
willing to transmit messages from h to k). In the three cases, the superscript
i ∈ N represents the value of the agent counter.

E denotes a list of locations. A message of the form k{req/E} denotes the
request req, located at k, and having been transmitted through the locations
contained in E. k{req} is an abbreviation for k{req/[]}, and we write h ::E to
denote the list obtained by adding h to E. Reception ((x)P) and restriction
((νx)P) are binders. Given a process P , we let FL(P) stand for the set of free
locations of P . An occurrence in a process P is guarded if it appears under a
prefix or a reception. We suppose that in every process of the form rec X.P , all
occurrences of X in P are guarded.

Other aspects of the syntax of messages are explained in Subsection 2.2.

The definition of structural congruence, ≡, is mostly standard, and omitted.
The only peculiarity is that ≡ does not allow a name restriction to be extruded
out of a located ambient in a transparent way: the net h: n[(νm)(in m)]k is
not equivalent to (νm)h: n[in m]k. Such a transformation is handled using
reduction, and not as a structural congruence rule, because at the level of im-

plementation, generating names that are fresh even for possibly distant agents
involves a nontrivial distributed protocol.

The GcPan (resp. Pan) encoding of a SA process P is written JP Kgc (resp.
JP K). JP K is defined in [11], and JP Kgc is defined as follows:

Definition 1 (Translation from SA to GcPan). Given an SA process P ,
we define: JP Kgc , root0: rootname[P]rootparent.

2.2 Reduction Rules

Fig. 7 presents the operational semantics of GcPan nets. The following expla-
nations should help in reading the rules and understanding how they implement
the ideas we have discussed above.

Form of the rules: rules for emission of request messages and for local reduc-

tions have the shape P
k

−−→
h:n

P ′ Ài M , to denote the fact that process P ,

running in ambient n at location h, may liberate message M and evolve into
process P ′, k being the parent location of h. Integer i decorating À records the
increment that has to be brought to h’s counter (cf. rule Proc-Agent below).
À is an abbreviation of À0. When n, h or k are unimportant, we replace them
with ‘-’. We do the same in the rules for consumption of completion messages,
when the parent location of a located ambient is not important.

In rule Local-Com, P{x\M} denotes process P in which x is substituted
with M . In rule Loc-Rcv, we use the following notations, for E = [e1; . . . ; ei]:
E{M} stands for e1{M} ‖ . . . ‖ ei{M}, and #E is i.

Six kinds of rules govern the behaviour of a GcPan net, according to the way
SA transitions are implemented in our model.

– Before being able to start interacting, a process might have to allocate new
resources for the creation of new names and for the spawning of new ambi-
ents: this is handled by the rules for creation.

– The translation of a prefixed SA process starts with emitting a request for
interaction, which is expressed by the corresponding four rules for emission
of request messages.

– Request messages are transmitted through forwarders and reach their desti-
nation location via the rules for transmission of request messages.

– Local reductions describe the steps that correspond to SA transitions. Such
reductions do the matching between a capability and the corresponding co-
capability, and generate completion messages.
Notation ≫ is introduced similarly to À, in order to handle the Out move-
ment, that is achieved using rule Proc-Agent’. The subscript k′ denotes
the source location of the created forwarder (we have to adopt a special
treatment for this case because the newly created forwarder is outside the
‘active location’).

– Some rather standard inference rules are used to transform a local reduction
into a transition of the whole GcPan net.

Creation

[New-Locamb] hi: m[n[P] |Q]h′ 7−→ hi+1: m[Q]h′ ‖ (νk)(k0: n[P]h) k /∈ FL(P)

[New-Res] hi: m[(νn)P]k 7−→ (νn)(hi: m[P]k)

Emission of request messages

[Req-In] in m.P
k

−−→
h:−

wait.P À k{in m, h}

[Req-Coin] in n.P
k

−−→
h:n

wait.P À k{in n, h}

[Req-Out] out m.P
k

−−→
h:−

wait.P À k{out m, h}

[Req-Coopen] open n.P
k

−−→
h:n

wait.P À k{open n, h}

Transmission of request messages

[Fw-Send] h Bi+1 k ‖h{req/E} 7−→ h Ci ‖ k{req/h::E}

[Fw-SendGC] h B1 k ‖h{req/E} 7−→ k{req/E}

[Fw-Reloc] h Ci ‖h{go
B

k} 7−→ h Bi k

[Loc-Rcv] hi+1: n[P]k ‖h{req/E} 7−→ hi+#E : n[P | {req}]k ‖E{go
B

h}

Local reductions

[Local-Com] 〈M〉 | (x).P
−

−−−→
−:−

P{x\M} À 0

[Local-In] {in n, h} | {in n, k}
−

−−−→
h′:−

0 À1 h{go k} ‖ k{OKin h′}

[Local-Out] {out n, h} | out n.P
−

−−→
−:n

P ≫k′ h{go k′}

[Local-Open] open n.P | {open n, h}
−

−−−→
h′:−

wait.P À1 h{mig h′}

Inference rules

[Proc-Agent]
P

k
−−→
h:n

P ′ Às M Q has no unguarded ambient

hi: n[P |Q]k 7−→ hi+s: n[P ′ |Q]k ‖M

[Proc-Agent’]
P

k
−−→
h:n

P ′

≫k′ M Q has no unguarded ambient, k′ /∈ FL(P |Q)

hi: n[P |Q]k 7−→ (νk)′(k′

B
2 k ‖hi: n[P ′ |Q]k′ ‖M)

[Par-Agent]
A 7−→ A′

A ‖B 7−→ A′ ‖B

A 7−→ A′

(νp)A 7−→ (νp)A′
[Res-Agent]

[Struct-Cong]
A ≡ A′ A′ 7−→ A′′ A′′ ≡ A′′′

A 7−→ A′′′

Consumption of completion messages

[Compl-Parent] h{go k} ‖hi: n[P |wait.Q]− 7−→ hi: n[P |Q]k

[Compl-Coin] h{OKin k} ‖hi: n[P |wait.Q]− 7−→ hi+1: n[P |Q]k

[Compl-Migr] h{mig k} ‖hi+1: n[P |wait.Q]− 7−→ h Bi+1 k ‖ k{reg0 P |Q}

[Compl-Migr’] h{mig k} ‖h0: n[P |wait.Q]− 7−→ k{reg1 P |Q}

[Compl-Reg] h{regs R} ‖hi+s: n[P |wait.Q]k 7−→ hi: n[P |Q |R]k

Fig. 7. Reduction rules

The premises about unguarded ambients insure that all sub-ambients of an
ambient are activated as soon as possible (rule New-Locamb), before any
local reduction takes place — here we exploit the fact that recursions are
guarded, otherwise there could be an infinite number of ambients to create.

– The rules for consumption of completion messages describe how agents re-
sume computation when they are informed that a movement has occurred.

Counting: counters have to be kept coherent along the transitions of a net.
Intuitively, to understand the counting for an agent located at h, in a given
GcPan configuration, we have to consider:

– the number of non waiting ambient locations that are immediate children of
h (of the form ki: n[P]h);

– the number of child forwarders (k Bi h);

– the number of request messages emitted to h (h{req/E});

– the number of completion or relocation messages whose effect will be to
increment the number of immediate children of h (k{go h}, k{go

B
h}, . . .).

We explain below how our accounting is preserved along the moves:

In: The two brother ambients taking part in an In move (h and k) are in wait
state at the moment when the parent ambient (h′) matches the corresponding
requests. Ambients in wait state are pending, and hence are not taken into
account by the counter of h′. As a consequence, h′ has to increment its
counter in rule Local-In. The role of the completion message k{OKin h′}
is to bring k under h′ (which was its original father in case there was no
forwarder between h and h′). Similarly, h, that will receive h′ as a new child
(message h′{go h} and rule Compl-Parent), also increments its counter,
upon reception of message OKin (rule Compl-Coin).

Out: As previously, the intuition is that the parent (h′) loses a child (h), and
has to decrement its counter, but since this child is in wait state, there is
nothing to do. The freshly created forwarder allows us to keep the grand-
parent counter unaffected: the forwarder hides both parent and child (and
hence the value of its counter is set to two).

Open: The opening location (h′) increments its counter to take into account
the creation of the forwarder (rule Compl-Migr, that lets h, the opened
location, react to a mig completion message). In the case where the counter
of h is null, h has no child: there is no need for such a forwarder, and we
avoid creating it (rule Compl-MigrGC). We must be careful, though, to let
h′ know that it has to undo the increment of its counter, which is achieved
using the flag s decorating the reg message (rule Compl-Reg).

Forwarders behaviour is defined by the rules for transmission of request mes-
sages. We illustrate these by the following reductions, that show the behaviour
of a message carrying request R traversing three forwarders h1, h2 and h3 to
reach its real target :

h1{R/[]} ‖ h1 B3 h2 ‖ h2 B1 h3 ‖ h3 B4 k ‖ k2: n[P]
7−→ h1 C2 ‖ h2{R/[h1]} ‖ h2 B1 h3 ‖ h3 B4 k ‖ k2: n[P] [Fw-Send]
7−→ h1 C2 ‖ h3{R/[h1]} ‖ h3 B4 k ‖ k2: n[P] [Fw-SendGC]
7−→ h1 C2 ‖ h3 C3 ‖ k{R/[h3::h1]} ‖ k2: n[P] [Fw-Send]
7−→ h1 C2 ‖ h3 C3 ‖ h3{goB

k} ‖h1{goB
k} ‖ k3: n[P | {R}] [Loc-Rcv]

7−→ h1 C2 ‖ h1{goB
k} ‖ h3 B3 k ‖ k3: n[P | {R}] [Fw-Reloc]

7−→ h1 B2 k ‖ h3 B3 k ‖ k3: n[P | {R}] [Fw-Reloc]

First, the message gets transmitted by forwarder h1, which decrements its
counter, adds its name to the list decorating the message before transmission to
h2, and blocks. In the second step of transmission, since h2’s counter is equal to
one, h2 gets garbage collected, and the message is passed to h3, which transmits
it to k (along the lines of the first step). Then the target location k receives the
message, and reacts by broadcasting a go

B
k relocation message to each agent

that has been registered in the list decorating the message. k’s counter is incre-
mented by the size of this list minus one: all forwarders except the uppermost
one will become new direct children of the parent location (note that in the
case of an empty chain of forwarders, we decrement the counter because the
direct child is in wait state, and hence pending). Finally, the blocked forwarders
react to the relocation messages by moving to their new location, and resume
computation.

3 Correctness of the Machine

We establish the correctness of our machine by showing a weak barbed bisimi-
larity result with the Pan. Although the overall structure of the proof has sim-
ilarities with [11], there are important differences. First of all, we compare two
abstract machines, rather than a machine and a calculus as in [11]. The corre-
spondence we can make between two configurations of the Pan and the GcPan

is fairly coarse (barbed bisimilarity), because the machines route messages and
manage forwarders differently.

Also, a few results, that are crucial in the proof for Pan [11] do not hold for
GcPan. For instance in Pan, we have

(νh)(h B k ‖ A) º A{k\h} ,

where º stands for expansion, a behavioural preorder that guarantees that, intu-
itively, if P º Q, P exhibits the same behaviour as Q modulo some extra internal
computation (expansion is not explicitly mentioned in [11], but the technique
is essentially equivalent). This makes it possible, using weak bisimulation up to
expansion, to factorise reasoning about forwarders and to considerably reduce
the size of the relations needed to establish bisimilarity results.

Unfortunately the corresponding expansion law does not hold in our setting.
This is due to the way the union-find algorithm works: rearranging forwarders
entails an initial cost, and generates race situations. This cost is later compen-
sated by the fact that messages are transmitted on shorter chains. This kind of
delayed improvement cannot be captured using expansion because P º Q if Q
is ‘better than P ’ at every step (see [12] for a proof of the non-expansion result).

The notion of equivalence we adopt is barbed bisimulation [15], that we
denote ≈. Here we use it to compare states belonging to different transition
systems.

In GcPan the observability predicates ⇓n (where n is any name) are defined
as follows. A is observable at n means, intuitively, that A contains an agent n
that accepts interactions with the external environment. Formally: A ↓n if A ≡
(νp)

(

root: rootname[{M,h} | P]rootparent ‖ A′
)

where M ∈ {in n, open n}
and n /∈ p (here p stands for a set of names or localities). Then, using Z=⇒ for
the reflexive and transitive closure of 7−→, we write A ⇓n if A Z=⇒↓n. In SA and
Pan, observability is defined similarly (see [11]). Our main results are:

Theorem 1. For any well-typed SA process P , we have JP K ≈ JP Kgc.

Corollary 1. Let P be a well-typed SA process, then JP Kgc ≈ P .

Proof: By [11], we have JP K ≈ P . Theorem 1 allows us to conclude. ♦

The above corollary implies, for instance, that for all n, P ⇓n iff JP Kgc ⇓n.

For lack of space, we only give the main intuitions behind the proof of The-
orem 1 (the reader is referred to [12] for details). The first step is to introduce a
notion of well-formed net, and to show that it is preserved by reduction. Well-
formedness allows us to express which nets are ‘reasonable’, in particular w.r.t.
the destination of messages and the value of counters.

In Pan and GcPan, the routing of messages is deterministic and does not
change the bisimilarity class of a net. Therefore, the main idea in introducing
the candidate bisimulation relation to establish Theorem 1 is to define a kind
of normal form for nets, in which all messages are routed to their destination
and the nets in both machines can be compared directly. Based on this, we
derive some preliminary lemmas to show that whenever a message is routed
to its destination in a given configuration of one of the machines, the other
machine can do the same (this might involve some additional transitions in
the GcPan, because, as seen above, race conditions may prevent a message
from being ‘directly routable’). These lemmas are then used in a modular way
to construct the bisimulation proof, that amounts to show that by definition,
processes related by the candidate bisimulation exhibit the same observables
and preserve this property.

4 Final Remarks

Developments of our machine. Besides ST ambients, the other main type for
SA processes [14] is that of immobile ambients (IM). An immobile ambient is
an ambient that can neither move (in or out other ambients), nor be opened
(open co-capability). Such an ambient is not necessarily single-threaded. We
have designed an extension of the GcPan [12] to handle immobile ambients as
well.

We have also developed a prototype OCaml implementation of the (extended)
GcPan, that is described at [1]. We plan to exploit it to further evaluate the
improvements in terms of efficiency brought by our machine.

Related Work. Cardelli [4, 5] has produced the first implementation, called Am-
bit, of an ambient-like language; it is a single-machine implementation of the
untyped Ambient calculus, written in Java. The algorithms are based on locks:
all the ambients involved in a movement (three ambients for an In or Out

movement, two for an Open) have to be locked for the movement to take place.
In [10], a JoCaml implementation of an abstract machine for Mobile Ambi-

ents, named AtJ, is presented. In Mobile Ambients, there are no co-capabilities,
movements are triggered using only capabilities, and grave interferences arise.
These differences enable considerable simplifications in abstract machines for SA
(Pan, GcPan) and in their correctness proof — see [11] for a detailed compari-
son. Other differences are related to the distinction between logical and physical
movements: in AtJ physical movements are triggered by the execution of in and
out capabilities, whereas in GcPan only open induces physical movement.

[17] presents a distributed abstract machine for the Channel Ambients calcu-
lus, a variant of Boxed Ambients [3]. In Channel Ambients the open primitive –
one of the most challenging primitives for the implementation of Ambient calculi
– does not exist (open is dropped in favour of a form of inter-ambient commu-
nication). Although in the implementation [17] actual movement of code arises
as a consequence of movement of ambients, the phenomenon is not reflected in
the definition of the Channel Ambient calculus. Therefore, the main problems
we have been focusing on do not appear in that setting.

In the Distributed Join calculus [8], migrating join definitions are replaced in
the source space with a forwarder, to route local messages to the join definition
at its new location. This phenomenon is reminiscent of the execution of Open

reductions in our machine.

References

1. GcPan webpage. http://perso.ens-lyon.fr/damien.pous/gcpan.
2. P. Bidinger and J.-B. Stefani. The Kell Calculus: Operational Semantics and Type

System. In Proc. of FMOODS’03, volume 2884 of LNCS, pages 109–123. Springer
Verlag, 2003.

3. M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In Proc. TACS 2001,
LNCS 2215, pages 38–63. Springer Verlag, 2001.

4. L. Cardelli. Ambit, 1997. http://www.luca.demon.co.uk/Ambit/Ambit.html.
5. L. Cardelli. Mobile ambient synchronisation. Technical Report 1997-013, Digital

SRC, 1997.
6. L. Cardelli and A. Gordon. Mobile Ambients. In Proc. of FOSSACS’98, volume

1378 of LNCS, pages 140–155. Springer Verlag, 1998.
7. F. Le Fessant, I. Piumarta, and M. Shapiro. An Implementation for Complete,

Asynchronous, Distributed Garbage Collection. In Proc. of PLDI’98, ACM Sigplan
Notices, pages 152–161, 1998.

8. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

9. C. Fournet, F. Le Fessant, L. Maranget, and A. Schmitt. JoCaml: A Language for
Concurrent Distributed and Mobile Programming. In Proc. of Advanced Functional

Programming 2002, volume 2638 of LNCS, pages 129–158. Springer Verlag, 2002.
10. C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implemen-

tation of mobile ambients. In Proc. of IFIP TCS’00, volume 1872 of LNCS, pages
348–364. Springer Verlag, 2000.

11. P. Giannini, D. Sangiorgi, and A. Valente. Safe Ambients: abstract machine and
distributed implementation, 2004. submitted; an extended abstract appeared in
Proc. ICALP’01, volume 2076 of LNCS, pages 408–420, Springer Verlag.

12. D. Hirschkoff, D. Pous, and D. Sangiorgi. An Efficient Abstract Machine for Safe
Ambients. Technical Report 2004–63, LIP – ENS Lyon, 2004.

13. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proc. 27th

POPL. ACM Press, 2000.
14. F. Levi and D. Sangiorgi. Mobile Safe Ambients. Transactions on Programming

Languages and Systems, 25(1):1–69, 2003. ACM Press.
15. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. 19th ICALP, volume

623 of Lecture Notes in Computer Science, pages 685–695. Springer Verlag, 1992.
16. R. De Nicola, G.L. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents

Interaction and Mobility. IEEE Trans. Software Eng., 24(5):315–330, 1998.
17. A. Phillips, N. Yoshida, and S. Eisenbach. A Distributed Abstract Machine for

Boxed Ambient Calculi. In Proc. of ESOP’04, LNCS, pages 155–170. Springer
Verlag, 2004.

18. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of

ACM, 22(2):215–225, 1975.
19. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructure

for Mobile Computation. In Proc. of 28th POPL, pages 116–127. ACM Press, 2001.

