
Resource Control for Synchronous
Cooperative Threads?

Roberto M. Amadio and Silvano Dal Zilio

Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS and Université de Provence, France.

Abstract. We develop new methods to statically bound the resources
needed for the execution of systems of concurrent, interactive threads.
Our study is concerned with a synchronous model of interaction based
on cooperative threads whose execution proceeds in synchronous rounds
called instants. Our contribution is a system of compositional static anal-
yses to guarantee that each instant terminates and to bound the size of
the values computed by the system as a function of the size of its pa-
rameters at the beginning of the instant.
Our method generalises an approach designed for first-order functional
languages that relies on a combination of standard termination tech-
niques for term rewriting systems and an analysis of the size of the
computed values based on the notion of quasi-interpretation. These two
methods can be combined to obtain an explicit polynomial bound on the
resources needed for the execution of the system during an instant.

1 Introduction

The problem of bounding the usage made by programs of their resources has al-
ready attracted considerable attention. Automatic extraction of resource bounds
has mainly focused on (first-order) functional languages starting from Cobham’s
characterisation [13] of polynomial time functions by bounded recursion on no-
tation. Following work, see, e.g., [6,14,15,16], has developed various inference
techniques that allow for efficient analyses while capturing a sufficiently large
range of practical algorithms.

Previous work [9,17] has shown that polynomial time or space bounds can
be obtained by combining traditional termination techniques for term rewriting
systems with an analysis of the size of computed values based on the notion of
quasi-interpretation. Thus, in a nutshell, resource control relies on termination
and bounds on data size. In [3], we have considered the problem of automatically
inferring quasi-interpretations in the space of multi-variate max-plus polynomi-
als. In [2], we have presented a virtual machine and a corresponding bytecode
for a first-order functional language and shown how size and termination anno-
tations can be formulated and verified at the level of the bytecode. In particular,
we can derive from the verification an explicit polynomial bound on the space
required to execute a given bytecode.
? This work was partly supported by ACI Sécurité Informatique, project CRISS.

P. Gardner and N. Yoshida (Eds.): CONCUR 2004, LNCS 3170, pp. 68–82, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Resource Control for Synchronous Cooperative Threads 69

Our approach to resource bound certification follows distinctive design deci-
sions. First, we allow the space needed for the execution of a program to vary
depending on the size of its arguments. This is in contrast to most approaches
that try to enforce a constant space bound. While this latter goal is reason-
able for applications targeting embedded devices, it is not always relevant in
the context of mobile code. Second, our method is applicable to a large class
of algorithms and does not impose specific syntactical restrictions on programs.
For example, we depart from works based on a linear usage of variables [14].

Our approach to resource control should be contrasted with traditional worst
case execution time technology (see, e.g., [20]): our bounds are less precise but
they apply to a larger class of algorithms and are functional in the size of the
input, which seems more appropriate in the context of mobile code. In another
direction, one may compare our approach with the one based on linear logic
(see, e.g., [11]). While in principle the linear logic approach supports higher-
order functions, the approach does not offer yet a user-friendly programming
language.

In this work, we aim at extending and adapting these results to a concurrent
framework. Our starting point, is a quite basic and popular model of parallel
threads interacting on shared variables. The kind of concurrency we consider
is a cooperative one. This means that by default a running thread cannot be
preempted unless it explicitly decides to return the control to the scheduler. In
preemptive threads, the opposite hypothesis is made: by default a running thread
can be preempted at any point unless it explicitly requires that a series of actions
is atomic. We refer to, e.g., [19] for an extended comparison of the cooperative
and preemptive models. Our viewpoint is pragmatic: the cooperative model is
closer to the sequential one and many applications are easier to program in the
cooperative model than in the preemptive one. Thus, as a first step, it makes
sense to develop a resource control analysis for the cooperative model.

The second major design choice is to assume that the computation is reg-
ulated by a notion of instant. An instant lasts as long as a thread can make
some progress in the current instant. In other terms, an instant ends when the
scheduler realizes that all threads are either stopped, or waiting for the next
instant, or waiting for a value that no thread can produce in the current instant.
Because of this notion of instant, we regard our model as synchronous. Because
the model includes a logical notion of time, it is possible for a thread to react to
the absence of an event.

The reaction to the absence of an event, is typical of synchronous languages
such as Esterel [8]. Boussinot et al. have proposed a weaker version of this
feature where the reaction to the absence happens in the following instant [7]
and they have implemented it in various programming environments based on
C, Java, and Scheme. They have also advocated the relevance of this concept
for the programming of mobile code and demonstrated that the possibility for
a ‘synchronous’ mobile agent to react to the absence of an event is an added
factor of flexibility for programs designed for open distributed systems, whose
behaviours are inherently difficult to predict.

70 Roberto M. Amadio and Silvano Dal Zilio

Recently, Boudol [5] has proposed a formalisation of this programming model.
Our analysis will essentially focus on a small fragment of this model where higher-
order functions are ruled out and dynamic thread creation, and dynamic memory
allocation are only allowed at the very beginning of an instant. We believe that
what is left is still expressive and challenging enough as far as resource control
is concerned. Our analysis goes in three main steps. A first step is to guarantee
that each instant terminates (Section 4). A second step, is to bound the size of
the computed values as a function of the size of the parameters at the beginning
of the instant (Section 5). A third step, is to combine the termination and size
analyses. Here we show how to obtain polynomial bounds on the space needed
for the execution of the system during an instant as a function of the size of
the parameters at the beginning of the instant (Section 6). We expect that one
could derive polynomial bounds on time as well, by adapting the work in [17].

A characteristic of our static analyses is that to a great extent they make
abstraction of the memory and the scheduler. This means that each thread can
be analysed separately, that the complexity of the analyses grows linearly in the
number of threads, and that an incremental analysis of a dynamically changing
system of threads is possible. Preliminary to these analyses, is a control flow
analysis (Section 3) that guarantees that each thread reads each register at most
once in an instant. We will see that without this condition, it is very easy to
achieve an exponential growth of the space needed for the execution. From a
technical point of view, the benefit of this read once condition is that it allows to
regard behaviours as functions of their initial parameters and the registers they
may read in the instant. Taking this functional viewpoint, we are able to adapt
the main techniques developed for proving termination and size bounds in the
first-order functional setting.

We point out that our static size analyses are not intended to predict the size
of the system after arbitrary many instants. This is a harder problem which in
general seems to require an understanding of the global behaviour of the system:
typically one has to find an invariant that shows that the parameters of the
system stay within certain bounds. For this reason, we believe that in practice
our static analyses should be combined with a dynamic controller that at the
end of each instant checks the size of the parameters of the system.

Omitted proofs may be found in a long version of this paper [1] in which we
describe our programming model up to the point where a bytecode for a simple
virtual machine implementing our synchronous language is defined. The long
version also provides a number of programming examples illustrating how some
synchronous and/or concurrent programming paradigms can be represented in
our model (some simple examples are given at the end of Section 2). These
examples suggest that the constraints imposed by the static analyses are not too
severe and that their verification can be automated.

2 A Model of Synchronous Cooperative Threads

A system of synchronous cooperative threads is described by: (1) a list of mutu-
ally recursive type definitions, (2) a list of shared registers (or global variables)

Resource Control for Synchronous Cooperative Threads 71

with a type and a default value, and (3) a list of mutually recursive functions
and behaviours definitions relying on pattern matching. In this respect, the re-
sulting programming language is reminiscent of Erlang [4], which is a practical
language to develop concurrent applications.

The set of instructions a behaviour can execute is rather minimal. Indeed, our
language is already in a pre-compiled form where registers are assigned constant
values and behaviours definitions are tail recursive. However, it is quite possible
to extend the language and our analyses to have registers’ names as first-class
values and general recursive behaviours.

Expressions. We rely on standard notation. If α, β are formal terms then
Var(α) is the set of free variables in α (variables in patterns are not free) and
[α/x]β denotes the substitution of α for x in β. If h is a function, h[u/i] denotes
a function update.

Expressions and values are built from a finite number of constructors, ranged
over by c, c′, . . . We use f, f ′, . . . to range over function identifiers and x, x′, . . .
for variables, and distinguish the following three syntactic categories:

v ::= c(v, . . . , v) (values)
p ::= x || c(p, . . . , p) (patterns)
e ::= x || c(e, . . . , e) || f(e, . . . , e) (expressions)

The size of an expression |e| is defined as 0 if e is a constant or a variable and
1 + Σi∈1..n|ei| if e is of the form c(e1, . . . , en) or f(e1, . . . , en).

A function of arity n is defined by a sequence of pattern-matching rules of the
form f(p1) = be1, . . . , f(pk) = bek, where bei is either an expression or a thread
behaviour (see below), and p1, . . . ,pk are sequences of length n of patterns. We
follow the usual hypothesis that the patterns in p1, . . . ,pk are linear (a variable
appears at most once). For the sake of simplicity, we will also assume that in a
function definition a sequence of values v matches exactly a sequence of patterns
pi in a function definition. This hypothesis can be relaxed.

Inductive types are defined by equations of the shape t = · · · | c of (t1 ∗
· · · ∗ tn) | · · · . For instance, the type of natural numbers in unary format can be
defined as follows: nat = z | s of nat . Functions, values, and expressions are
assigned first order types of the shape (t1 ∗ · · · ∗ tn) → t where t, t1, . . . , tn are
inductive types.

Behaviours. Some function symbols may return a thread behaviour b, b′, . . .
rather than a value. In contrast to ‘pure’ expressions, a behaviour does not
return a result but produces side-effects by reading and writing a set of global
registers, ranged over by r, r′, . . . A behaviour may also affect the scheduling
status of the thread executing it (see below).

be, . . . ::= e || b
b, b′, . . . ::= stop || yield.b || f(e) || next.f(e) || r := e.b ||

match r with p1 ⇒ b1 | · · · | pk ⇒ bk | [x] ⇒ f(e)

The effect of the various instructions is informally described as follows: stop,
terminates the executing thread for ever; yield.b, halts the execution and hands

72 Roberto M. Amadio and Silvano Dal Zilio

over the control to the scheduler — the control should return to the thread later
in the same instant and execution resumes with b; f(e) and next.f(e) switch
to another behaviour immediately or at the beginning of the following instant;
r := e.b, evaluates the expression e, assigns its value to r and proceeds with the
evaluation of b; match r with p1 ⇒ b1 | · · · | pk ⇒ bk | [x] ⇒ f(e), waits until
the value of r matches one of the patterns p1, . . . , pk (there could be no delay)
and yields the control otherwise. At the end of the instant, if the value of r is
v and no rule filters v then start the next instant with the behaviour [v/x]f(e).
By convention, when the [x] ⇒ . . . branch is omitted, it is intended that if the
match conditions are not satisfied in the current instant, then they are checked
again in the following one.

Systems. Every thread has a status, ranged over by X, X ′, . . . , that is a value
in {N,R, S,W} — where N stands for next, R for run, S for stop, and W for
wait. A system of synchronous threads B,B′, . . . is a finite mapping from thread
indexes to pairs (behaviour, status). Each register has a type and a default value
— its value at the beginning of an instant — and we use s, s′, . . . to denote a
store, an association between registers and their values. We suppose the thread
indexes i, k, . . . range over Zn = {0, 1, . . . , n − 1} and that at the beginning of
each instant the store is so, such that each registers is assigned its default value.
If B is a system and i ∈ Zn a valid thread index then we denote with B1(i) the
behaviour executed in the thread i and with B2(i) its current status. Initially,
all threads have status R, the current thread index is 0, and B1(i) is a behaviour
expression of the shape f(v). It is a standard exercise to formalise a type system
of simple first-order functional types for such a language and, in the following,
we assume that all systems we consider are well typed.

Operational semantics. The operational semantics is described by three rela-
tions of growing complexity, presented in Table 1: (1) e ⇓ v, the closed expression
e evaluates to the value v; (2) (b, s) X→(b′, s′), the behaviour b with store s runs an
atomic sequence of actions till b′, producing a store s′, and returning the control
to the scheduler with status X; during an instant, we can have the following
status transitions in a thread: R → S, W, N and W → R, the last transition
corresponds to a thread blocked on the behaviour match r with . . . and no filters
match the value of r; (3) (B, s, i) → (B′, s′, i′) the system B with store s and
current thread (index) i runs an atomic sequence of actions (performed by B1(i))
and becomes (B′, s′, i′).

Scheduler. The reduction relation, see Table 1, relies on the function N that
computes the index of the next thread that should run in the current instant and
the function U that updates the status of the thread at the end of an instant.

To ensure progress of the scheduling, we assume that if N returns an index
then it must be possible to run the corresponding thread in the current instant
and that if N is undefined (denoted N (. . .) ↑) then no thread can be run in the
current instant. In addition, one could arbitrarily enrich the functional behaviour
of the scheduler by considering extensions such that N depends on the history,
the store, and/or is defined by means of probabilities. When no more thread can

Resource Control for Synchronous Cooperative Threads 73

run, the instant ends and the following status transitions take place N → R,
W → R. For simplicity, we assume here that every thread in status W takes the
[x] ⇒ . . . branch. Note that the function N is undefined on the updated system
if and only if all threads are stopped.

The cooperative fragment. The ‘cooperative’ fragment of the model with no
synchrony is obtained by removing the next instruction and assuming that for
all match instructions the branch [x] ⇒ f(e) is such that f(. . .) = stop. Then
all the interesting computation happens in the first instant, and in the second
instant all the threads terminate. This fragment is already powerful enough to
simulate, e.g., Kahn networks (see examples in [1]).

Example 1 (channels and signals). As shown in our informal presentation of be-
haviours, the match instruction allows one to read a register subject to certain
filter conditions. This is a powerful mechanism which recalls, e.g., Linda com-
munication [12], and that allows to encode various forms of channel and signal
communication.
(1) We want to represent a one place channel c carrying values of type t. We
introduce a new type ch(t) = empty | full of t and a register c of type ch(t) with
default value empty. A thread should send a message on c only if c is empty
and it should receive a message only if c is not empty (a received message is
discarded). These operations can be modelled using the following two derived
operators:

send(c, e).b =def match c with empty ⇒ c := full(e).b
receive(c, x).b =def match c with full(x) ⇒ c := empty.b

(2) We want to represent a fifo channel c carrying values of type t such that a
thread can always emit a value on c but may receive only if there is at least one
message in the channel. We introduce a new type fch(t) = nil | cons of t ∗ fch(t)
and a register c of type fch(t) with default value nil. Hence a fifo channel is
modelled by a register holding a list of values. We consider two read operations
— freceive to fetch the first message on the channel and freceiveall to fetch the
whole queue of messages — and we use the auxiliary function insert to queue
messages at the end of the list:

fsend(c, e).b =def match c with l ⇒ c := insert(e, l).b
freceive(c, x).b =def match c with cons(x, l) ⇒ c := l.b
freceiveall(c, x).b =def match c with cons(y, l) ⇒ c := nil.[cons(y, l)/x]b

insert(x, nil) = cons(x, nil) , insert(x, cons(y, l)) = cons(y, insert(x, l))

(3) We want to represent a signal s with the typical associated primitives:
emitting a signal and blocking until a signal is present. We define a type sig =
abst | prst and a register s of type sig with default value abst, meaning that a
signal is originally absent:

emit(s).b =def s := prst.b wait(s).b =def match s with prst ⇒ b

74 Roberto M. Amadio and Silvano Dal Zilio

Expression evaluation:

e ⇓ v

c(e) ⇓ c(v)

e ⇓ v, f(p) = e, σp = v, σ(e) ⇓ v

f(e) ⇓ v

Behaviour reduction:

(stop, s)
S→ (stop, s) (yield.b, s)

R→ (b, s) (next.f(e), s)
N→ (f(e), s)

no pattern matches s(r)

(match r with . . . , s)
W→ (match r with . . . , s)

σp = s(r), (σb, s)
X→ (b′, s′)

(match r with · · · | p ⇒ b | . . . , s) X→ (b′, s′)

e ⇓ v, f(p) = b, σp = v, (σb, s)
X→ (b′, s′)

(f(e), s)
X→ (b′, s′)

e ⇓ v, (b, s[v/r])
X→ (b′, s′)

(r := e.b, s)
X→ (b′, s′)

System reduction:

(B1(i), s)
X→ (b′, s′), B2(i) = R, B′ = B[(b′, X)/i], N (B′, s′, i) = k

(B, s, i) → (B′[(B′
1(k), R)/k], s′, k)

(B1(i), s)
X→ (b′, s′), B2(i) = R, B′ = B[(b′, X)/i], N (B′, s′, i) ↑,

B′′ = U(B′, s′), N (B′′, so, 0) = k

(B, s, i) → (B′′, so, k)

Conditions on the scheduler:

If N (B, s, i) = j then B2(j) = R or (B2(j) = W and
B1(j) = match r with · · · | p ⇒ b | . . . , σp = s(r))

If N (B, s, i) ↑ then ∀k ∈ Zn, B2(k) ∈ {N, S} or (B2(k) = W,
B1(k) = match r with . . . and no pattern matches s(r))

U(B, s)(i) =

(b, S) if B(i) = (b, S)
(b, R) if B(i) = (b, N)
([s(r)/x](f(e)), R) if B(i) = (match r with · · · | [x] ⇒ f(e), W)

Table 1. Operational semantics

Resource Control for Synchronous Cooperative Threads 75

3 Control Flow Analysis

To bound the resources needed for the execution of a system and make possible
a compositional analysis, a preliminary control flow analysis is required. We
require and statically check on the control flow, that threads can read any given
register at most once in an instant. The following simple example shows that
without the read once restriction, a thread can use a register as an accumulator
and produce an exponential growth of the size of the data within an instant.

Example 2. Let nat = z | s of nat be the type of tally natural numbers. The
function dble, defined by the two rules dble(z) = z and dble(s(n)) = s(s(dble(n)))
doubles a number so that |dble(n)| = 2|n|. We assume r is a register of type nat
with initial value s(z). Now consider the following recursive behaviour:

exp(z) = stop , exp(s(n)) = match r with m ⇒ r := dble(m).exp(n)

The evaluation of exp(n) involves |n| reads to the register r and, after each read
operation, the size of the value stored in r doubles. Hence, at end of the instant,
the register contains a value of size 2|n|.

The read once condition is comparable to the restriction on the absence of imme-
diate cyclic definitions in Lustre and does not appear to be a severe limitation
on the expressiveness of the language. An important consequence of the read
once condition is that a behaviour can be described as a function of its parame-
ters and the registers it may read during an instant. We stress that we retain the
read once condition for its simplicity, however it is clear that one could weaken
the condition and adapt the analysis given in Section 3.1 to allow the execution
of a read instruction at most a constant number of times.

3.1 Enforcing the Read Once Condition

We now describe a simple analysis that guarantees the read once condition.
Consider the set Reg = {r1, . . . , rm} of the registers as an alphabet. To every
function symbol f whose result is a behaviour, we associate the least language
R(f) of words over Reg such that ε, the empty word, is in R(f) and the following
conditions are satisfied:

if (f(pi) = bi)i∈1..n are the rules of f then R(f) =def R(f) ·
⋃

i∈1..nR(bi) ,

R(match r with p1 ⇒ b1 | · · · | pn ⇒ bn | [x] ⇒ g(e)) =def {r} ·
⋃

i∈1..n R(bi) ,
R(stop) = {ε} , R(g(e)) = R(g) , R(r := e.b) = R(b) ,
R(yield.b) = R(b), R(next.g(e)) = {ε} .

Looking at the words in R(f), we get an over-approximation of the sequences of
registers that a thread can read in an instant starting from the control point f
with arbitrary parameters and store. Note that an expression can never read or
write a register.

76 Roberto M. Amadio and Silvano Dal Zilio

To determine the sets R(f), we perform an iterative computation according
to the equations above. The iteration stops when either (1) we reach a fixpoint
(and we are sure that the property holds) or (2) we notice that a word in the
current approximation of R(f) contains the same register twice (thus we never
need to consider words whose length is greater than the number of registers).
If the first situation occurs, then for every function symbol f that returns a
behaviour we can obtain a list of registers rf that a thread starting from control
point f may read. We are going to consider these registers as hidden parameters
(variables) of the function f . If the second condition occurs, we cannot guarantee
the read once property and we stop analysing the code.

Example 3. This will be the running example for this section. We consider the
representation of signals as in Example 1(3). We assume two signals sig and ring.
The behaviour alarm(n, m) will emit a signal on ring if it detects that no signal
is emitted on sig for m consecutive instants. The alarm delay is reset to n if the
signal sig is present.

alarm(x, z) = ring := prst.stop ,
alarm(x, s(y)) = match sig with prst ⇒ next.alarm(x, x) | [] ⇒ alarm(x, y)

By computing R on this example, we obtain: R(alarm) = {ε} · (R(ring :=
prst.stop) ∪R(match sig with . . .)) = {ε} · ({ε} ∪ ({sig} · {ε})) = {ε, sig}.

3.2 Control Points

We define a symbolic representation of the set of states reachable by a thread
based on the control flow graph of its behaviours. A control point is a triple
(f(p), be, i) where, intuitively, f is the currently called function, p represents
the patterns crossed so far in the function definition plus possibly the registers
that still have to be read, be is the continuation, and i is an integer flag in
{0, 1, 2} that will be used to associate with the control point various kinds of
conditions. We associate with a system satisfying the read once condition a
finite number of control points. If the function f returns a value and is defined
by the rules f(p1) = e1, . . . , f(pn) = en, then we associate with f the set
{(f(p1), e1, 0), . . . , (f(pn), en, 0)}.

On the other hand, if the function f is a behaviour defined by the rules
f(p1) = b1, . . . , f(pn) = bn then the computation of the control points proceeds
as follows. We assume that the registers have been ordered and that for every be-
haviour definition f , we have an ordered vector rf of registers that may be read
within an instant starting from f . (The vector rf is obtained from R(f)). With
every such f we associate a fresh function symbol f+ whose arity is that of f plus
the length of rf and we regard the registers as part of the formal parameters of
f+. Then from the definition of f we produce the set

⋃
i∈1..n C(f+, (pi, rf), bi),

where C(f+,p, b) is defined inductively on b as follows:

Resource Control for Synchronous Cooperative Threads 77

C(f+,p, b) = case b of
stop : {(f+(p), b, 2)}
g(e) : {(f+(p), b, 0)}
yield.b′ : {(f+(p), b, 2)} ∪ C(f+,p, b′)
next.g(e) : {(f+(p), b, 2), (f+(p), g(e), 2)}
r := e.b′ : {(f+(p), b, 2), (f+(p), e, 1)} ∪ C(f+,p, b′)
match r with p1 ⇒ b1 | · · · | pn ⇒ bn | [x] ⇒ g(e) : {(f+(p), b, 2),

(f+([x/r]p), g(e), 2)} ∪ C(f+, ([p1/r]p), b1) ∪ . . . ∪ C(f+, ([pn/r]p), bn)

By inspecting the definitions, we can check that a control point (f(p), be, i)
has the property that Var(be) ⊆ Var(p). The read once condition is instrumental
to this property. For instance, (i) in case g(e), we know that if g can read some
register r then r could not have been already read by f and (ii) in the case of
the match operator, we know that the register r has not been already read by f .
Hence, in these two cases, the register r must still occur in p.

Example 4. With reference to Example 3, we obtain the following control points:

(alarm+(x, z, sig), ring := prst.stop, 2) (alarm+(x, z, sig), prst, 1)
(alarm+(x, z, sig), stop, 2) (alarm+(x, s(y), sig),match . . . , 2)
(alarm+(x, s(y), prst), next.alarm(x, x), 2) (alarm+(x, s(y), prst), alarm(x, x), 2)
(alarm+(x, s(y),), alarm(x, y), 2)

Definition 1. An instance of a control point (f(p), b, i) is a behaviour b′ = σb,
where σ is a substitution mapping the free variables in b to values.

The property of being an instance of a control point is preserved by (be-
haviour and) system reduction. Thus the control points associated with a system
do provide a representation of all reachable configurations.

Proposition 1. Suppose (B, s, i) → (B′, s′, i′) and that for all thread indexes
j ∈ Zn, B1(j) is an instance of a control point. Then for all j ∈ Zn, we have
that B′

1(j) is an instance of a control point.

In order to prove the termination of the instant and to obtain a bound on
the size of computed value, we associate order constraints to control points as
follows:

Control point: (f(p), e, 0), (f+(p), g(e), 0), (f+(p), e, 1), (f+(p), be, 2)
Constraint: f(p) �0 e, f+(p) �0 g+(e, rg), f+(p) �1 e, no constraints

We say that a constraint e �i e′ has index i. We rely on the constraints of
index 0 to enforce termination of the instant and on those of index 0 or 1 to
enforce a bound on the size of the computed values. Note that the constraints are
on pure first order terms, a property that allows us to reuse techniques developed
in the standard term rewriting framework.

78 Roberto M. Amadio and Silvano Dal Zilio

Example 5. With reference to the control points in Example 4, we obtain the
constraint alarm+(x, z, sig) �1 prst. We note that no constraints of index 0
are generated and so in this simple case the control flow analysis can already
establish the termination of the thread and all is left to do is to check that the
size of the data is under control, which will also be easily verified.

4 Termination of the Instant

We recall that a reduction order > over first-order terms is a well-founded order
that is closed under context and substitution: t > s implies C[t] > C[s] and
σt > σs, where C is any one hole context and σ is any substitution (see, e.g, [10]).

Definition 2 (termination condition). We say that a system satisfies the
termination condition if there is a reduction order > such that all constraints of
index 0 associated with the system hold in the reduction order.

In this section, we assume that the system satisfies the termination condition.
As expected this entails that the evaluation of closed expressions succeeds.

Proposition 2. Let e be a closed expression. Then there is a value v such that
e ⇓ v and e ≥ v with respect to the reduction order.

Moreover, the following proposition states that a behaviour will always return
the control to the scheduler.

Proposition 3 (progress). Let b be an instance of a control point. Then for
all stores s, (b, s) X→ (b′, s′).

Finally, we show that at each instant the system will reach a configuration
in which the scheduler detects the end of the instant and proceeds to the reini-
tialisation of the store and the status (as specified by rule (s2) in Table 1).

Theorem 1 (termination of the instant). All sequences of system reductions
involving only rule (s1) are finite.

Proposition 3 and Theorem 1 are proven by exhibiting a suitable well-founded
measure which is based both on the reduction order and the fact that the number
of reads a thread may perform in an instant is finite.

Example 6. We consider a recursive behaviour monitoring the register i (acting
as a fifo channel) and parameterised on a number x representing the largest value
read so far. At each instant, the behaviour reads the list l of values received on
i and assigns to o the greatest number in x and l.

f(x) = yield.match i with l ⇒ f1(maxl(l, x)) f1(x) = o := x.next.f(x)

max (z, y) = y , max (s(x), z) = s(x) , max (s(x), s(y)) = s(max (x, y))
maxl(nil, x) = x , maxl(cons(y, l), x) = maxl(l,max (y, x))

It is easy to prove the termination of the thread by recursive path ordering, where
the function symbols are ordered as f+ > f+

1 > maxl > max , the arguments
of maxl are compared lexicographically from left to right, and the constructor
symbols are incomparable and smaller than any function symbol.

Resource Control for Synchronous Cooperative Threads 79

5 Quasi-Interpretations

Our next task is to control the size of the values computed by the threads. A
suitable notion of quasi-interpretation [17,3] provides a modular solution to this
problem.

Definition 3 (assignment). Given a program, an assignment q associates with
constructors and function symbols, functions over the positive reals R+ such that:

(1) If c is a constant then qc is the constant 0,

(2) If c is a constructor with arity n ≥ 1 then qc is the function in (R+)n → R+

such that qc(x1, . . . , xn) = d + Σi∈1..nxi, for some d ≥ 1,

(3) if f is a function (identifier) with arity n then qf : (R+)n → R+ is monotonic
and for all i ∈ 1..n we have qf (x1, . . . , xn) ≥ xi.

An assignment q is extended to all expressions e as follows, giving a function
expression qe with variables in Var(e):

qx = x , qc(e1,...,en) = qc(qe1 , . . . , qen
) , qf(e1,...,en) = qf (qe1 , . . . , qen

) .

It is easy to check that for all values v, there exists a constant d depending
on the quasi-interpretation such that: |v| ≤ qv ≤ d · |v|.

Definition 4 (quasi-interpretation). An assignment is a quasi-interpretation,
if for all constraints associated with the system of the shape f(p) �i e, with
i ∈ {0, 1}, the inequality qf(p) ≥ qe holds over the non-negative reals.

Quasi-interpretations are designed so as to provide a bound on the size of
the computed values as a function of the size of the input data. In the follow-
ing, we assume given a suitable quasi-interpretation, q, for the system under
investigation.

Example 7. With reference to Examples 2 and 6, the following assignment is a
quasi-interpretation (we give no quasi-interpretations for the function exp be-
cause it fails the read once condition):

qnil = qz = 0 , qs(x) = x + 1 , qcons(x, l) = x + l + 1 , qdble(x) = 2 · x ,
qf+(x, i) = x + i + 1 , qf+

1
(x) = x , qmaxl(x, y) = qmax(x, y) = max (x, y) .

One can show [3] that in the purely functional fragment of our language every
value v computed during the evaluation of an expression f(v1, . . . , vn) satisfies
the following condition:

|v| ≤ qv ≤ qf(v1,...,vn) = qf (qv1 , . . . , qvn
) ≤ qf (d|v1|, . . . , d|vn|) . (1)

We generalise this result to threads as follows.

80 Roberto M. Amadio and Silvano Dal Zilio

Theorem 2. Given a system of synchronous threads B, suppose that at the
beginning of the instant B1(i) = f(v) for some thread index i. Then the size of
the values computed by the thread i during an instant is bound by qf+(v,u) where
u are the values contained in the registers rf when they are read by the thread
(or some constant value, otherwise).

Theorem 2 is proven by showing that quasi-interpretations satisfy a suitable
invariant. In general, a value computed and written by a thread can be read by
another thread. However, at each instant, we have a bound on the number of
threads and the number of reads that can be performed. We can then derive a
bound on the size of the computed values which depends only on the size of the
parameters at the beginning of the instant.

Corollary 1. Let B be a system with m registers and n threads. Suppose B1(i) =
fi(vi) for i ∈ Zn. Let c be a bound of the size of the largest parameter of the
functions fi and the largest default value of the registers. Suppose h is a function
bounding all the quasi-interpretations, that is, for all the functions f+

i we have
h(x) ≥ qf+

i
(x, . . . , x) over the non-negative reals. Then the size of the values

computed by the system B during an instant is bound by hn·m+1(c).

Example 8. The n ·m iterations of the function h predicted by Corollary 1 corre-
spond to a tight bound, as shown by the following example. We assume n threads
and m registers (with default value z). The control of each thread is described
as follows, where writeall(e).b stands for the behaviour r1 := e. · · · .rm := e.b :

f(x0) = match r1 with x1 ⇒ writeall(dble(max (x1, x0))).
match r2 with x2 ⇒ writeall(dble(x2)).

.
match rm with xm ⇒ writeall(dble(xm)).next.f(dble(xm)) .

For this system we have c ≥ |x0| and h(x) = qdble(x) = 2 · x. It is easy to show
that, at the end of an instant, there have been m ·n assignments to each register
(m for every thread in the system) and that the value stored in each register is
dblem·n(x0) of size 2m·n · |x0|.

6 Combining Termination and Quasi-Interpretations

To bound the space needed for the execution of a system during an instant we
also need to bound the number of nested recursive calls, i.e., the number of
frames that can be found on the stack (a precise definition of frame is given in
the long version of this paper [1]). Unfortunately, quasi-interpretations provide a
bound on the size of the frames but not on their number (at least not in a direct
implementation that does not rely on memoization). One way to cope with this
problem is to combine quasi-interpretations with various families of reduction
orders [9,17]. In the following, we provide an example of this approach based on
recursive path orders which is a widely used and fully mechanisable technique to
prove termination [10].

Resource Control for Synchronous Cooperative Threads 81

Definition 5. We say that a system terminates by LPO, if the reduction order
associated with the system is a recursive path order where: (1) function symbols
are compared lexicographically; (2) constructor symbols are always smaller than
function symbols and two distinct constructor symbols are incomparable; (3) the
arguments of constructor symbols are compared componentwise (product order).

Definition 6. We say that a system admits a polynomial quasi-interpretation
if it has a quasi-interpretation where all functions are bound by a polynomial.

Theorem 3. If a system B terminates by LPO and admits a polynomial quasi-
interpretation then the computation of the system in an instant runs in space
polynomial in the size of the parameters of the threads at the beginning of the
instant.

The proof of Theorem 3 is based on Corollary 1 that provides a polynomial
bound on the size of the computed values and on an analysis of nested calls in
the LPO order that can be found in [9]. The point is that the depth of such
nested calls is polynomial in the size of the values, which allows us to effectively
compute a polynomial bounding the space necessary for the execution of the
system. We stress that beyond proving that a system ‘runs in PSPACE’, we can
extract a definite polynomial that depends on the quasi-interpretation and that
bounds the size needed to run a system during an instant.

Example 9. With reference to Example 6, we can check that the order used there
is indeed a LPO. From the quasi-interpretation in Example 7, we can deduce
that the function h(x) has the shape a · x + b (it is affine). More precisely, we
can choose h(x) = 2 · x + 1. In practice, many useful functions admit quasi-
interpretations bound by an affine function such as the max-plus polynomials
considered in [3]. Note that the parameter of the thread is the largest value
received so far. Clearly, bounding the value of this parameter for arbitrary many
instants requires a global analysis of the system.

7 Conclusion

The execution of a thread in a cooperative synchronous model can be regarded as
a sequence of instants. One can make each instant simple enough so that it can be
described as a function — our experiments with writing sample programs show
that the restrictions we impose do not hinder the expressivity of the language.
Then well-known static analyses used to bound the resources needed for the
execution of first-order functional programs can be extended to handle systems
of synchronous cooperative threads. We believe this provides some evidence for
the relevance of these techniques in concurrent/embedded programming. We
also expect that our approach can be extended to a richer programming model
including, e.g., references as first-class values, transactions-like primitives for
error recovery, more elaborate mechanisms for preemption, . . .

The static analyses we have considered do not try to analyse the whole sys-
tem. On the contrary, they focus on each thread separately and can be carried

82 Roberto M. Amadio and Silvano Dal Zilio

out incrementally. On the basis of our previous work [2] and the virtual machine
presented in [1], we expect that these analyses can be performed at bytecode
level. These characteristics are particularly interesting in the framework of ‘mo-
bile code’ where threads can enter or leave the system at the end of each instant
as described in [5].

References

1. R. Amadio and S. Dal-Zilio. Resource control for synchronous cooperative threads.
Research Report LIF 22-2004, 2004.

2. R. Amadio, S. Coupet-Grimal, S. Dal-Zilio, and L. Jakubiec. A functional scenario
for bytecode verification of resource bounds. Research Report LIF 17-2004, 2004.

3. R. Amadio. Max-plus quasi-interpretations. In Proc. TLCA, Springer LNCS 2701,
2003.

4. J. Armstrong, R. Virding, C. Wikström, M. Williams. Concurrent Programming
in Erlang. Prentice-Hall 1996.

5. G. Boudol, ULM, a core programming model for global computing. In Proc. ESOP,
Springer LNCS 2986, 2004.

6. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity, 2:97–110, 1992.

7. F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE Trans. on
Software Engineering, 22(4):256–266, 1996.

8. G. Berry and G. Gonthier, The Esterel synchronous programming language. Sci-
ence of computer programming, 19(2):87–152, 1992.

9. G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space
bound certifications. In Proc. PSI, Springer LNCS 2244, 2001.

10. F. Baader and T. Nipkow. Term rewriting and all that. CUP, 1998.
11. P. Baillot and V. Mogbil, Soft lambda calculus: a language for polynomial time

computation. In Proc. FoSSaCS, Springer LNCS 2987, 2004.
12. N. Carriero and D. Gelernter. Linda in Context. CACM, 32(4): 444-458, 1989.
13. A. Cobham. The intrinsic computational difficulty of functions. In Proc. Logic,

Methodology, and Philosophy of Science II, North Holland, 1965.
14. M. Hofmann. The strength of non size-increasing computation. In Proc. POPL,

ACM Press, 2002.
15. N. Jones. Computability and complexity, from a programming perspective. MIT-

Press, 1997.
16. D. Leivant. Predicative recurrence and computational complexity i: word re-

currence and poly-time. Feasible mathematics II, Clote and Remmel (eds.),
Birkhäuser:320–343, 1994.

17. J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. Habili-
tation à diriger des recherches, Université de Nancy, 2000.

18. M. Odersky. Functional nets. In Proc. ESOP, Springer LNCS 1782, 2000.
19. J. Ousterhout. Why threads are a bad idea (for most purposes). Invited talk at

the USENIX Technical Conference, 1996.
20. P. Puschner and A. Burns (eds.), Real time systems 18(2/3), special issue on Worst-

Case Execution Time Analysis, 2000.

