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Abstract

This paper presents a type system to control the migration of code between sites in a concurrent distributed
framework. The type system constitutes a decidable mechanism to ensure specific security policies, which
control remote communication, process migration, and channel creation. The approach is as follows: each
network administrator specifies sites privileges, and a type system checks that the processes running at those
sites, as well as the composition of the sites, respect these policies. At runtime, well-typed networks do not
violate the security policies declared for each site.

1 Introduction

Framework. A natural and simple framework to study distributed mobile systems is DPI, the distributed π-
calculus of Hennessy and Riely [4], which extends the π-calculus [7, 8] by locating processes on a (flat) network
of sites—named places where computation occurs. Communication only happens within sites (to avoid “global
synchronisation”), but processes may migrate from one to another. However, DPI presents no notion of location
of a resource: a global entity is responsible for allocating and managing memory.

DiTyCO, a distributed extension of the TyCO programming language [5, 12], addresses this drawback. It
follows the DPI model in what respects the notions of locality (or site) and communication, but uses a lexically
scoped regime for names that rules process migration. The main motivations of DiTyCO are: (1) a network-
aware style of programming in the sense that the time and the place associated with the creation of new resources
(sites and channels) is explicit in the syntax of the programs; and (2) an easier implementation, based on current
technology, by providing the compiler with information to generate code for the creation, and the access to these
resources. Migration of resources is a subset of the resource access operations, and thus is clearly bounded in the
program’s source code. Clients do not interact remotely with a server. Rather, they move to the site of the server
and interact locally, eliminating the costs of maintaining long remote sessions between clients and servers. The
latest release of the language DiTyCO is available on the TyCO project site (http://www.ncc.up.pt/tyco/).
Aim. DiTyCO lacks a security mechanism to control the usage of important resources such as memory and cpu
cycles. This work addresses such lacuna. Our main motivation is the control of code mobility by means of a
simple, decidable, and low complexity type system. The system checks the integrity and the consistency of user-
declared security policies, guaranteeing that well-typed networks are free of (runtime) security violation errors.
Our approach consists in a simple set-based static analysis where the network administrators associate security
policies to the sites they supervise, and by this mean, tailor the allowed interaction in a network between sites that
know each other.

To focus on the problem, we develop our work using a lexically scoped distributed version of the pi-calculus—
the lsdπ calculus [11]—that is the theoretical basis of DiTyCO. This calculus seems more suitable to study code
migration in a distributed setting than other proposals, since the migration is triggered by channels themselves,
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rather than using explicit migration primitives (for an overview of distributed mobile calculi see a deliverable of
an EU project [1]). We choose a monadic version of a flat calculus because the stress of our work is purely in
the control of process migration rather than on communication, or on hierarchical issues. Indeed, DiTyCO is a
good choice since it is a simple setting that lead us to a clear understanding of the security issues underlying code
migration, and let us settle the basis for reasoning about resource usage.

To control the migration of processes between sites, we use three security policies, to control respectively
remote communication, code migration, and channel creation. These policies are directly related to the actions
of the calculus, and therefore are independent from each other. Remote communication refers to the ability of a
thread to send a message to a resource located at a distant site. Code migration, in turn, means that a thread may
cross site boundaries, exiting its current site and entering a new one. This operation can be understood, from the
source site point of view, as an upload of code. Finally, channel creation represents the ability of a thread to create
a new channel in a foreign site. Mastering channel creation is important because (1) if a thread is able to create
a channel on a remote site it means, as discussed later, that it would be able to migrate code to that destination,
and (2) it may also give rise to a denial of service attack, if the source site creates an arbitrarily large number of
channels in the destination site, consuming important resources, such as memory.

The definition of a security policy for a given site consists on the enumeration of the sites allowed to perform
the monitored actions. Thereafter, the type system checks whether these policies are followed by each process
running in the site, and by the other sites in the network that is being checked. Notice that we assume a closed
world. This system is a tool to declare how code in other known sites may affect the computation of a given site,
and to verify the compositionality of all these sites. The type system checks if the processes running at a given
site respect its security policies, and if all the sites one wants to compose in a network will interoperate without
violating each other policies.
Outline. Next section presents the syntax of the calculus, and of the type system. Section 3 is devoted to the
operation semantics of the calculus. The main section of the paper is Section 4, where we introduce the type
system, argue about some examples of networks that should be rejected by the type system, formalise a notion of
runtime error suitable for our setting and purpose, and prove type safety. Section 5 concludes the paper, presents
related work, and points directions for future research.

2 The calculus

This section briefly describes the calculus as well as its types, and some examples of networks, hinting informally
the semantics of lsdπ. A thorough presentation of the calculus is elsewhere [11].
Syntax. The lsdπ calculus extends the pi-calculus [8] distributing processes over flat networks of named sites.
Communication occurs only within a site. Resources, located at creation time, maintain their location throughout
the computation. Unique to the calculus is the notion of lexical scoping, a well-known feature from main-stream
programming languages like, for instance, Pascal, C, Java, or ML. In lsdπ this means that a channel may be
addressed by its simple name—the channel—when it is at home, or by its located (or global) name—the pair
channel–host site—whenever the reference is made from a foreign site.

The syntax of the calculus used in this paper is described in Figure 1. Fix a denumerable set of simple channels,
C, ranged over by a, b, c, x, y, z, and a denumerable set of sites, S , ranged over by r, s, t, disjoint from C. Channels,
may be simple—a—or located—a@s—, referring to a channel a from a site s. Let N = C ∪ S be the set of the
resource identifiers. Processes are the standard π-calculus processes, apart from the input process, u?(x : S) P ,
as well as the replicated input, u?∗(x : S) P , which mention a finite set of sites S. This set plays an important role
in the assurance of security policies: it restricts the channels that may instantiate x, enumerating the sites allowed
to host them. Notice, however, that in lsdπ sites are not first class citizens, in the sense that they are not passed
around. The claim is that there is no purpose to reveal a site location. Instead, disclosing a port at a site (a located
channel) is all that is needed to establish a link to it.
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simple channels a, b, c, x, y, z ∈ C sites r, s, t ∈ S sets of sites S,R, T ⊆ S

channels u ::= a | a@s values v ::= () | u

processes P,Q ::= 0 | u ! 〈v〉 | u?(x : S) P | u?∗(x : S) P | P |Q | (ν u) P

networks N,M ::= 0 | sG[P ] | N ‖M | (ν a@s) N

Γ ::= {s1 : (ϕ1, G1), . . . , sn : (ϕn, Gn)} (typings)

ϕ ::= {a1 : γ1, . . . , an : γn} (site types)

G ::= {rem : S1,mig : S2,new : S3} (site policies)

γ ::= ch(γ)@St | val (channel types)

t ::= o | i | b (site tags)

Figure 1: Syntax of lsdπ.

Sites constitute the basic building blocks for networks. A network sG[P ] denotes a site s, where a process P is
running, with security policies bound by G. This set G defines the interactions allowed between s and the other
sites in the surrounding network. It is intended to be written by the site administrator, who thus declares in this
way the site security policies. The section on types presents these sets of security policies in detail. Networks are
putted together using the network parallel construct N ‖M . We use a different symbol from parallel processes
(c.f. P |Q) to stress the fact that there is no communication between networks. The interaction between networks
occurs through explicit migration of processes among sites. The remaining constructs allow us to restrict located
channels in a network, (ν a@s) N , and 0 denotes an inactive network.

Notice the absence of an operator to create sites, which are thus constants. This scenario fits the present situation
of DiTyCO. Allowing to create and pass around sites significantly complicates the technical work, since one has
to take into account dynamic changes of site policies. An extension of the work reported here to incorporate this
aspect has been developed and is presented elsewhere [6].

As an example, the following lsdπ term

rG1
[a@s ! 〈b〉] ‖ sG2

[a?(x : S) P ]

represents a network consisting of two sites r and s with security policies G1 and G2, respectively (that we do
not detail now). The output process running at site r is willing to deliver a message to the channel a from site s.
In s the channel a declares which sites may remotely communicate with it and instantiate x. So, if r is in S, the
process migrates first from r to s and then communicates with a within s. Notice that process a@s ! 〈b〉 gives a
clear understanding of the sites each name belongs to: the located channel a@s is hosted by s; the simple channel
b is from r. The above network reduces in two steps to

rG1
[0] ‖ sG2

[P [b@r/x]]

where r is now explicitly mentioned in the reference to channel b, since it “left home”.
Types. Our approach consists in the specification of the security policies at site level, possibly by the site security
administrator, that set up a kind of “border control” between the site and the neighbouring network. We consider
three sorts of policies: remote communication, process migration, and name creation. Each policy is related to an
action of the calculus, and we proceed by enumerating the names of the sites that are allowed to perform these
actions. Therefore, we relate remote communication, process migration, and name creation with the ability to
output, input, and create channels, respectively.

A typing is a mapping from site names to pairs of site types and site policies. Site types are mappings from
channel, the free names of the site, to channel types. A channel type records the type of the argument and the sites
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where this channel may be used. We need this information to be able to check security policies. For instance,
to type an output process x ! 〈v〉 running at site s, we require that the sites of the channels that may instantiate x
allow s to remote communicate with them. The val type has a unique value, (), and denotes a channel that carries
no other channels.

The tags, i for input, o for output, and b for both, are part of a subtyping relation (inspired on the proposal
of Pierce and Sangiorgi [10]) on the set of sites that may instantiate a given channel (defined in section 4). For
example, this subtyping relation says that it is safe to use a channel of type ch(γ)@{s, r}o whenever it is possible
to use a channel of type ch(γ)@{s}o.

3 Semantics

The operational semantics of the calculus is presented following Milner et al [8]. We first define a congruence
relation between processes and networks that simplifies the reduction relation introduced thereafter.
Free names. The notions of free and of bound names, as well as the substitution relation that lies on top of them,
present some subtleties, introduced by located identifiers and by lexical scoping, which deserve some attention.
Binders capture identifiers. The conceptual ideas behind bindings are the following.

• At network level, the binding of a located channel, entails the binding of free occurrences of not only a
located channel anywhere in the network, but also the occurrences as a simple channel at its host site.

(ν a@r)
(

s[ · a · a@r · ] ‖ r[ · a · a@r · ]
)

• At site level, the binding of a channel (simple or located) only binds the free occurrences (simple or located,
respectively) of this channel.

s
[

(ν a) (·a · a@s·)
]

s
[

(ν a@s) (·a · a@s·)
]

A paper on lsdπ presents complete definitions and explanations on free names (function fn not shown in this
paper), on bound names, and on substitution [11].

Structural congruence. The structural congruence relation is the least congruence relation closed under the rules
in Figure 2 The first rules are fairly standard. Networks are congruent up to α-renaming; the parallel composition
operator for networks is taken to be commutative and associative, with 0 being the neutral element.

Scope extrusion rules, however, deserve a more detailed analysis. In the third rule of group 3, if we are creating
a remote channel (r 6= s), then the remote site r must grant permission to create the name. (the set Gr defines the
security policies for site r.) When we create a local name, then there must not exist a simple channel with the same
name in P . A similar concern is expressed in forth rule of the same group. The reason for these side conditions
becomes clear in the following examples. These two networks should not be in the congruence relation

(ν a@s) sG[a ! 〈·〉 | a@s ! 〈·〉] 6≡ sG[(ν a@s) a ! 〈·〉 | a@s ! 〈·〉]

since the (left-hand side) binder, at network level, binds both the simple channel, and the located channel,
whereas the binder at process level only binds the located channel.

Similarly,
(ν a@s) sG[a ! 〈·〉 | a@s ! 〈·〉] 6≡ sG[(ν a) a ! 〈·〉 | a@s ! 〈·〉]
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1. N ≡ M if N ≡α M

2. ((N ‖M) ‖M ′) ≡ (N ‖ (M ‖M ′)), (M ‖N) ≡ (N ‖M), (N ‖ 0) ≡ N

3. ((ν a@s) N) ‖M ≡ (ν a@s) (N ‖M) if a@s 6∈ fn(M)

(ν a@r) (ν b@s) N ≡ (ν b@s) (ν a@r) N

(ν a@r) sG[P ] ≡ sG[(ν a@r) P ] if (r 6= s ∧ s ∈ Gr(new)) ∨ (r = s ∧ a 6∈ fn(P ))

(ν a@s) sG[P ] ≡ sG[(ν a) P ] if a@s 6∈ fn(P )

4. sG[a@s ! 〈v〉] ≡ sG[a ! 〈v〉], sG[a@s?(x : S) P ] ≡ sG[a?(x : S) P ]

5. P ≡ Q if P ≡α Q

6. ((P |Q) |R) ≡ (P | (Q |R)), (P |Q) ≡ (Q |P ), (P | 0) ≡ P

7. ((ν u) P ) |Q ≡ (ν u) (P |Q) if u 6∈ fn(Q)

(ν u) (ν u′) P ≡ (ν u′) (ν u) P

8. (ν a) 0 ≡ 0

Figure 2: Structural congruence on processes and networks.

the (right-hand side) binder, at site level, only binds the simple channel.
The last three rules rename located channels to simple channels (and vice-versa) when the channels are men-

tioned from their home site.
In lsdπ calculus there is also a rule for splitting and regrouping sites: sG[P ] ‖ sG[Q] ≡ sG[P |Q]. However, in

this version of the calculus, where sites are constant, the rule is covered by the migration rules RN-MIGI, RN-MIGO,
and RN-MIGR ahead (see Figure 3).

Structural congruence on processes presents a similar set of rules when compared to structural congruence on
networks. The only remark concerns rule 8 where “garbage collection” is only allowed locally. One could think
that a more general rule also stands, say (ν u) 0, but this is not the case, since fn((ν u) 0) 6= fn(0) when u is
a located channel. Recall that s is free in (ν a@s) 0. Similar reasoning applies also to networks, where garbage
collection would also have the malicious effect of erasing site policy annotations.

Reduction. We use contexts for processes and networks to simplify the reduction relation.

Definition 1 (Reduction contexts).

E ::= [·] | (E |P ) | (ν u) E

F ::= [·] | (F ‖N) | (ν a@s) F

When moving a process from a site to another one, we need to translate the free channels of that process to
take into account the location the process will end up in: those local to the source site become remote, and those
belonging to the target site become simple as they reached home.

Definition 2 (Translation of identifiers). Let A ⊆ N , A∩C = {a1, . . . , an} and A∩C@r = {b1@r, . . . , bm@r}.
Then,

σrs(P,A) = P{a1@s/a1, . . . , an@s/an, b1/b1@r, . . . , bm/bm@r} .

Notation: Let Pσrs abbreviate the result of applying a name translation σrs to the process P , affecting its free
names: Pσrs = σrs(P, fn(P )).
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RP-COMM a?(x : T ) P | a ! 〈v〉 → P [v/x]

RP-COMR a?∗(x : T ) P | a ! 〈v〉 → a?∗(x : T ) P |P [v/x]

RN-MIGO sG1
[P ] ‖ rG2

[a@s ! 〈v〉 |Q] → sG1
[P | (a@s ! 〈v〉)σrs] ‖ rG2

[Q], r 6= s

RN-MIGI sG1
[P ] ‖ rG1

[(a@s?(x : A) Q) |R] → sG1
[P | (a@s?(x : A) Q)σrs] ‖ rG2

[R], r 6= s

RN-MIGR sG1
[P ] ‖ rG1

[(a@s?∗(x : A) Q) |R] → sG1
[P | (a@s?∗(x : A) Q)σrs] ‖ rG2

[R], r 6= s

RP-CONT
P → Q

E[P ] → E[Q]
RP-STR

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

RN-SITE
P → Q

sG[P ] → sG[Q]
RN-CONT

N → M
F [N ] → F [M ]

RN-STR
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M

Figure 3: Reduction rules.

Definition 3 (Reduction relation). The rules in figure 3 inductively define the reduction relation on lsdπ terms.

Rule RP-COMM is the communication rule of the calculus. It is defined only locally and it is the standard
asynchronous π-calculus communication rule. Rule RP-COMR defines the communication for replicated inputs.
Rules RN-MIGI, RN-MIGO, and RN-MIGR allow for processes to migrate across sites. When an input or output
operation is carried out over a remote resource then, since communication only arises locally, the process migrates
to the host site of the resource. In order to keep channels lexically scoped, we use function σ to translate the
free names of the migrating process. If we are moving from site r to site s, then σrs transforms the references
to channels from r into located channels, since they will be mentioned from s, and makes references to channels
from s into simple channels.

Rules RP-STR, and RN-STR introduce structural congruence into the reduction relation that are crucially used to
bring processes and networks into the form requested by the left-hand-side of axioms RP-COMM, RN-MIGO, RN-

MIGI, and RN-MIGR. Finally, rules RP-CONT, RN-SITE, and RN-CONT allow for reduction to happen within process
and network contexts.

The next example illustrates a download of code from a server site srv requested by client site cl. Assume that
r 6∈ fn(Q).

cl[(ν req) dl@srv ! 〈req〉 | req ! 〈〉 |P ] ‖
srv[(dl?∗(r) r?() Q) |R]

The client issues a new request to the dl (download) resource of the server by communicating a fresh channel
req. The server upon the received request migrates process Q to the server using the acquired channel. Finally,
the client fires the downloaded process. Reduction is as follows. Security annotations were deliberately omitted
since they play no role in reduction.

cl[(ν req) dl@srv ! 〈req〉 | req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q |R] → (RN-STR, RN-MIGO)

(ν req@cl) cl[req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q |R | dl ! 〈req@cl〉] → (RP-COMR)

(ν req@cl) cl[req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q | req@cl?() Q |R] → (RN-MIGI)

(ν req@cl) cl[req ! 〈〉 |P | req?() Qσsrv,cl] ‖ srv[dl?∗(r) r?() Q |R] → (RP-COMM, RN-STR)

cl[(ν req) Qσsrv,cl |P ] ‖ srv[dl?∗(r) r?() Q |R]
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4 Type system

The type system we present in this section enforces the user-defined security policies in lsdπ networks. We
guarantee that, at runtime, well-typed networks do not violate the specified security policies.

Examples. In the following, we present some examples of erroneous networks that should be caught by the type
system’s sieve. Consider, in all examples, that sites denoted by r, s, and t represent distinct locations.

A remote communication error occurs whenever an output to a located channel is performed from a site not
belonging to the rem policy of the remote site. The next two examples elucidate this situation.

Example 1. Consider the network s{rem:{t}}[P ] ‖ rG1
[a@s ! 〈x〉]. The output process running at site r is willing

to send a remote message to site s; however, this action is not allowed, since r is not mentioned in the rem policy
of s. The inclusion of r in the policies of site s fix the problem: s{rem:{t,r}}[P ] ‖ rG1

[a@s ! 〈x〉].

Example 2. To type-check the network s{rem:{r}}[a?(x : {r, t}) x ! 〈c〉] ‖ r∅[a@s ! 〈b〉] correctly, site s must be
able to remote communicate both with site r, and site t. This is easily seen from the arguments of the input process
at site s. Analysing the input continuation, x ! 〈c〉, we conclude that the process could remote communicate with
site r (and with site t as well), which does not concede any remote communication privilege at all. If r grants rem
privileges to s, the network s{rem:{r}}[a?(x : {r, t}) x ! 〈c〉] ‖ r{rem{s}}[a@s ! 〈b〉] type-checks.

The control of code migration is performed using the policy keyword—mig—specifying which sites are allowed
to upload code.

Example 3. The network s{mig:{t}}[P ] ‖ rG1
[a@s?(x : S) b ! 〈x〉] is rejected because site s denies migration of

code from site r as it is intended by process a@s?(x : S) b ! 〈x〉. Including r in the policies of site s overcomes
the problem: s{mig:{t,r}}[P ] ‖ rG1

[a@s?(x : S) b ! 〈x〉]

The creation of remote channels is controlled by the policy keyword new, and enumerating the sites authorised
to create remote channels.

Example 4. The network s{new:{t}}[P ] ‖ rG1
[(ν a@s) a@s ! 〈b〉] fails to type check because site s denies creation

of remote channels (as well as remote communications) from site r. Regardless the actions of process P , that we
are not taking into account for the example, the network s{new:{t,r},rem:{r}}[P ] ‖ rG1

[(ν a@s) a@s ! 〈b〉] is well
typed .

The following example shows a more trickier situation resulting from code migration.

Example 5. Consider the network sG[b@r?(x : S) a@s ! 〈x〉] ‖ r{mig:{s}}[0]. The remote message a@s ! 〈x〉 is
going to run at site r, since it is the continuation of a process that migrates from s to r. Although r grants migration
privileges to s, it does not allow for remote communications from s, and therefore the network should be rejected.
Fix the security fault including rem : {s} into the policies for site r.

A different kind of communication error arises when a process is trying to pass on information about a non-
reliable site. Considering a mailing system as an example, we can decide to grant a certain machine to deliver
messages, but restrict the sites where these messages come from.

Example 6. The network s{rem:{r}}[a?(x : {t}) 0] ‖ rG1
[a@s ! 〈b〉] is illegal, since the output process, a@s ! 〈b〉,

at site r, is communicating information about a channel from site r, but the input process running at site s
only admits information that mentions channels from t (indicated by x : {t}). Network s{rem:{r}}[a?(x :
{t, r}) 0] ‖ rG1

[a@s ! 〈b〉] presents no security faults.
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t ≤ t b ≤ i b ≤ o

R ⊆ S

So ≤ Ro

S ⊆ R

Si ≤ Ri

t ≤ t′

St ≤ St′

γ ≤ γ
γ1 ≤ γ2 γ2 ≤ γ3

γ1 ≤ γ3

γ1 ≤ γ2 St ≤ Rt′

ch(γ1)@St ≤ ch(γ2)@Rt′

Figure 4: Subtyping relation.

SS-CHL Γ `s a@r : Γ(r)1(a) SS-CHS Γ `s a : Γ(s)1(a)

Figure 5: Typing channels.

Subtyping. The binary relation ≤ on types is defined following Pierce and Sangiorgi [10], and is the least relation
closed under the rules in figure 4. Intuitively, the subtyping relation allows for the inclusion of site identifiers (of
where a channel can be located in) when we perform outputs, and allows for the exclusion of site identifiers when
we perform inputs. If a channel is used both for input and output its type is fixed. For example, considering that
γ1 ≤ γ2, then ch(γ1)@{s, r, t}o ≤ ch(γ2)@{s, r}o, and ch(γ1)@{s}i ≤ ch(γ2)@{s, r, t}i.

Tags i, o, and b denote, respectively, that a channel is used for input, for output, or for both input and output
purposes. The relation is defined conventionally: covariant for inputs, contravariant for outputs, and invariant
when a channel is used for inputs and outputs.

Typing. Figures 5, 6, and 7 present, respectively, the typing rules for channels, processes, and networks.
We record types for sites.1 Therefore, the types of the free channels are kept within the types of the sites where

they belong to. Types for located channels are directly fetched from their identifiers; to access types for simple
channels we need extra information identifying their host site. We keep track of this information in the typing
judgements for channels. In fact, the judgement Γ `s v : γ, means that if v is a simple channel, its host site is s.
Of course, if v is located, it already has all the information needed for typing. Look up in figure 5 for the typing
rules for channels.

Judgements for processes, Γ `s,S P , besides the identity of the current site s, record also the set of sites where
P might be hosted at runtime. This is a crucial information for checking security policies because S give us
the sites where events (remote communication, code migration, or channel creation) take place. We proceed by
explaining the typing rules for processes that can be found in figure 6.

An output process a@r ! 〈v〉 is well-typed if (1) the type of a, located at r, is a channel type having as arguments
a supertype of the type of v, and if (2) site r allows any site where the output process might be located at runtime
to remote communicate with it. Following is an example of an instance of the output rule

Γ `s v : ch(γ)@{s}b ch(γ)@{s}b ≤ ch(γ)@{s, r}i

{t} ⊆ {s, t} = Γ(r)2(rem) Γ(r)1(a) = ch(ch(γ)@{s, r}i)@{r}b

Γ `s,{t} a@r ! 〈v〉

On the other hand, if the output is performed over a simple channel a, we require every site where a may be
located to give permission for remote communications from the sites where the process, a ! 〈v〉, may be at runtime.
It may not be possible to determine the site that hosts a channel at compile time (consider a communication over
a channel received as a parameter). When typing a process x ! 〈v〉 where the channel name x can be instantiated
with either a simple channel or a located channel, one uses the rule SP-Outs. The sites that may send channels to
instantiate x must be in the annotation of the input which introduces the parameter x.

1A word on notation: let Γ(s)1 and Γ(s)2 be the first and second projections of the pair Γ(s) = (ϕ, G).
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SP-OUTL

Γ(r)1(a) = ch(γ1)@{r}b Γ `s v : γ2

γ2 ≤ γ1 S ⊆ Γ(r)2(rem)

Γ `s,S a@r ! 〈v〉

SP-OUTS

Γ(s)1(a) = ch(γ1)@Rb Γ `s v : γ2

γ2 ≤ γ1 S ⊆ Γ(r)2(rem), ∀r ∈ R

Γ `s,S a ! 〈v〉

SP-INPL

Γ(r)1(a) = ch(γ1)@{r}b Γ(s)1(x) = ch(γ2)@T b

Γ `s,{r} P ch(γ2)@T b ≤ γ1 S ⊆ Γ(r)2(mig)

Γ \ x@s `s,S a@r?(x : T ) P

SP-INPS

Γ(s)1(a) = ch(γ1)@Rb Γ(s)1(x) = ch(γ2)@T b

Γ `s,R P ch(γ2)@T b ≤ γ1 S ⊆ Γ(r)2(mig), ∀r ∈ R

Γ \ x@s `s,S a?(x : T ) P

SP-NIL Γ `r,S 0 SP-PAR
Γ `s,S P Γ `s,S Q

Γ `s,S (P |Q)

SP-RESS
Γ(s)1(a) = ch(γ)@Sb Γ `s,S P

Γ \ a@s `s,S (ν a) P
SP-RESL

Γ(r)1(a) = ch(γ)@{r}b

Γ `s,S P S \ s ⊆ Γ(r)2(new)

Γ \ a@r `s,S (ν a@r) P

Figure 6: Typing processes.

To type an input process, Γ `s,S a@r?(x : T ) P , we type P resolving simple channels to site s and considering
P as running in r, since a@r triggers the migration of P from s to r. Notation Γ \ x@s denotes the removal of
channel x, located at site s, from the typing environment Γ. Bear in mind that simple channels remain bound to s
by lexical scoping. We check that the migration operation to r is allowed from every site where the process may
be located at runtime. The following network type-checks,

s∅[a@r?(x : {t}) x ! 〈c〉] ‖ r{mig:{s}}[a ! 〈b@t〉] ‖ t{rem:{r}}[0]

The typing rules for the inaction process, the parallel process, and the creation of local channels are fairly
standard. The creation of remote channels requires the authorisation from the site where the channel is being
created. The authorisation must be issued to all the sites in S.

The typing rules for networks can be found in figure 7. Rule SN-NET types a located process in a site, sG[P ].
Process P must be well typed under type assumptions Γ, where simple channels are considered resources from site
s, and the processes is running in s. Moreover, we demand that the network policies defined at network level match
exactly the policies formulated in Γ—no process is allowed to forge security policies. The remaining premises
assures that visible resources of the site, addressed only by simple channels, are indeed located at the site.

The handling of resource restrictions at network level is more delicate than at site level, since we lack infor-
mation about the site that has created the resource. Therefore, we require that the site hosting the resource must
concede creation permissions to every site that uses the resource. Notice in the following example that since a@s
is free in site r, site s must grant remote creation privileges to r.

(ν a@s) s{new:{r},rem:{r}}[0] ‖ r∅[a@s ! 〈b〉]

where S = {r}, Γ(s) = {(∅, {new : {r}, rem : {r}})}, and Γ(r) = {(b : ch(γ)@{r}b, ∅)}.
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SN-NIL Γ ` 0 SN-PAR
Γ ` N Γ ` M

Γ ` (N ‖M)

SN-NET

Γ `s,{s} P Γ(s)2 = G

Γ(s)1(a) = ch(γ)@{s}b, ∀a ∈ dom(Γ(s)1)

Γ ` sG[P ]

SN-RESL

Γ ` N S \ r ⊆ Γ(r)2(new)
S is the set of sites where a@r occurs free in N

Γ \ a@r ` (ν a@r) N

Figure 7: Typing networks.

5 Results

On the type system. Subtyping is a preorder.

Lemma 1. The relation ≤ is a preorder.

The type and subtype system rules are syntax oriented, so an algorithm to compute types (in polynomial time)
can be found just by reading the rules backward. Notice that there are no recursive types.

Theorem 1 (Decidability of the type system). Given Γ, and N , the problem of verifying whether Γ ` N is
decidable.

Reduction preserves the typability of processes and of networks. This result uses a standard substitution lemma,
together with subject congruence.

Lemma 2. If Γ ` P , and P ≡ Q, then Γ ` Q.

Proof. We proceed by induction on the type derivation, analysing the last rule applied. We just sketch case
7. (figure 2, page 5), where the last typing rule applied is SP-RESL, to illustrate the use of the side condition
s ∈ G1(new) when a@s 6∈ fn(P ). Consider the case where (ν a@r) sG[P ] ≡ sG[(ν a@r) P ].

By hypothesis, Γ ` (ν a@r) sG[P ]. Assuming s 6= r, we need to consider two subcases:

• a@r ∈ fn(P )

Therefore, by rule SP-RESL, s ∈ Γ(r)2(new) and so, by SP-RESL and SN-NET, we prove that Γ ` sG[(ν a@r) P ].

• a@r 6∈ fn(P )

In this case s 6∈ S, but the side condition s ∈ G1(new) ensures that r gives permission to create a local
channel from s and so we can apply SP-RESL and SN-NET safely.

The case when s = r is not relevant because it is always possible to create a channel in the site that hosts it.
Notice that we exclude the current site when checking the sites that must grant the new policy.

Theorem 2 (Subject reduction).

1. If Γ `s,S P , and P → Q, then Γ `s,S Q.

2. If Γ ` N , and N → M , then Γ ` M .

Proof. (sketch) By induction on the typing derivation of Γ `s,S P and of Γ ` N . We proceed by case analysis on
the reduction relation and examine the last typing rule of the typing derivation. The proof is straightforward.
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Runtime errors. Our type system guarantee that well-typed networks do not violate the specified security policies.
In what follows we formalise the notion of runtime error.

Definition 4 (runtime errors). Assume that r 6= s. Let E = {N |N →? νu1 . . . νuk(M
′ ‖M)}, and M of the

form

rG1
[P ] ‖ sG2

[a@r ! 〈v〉], s 6∈ G1(rem) (1)

rG1
[P ] ‖ sG2

[a@r?(x : T ) P ], s 6∈ G1(mig) (2)

sG[(a?(x : T ) P ) | a ! 〈b@r〉], r 6∈ T (3)

rG1
[P ] ‖ sG2

[(ν a@r) P ], s 6∈ G1(new) (4)

Networks that violate a security policy are in the set E . The following result states that well-typed networks do
not belong to E .

Theorem 3 (type safety). If Γ ` N , and N →? M , then M 6∈ E .

Proof. The proof is straightforward and proceeds by absurd.

6 Conclusions

Summary. We present a type system to control the migration of code in a concurrent distributed calculus where a
network has a fixed number of sites that know each other. This setting fits DiTyCO, a distributed implementations
of the language TyCO, which presently lacks resource access control. We monitor three security policies: remote
communication, process migration, and channel creation, corresponding to the actions of the calculus, these poli-
cies enabling us to control code migration. The security policies are defined by the site administrators, following
an intuitive and easy approach. For each site, its administrator specifies what operations other sites are allowed
to perform. The type system checks if the processes running at those sites respect its security policies, and then
checks if all the sites in the network will interoperate without violating each other policies. Specifically, we prove
subject reduction, define runtime errors, and then prove type safety.

The current setting allow us to focus on the security policies for resources. We start with a subset of lsdπ
calculus, with a fixed number of sites, and present a non-trivial yet simple and low-cost solution based on typing
and subtyping relations. The system checks that processes running at given sites respect their security policies,
and that sites in a network interoperate correctly. We prove subject reduction and type safety.
Further work. It is our understanding that this work settles the ground basis for further developments along
two main directions: (a) the definition of security policies at resource level and therefore be able to refine the
interaction between sites; (b) and the ability to adjust security policies dynamically.

We have already extended this system to deal with an arbitrary number of sites in networks with dynamic
topology [6].
Related work. Other approaches to resource security in distributed mobile calculi comprise DPI [3, 4] and Klaim
[2, 9]. See [1] for a general survey on concurrent mobile calculus, type systems, and security policies. DPI

possesses an explicit objective construct to code—the go primitive. The control of migration is found along three
aspects: a keyword mig, a subtype relation, and the ability to communicate site names. If a process “sees” the
mig keyword as part of the type of a site, then it may migrate code to that site. The subtype relation, together
with the capability to communicate site names, allows a site to tailor the information (e.g. resource names, control
keywords) that the target site would be able to use. From a programming point of view, this approach does not
seem very attractive since security annotations are spread along the code and it is difficult to understand what
actions are really allowed to execute. It is not clear how to implement type inference.
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Klaim uses a capability type system to control operations on tuple spaces. Each site defines the actions that
other sites can perform. There is a correspondence between the capabilities and the calculus’s actions. For the
migration primitive (eval) the type specifies also the security restrictions that the migrating process should obey.
The Klaim approach is similar to ours in the sense that security policies are declared at site level, but differs
substantially when we consider the way policies are programmed and checked. Notice that the Klaim type system
is far more complex than ours is, although it provides roughly the same guarantees. One main distinction concerns
the place where the security policies are defined: security policies in Klaim talk about what operations a site may
perform on other sites, whereas in our framework each site talks about what actions it allows others to perform on
it. From the site administrator point of view this looks more appropriate.

Moreover, our system is tailored to the particular aspects of lexical scoped settings.
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