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AbstractThe �-calculus o�ers some very good properites for describing dynamic, distributedcommunicating systems. The modal �-calculus o�ers ways of describing properties forin�nite processes and their behaviour. The Mobility Workbench (MWB) is equippedwith methods of deciding bisimulation equivalences for �-calculus agents. We presenta sequent-calculus based model checker tool for the MWB. We also introduce the basictheory therefore, the �-calculus and CCS for algebraic description of processes, andmodal and temporal logics for expressing properties of process behaviour, and also theclassic sequent-calculus originating from the 1930's. Model checkers and bisimulationcheckers are fundamental tools for the research area of Formal Methods, a branch ofComputer Science that deals with veri�cation of computer software by mathematicaland automated reasoning as a way for designing and verifying software.
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2 Introduction2.1 BackgroundThe �-calculus is a process algebra - a mathematical way of expressing computer programs(processes). It has some expressful "built-in" features, good for describing distributed, com-municating and dynamic computer systems (systems where processes can change over time).A good example is the GSM digital telephone network, where the processes (telephones) canbe turned on and o�, and the telephone can move within the network. This is often referredto as mobility. A temporal logic is a language that can express properties for processes andtheir actions (possibly in�nitely many { they may run forever). The temporal logic can de-scribe properties like "it must always be possible to move the process to another state", (i.e.the process must never deadlock), or "it must react upon every possible input", and suchspeci�c behaviours. To combine a process, that we wish to control for a certain property,and a formula, that expresses the property, and calculate whether the formula holds for theprocess or not (if the process is a model for the formula) is known as model checking. In thispaper, we will present an algorithm for a model checker, The Model Prover, for checking aspeci�c class of �-calculus-processes ("�nite control agents") against a formula, as expressedin the temporal logic known as the modal �-calculus.2.2 Formal MethodsModel checkers are part of a growing sub-area of Computer Science: Formal Methods [1],an area that uses mathematical methods (mostly algebras and logic) for formal mathemat-ical proofs of computer software. The demand for those methods increases as computersystems grow more complex; exhaustive testing and "trial-and-error" methods of debuggingbecome obsolete, expensive and even impossible, due to the fact that computer programsmay be in�nite, or so huge (have so many program states) that a thorough testing wouldtake extremely long time or go on forever. Formal methods approaches use well-knownmathematical facts to reduce the time and e�ort it takes to fully check a program. Themathematical veri�cation of a program can be done on a computer, the model checking isthen a computer program.2.3 Previous WorkThe Mobility Workbench (MWB) is a tool for verifying if two processes are similar (bisimu-lation equivalences). It was written mainly by Bj�orn Victor of the Department of ComputerSystems at Uppsala University, as a licentiate thesis [12] 1994, and implemented in a Stan-dard ML environment. It was later extended with a model checking tool, developed by MadsDam of the Swedish Institute of Computer Science (SICS), Kista, Stockholm, in [14]. Later,another member of SICS, Torkel Franz�en, developed another algorithm for the same model2



checker, but this algorithm was based on the classical, logical work known as the sequentcalculus, developed as early as in the 1930's for predicate logic. This alternative algorithmwas presented brie
y as an extended abstract in [11], and, developed in Prolog, was thusnot an integrated part of the MWB.2.4 OutlineThis thesis augments the work from [11], with a brief presentation of the theoretical back-ground for process algebras, mainly the �-calculus, and its ancestors, �-calculus, (the clos-est ancestor, Calculus For Communicating Systems (CCS), is mentioned in the �-calculuschapter); for logic, we present modal logic as an extension of predicate logic, we mentionHML-logic and temporal logic, especially the modal �-calculus. We also introduce the se-quent calculus for predicate logic.In part three, a full algorithm description for the Model Prover is presented, along with itssemantics and we reason about its soundness and behaviour with respect to termination.We end with some conclusions, examples and implementation results.Another part of this thesis work was to implement the prover as an integrated StandardML-program in the MWB.This work is available from the FTP-source1 along with the rest of the MWB. The work wascarried out at SICS in Kista during the summer, autumn and winter of 1997. The thesis iswritten with the intention of being an introduction to formal methods for anyone with aninterest therefore and some theoretical background in logic and algebra.2.5 NotationDe�nition 1 We will write 4= when meaning "assignment". In [8], this is written def= . Thisis an operator, while di�erent kinds of equivalences (e.g. =, �, �, and �) are relations.De�nition 2 A congruence is an equivalence relation that is preserved by all introducedoperators and in all possible contexts.
1See chapter 16 for details. 3



Part IFunctions & Processes3 The �-calculusWe will �rstly present an overview of the classical �-calculus [29]. It can be descrived as oneof the �rst attempts to "catch" computable functions in an algebraic way. It was developedmainly by Alonzo Church during the 1930s, but H.B. Curry also participated 2. AlongsideTuring's machine and Kleene's recursive functions, �-calculus is one of several attemptsto formalize "the algorithmic". �-calculus can be described as a formal system: it has asymbolic language, and rules for manipulating those "terms" of the language. It can also beregarded as the "mother" of several later process algebras/calculi, even though �-calculusitself is not a process algebra (a function is not the same as a process3 - especially whendealing with communication, concurrency, the di�erence is obvious). But �-calculus hasnevertheless interesting properties and notations, some inherited by subsequent calculi, thatmotivates a brief presentation here. A common proof method when developing new processalgebras, one might want to show that the new calculus is "functionally complete". This isoften done by showing that all the expressive power of �-calculus is included in the new-borncalculus.43.1 Functional programming�-calculus can be viewed as the theoretical fundament for functional programming languagessuch as LISP, Scheme and ML. Some di�erences between functional and most imperativelanguages (Algol, Pascal, C, Java...), is that they only consist of functions, that alwayshave return values, where imperative languages di�er between functions and procedures5that can alter a memory location explicit without returning anything, e.g. the "void"-procedure of C. So imperative languages regard the memory as static, consisting of cellsthat can be manipulated during execution. In functional programming, the memory isregarded as dynamic in size, but the contents are the same. Imperative languages have amore machine-oriented way of treating the memory6, whilst functional languages use a muchmore mathematical approach.2Although he later concentrated on "Combinatory Logic"3But a function can be viewed as a special case of a process4That �-calculus is a "sub-calculus" of the new calculus.5sometimes even "methods"6although there are imperative languages that have a more non-direct access to memory, like automaticgarbage collection. 4



3.2 Free and Bound namesJust as the quanti�ers 9 and 8 in predicate logic binds variables in a logic expression [26],� binds them in a function expression. We will write fv(X) as a denotation of the setof all free names in expression X. Analoguously, bn(X) will refer to the bound names.n(X) = fv(X) [ bn(X), i.e. the set of all names in the expression X.3.3 SubstitutionSubstitution is a very common operation in most formal systems. It is often denoted by�. We will write Xfa=bg when we mean "the expression X with all free occurences of breplaced by a". This notation is used throughout this thesis.3.4 AbstractionAn idea of �-calculus is to establish a universal way of denoting a function [5]. Somenotations, like f(x), could be regarded as ambiguous or not explicit enough (they may hideseveral functions in one operator, etc).Example 1 Consider: f(x) = x2 (1)f(x + 1) = x2 + 2x+ 1 (2)Are these two above expressing the same function? Does the right hand side of (2) denotethe function x 7! x2 or perhaps the function x 7! x2+ 2x+ 1 ? Not only is this ambiguous,it also gets very clumsy when the notation is applied to higher-order functions (functionstaking functions as parameters). Church suggested the following7 :f = �x:x2 (3)�x:E (4)De�nition 3 The function �x.E is created by abstracting out the dependent variable x fromthe expression E.7Although di�erent ways of writing a function exist, this notation is adopted in all functional languages,for examplefn x => x*x (in Standard ML)lambda(x)(* x x) (in LISP) 5



The �-notation8 removes ambiguity [4] and clearly signals what are the dependent variablesof a function de�nition. The � binds the name x in the expression E, just as R does inintegral calculus, or 9, 8 do in predicate logic.3.5 BNF Syntax for �-calculusThe Backus-Naur Form [29] for the syntax of the �-calculus ish��termi ::= hvariablei (5)j (�hvariablei h��termi)j (h��termi h��termi)hvariablei ::= x j y j z j :::3.6 Rules for manipulation of �-termsA �-calculus expression can be altered in two ways:3.6.1 �-conversionThis is the same as "renaming bound variables":De�nition 4 �x:E = �y:Efy=xg; y 62 fv(E) (6)If the lambda-expression E can be altered to the lambda-expression F , by only applying zeroor more �-conversions, we say they are �-convertible, written E �� F .This is a strong type of equality between �-expressions (it is a congruence).3.6.2 �-reductionLet E = �x:f(x) denote an abstraction of the process E = f . Then f(a) or f a denotes theapplication of f on a value a, and f a = Efa=xg, i.e. the expression E with every occurrenceof "x" replaced by "a". Formally [2],(�x:E) F ! EfF=xg (7)8The original idea was to be x̂:f(x) or x̂:f(x), but typographical reasons changed this into the greekletter "lambda", �. 6



where E and F are expressions. This is also known as �-reduction. The subexpression(� x.E)F is called a redex (reducible expression).De�nition 5 Two expressions E and F are �-convertible, E =� F , if:1) they are �-convertible, E �� F2) E can be �-reduced to F or F �-reduced to E3) E can be �-reduced to G and F �-reduced to G�-conversion can be regarded as an equivalence relation between function expressions.3.7 CurryingTwo functions can be combinated. If M and N are �-functions, so is M N . We say thatM N is a curried function, since it consists of two joint functions, that take their argumentsone at a time.93.8 CombinatorsA combinator is a �-term without free variables. An alternative way of using �-calculuswould be using only combinators (i.e. no usage of free variables at all).10 Combinatorscan be used for building more complex �-terms. Also, they are "constant" with respect to�-reduction, the only way to use them with "e�ect" is currying them. (Since �-reductiononly substitutes free occurences of variables). They are recognized by their abbreviations.Some of the more well-known combinators are:3.8.1 Identity Combinator I = �x:x (8)The combinator I, when applied to any other �-term X, returns X (which is the identity ofX).3.8.2 The Boolean CombinatorsData types can be modelled in �-calculus. Two of the basic ones are the boolean constants,that can be modelled by: True = �t:�f:t (9)False = �t:�f:f (10)9named after Curry, although suggested by the matematician Sch�on�nkel!10This is the main idea of Cominatory logic, developed by H.B. Curry.7



3.8.3 "If" Combinator If = �x:�y:�z:x y z (11)The "If"-combinator has the property that the expression If UVW reduces to V if U = Trueand W else.3.8.4 The Divergent Combinator
 = (�x:x x) (�x:x x) (12)which, when the reduction rules are used, always reduces to itself. (It cannot be reduced toanything less complex than itself.)3.8.5 Fixed-point CombinatorThe combinator Y can be used for the de�nition of recursive functions. Let F stand for anarbitrary �-function. Y = �f((�x:f(x x))f(x x)) (13)Y creates the �xed-point for any given term F . This can be expressed as:8F : Y F =� F (Y F ) (14)If X is the �xed point of F and � is the class of all lambda-terms,8F 2 �; 9X 2 � : FX = X (15)This follows from the Fixed-Point Theorem11 The �xed-points play an important rôle incomputer science. They are fundamental in the semantic de�nition of recursion. An ordinary(non-recursive) function can have any number of �xed points (especially none at all), but,according to the �xed-point theorem, every recursive function must have a �xed point.Intuitively, the �xed-point is where a recursion "stops" or "saturates". For the functionf = �x:x2 a �xed point is 1, since this is a point where the function does not increase ordecrease. 12 The identity function I has (naturally) a �xed-point for all possible values.11Formally: the Knaster-Tarski Fixed Point Theorem.12and the other possibility is 1 8



3.9 A �-calculus exampleExample 2 We wish to express the Factorial function in �-calculus:Factorial(x)= if (x=0) then 1 else x �Factorial(x� 1).Factorial = �x:If (x =0 ) 1 x � Factorial(x � 1 ) (16)where (x=0) is a predicate evolving to True or False respectively. Factorial(3) can now becalculated as: Factorial 3�x:If (x =0 ) 1 x � Factorial(x � 1 ) 3=� If (3 =0 ) 1 3 � Factorial(3 � 1 )=� If False 1 3 � Factorial 2=� 3 � Factorial 2=� 3 � (�x:If (x =0 ) 1 x � Factorial(x � 1 ) 2 )=� 3 � (If (2 =0 ) 1 2 �Factorial(2 � 1 ))=� 3 � (If False 1 2 � Factorial 1 )=� 3 � (2 � Factorial 1)=� 3 � (2 � (�x:If (x =0 ) 1 x � Factorial(x � 1 )) 1 )=� 3 � (2 � (If (1 =0 ) 1 1 �Factorial(1 � 1 )))=� 3 � (2 � (If False 1 1 �Factorial 0))=� 3 � (2 � (Factorial 0))=� 3 � (2 � (�x:If (x =0 ) 1 x � Factorial(x � 1 )) 0 )=� 3 � (2 � (If (0 =0 ) 1 0 �Factorial(0 � 1 )=� 3 � (2 � (If True 1 0 � Factorial(0� 1)))=� 3 � (2 � (1))=� 6 (17)3.10 Normal Forms�-terms can be written on a Normal Form, which is a redex-free form. 13 The normal formis unique for every di�erent function; if two �-expressions, L and M can be reduced to thesame normal form N , they are �-convertible.De�nition 6 A �-term, that is �-reduced until no further redexes exist, is said to be innormal form.13The divergent operator lacks normal form, since it can always be reduced, but will never reach a redex-free form. 9



The normal form can be regarded as the "original" or "basic" form of an �-term. One mayview it as the fundamental "meaning" (in a semantic way) of a term.3.11 The Reduction StrategiesWhen a �-term contains several redexes, we can choose which order to reduce them. Thereare three major strategies when reducing a �-term:3.11.1 Normal OrderReduces the redex whose � appears furthest to the left.3.11.2 Lazy ReductionReduce the leftmost redex if this is not itself in the body of another abstraction.3.11.3 Applicative ReductionAlways choose leftmost redex (�x:E)F where F is NOT a redex itself.Example 3 In the expression�x (�y:y) ((�z:z) (s (�t:t))) (18)the normal-order evaluation would reduce the term (�y:y) ((�z:z) (s (�t:t))) �rst, the applica-tive order would reduce the term ((�z:z)(s(�t:t))) �rst, while lazy evaluation wouldn't reduceit at all.Normal and lazy-order reduction evaluation order corresponds to the "call-by-name" ar-gument passing of programming languages such as Algol-60 (since they do not calculatethe values of the expression(s) that are used as arguments before calling another function),whereas applicative order corresponds to "call-by-value" as in ML and Scheme (where nofunction call is done before all arguments are developed to values).3.12 De Bruijn-indicesA di�culty when doing calculations in the �-calculus is the problem of not mixing up freeand bound occurences of a variable. In (�x:x) x, x occurs both bound and free. Therefore,we reason about bound/free occurences of a name, rather than bound/free names. As seenin the section regarding �-conversion, the bound occurence of a name can always be altered10



to any other name, not already occuring in the expression, without the meaning of theexpression being changed. It is obvious that the choice of a bound variable is unimportant.This led the dutch matematician De Bruijn [35] to suggest that bound names should berepresented as integers rather than names; the number index would show how far the boundname is from its binder (the "�"). The bound name with its binder closest to it is thusgiven the "name" 0, the second closest is called 1, etc. Intuitively, the index tells how manybinding �:s one has to pass from name to binder.Example 4 let �DB stand for the debruijn-indexed equivalence between �-expressions:�w:(�x:(�y:y)x)w)x)x �DB �(�(�:1 0 2)0)0 (19)Not only does this remove some ambiguity between free and bound name occurences, (freeoccurences are not replaced by an index), it turns out that �-equivalent expressions alwayswill look the same, syntactically. This means that no �-conversion is necessary betweenDB-indexed expressions.
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4 The �-calculusIf every expression in �-calculus denoted a function, every expression in �-calculus denotesa process [7]. A system of functions simply cannot model concurrent computing. We needanother notion { the process. A process is a much more independent object than a function- it may have its own memory, variables and context, it may run independently, in parallelwith other processes, and it may interact with other processes through communication. In�-calculus, the fundamental entity is a process, and the communication is represented asprocesses exchanging names over channels. Since a channel is named, the name of it can bepassed from one process to another. The receiving process can then itself use the channelfor passing names. This is the mechanism for changing the structure of a system - processesmay be spawned o� from other processes, channels may be set up (and destroyed) betweenthem, and the whole system can change all of its processes and channels, (i.e. its entirestructure) over time. This alongside "ordinary" communication of data.4.1 Actions and namesThere are three types of actions:1) Input actions, denoted by their names: a; b; c:::2) Output actions, denoted by a; b; c:::3) The silent or "perfect" or "internal" or "non-observable" action, denoted �De�nition 7 If L is the set of names for a system, the set of actions, A is L[L The entireset of actions for any system is then A[ f�g.When using value passing, we write a(x) for meaning "input a value for the name x on porta", a(e) or ae meaning "output value e on port a" where a 2 A, and x; e 2 L.4.1.1 �-conversionIf the processes P and Q only di�ers in their naming of bound variables, we say they arealpha-convertible, i.e. if P can be transformed to Q merely by acts of substitution on itsbound variable names, we write P �� Q as before. The �-calculus does not distinguish theseprocesses. fn(P ) (bn(P )) denotes the set of free (bound) names in P . All names occuringin P is written n(P ) = fn(P ) [ bn(P ). Similarily, actions can be free or bound, dependingon whether they contain a free or a bound name.1414This reasoning is not applicable for the silent action, � , since it does not contain a name at all, and thuscannot be neither free nor bound. 12



4.1.2 SubstitutionA substitution is written as fy=xg and means "replacing all free occurrences of x with y",as before. � usually denotes a substitution.4.2 Labeled TransitionsThe semantics of the �-calculus can be described as a labeled transition system, "LTS", justas CCS [8] 15. A simple example of a LTS is:P �! Q (20)meaning "process P can perform � and then behave as process Q", where � is an action.We will always use capital letters like P; Q; R; S::: to denote processes, a; b; c::: to standfor names, and �; �; 
::: to stand for actions. t̂ 2 A[f�g means the action sequence t withall occurrences of � removed. Thus, �̂n = � , the empty sequence, for any avalue of n.�! is an totally speci�ed action, the action � can also be � .�) is an action sequence that at least speci�es the �-actions contained within.�̂) is an action sequence that says nothing about any � -actions that might be inside. Thus,�̂) = ( �!)� if � = � , and ( �!)�( �!)( �!)� if � 6= � .A non-labelled arrow like ) means ( �!)�.4.3 De�nitionThe syntax of the �-calculus can be described by a a BNF-equation: [20]P ::=XPi j �:P j P jQ j !P j (�x)P j [x = y]P j A(y1; :::; yn) (21)4.3.1 SummationPi2I Pi (where I is a �nite indexing set): Behaves as one of the agents Pi. If i=0 we typicallyhave the empty summation, inaction, also denoted 0.SUM Pi �! P 0iPi + Pj + :::+ Pn �! P 0 (22)If Pi can perform � and become P 0i , then Pi + Pj +...Pn can perform � and become P 0i .Summation typically stands for alternative ways of execution.15CCS can be regarded as a static sub-calculus of the �-calculus.13



4.3.2 Pre�x�:P performs the action � and then behaves as agent P , where � is one of the followingactions:(I) The silent action � , polarity: 0TAU �ACT ��:P �! P (23)(II) The free output action, xy , "transmit the name y on channel x", polarity: minus.(III) The bound output action, x(y), which is short for (�y)xy.OUTPUT �ACT �xy:P xy�! P (24)(IV ) The input action, x(y), "receive a name on channel x, for the location y", polarity:plus. INPUT � ACT �x(z):P x(w)�! Pfw=zg w 62 fn((�z)P ) (25)In (II) � (IV ) above, x is said to be the subject and y is the object (parameter).4.3.3 CompositionThe agent P jQ behaves as the agents P and Q run in parallel. They may act independently,or communicate between each other.PAR P �! P 0P jQ �! P 0jQ bn(�) \ fn(Q) = ; (26)COMM P xy! P 0 Q x(z)! Q0P jQ �! P 0jQ0fy=zg (27)CLOSE P (�w)xy�! P 0 Q x(w)�! Q0P jQ �! (�w)(P 0jQ0) (28)The CLOSE-rule shows scope intrusion, a bound output is run parallel to an input. Theresult is that the restriction on w is extended to incorporate the whole parallel agent P jQ.There are of course rules for the symmetrical cases of PAR, COMM, CLOSE.14



4.3.4 Replication REP !P � P j !P (29)A parallel instance of process P can be "spawned" or "forked" from another process. Therelation "�", the structural congruence for processes, as de�ned as :De�nition 8 Let P and Q be two �-calculus processes. The structural congruence betweenthem is written P � Q and is a commutative and associative relation de�ned as:P jQ � Q jP (30)(P jQ) jR � P j (Q jR) (31)((�x)P ) jQ � (�x)(P jQ) if x 62 fn(Q) (32)!P � P j !P (33)The structural congruence will be extended to �-calculus agents (a special case of processes)in section 4.8.4.3.5 Restriction RES P �! P 0(�xP ) �! (�x)P x 62 n(�) (34)The restriction16 (�x)P denotes that the name x is private in process P . ("new x in P") Itis its own instance, other names x can exist outside of P, they then do not refer to the samename. The ports x and x are prohibited as subjects in actions.OPEN P xy! P 0(�y)P x(w)! P 0fw=yg y 6= x; w 62 fn(�y)P )) (35)If process P emits the private name w on channel x, it thereafter must continue as an agentwithout the restriction for w. Since it has transmitted that name, it is now not private.This is a scope extrusion.4.3.6 Match MATCH P �! P 0[x = x]P �! P 0 (36)[x = y]P behaves as P if x and y are identical names, as 0 otherwise.16Note that the Greek letter "nu" (�) should not be confused with the maximum-�xpoint denotation orthe �-calculus! 15



4.3.7 De�nition DEF Pf~y=~xg �! P 0A(~y) �! P 0 A(~x) 4= P (37)(We write ~x as shorthand for a whole vectore of names, x1; :::; xn.) A de�ned agent A, ofarity n is de�ned as A(x1; :::; xn) 4= P . This de�nition of agent equations allows recursiveagents. Any identi�er A can occur in the de�ning equation of A. The names x1; :::; xn arethe only names allowed to occur free in P . A(y1; :::; yn) behaves like P (fy1=x1g:::fyn=xng).4.4 Binding of namesTwo operators bind names; the input pre�x x(y):P binds the name y in P , and the restrictionoperator, (�x)P binds the name x in P . Names that are not bound by one of those operatorsare considered free. Note that sometimes (�y)xy is abbreviated "x(y)" as an action17.4.5 Abstraction & ConcretionAn abstraction is another way of writing the input pre�x:x(y):P 4= x:(�y)P (38)where x is considered the location of the value-to-be input, and (�y) the abstraction ofthe value y from P . A major di�erence to the �-calculus abstraction is that in �-calculus,only names can be abstracted.18 When communication is involved, we may say that x hasto synchronize with its co-name of another agent before any value-passing can take place.Also note that in abstraction, we regard x as pre�xing the abstraction. A concretion isanalogously a way of re-writing the output operation:xy1:::yn:P 4= x:[y1:::yn]P (39)where x is the co-location and [y1:::yn] is the concretion of agent P , where each yi is a datum(name) of the concretion, and the arity of the concretion is n. Communication can only takeplace when the arities of the abstraction agent and concretion agent are the same.4.6 Monadic / PolyadicIf the input and output operators only are capable of receiving exactly one name at a time,the calculus is said to be monadic. Likewise, if they instead are capable of interchanging a17Not in the agent pre�x form.18In �-calculus, we saw that arbitrary expressions could be the object of abstraction.16



whole vector of zero names or more at a time (this is considered an atomic19 transaction),x(~y):P j x~z:Q �! Pfz1=y1; :::; zn=yng jQ (40)where each zi=yi denotes a substitution of every occurrence of yi with zi, the calculus is saidto be polyadic .4.7 ExamplesExample 5 A very illuminating example of a simple �-calculus process is the memory cell:MEM (x) 4= outx:MEM (x) + in(y):MEM (y) (41)The memory cell MEM can either output its contents, x and then continue as MEM (x)(i.e. as itself), or input another value, y, and then continue as MEM (y), as itself but withanother content.4.8 Agents, Structural Congruence4.8.1 Agents as a special case of processesIntroducing abstractions and concretions (the polyadic �-caclulus), we now distinguish be-tween agents and processes. An agent is thus de�ned as either an abstraction or a concretion:Let N stand for "normal process", P for any process, F for abstraction and C for concretion,and A for agent. The di�erence between these notion is explained by:N ::= �:A j 0 jN +NP ::= N j P jP j !P j (�x)PF ::= P j (�x)F j (�x)FC ::= P j [x]C j (�x)CA ::= F j C (42)4.8.2 Structural congruence for agentsIf we wish to reason algebraically about agents, we need some rules for simplifying/re-writingagent expressions. Let A;F;C denote agents as above.De�nition 9 1) If A and B are �-congruent, A �� B, then they are structurally congruent,written A � B.19Atomic means that all substitutions are regarded as taking place simultaneously.17



2) !P � P3) (�x)0 � 04) (�x)(�y)A � (�y)(�x)A5) If x 62 fn(P ), then (�x)(P jQ) � P j(�x)Q6) (�y)(�x)F � (�x)(�y)F , (x 6= y)7) (�x)[x]C � [x](�y)C, (x 6= y)8) (�x)(�x)A � (�x)A4.9 Normal formThe structural congruence rules can be used for re-writing an agent expression into a normalform. For abstractions, this is done by "pushing restriction inwards", and, for restrictionsthat is a part of a concretion, these are pushed outwards. So, the normal forms for theabstraction F � (�~x)P , and for the concretion C � (�~x)[~y]P , ~x � ~y, and, if the concretionlacks any private names, C � [~x]P , For aspects of normal forms, the same as for �-calculusfunction expressions is applicable here.4.10 ApplicationApplication on �-calculus agents look very much like that for the �-calculus:((�x)F )y 4= Ffy=xg (43)4.10.1 Pseudo-applicationLet ~x; ~y denote vectors of names. The pseudo-application A � B of an abstraction and aconcretion, both on normal form, is de�ned as:Let A � (�~x)P and B � (�~z)[~y]Q where ~x \ ~z = ; and j~xj = j~yj. Then:A �B 4= (�~z)(Pf~y=~xg jQ) (44)The pseudo-application is useful in the rule COMM of the commitments (below).4.11 CommitmentsIf P can perform the action � (and then behave as A), we say that this is a commitment forP to act upon �. P � �:A (45)is interpreted as "P can commit to �:A". The rules for the commitment relation are:18



De�nition 10 SUM �:::+ �:A � �:A (46)COMM P � x:F Q � x:C(P jQ) � �:(F �C) (47)PAR P � �:AP jQ � �:A (48)RES P � �:A(�x)P � �:(�x)A if � 62 fx; xg (49)STRUCT Q � P P � �:A A � BQ � �:B (50)The commitment relation will be of much use later. The way �-calculus agents are rep-resented in the model chcking algorithm is as a set of commitments. Note the usage ofpseudo-application in the COMM-rule. This is needed since parallel composition is not de-�ned for commitments. The value-passing that can take place in parallel composition is nota part of the commitment relation, which only deals with the subjects of agents (actionsincluding � ). The pseudo-application, "�" deals with this; value-passing can only take placewhen the arities of the abstraction and the concretion are the same. But any two agentscan be parallel-composed, and, if the arities are not equal, no value-passing takes place.4.12 DistinctionDe�nition 11 A distinction is a symmetric, irre
exive binary relation between names.It is irre
exive since a name cannot be distinct from itself. Let D range over Distinctions.Any substitution � preserves a distinction if8x; y 2 D : x� 6= y� (51)Distinctions will be of use when we reason about bisimulation equivalences later on; forsome equivalences to hold, certain names must be kept apart. This is then done by usinga distinction. We will write =D, meaning an equivalence relation that holds under thedistinction D, e.g �fx;yg for a strong bisimulation equivalence when x 6= y, as seen in thenext section.4.13 Equivalence relations for processesWe have seen that �-congruence and structural congruence are two equivalence relationsbetween �-calculus processes. Another type of equivalence relation, that also existed inCCS, is the notion of bisimulation equivalence. It is roughly divided into strong and weak19



types. Intuitively, if process P can do everything20 that process Q can, P is similar to Q.If the opposite also holds, P and Q are bi-similar. Here we �rst introduce three di�erentstrong21 bisimulation equivalences:4.14 Strong Bisimulation Equivalences4.14.1 LateStrong Late Bisimulation Equivalence �L is de�ned as:De�nition 12 LS is a late simulation if (P;Q) 2 LS implies that (�= free action)If P ��! P0 then 9Q0:Q �! Q0 and (P0;Q0) 2 LS (52)If P x(y)�! P0 then 9Q0 : Q x(y)! Q0 and 8w : (P0fw=yg;Q0fw=yg 2 LS (53)If P (�y)xy�! P0 and y 62 n(P;Q) then 9Q0:Q (�y)xy�! Q0 and (P0;Q0) 2 LS (54)If both LS and its inverse are simulations, then LS is a bisimulation. We write P �L Q ifP and Q are strong late bisimular, i.e. related by a strong late bisimulation.4.14.2 EarlyStrong Early bisimulation Equivalence, �E is de�ned as:De�nition 13 ES is an early simulation if (P;Q) 2 ES implies that (for the free action �):If P ��! P0 then 9Q0:Q �! Q0 and (P0;Q0) 2 ES (55)If P x(y)�! P0 then 8w : 9Q0 : Q x(y)! Q0 and (P0fw=yg;Q0fw=yg 2 ES (56)if P (�y)xy�! P0 and y 62 n(P;Q) then 9Q0:Q (�y)xy�! Q0 and (P0;Q0) 2 ES (57)If both ES and its inverse are simulations, then ES is a bisimulation. We write P �E Q if Pand Q are related by a strong early bisimulation. This variant (commuting the quanti�ersin step 2) is weaker22 than strong late bisimulation, since the rule only requires that for eachinstance of the object, there exists an simulating transition, while, in the late bisimulation,an simulating input transition must be able to simulate all possible instances.20Perform all actions21The notion of weak bisimulation equivalence is investigated in the next section.22"weaker" here means that the relation is larger, i.e. the conditions for being in the relation are relaxed20



4.14.3 OpenLet � stand for a substitution of names. x and y can be vectors of names. D is a distinction.The strong open bisimulation equivalence is a symmetric binary relation and is de�ned as:De�nition 14 A symmetric binary relation OSD is an indexed open bisimulation if (P;Q) 2OSD implies that for all substitutions �, and the free action �:P� �! P 0; 9Q0:Q� �! Q0 and (P0;Q0) 2 OSD (58)P� a(x)! P 0; 9Q0:Q� a(x)! Q0; and (P0;Q0) 2 OSD (59)P� (�x)a(x)�! P 0; 9Q0:Q� (�x)a(x)�! Q0; and (P0;Q0) 2 OSD0 ; where D0 = D� [ (x � fn(P�;Q�)) (60)If both OSD and its inverse are simulations, then OSD is a bisimulation. We write P �OD Qif P and Q are strong open bisimular, i.e. related by a strong open bisimulation.4.14.4 Di�erence between bisimulation equivalences.The relation between the three di�erent types of bisimulation equivalence can be expressedas OS � LS � ES (61)The congruent open bisimulation is the strongest (smallest) relation. Intuitively, the di�er-ence between them can be described as:The late bisimulation equivalence instantiates a bound name after the synchronization hastaken place 23, the early does this just before the synchronization will take place. Thus,the early bisimulation equivalence will have more options than the late for selecting actionsin the other agent, in order for the search to go on further into respective agents, to checkwhether the relation will still hold. As for the open, it does not instantiate any bound namesat all until necessary.4.14.5 Strong bisimulation equivalence and congruenceEarly and Late bisimulation equivalences are not preserved when substitution of names isconcerned.Example 6 Let P 4= x and Q 4= y. Is P�jQ� � x:y + y:x ? Yes, if � does not contain thesubstitution fy=xg. Then P�jQ� � x:y + y:x + � . We see that keeping names apart (notapplying a substitution) is a way to make the bisimulation equivalence hold.23Synchronization means here "the selection of an action"21



Example 7 As a result of above are these equations:x j y �� x:y + y:x (62)x j x 6 �� x:x+ x:x (63)x j x �� x:x+ x:x+ � (64)The notation " ��" is here either the early or late bisimulation equivalence. Putting a dotover the relation symbol is a way of denoting a non-congruent relation.The open bisimulation equivalence, on the other hand, is de�ned as an equivalence holdingin all contexts, which makes it a congruent relation.Distinctions, keeping names apart, is another way of strengthening a bisimulation relation:Example 8 x j y �fx;yg x:y + y:x (65)This holds since the two names x, y must be kept distinct. An internal communicationresulting in a � -action cannot take place.The relation �fx;yg is a relation under a distinction,as before.4.15 Weak Bisimulation EquivalencesAs CCS, the �-calculus has a notion of weak bisimulation equivalence. The di�erence tostrong is the view upon silent actions, � . These are ignored in the de�nition of the relation.There are weak versions of all three previously presented strong bisimulation equivalences.Sometimes, one may wish to ignore the internal actions of a system when deciding whethertwo processes are equal or not. Then the weak bisimulation equivalence is a useful relation.4.15.1 LateWeak Late Bisimulation Equivalence �L is de�ned as:De�nition 15 LW is a late weak simulation if (P;Q) 2 LW implies thatIf P ��! P0 then 9Q0:Q �̂) Q0 and (P0;Q0) 2 LW (66)If P x(y)�! P0 then 9Q0 : Q)x(y)! Q0 and 8w : (P0fw=yg;Q0fw=yg) 2 LW (67)If P (�y)xy�! P0 and y 62 n(P;Q) then 9Q0:Q)(�y)xy�! Q0 and (P0;Q0) 2 LW (68)If both LW and its inverse are simulations, then LW is a bisimulation. We write P �L Q ifP and Q are weak late bisimulation equivalent.22



4.15.2 EarlyWeak early bisimularity, �EW is de�ned as:De�nition 16 EW is a weak early simulation if (P;Q) 2 EW implies thatIf P ��! P0 then 9Q0:Q ~�) Q0 and (P0;Q0) 2 EW (69)If P x(y)�! P0 then 8w : 9Q0 : Q x(y)) Q0 and (P0fw=yg;Q0fw=yg) 2 EW (70)If P (�y)xy�! P0 and y 62 n(P;Q) then 9Q0:Q (�y)xy=) Q0 and (P0;Q0) 2 EW (71)If both EW and its inverse are simulations, then EW is a bisimulation. We write P �E Q ifP and Q are weak early bisimulation equivalent.4.15.3 OpenLet � stand for a substitution of names. x and y can be vectors of names. The openbisimulation equivalence is a symmetric binary relation and is de�ned as:De�nition 17 A symmetric binary relation OWD is an indexed open bisimulation if (P;Q) 2OWD implies that for all substitutions �, and the free action �:P� �! P 0; 9Q0:Q� �) Q0 and (P0;Q0) 2 OWD (72)P� a(x)! P 0; 9Q0:Q� a(x)) Q0; and (P0;Q0) 2 OWD (73)P� (�x)a(x)�! P 0; 9Q0:Q� (�x)a(x)=) Q0; and (P0;Q0) 2 OWD0 ; where D0 = D� [ (x� fn(P�;Q�)) (74)If both OWD and its inverse are simulations, then OWD is a bisimulation. We write P �ODQ if P and Q are weak open bisimular, i.e. related by a weak open bisimulation.4.15.4 Di�erence between bisimulation equivalences.The exact relation between the three di�erent types of weak bisimulation equivalence is stillunexplored research topics.4.16 Properties for Weak Bisimulation EquivalencesWe see that the di�erence between strong and weak bisimulation equivalence is the relaxedcondition for the "simulating" process (Q); in strong bisimulatiuon equivalence, there mustexist exactly one corresponsing step in Q for every step in P , in the weak version, there can23



be one or several steps. One result is P � �:P , while P 6� �:P . One the other hand, noweak bisimulation equivalence is preserved by unguarded24 SUMMATION:�+ � 6� �:�+ � (75)This is due to the fact that the right agent, having done a � , is not able to simulate the leftagent, which can do � as well as �.

24Guarded=under a pre�x 24



Part IILogic for processes5 Sequent CalculusThis is an introduction to the classical sequent calculus for predicate logic, originatingfrom the 1930's [25],[26],[34]. The rules of this calculus are based on purely syntacticalmanipulation, but they are shaped in a way that semantical reasoning from them can bededuced.De�nition 18 In sequent calculus, we adopt the idea of a sequent, a structure denoted as�! � (76)where � and � contains formulas, and the arrow is called a sequent arrow25. � is called theantecedent and � the succedent of the sequent.Statement 1 The goal for the sequent calculus is to make all formulas in the antecedentvalid and all formulas in the succedent invalid.This is done by applying the rules from a tableau system of the calculus and assign names toall free variables of the formulas. If this succeeds, i.e. there exists a substitution of namessuch that all formulas of � are valid and all formulas in � are invalid, the whole sequent isvalid.5.1 Proof SystemDe�nition 19 A proof system for predicate logic sequent calculus [34] (without identity)26,and X stands for a failed sequent: �! ��!?;� !? (77)X�;?! � ?! (78)�! �; � �! �;  �! � ^  ;� ! ^ (79)25When dealing with logical connectives, the logical implication is written as "�" to avoid confusion.26Identity would have to deal with formulas such as a = b, a 6= b and calculate the truth values for suchformulas. It is a minor extension of the here presented sequent calculus25



�; �;  ! ��; �^  ;! � ^ ! (80)�! �; �;  �! �; �_  ! _ (81)�;�! �  ;�! �� _  ;�! � _ ! (82)�;�! ��! �;:� ! : (83)�! �; �:�;�! � : ! (84)�; �! �;  �! �; � �  !� (85)�! �;�  ;�! �� �  ;�! � �! (86)�;�! �;   ;�! �; ��! �;  ��  !�� (87)�;  ;�! � �! �; �;  � ��  ;�! � ��! (88)�! �; �(y)�! �; 8x�(x) ! 8 where y is a new variable (89)�(t); 8x�(x);�! �8x�(x);�! � 8 ! where t is any term (90)�! �; 9x�(x); �(t)�! �; 9x�(x) ! 9 where t is any term (91)�(y);�! �9x�(x);�! � 9 ! where y is a new variable (92)Where ? is the universally false statement, � is logical implication, : is logical negation and�� is logical equivalence, � and  are logical formulae, � and � are sets of logical formulae,as described above. 26



5.2 Proofs in the sequent calculus.The sequent calculus yields a proof tree, in which each node is a sequent. Some of the rulesforce the proof tree into branching, i.e. from that point and on, the tree is divided intoseveral sub-trees. A node is marked X means no proof is available at that particular node.The rules for the predicate logic connectives are motivated as: ( for 8 ! and 9 !):The formulas to the left of the sequent arrow are to be validated and the formulas to theright are to be falsi�ed by the calculus. If we wish to prove the formula 8x�(x) true, we willhave to prove �(y) true for every possible element y of the structure we are looking for. Theformula has to be true even higher up in the proof tree, therefore it is saved along with aninstantiation of itself in the premise, of the form �(t). The same reasoning is valid for ! 9,to make the formula 9x�(x) false, we will have to make all possible elements, �(t) false.27For the rules ! 8 and 9 !, we simply state that if the formula 8x�(x) is to be falsi�ed,we �nd one formula, �(y) that is false in order for the whole formula to be false. The samereasoning can be done for the ! 9 rule; to make it false, it su�ers to �nd a new element,�(y) that is false.Theorem 1 For each one of the rules, the conclusion (the lower sequent) is valid i� allsequents above (the premises) are valid.[34]A disproof structure can be read at a leaf node of the proof tree when:1) The structure only contains atomic formulas, that cannot be applied the rules of thecalculus further.2) The 8-formulas in the antecedent have been applied the 8 ! rule on all activated terms,t.3) The 9-formulas in the succedent have been applied the ! 9 rule on all activated terms,t.If all branches are closed, i.e. they are all closed by X , a disproof structure could notbe produced by the sequent calculus, and we are allowed to draw the conclusion that theoriginal sequent in fact was valid.
27The repetition of a formula in the premise is called contraction and will be investigated further in theproof system of the model prover. 27



6 Modal LogicModal28 logic [6] & [19] is an extension of regular predicate logic with modalities. In formalmethods, this gives us the potential to reason about properties for di�erent program states,not just properties for an entire program (process, agent). Modal properties can be describedas di�erent types of "local" properties.6.1 Modal OperatorsUnlike predicate logic, modal logic distinguishes between di�erent types of true and falsepropositions. There are propositions that are necessarily true and others that are merelytrue. The same is valid for false statements.De�nition 20 Modal logic contains di�erent modal notions. Its propositions can be:1) necessarily true (always true, cannot be false)2) Impossible (never true, no matter the circumstances)3) Possibly true or falseThe key in this reasoning is di�erent worlds. While predicate logic always refers to a singleworld when making a statement with its quanti�ers (9; 8), modal logic refers to severalworlds at the same time. Modal logic extends predicate (or propositional) logic with twonew operators, the necessity operator, and the possibility operator:2p (93)3p (94)(p is a proposition). Meaning: "p is true in all worlds29 and "p is true in some world"30,respectively. Just like the existential quanti�er is de�ned in terms of the universal, thepossibility operator is de�ned in terms of the necessity operator:3p � :2:p (95)2p � :3:p (96)Modal operators are not true-functional in the ordinary logic way, i.e. there are no truthtables. Intuitively, since modal operators reason about di�erent worlds, they can be de�nedas:28It is called modal since in mediaeval logic, necessities etc were thought of as being the modes in whicha proposition could be true or false.29read: "box-p"30read: "diamond-p" 28



De�nition 21 Let W be the set of all possible worlds. Let � denote a formula in ordinarypredicate logic. Then, 2� � 8w 2W : � (97)3� � 9w 2W : � (98)These are attractive features when describing computer programmes or processes; a "world"would in that sense mean a program state.6.2 Reduction Laws for modal operators2p � 32p (99)3p � 23p (100)2p � 22p (101)3p � 33p (102)6.3 Hennessy-Milner LogicHennessy andMilner [18] proposed a simplemodal logic for CCS [8], for expressing propertiesof concurrent and non-deterministic programs. They �rst de�ned observational equivalence:6.3.1 De�nition of HML [17]let A be the set of all possible actions and � an action such that � 2 A. Let � denote aformula in HML. � ::= �1^�2 j �1_�2 j [�]� j h�i� j T jF (103)That process P satis�es � is denoted P j= � and means semantically:P j= T (104)P 6j= F (105)P j= �1 ^ �2 , P j= �1 and P j= �2 (106)P j= �1 _ �2 , P j= �1 or P j= �2 (107)P j= [�]� , f8�:P �! P 0 and P 0 j= �g (108)P j= h�i� , f9�:P �! P 0 and P 0 j= �g (109)We can combine the modal operators. Then we are equipped with a powerful tool forexpressing properties of processes. 29



Example 9 P j= h�iT (it is possible for process P to perform �) (110)P j= [s]F (P is deadlocked if � is performed) (111)h�iT expresses an capability for performing �,[�]F expresses an inability for doing �.[�] is a way of denoting any observable action in the action set, (anything but � ). If silentactions also are concerned, the modal operators can be written asP j= [[�]]� , f8�:P �) P 0 andP 0 j= �g (112)P j= hh�ii� , f9�P �) P 0 and P 0 j= �g (113)where �) means ( �!)� �! ( �!)�, i.e. an action � can be performed, disregarding all possiblefollowing or preceeding � -actions.6.4 Modal EquivalenceThere is another way of describing equivalences between processes: We may say that twoprocesses P and Q are similar if they have the same modal properties31. In fact, there isan intimate relationship between having the same modal properties and being bisimulationequivalent (strong or weak, respectively, according to in which of the modal logics fromabove we choose to express the properties).De�nition 22 The input modality for the diamond operator of the late and early strongbisimulation equivalence of the �-calculus are written as:P j= hhx(y)iiL', 9P0:8z x(y)�! P0 and P0fz=yg j= ' (114)P j= hhx(y)iiE', 8z:9P0 x(y)�! P0 and P0fz=yg j= ' (115)where ' is a logic formula, written in HML.6.5 LimitationAn disadvantage with modal logic for processes is its �nite model property, i.e. we can onlybuild a �nite "chain" of modal operators in a formula, and thus express a �nite behaviourmodel. If a process, on the other hand, is in�nite, its properties may not be "caught" bymodal logic.31if they satisfy the same modal formulas 30



7 Temporal LogicAlthough powerful, modal logic lacks the ability to express enduring capabilities. Only"immediate" properties are possible to formulate using the ordinary modal logic. Statementslike "property P is always possible" or "action a will eventually happen" are out of its scope,due to the fact that modal logic formulas are always �nite - and a process might not be. Forthis, we need a more powerful tool - temporal logic, that can be regarded as "modal logicwith recursion". And with recursion follows the notion of �xed-points [17].7.1 Liveness, SafetyOf special interest is the ability to express liveness and safety properties for a process:De�nition 23 Liveness: something good will eventually happen.De�nition 24 Safety: nothing bad will ever happen.Temporal logic expresses properties of processes by expressing features of some or all of theirruns (while modal logic only concerns processes properties as their behavior change throughtransitions). Also, modal logic naturally deals with �nite processes, since its only ability in�nite formulas stating properties of �nite "chains" of actions.7.2 Fixed pointsWe recapture the de�nition of �xed-points for functions from section 3.9.5. Every recursivefunction has a �xed-point. Suppose now that we wish to express an in�nite property inmodal logic for a process, e.g. "process P must always be able to perform the action �".Writing P j= h�iT or P j= h�ih�iT solves this for one or two states in P , but for in�nity?The answer is a recursive formula. We could say that a process satisfying the formulaX 4= h�iX means a process that can perform h�i and then satisfy X again, i.e. in a "loop".In this fashion, an in�nite behaviour of a process can be captured. With recursive formulascome the notion of �xed points. i.e. a con�guration, or state, as described by the formula,to which the process might return, analogously to the �xed points of an ordinary numericfunction. These �xed points of formulas express interesting properties, as we shall see.De�nition 25 A complete partial order is any set of elements, C with a relation, usuallywritten v that is a partial order c � c between the elements in C. Let c; x; y; a; b stand forelements, all in C. The relation v is re
exive, anti-symmetric and transitive in the ordinarymeaning: x v x (116)31



x v y; y v x! x = y (117)x v y; y v z ! x v z (118)Let X be a subset of C. i.e. X � C. An element, y 2 C, is called the least upper boundof X if, 8x 2 X : x v y, and :9z 2 X:y v z or x v z v y Note that y does not haveto be a member of X, but of C. Analogously, if the same conditions apply, but y v x, and:9z 2 X:z v y or y v z v x, we call y the greatest lowest bound of X. The least upperbound of X is also called the supremum of X, and is written lub(X) or uX. The greatestlower bound is also called the in�mum of X, and can also be written glb(x) or tX. C is acomplete partial order, CPO, if all elements c 2 C are ordered by the relation v. There isalso a "bottom" element, usually written ?, that has the property 8c 2 C : ? v c. Everychain of ordered elements of a CPO has a supremum (an empty chain would have ? assupremum).A function, f from elements in C to elements in C, i.e. f : C 7! C, is monotonic if8x; y 2 C : x v y ! f(x) v f(y). The element a 2 C is a �xed-point to f , if f(a) = a.Also, if 8b 2 C, if b also is a �xed-point of f , and a v b, and :9c 2 C:c v a and f(c) = c,then a is the least �xed-point of f , written lfp(f) or �f . Analogously, if b v a, and:9c 2 C:a v c and f(c) = c, we say that a is the greatest �xed-point of f , written gfp(f)or �f . Kleene's recursion-theorem states that every monotonic function f on a CPO has aleast �xed-point.This notion of least/greatest �xed-points can be used for our recursion-de�ned modal logicformulas and the set of agents that satisfy these formulas.De�nition 26 We can regard the set of agents, A satisfying a formula � as a CPO. Therelation v would be subset, i.e. �. Then the least �xed-point of a formula � (�X:�) isthe set of agents TfA0 � A : k�k � A0g, where k�k is the set of agents satisfying theformula �. Analogously, the greatest �xed-point of a formula, written �X:�, is the setSfA0 � A :A0 � k�kg.The temporal operators can also be de�ned in terms of each other, a dual property similarto the relations between 9, 8 or 3, 2:�X:� 4= :�X0::�f:X0=Xg (119)Adding these �xed-point operators to modal logic results in the modal �-calculus.7.3 The modal �-calculusThe modal �-calculus is an extension of HML with �xpoint notation and can be written as:� ::= �1 ^ �2 j�1 _ �2 j [�]� j h�i� j �Z:� j �Z:� j T jF (120)32



7.4 MeaningWe can think of �xed-points as recursion points of a process, a state (or "con�guration")to which the process may return. A maximum�xed-point formula expresses a con�gurationto which the process must return. Otherwise, the process does not satisfy the formula. Aminimum �xpoint expresses a con�guration, to which the process must NOT return, if itsatis�es the formula. Invariant properties32 can be expressed by using maximum �xpointformulas. Intuitively, the maximum �xpoint formula �X:� can be read as "always �" and�X:� "eventually �".Example 10 Let P 4= a:b:P be a recursive process, that can perform a, then b and thenbehave as P again, i.e. the language of P is a; ab; aba; abab; ababa; ababab; ::::. An invariantfor this process is "it can always perform a or perform b". This would be writtenP j= �X:(haiX _ hbiX) (121)in the modal �-calculus.7.5 Liveness and Safety propertiesExample 11 A maximal �xpoint formula expresses a safety property. If K contains allunsafe actions and k 2 K, then if a system satis�es�Z:([k]F ^ [�]Z) (122)then the system is safe, "it is always the case that we cannot perform k and we can performany (other) action and this formula holds".Example 12 If � captures all "good" states, then the formula�Z:(� _ (h�iT ^ [�]Z)) (123)means that the system is always kept at liveness33 - "we will eventually reach a state whereeither � holds or any action can be performed, either resulting in termination or that thisformula holds again".The formulas can express either terms of actions or terms of states.32Invariant property = A property that holds throughout the entire execution of a process33Can always change state 33



7.6 Tableau Proof SystemThe modal �-calculus34 can be used in proof systems by using proof rules to reduce aformula to axiomoatic level and then decide if it is valid. These rules are often presentedas a "tableau". The tableaus can be read from top to bottom (premiss to conclusion) orbottom-up. Similar to the sequent calculus, we can develop proof trees, by applying theapropriate proof rule from the tableau on each new result from the former application ofa rule. This application will stop when we have reached a leaf node, where an axiomaticformula T or F can be seen. An succesful tableau has no F -leaves at all. In that case, weconclude the original process was indeed a model for the formula.7.6.1 The tableau of rulesLet � 2 f�; �g. Let P be a process and � a formula in the modal �-calculus. Let U rangeover propositional constants. Let � be an action in the action set, A. Then the tableauproof system for the modal �-calculus can be presented as:^ P ` � ^	P ` � P ` 	 (124)_P ` � _	P ` � _ P ` � _	P ` 	 (125)[�] P ` [k]�P1 ` � ::: Pn ` � fP0 : P �! P0 ^ � 2 Ag = fP1 :::Png (126)hkiP ` h�i�P 0 ` � P �! P 0 ^ � 2 A (127)�Z P ` �Z:�P ` U U 4= �Z:� and U fresh (128)U P ` UP ` �fU=ZgU 4= �Z:� (129)7.7 Fold, Unfold, DischargeThe track-keeping of �xpoints is a di�cult task. Several methods have been suggested.Here we will present and use the suggestion of [16], a solution that uses special constants forkeeping track of �xpoint formulas.34Since we later will be using both minimum and maximum �xed-point formulas, even nested, the "modal�-calculus" and "�-calculus" [15] are interchangeable terms here.34



7.7.1 Unfold"�Z:�" , where � 2 f�; �gIn the rules above, the notion of special constants (U ) is used as a method of keeping track ofvisited �xpoint formulas. Every time a �xpoint con�guration is encountered, a new constantis substituted for it, and the proof rule application can continue. This is known as Unfoldingthe �xpoint formula.7.7.2 Fold"U"If we re-encounter a �xed point formula (i.e. a constant), but the process P is not equalto the process of the original Folding, this new con�guration cannot be a re-visited �xpointformula, despite the constant. In this case, we will have to substitute the original formulafor the constant, and continue the proof rule applications. This is known as Folding a �xedpoint formula.7.7.3 Discharge, failWhen a constant is found, we now that this is a previously visited point. We now haveto decide whether it is a success or a failure. A maximum �xpoint must be re-visited, aminimum �xpoint must not. If the constant represented a maximum �xpoint, we can stopthe application here, and consider the branch True. This is known as Discharging of a�xed point. Likewise, we can fail a minimum �xed point. Note that these rules are validthrough the induction hypothesis; encountering a maximum �xed point formula once again,we assume it is indeed a maximum�xed point of the formula. Since the discharge procedurestops further proof search, we will not know if repeated search will return to the �xed pointagain, but that is validly assumed by the hypothesis.
35



Part IIIPresentation8 Model CheckingA model checker is a tool for checking whether a process, an agent, A satis�es a certainlogic formula �. The agent i expressed in a suitable process algebra therefore, e.g the�-calculus.This is usally written as A j= �.8.1 The ProblemModel checking has always been associated with huge amounts of computation, and, whenperformed by computers, leading to complex programs demanding vast amount of memoryspace and other resources. For instance, when trying to prove that an agent satis�es aformula, the "brute force" way of doing so would be to let the agent run through all of itspossible states and then check whether each of them satis�ed the formula. This becomesnon-e�cient on larger agents with perhaps billions of states, and impossible on in�nite-behavourial agents. Other approaches must then be used, that correctly reduces the numberof states that has to be checked. One way is to implement a checker like in [11], based on theclassic logic sequent calculus. An implementation was done in SICStus PROLOG v3. Wewill here present a total algorithm of this latter algorithm (hereafter called Model Prover orjust prover to distinguish it from the earlier checker.8.2 Checker vs. Prover: Di�erences.The prover was in
uenced by earlier works in theorem proving, e.g. the intuitionistic pred-icate logic theorem prover of [9] . A main di�erence between the two model checking algo-rithms of [11] and [14] is the treatment of names; in checker, this is always done explicit, inprover we use a symbolic approach; Other entities ("parameters" and "variables") representsets of names. The implementation of checker uses binding modalities35 , i.e. a modal logicoperator binds the name of the action in the adjacent formula. The prover uses non-bindingmodal formulas, as described in section 6 of this thesis. The treatment of �xpoint formulasare almost the same in both algorithms, the "special constant" approach, as described ear-lier. Another di�erence between the two algorithms is the prover's usage of suspension ofcertain proof goals as an e�ciency improvement mechanism.35This was a change between the presentation of [14] and the actual implementation.36



8.3 A Sequent calculus model checkerIn the Model Prover, we will write �! A : � (130)for a sequent, where � is a set of name-equations (as explained later), A an agent (in the�nite control 36 �-calculus), and � a formula of the modal �-calculus. Intuitively, we canthink of the Model prover as a way of trying to make the stated agent not satisfy the statedformula under the current nameequation and the current assignment of names to variables.Indeed, as soon as we have found a deduction of this being the fact, the algorithm terminatesimmediately. When looking for a proof of the sequents validity, we will often have to searchlonger ways to �nd this.

36see section 9.2.2 for details 37



9 ComponentsThe components of the algorithm can be described as divided in two parts: atomic andmolecular items.9.1 Atoms9.1.1 Names & ParametersA name is the most basic unit of the algorithm. They are always written in lower case:x; y; z; out; in::: (131)It is assumed invariantly that the supply of names to the algorithm is in�nite, i.e. that newnames can always be created.A parameter is a meta-name, i.e. a name created by the algorithm at certain points wherea "new" name, a name that is not already mentioned inside the structure is needed.37 Thedi�erence between names and these (annotated) parameters is the fact that parameters carryindices, indicating at what stage of the algorithm they were created, a parameter with alower index was created before a parameter with a higher index. Parameters will thus bedenoted p1; p2::: (132)9.1.2 VariablesA variable is a placeholder for a name. It is always unique throughout the entire structureand will be denoted by capital letters. Variables always carry indices as well as parameters,V1; X2; Y3 (133)and are always considered uninstantiated. When instantiated, they are substituted for aname.9.1.3 ActionsActions are either unbarred, barred or the silent action � which is distinct from all otheractions and is not barred or unbarred. The barred and unbarred actions can contain aname/parameter or a variable:x; y; z4; X1; Y2; Z7 (unbarred) (134)x; y; z4; X1; Y2; Z7 (barred) (135)� (silent) (136)37this is called "fresh" in [14] et al 38



9.1.4 Propositional VariablesPropositional variables stand for a point of recursion in a formula and will be writtenA; B; ::: (137)(Always without indexing.) They appear in �xed-point formulas and when those have beenunfolded.Example 13 The maximum �xed-point formula� = �X(h�iX _ h�iX) (138)expresses the invariant property of a process that satis�es � to always be able to perform �or to perform � and then continue from the point X in the formula, i.e. the same propertyagain, in a loop.Intuitively, the prop.variables denote the point of recursion for recursive formulas.9.1.5 U - formula indexingA formula constant Ui will stand for a subformula of a previously visited �xpoint formulain the algorithm. Whenever we encounter such a formula, it is replaced by a fresh constantUi and the search continues. When we encounter a formula that only contains a constant,we know that this is a re-visited �xpoint formula, and we can then perform the appropriateactions according to the rules of the algorithm. This technique is adopted from [16] andensures correct treatment also of even nested �xpoint formulas. A key condition is thatevery new constant Ui is unique throughout the structure.Example 14 The Formula constant for the maximum �xpoint formula of the previous ex-ample would be U0 = (h�iU0 _ h�iU0) (139)9.1.6 I - Denotation parameter indexThe structure of the algorithm will at every point carry a current index of the latest createdparamteter. This will be written as { where { 2 N (140)39



9.2 Molecular Structures9.2.1 Name-EquationsA Name-equation will be denoted � and is a set of equalities and in-equalities betweennames (and parameters). Note that neither variables nor actions cannot occur in name-equations. A name-equation is interpreted as a conjunction, i.e. all of its expressions arevalid simultaneously: � = fa = b ^ b 6= c ^ b 6= d^ :::^ :::g (141)9.2.2 �nite-control AgentsAgents are expressed in the �-calculus of section 6, with one major di�erence: The agentshave to be of �nite-control type.De�nition 27 A �nite-control agent has the property that no use of the parallel combinator"j" is allowed in recursively de�ned agents. Thus, the agent A(x) 4= x:(A(x)jA(x)) is NOT�nite-control.Thise condition ensures that the agent will have a "�nite" behaviour and that the algorithmtherefore can terminate.389.2.3 FormulasFormulas are of the modal �-calculus and atomic items are name-equalities and name-inequalities expressions.9.2.4 StructureA structure is a 8-tuple of the formh� ! A : �; �; �; {; S; �i (142)where� is a name-equation as described in 9.4.1,A is an agent as described in section 9.4.2,� is a logic formula as described in section 9.4.3,� is a set of alternatives as descibed in section 9.4.5,� is a set of visited �xpoint formulas as described in section 9.4.7,38It does the whole model checking decidable. 40



{ is the current parameterindex as described in section 9.3.6,S is a set of suspended sequents as described in section 9.4.6,� is a set of conjunctive structures as described in section 9.4.8.The structure is the top-level of the algorithm. At each point of execution, we have astructure that can be altered according to the tableau rules into another structure until wereach a structure that allows us to terminate.9.2.5 AlternativesAn alternative to the current sequent is a 5-tuple on one of two possible formsBarhA; 9x�; �; {; Si (143)AlthA; �; �; {; Si (144)whereA is an agent as described in section 9.4.2,x is a name or parameter as described in section 9.3.1,� is a logic formula as described in section 9.4.3,� is a set of visited �xpoint formulas as described in section 9.4.7,{ is the current parameter index as described in section 9.3.6,S is a set of suspended sequents as described in section 9.4.6.An alternative to the current sequent � ! A : � is invoked when the current sequent failsto be validated by the rules. If the (possibly empty) list of alternatives of the structurecontains another alternative, this one is invoked instead, and execution continues. This way,at least one of the alternative sequents from the alternative list has to yield a valid sequentfor the algorithm to be able to validate the structure. Some of the rules of the algorithmadd alternative sequents to the current structure. An "active" alternative is marked Alt:::and can be used without restriction in the search of a proof. Another, "locked" alternative,marked Bar::: also exists. The Barred alternatives come from contraction of 9-formulas,and cannot be used in the proof search unless they are "unlocked" (i.e. transformed intoan Alt-alternative), and this can only take place at certain points in the algorithm (mostlywhen new information has been added to the name-equations).9.2.6 Suspended SequentsA suspended sequent is a 6-tuple of the formh�; A; �;�;�; {i (145)where� is a name-equation as described in 9.4.1, 41



A is an agent as described in section 9.4.2,� is a logic formula of one of the formsVi 6= Wj (146)Vi 6= x (147)[Vi]� (148)(The symmetrical cases of (146) and (147) are omitted here.) whereVi;Wj are variables indexed with i, as described in section 9.3.2,x is a name or parameter as described in section 9.3.1,i; j are indexing paremeters as described in section 9.3.6,� is a logic formula as described in section 9.4.3,� is an alternative as descibed in section 9.4.5,� is a set of visited �xpoint formulas as described in section 9.4.7,{ is the current parameter index as described in section 9.3.6.A suspended sequent is one for which the validating e�orts have ceased and it is put into alist of suspended sequents. This is because the formula has a variable in a vital place, as seenabove, and the proof search therefore needs this variable to be uni�ed with a name in orderfor the algorithm to be able to continue its search. If no uni�cation is possible, the suspendedsequent is considered proved valid. This is done by pure e�cency reasons. By assumingthat there exists a name substitution so that all suspended sequents can be validated, wesimply leave those unvalidated if no key variables of those sequents get instantiated. Seesection 12.12 for further reasoning about the suspension mechanism.9.2.7 Visited FixpointsAn Visited �xpoint is a 5-tuple on one of the formsMaxhUj; �; A; �; {i (149)MinhUj ; �; A; �; {i (150)whereUj is a formula constant as described in section 9.3.5.� is a name-equation as described in 9.4.1,A is an agent as described in section 9.4.2,� is a logic formula as described in section 9.4.3,{ is the current parameter index as described in section 9.3.6,The list of visited �xpoints is keeping track of all previous visited �xpoint con�gurations.This information is used whenever another �xpoint con�guration is discovered in the algo-rithm. At that time, we can decide whether to discharge the current con�guration (succesful42



validation of a maximal �xpoint), loopcheck (failing a minimum�xpoint) or to continue un-folding (the execution continues since the point was not re-visited after all).9.2.8 Conjunctive SequentsThe conjunctive sequents � of a structure is a set of zero or more structures as describedin section 9.4.4. Some of the rules of the algorithm add sequents to the set of conjunctivesequents, and these have all to be proved in conjunction to the current sequent in order forthe algorithm to validate the structure.
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10 Model Prover BNF DescriptionDe�nition 28 i; j 2 N are indices from an indexing set (the natural numbers),De�nition 29 n is a name, � an action, V is a variable, Ui a formula constant and X aprop.variable as de�ned in previous sections.Structure ::= h�; A;�;�;�; {;S;�i j ; (151)� ::= n = n ^ � j n 6= n ^ � j ; (152)Sequent ::= �! A : � (153)� ::= AlthA;�;�; {;Si;�j BarhA; 9n�;�; {;Si;�j ; (154)� ::= MaxhUi;�; A;�; {i;�j MinhUi;�; A;�; {i;�j ; (155)S ::= h�; A; V 6= n;�;�; {i;Sj h�; A; V 6= X;�;�; {i;Sj h�; A; [V ]�;�;�; {i;Sj ; (156)� ::= Structure;� j ; (157)A ::= (�n)A j [n]A j cond(n = n); A;A j P (158)P ::= 0 j P+P j P jP j (�n)P j �:A (159)� ::= n = n j n 6= n j True j False j 9n�j 8n� j h�i� j [�]� j �X:� j �X:� j Ui (160)� ::= n j n j � (161)44



n ::= x; y; z; ::: j xi; yj; :::: (162)
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11 The Tableau System of RulesThe algorithm can be presented as a set of sequent rules. Each rule will be of the formRULENAME premiseconclusion(explanation)The given input to the algorithm, in form of a name-equation, an agent and a formula, isconsidered to be the conclusion of a calculus. The task for the prover algotithm is to �nd avalid premise on axiomatic level, that would yield the requested conclusion in zero or moresteps. This is a bottom-up approach, used widely in model checking. Each of the sequentrules should thus be read from bottom and up, and a whole proof consists of a tree, wherethe conclusion (the input) is placed at the root and the axiomatic level(s) are at the leafnodes. The proof tree will perhaps branch, since some of the rules produce several newsequents as output. Other rules create di�erent new proof trees that will have to be provedalong the current one. For the whole structure to be valid, at least one of the leaves in eachcreated proof tree must contain a valid premiss at axiomatic/atomic level.Also note that some of the rules are not explicit; i.e. they are "theoretical" in the sensethat they are inplemented quite di�erently than the stipulated rule expresses (this is truefor FTERM and NAMES), and that others are "built-in" into the mechanism (this is truefor THINNING, a rule that can be omitted due to de Bruijn-indexing (see section 15.1).The algorithmapplies the appropriate sequent rule to the starting structure and then appliesanother rule to the resulting structure of the previous application (if neccessary). This way,the algorithm is purely deterministic and can be fully described by presenting the rules.11.1 Set and list denotationsWe will also use a denotation of lists similar to what is known in programming languagessuch as ML: Head :: Tailwill denote a list consisting of at least the element Head. Tail may possibly be empty, orconsist of other elements. The sets of the algorithm can be regarded as lists (in fact, that ishow they are implemented!)De�nition 30 We will use the operator "�" for set addition (concatenation), i.e. for addingan element to a set (where the element is always assumed having the same type as theset/list). 46



11.2 Operators, predicates and functionsDe�nition 31 We will use the operator ":=" when dealing with assignment, for exampleof a name to a variable.De�nition 32 The operator "n" denotes set subtraction.De�nition 33 The functions "n(x)" and "v(x)" return the set of all names (variables) oftheir argument, be it an agent, formula or a molecular structure.De�nition 34 A substitution of every free occurence of x in S for y is denoted Sfy=xg.Bound occurences can only be substituted when �-convertion is made.Commitments (�)are explained in section 4.12.Distinctions(�fx;yg) are explained in section 4.13.11.2.1 Suspended VariableThe function suspendedVariable, written SV , is de�ned as:SV(h� ;A;Vi 6= x ;� ;� ; {i) = Vi andSV(h� ;A; [Vi]�;� ;� ; {i) = Vi .SV is unde�ned elsewhere.11.2.2 Quietness, Implication[9],[23] The relations quiet(�) and implies(�) are de�ned as:� quiet �0 (� � �0) i� :8x; y 2 �0 : if(x; y) 2 �; thenif �0 j= x = y then � j= x = yif �0 j= x 6= y then � j= x 6= y (163)� implies �0 (� � �0) i� : 8(x; y) 2 �0 :if �0 j= x = y then � j= x = yif �0 j= x 6= y then � j= x 6= y (164)The relation implies is stronger than quiet, since it demands that for every occurence ofa name-equation in �0, � MUST imply the same thing, whereas in the case of quietness,47



the condition only stipulates that if the name-equation � contains the names, then it mustimply the same thing as �0, so it is possible for � to contain less information than �0. Thisis sometimes refereed to as"� is a conservative extension of �0."11.2.3 ConsistenceThe predicate consistent(x; y;�), written C(x ; y ;� ) yields true/false whether adding thesingleton name-equation hx = yi to � would yield a consistent set �0, i.e. that � does notalready contain the information x 6= y.11.3 AxiomsThe axioms are the points of the algorithm where termination can be done.11.3.1 STERMSuccesful Termination: STERM valid�! A : True;�;�; {;S; ; (165)A structure is valid when the current sequent yields "true" and the conjunctive set of struc-tures is empty.11.3.2 FTERMFailing termination: FTERM fail�! A : false; ;;�; {;S;� (166)A structure is invalid when the current sequent is proven invalid and the list of alternativesis empty.11.4 Structural RulesThe structural rules are applied when:1) The current sequent is invalid and there is an alternative in the alternative list (�) to beproved instead.2) The current sequent is valid and there is a conjunctive structure in the � list to be proved.48



11.4.1 T-LITLiteral true-rule, when current sequent is valid and there is a conjunctive structure to beproven as well. This is essentially the same rule as THINNING of [11].TLIT �0 ! A0 : �0;�0;�0; {0;S0;�0�! A : True;�;�; {;S; ;� (167)where � = (�0; A0;�0;�0;�0; {0;S0) :: �011.4.2 F-LITLiteral false-rule; when the current sequent is proven invalid and there is an alternativesequent to be proven. FLIT �! A0 : �0;�0;�0; {0;S0;��! A : False;�;�; {;S;� (168)where � = (AlthA0;�0;�0; {0;S0i) :: �011.5 Equivalence Rules11.5.1 EQ1 EQ1 �! A : False;�;�; {;S;��! A : x = y;�;�; {;S;� (169)if � � x 6= y11.5.2 EQ2 EQ2 �! A : True;�;�; {;S;��! A : x = y;�;�; {;S;� (170)if � � x = y or x � y (syntactically).11.5.3 EQ3When an equality between a variable and a name (or parameter) is encountered. Note thatwe have omitted the symmetrical case, i.e. when the formula of the conclusion has the formVi = x. EQ3 �! Afx=Vig : True;�fx=Vig;�fx=Vig; {;S0fx=Vig;�0fx=Vig�! A : x = Vi;�;�; {;S;� (171)49



If i > index(x) then Vi := x.Activateds := fs 2 S j SV(s) = VigS0 := SnActivateds�0 := � [ActivatedsWhere index(x) = 0 if x is a name, and index(xj) = j if x is a parameter.(Note that the substitution and altering of everything in the premise but the conjunctive set� is really unnecessary from a logical point of view due to the fact that the whole currentsequent will be abandoned in the next step.)11.5.4 EQ4 EQ4 �0 ! A; : False;�0;�; {;S;��! A : x = y;�;�; {;S;� (172)if � 6� x = y then:�0 := � � fx 6= yg�0 := f� 2 � j fAlthA0;�0;�0; {0;S0i=BarhA0;�0;�0; {0;S0igg(All Bar-marked alternatives of � changed into Alt-marked alternatives, i.e. the "locking"of an alternative that the bar-marking e�ectuates is removed.)11.5.5 INEQ1 INEQ1 �0 ! A; : False;�0;�; {;S;��! A : x = y;�;�; {;S;� (173)if � 6� x 6= y then:�0 := � � hx = yi�0 := f� 2 � j fAlthA0;�0;�0; {0;S0i=BarhA0;�0;�0; {0;S0igg(All Bar-marked alternatives of � changed into Alt-marked alternatives, i.e. the "locking"of an alternative that the bar-marking e�ectuates is removed.)11.5.6 INEQ2Supension of inequality sequent where at least one of the inequals is a variable. Note thatthis rule is also applicable when the formula spells Vi 6= Vj and also for the symmetricalcases. INEQ2 �! A; : True;�;�; {;S0;��! A : V 6= x;�;�; {;S;� (174)where S0 := S � h�! A : V 6= x;�;�; {;S;� i50



11.6 Logical ConnectivesThe rules for logical connectives add alternative sequents and conjunctive structures to thecurrent structure.11.6.1 _ (OR)-intro_ � INTRO �! A : �1;�0;�; {;S;��! A : �1 _ �2;�;�; {;S;� (175)where �0 := � � hA;�2;�; {;Si11.6.2 ^ (AND)-intro_ � INTRO �! A : �1;�;�; {;S;�0�! A : �1 ^ �2;�;�; {;S;� (176)where �0 := � � h�; A;�2;�;�; {;Si11.7 Predicate Logic Quanti�ersThe introduction of quanti�ers impose introduction of variables and parameters.11.7.1 8-intro 8 � INTRO �! A0 : �0;�;�; |;S;��! A : 8x�;�;�; {;S;� (177)where | := { + 1p| 62 n(A) [ n(�) [ n(�) [ n(�) [ n(S)A0 := A(p|)�0 := �fp|=xgNote that the new parameter is unique throughout the current sequent.11.7.2 9-intro 9 � INTRO �! A0 : �0;�0;�; {;S;��! A : 9x�;�;�; {;S;� (178)51



where V{ 62 v(A) [ v(�) [ v(�) [ v(�) [ v(S) [ v(�)A0 := A(Vi)�0 := �fVi=xg�0 := � �BarhA; 9x�;�; {;SiThe new variable is unique throughout the entire structure.11.8 Agent RulesThe COND-rules have to be tested for before any other test on the structure can take place.This due to the fact that the rules may divide the structure into several others, each havingthe same formula but di�erent agents, depending on whether the condition, that is pre�xingthe agent expression, evaluates true or not.11.8.1 COND1COND1 �! A1 : �;�;�; {;S;��! cond(x = y;A1; A2) : �;�;�; {;S;� (179)if � � x = y.11.8.2 COND2COND2 �! A2 : �;�;�; {;S;��! cond(x = y;A1; A2) : �;�;�; {;S;� (180)if � � x 6= y.11.8.3 COND3COND3 �0 ! A1 : �;�;�; {;S;�0�! cond(x = y;A1; A2) : �;�;�; {;S;� (181)if � does not decide x = y nor x 6= y:�0 := � � hx = yi�00 := � � hx 6= yi�0 := � � h�00; A2;�;�;�; {;Si.11.8.4 �-intro �� INTRO �! A : �0;�;�; {;S;��! [y]A : �x�;�;�; {;S;� (182)52



where �0 := �fy=xg.11.8.5 New-RuleNEW �RULE �! A0 : �0;�;�; |;S;��! (�y)[y]A : �x�;�;�; {;S;� (183)where | := { + 1p| 62 n(A) [ n(�) [ n(�) [ n(�) [ n(S)A0 := Afp|=yg�0 := �fp|=xg11.9 Modal Rules11.9.1 DIAMOND1DIAMOND1 �! A : False;�0;�; {;S; ;��! A : h�i�;�;�; {;S; ;� (184)where � contains the name or parameter a:�0 := � [ fAlthB;�;�; {;Si j � � a = b and A � b:Bg.11.9.2 DIAMOND2DIAMOND2 �! A : False;�0;�; {;S; ;��! A : h�i�;�;�; {;S; ;� (185)where � contains the variable Vi:�0 := � [ fAlthBfb=Vig;�fb=Vig;�fb=Vig; {;Sfb=Vigi jVi := a;� � a = b andA � b:Bg.11.9.3 DIAMOND3DIAMOND3 �! A : False;�0;�; {;S; ;��! A : h� i�;�;�; {;S; ;� (186)where �0 := � [ fAlthB;�;�; {;Si j A � �:Bg.53



11.9.4 Box1 BOX1 �! A : True;�;�; {;S;�0�! A : [�]�;�;�; {;S;� (187)where � contains the name or parameter a:�0 := � [ fh�0; B;�;�;�; {;Si jA � b:B and �0 := � � ha = bi and C(a; b;(� )g11.9.5 BOX2We suspend any box-formula containing a boxed variable:BOX2 �! A : True;�;�; {;S0;��! A : [�]�;�;�; {;S;� (188)where � contains the variable Vi:S0 := S � h� ;A; [�]�;�;� ; {i11.9.6 BOX3 BOX3 �! A : True;�;�; {;S;�0�! A : [� ]�;�;�; {;S;� (189)where �0 := � [ fh�0; B;�;�;�; {;Si jA �fx;yg �:B and �0 := � � hx = yi and C(x ; y ;� )g11.10 Temporal RulesThe temporal rules concern the �xpoints. We use the letter � as shorthand for one of the�xpoint operators. Thus, � 2 f�; �g.11.10.1 LOOPCHECKLOOPCHECK �! A : False;�;�; {;S;��! A : Ui;�;�; {;S;� (190)if MinhUi;�0; A0; (�X)�; {i 2 � andA �� A0 and �� �0. 54



11.10.2 DISCHARGEDISCHARGE �! A : True;�;�; {;S;��! A : Ui;�;�; {;S;� (191)if MaxhUi;�0; A0; (�X)�; {i 2 � andA �� A0 and � � �0.11.10.3 FoldWhen the apperance of a �xpoint formula constant indicates that the con�guration has beenvisited before, but other required conditions do not hold ( i.e. we have not returned to apreviously visited �xpoint, so the folding has to continue):FOLD �0 ! A0 : �0;�;�; {;S;��0 ! A0 : Ui;�;�; {;S;� (192)where hUi;�; A; (�X)�; {i 2 �, and �0 := �fUi=Xg and A 6�� A0 or � 6� �0.11.10.4 UnfoldWhen the �xpoint formula con�guration has not been visited before:UNFOLD �! A : �0;�;�0; {;S;��! A : (�X)�;�;�; {;S;� (193)where Ui 62 �, and �0 := �fUi=Xg and �0 := � � hUi;�; A; (�X)�; {i11.11 Implicit RulesThe rule FTERM is an implicit rule, since the omition of it does not a�ect soundness of thesystem. The inclusion of FTERM is just for proper display of the point where the algorithmactually fail a sequent. Other rules, implicit to the algorithm are BAR, EQUIV ALENCEand NAMES, where the latter is implemented as several other rules.11.11.1 Bar BAR �RULE �! A : False;�0;�; {;S;��! A : False;�;�; {;S;� (194)where � = BarhA0;�0;�0; {0;S0i :: �0,i.e. alternatives marked with Bar cannot be part of a proof, not until they have been"unbared" by the rules altering the name-equation �, i.e. EQ4 or INEQ1. See the section13.13 for argumentation on this. 55



11.11.2 EquivalenceEQUIV ALENCE �! A0 : �;�;�; {;S;��! A : �;�;�; {;S;� (195)if A �� A0. (A and A' are syntactically equivalent.) This rule is implicit in the implemen-tation of the algorithm, since de Bruijn-indexing is used (as explained in section 15.1).11.11.3 Names NAMES �0 ! A : �;�;�; {;S;��! A : �;�;�; {;S;� (196)where �0 = � [ fzg and 8x 2 n(�) : z 6= x, and z 6= n(A) [ n(�) [ n(�) [ n(S) [ n(� ).This means that we can always choose a new name from our in�nite set, and put it in anyname-equation, and it will be di�erent from all previously existing names there. In otherwords, since we assume there exists an in�nite space of names, � can always be extendedwith another (fresh) name that is not equal to all existing names in �, provided this newname does not already exist in some other place of the structure. Thus, in trying to provethe sequent ; ! A : 9u:(u 6= x ^ u 6= y ^ �), we can always introduce the fresh z and provez 6= x ^ z 6= y ! A : 9z:�fz=ug. This rule is interesting, since it functions as a "theoreticalfundament" of the whole suspension mechanism (see below). The rules involved are INEQ2,BOX2 (for suspension of sequents), and EQ3 (for re-activation of suspended sequents).11.12 SuspensionSuspension is an optimization technique. Instead of trying to prove certain sequents, if theirformulas satisfy certain patterns, we simply put the sequents away, consider them as provedif nothing else happens. This is due to the fact of:1) The existence of variables in the formula and2) The assumption of an in�nite name-spaceThese two aspects make it possible to make the suspension of a sequent where the formulais either Vi 6= x (197)Vi 6= Wj (198)[Vi]� (199)where i = j or i 6= j. Assumption 2) above makes it possible to state that:56



Theorem 2 Due to the fact that the name-space is in�nite, there will always exist an as-signment of the variable Vi such that any of the formulas above can be transformed intovalidity.[11]This becomes clear when we reason intuitively; We can always choose a Vi from our name-space so that the inequality holds. We can always choose any name for the BOX-formula,and it will hold.11.13 ContractionContraction is the repetition of a conclusion in the premise. This must take place at certainpoints in the algorithm, where information on the sequent otherwise would be lost. Espe-cially inportant is this in the case of the 9 � INTRO as seen in section 13.13. Here, thecurrent alternative � ! A : 9x� is repeated in the premise in the shape of an Bar-markedalternative in the alternative set �. The alternative can thus be used again in a proof,but not before another rule has removed the Bar-status and turned it into a "Alt"-markinstead. This is done whenever there is new information at hand, that could help in provingthe 9-formula, i.e. whenever the name-eguation set � is altered (extended). This techniqueguarantees that in�nite looping is avoided, i.e. that the algorithm will terminate. Since the9-formula always is repeated in the premise above, without the Bar-marking, this repetitioncould go on forever, e�ectively hindering the algorithm from termination:::::::9x�::::::9x�:::::::9x�:::
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12 SemanticsIn order to reason about soundness, completeness and behaviour of the tableau rules, we needto know their exact meaning. This is usually presented as a set of semantic[33] de�nitions,mostly in set algebra. This is a very precise way of describing the exact meaning of di�erentoperators and transition rules.12.1 De�nitionsDe�nition 35 Let � be a mapping, Names 7! Names (formal names to actual names).De�nition 36 Let k� ! A : �k� denote the set of agents, satisfying � under the name-equation constrains of � and with respect to �De�nition 37 let A denote the universe of all possible agents.De�nition 38 �� means "commiting under �", i.e. if A � �:B, n(�) = a, � � a = b, andn(�) = b then A �� �:B.12.2 Tableau Rules Semantic de�nitionsk�! A : Truek� 4= A (200)k�! A : Falsek� 4= ; (201)k�! A : x=yk� 4= 8<: k�! A : Falsek� if � � x6=yk�! A : Truek� if � � x=yk� [ fx6=yg ! A : Truek� if (x; y) 62 � (202)k�! A : x6=yk� 4= 8<: k�! A : Falsek� if � � x=yk�! A : Truek� if � � x6=yk� [ fx=yg ! A : Truek� if (x; y) 62 � (203)k�! A : �1 _�2k� 4= k�! A : �1k� \ k�! A : �2k� (204)k�! A : �1 ^�2k� 4= k�! A : �1k� [ k�! A : �2k� (205)k�! A : 9x�k� 4= k�! A (V ) : �fV=xgk� \ k�! A : 9x�k� ;58



V 62 v(�) [ v(A) [ v(�) (206)k�! A : 8x�k� 4= k�! A (y) : �fy=xgk� ; y 62 n(�) [ n(A) [ n(�)(207)k�! [y]A : �x�k� 4= k�! Afy=xg : �fy=xgk� (208)k�! (�y)[y]A : �x�k� 4= k�! Afz=yg : �fz=xgk� ;z 62 n(�) [ n(A) [ n(�) (209)k�! A : h�i�k� 4= f�! fP j 9�;B : A�� �:B; � � (�=�);B 2 k�! A : �k�g : � g (210)k�! A : [�]�k� 4= f�! fP j 8�;B : A�� �:B; � � (�=�);B 2 k�! A : �k�g : � g (211)kXk� 4= �(X) (212)k�! A : �X:�k� 4= f�!\fA0 � A j k� ! A : �k� � A0g : �g (213)k�! A : �X:�k� 4= f�![fA0 � A jA0 � k� ! A : �k� g : �g (214)k�! cond(x=y); A1; A2 : �k� 4= 8>>>>>><>>>>>>: k�! A1 : �k�if � � x=yk�! A2 : �k�if � � x6=yk� [ fx=yg ! A1 : �k� [ k� [ fx6=yg ! A2 : �k�if (x; y) 62 � (215)
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13 SoundnessWe have presented the algorithm, its rules and properties, and its semantics. The time hascome to reason about whether the algorithm is sound or not. Soundness is a very importantfeature. A sound calculus means that every answer is correct.39 First let us stipulate:Theorem 3 The rules of the algorithm are sound. Every tableau rule turns a sound struc-ture into another sound structure .And since the tableau is a complete description of the algorithm, it su�ers to prove all proofrules sound to claim:Theorem 4 If all tableau proof rules are sound, then the whole algorithm is sound.A key feature here is locality: Everything we need to know at every point of time during theperformance of the algorithm is stored inside the current structure. Consider the fact thatthe sets �, S, � and � at every point contain the alternatives, suspended sequents, visited�xpoint con�gurations and conjunctive structures to be visited by the algorithm, dependingon what happens at the current sequent of the structure. Whenever these sets are modi�ed,the premise of the rule will keep the altered set along, this ensuring the theorem above.We will thus have to argue that every rule of the tableau proof system is sound, bringingback the features of the original sequent calculus, which purpose was to make all formulasto the left valid and the formulas to the right invalid:13.1 The axioms & structural rules�! A : TrueIt is clear that having the constant True as a succedent will yield no proof of the algorithm'sinvalidity, thus forcing us to search for another disproof in one of the conjunctive structures(if they exist). Else, we have a proof of the sequent.�! A : FalseWe are at the goal, the sequent is proved invalid. Since the set of alternatives all have tobe proved invalid (i.e. the set must be interpreted as a disjunctive set of alternatives), wehere must test another alternative (if any). Else, we have a disproof of the sequent and canterminate.39Completeness, on the other hand, means that "every correct answer can be output by this calculus".Completeness is often a much heavier task to prove than soundness, and the topic will not be furtherinvesitigated in this thesis. 60



13.2 Equivalence rules�! A : x=y,where x and/or y can be names, parameters or variables. For the case of non-variables,consider that this is the only place in the calculus where a formula can be moved fromthe right side of the sequent to the left side. As in classical sequent calculus, this can beperformed by negating the transferred formula, thus yielding the extended name-equationset for �, containing this new information, in order for the algorithm to progress. However,if the name-equation set is to be inconsistent adding this new tuple, we cannot progressthe algorithm any further from here, and thus have to fail the current sequent. When avariable is involved, the equality is merely turned into an assignment statement, propagatingthroughout the entire structure, and re-awakening possible suspended sequents.�! A : x6=yIn the case of inequalities, the same reasoning as previous is valid, except for the case of avariable being inequal to another variable or name/parameter; this is universally true (asseen in section 13.12), due to the in�nite space of names, and we need (nor can) not progressthis sequent any furter, therefore it is suspended.13.3 Logical rules�! A : �1 ��2, where � 2 f_;^gIt is clearly sound and according to the semantic de�nitions of the logical connectives togenerate an alternative to the current sequent (to be put in the "disjunctive" set of alterna-tives, �) as a premise for the "OR"-introduction, as well creating an conjunctive structureto be put in the set � for the case of "AND"-introduction in the premise.13.4 Quanti�ers�! A : [x�, where [ 2 f9; 8gWhenever an 9-formula is encountered at a right side of a sequent, to disprove it, we need todisprove the formula for all names. Thus the contraction, as described in 13.13, for ensuringthat the formula will be applied to all possible future names. We also need to instantiatethe formula at present level, for the currently activated names, therefore we introduce aunique variable, denoting the set of all activated names at present point in the calculus.If this variable in fact can be assigned a name, the 9-formula is valid for that name, andthe succedent containing this formula turns invalid, due to the fact that in the right handside of a sequent, for an 9-formula to be invalid, no name must exist that makes � valid.Failing this uni�cation of a name and the variable makes it possible for the algorithm toprogress. The opposite reasoning is performed for the 8-formulas: if 8x� to be invalid, theremust exist an annotated name (a parameter) pi that has the property � and that is not"activated" in the current structure. Thus �fpi=xg must be in the premise.61



The paramter index, denoted { in the proof rules, play a rôle for soundness: A variablecannot be uni�ed with a parameter with an index less than its own; to see why this issound, considerExample 15 9x8y:�(x; y) � 8y9x:�(x; y) but 8x9y:�(x; y) 6� 9y8x�(x; y).The correct introduction of variables unifying with parameters can be assured by the index-ing technique; a variable (an 9-formula name) has to be created later than a parameter (a8-formula name), i e, inside the scope of the parameter in order for the variable to be uni�edwith the parameter.13.5 Agent rules�! cond(x=y); A1; A2 : �The conditional agent cond(x=y)A1; A2 is simply evolved due to the result of the condition,(x=y). If this cannot be decided, both sequents containing A1 and A2 will have to be testedby the algorithm.13.6 Summation & New rules�! [y]A : �x��! (�y)[y]A : �x�The di�erence between those is the fact that the agent in the NEW -case has not onlythe abstraction of y, but it is also a private (bound) variable in A. Therefore, in orderfor progressing, a entire new parameter has to be created, that does not exist in currentstructure, and substituted into the sequent.13.7 Modal rules�! A : h�i�The alternative set � has to be extended with every sequent that, according to the de�nitionof the commitment relation, ful�lls the conditions. We also have to calculate the conditionswith respect to that the name of the action � can be equal to other names, according to �.The commitments for this equivalence class of names must also be calculated for. Puttingthe resulting sequents in the alternative set ensures that at least one of them will have toyield a valid structure, in strong cohersion to the de�nition of modalities (as seen in section12.2). If � does not consist of a name but a variable, we will at �rst try to unify this witha name, calculate the commitments for this name and A, and create an alternative withthe uni�cation propagated throughout the alternative. In case of the action being the silentaction � , any communication inside a parallel agent that can result in a � -action commitmentwill have to be calculated and put into the alternatives.62



�! A : [�]�The same calculation of commitments in done here as for the diamond-rules. However, sincethe box rules demand that the property holds for every occuring commitment, we create(zero or more) conjunctive sequents, that all have to be proved along with each other. Thisway, a correct implementation of the box-operator is guaranteed. In the case of � containingnot a name/parameter but a variable, we consider the formula as being true according to thein�nite set of names, and suspend the sequent. This is di�erent from the diamond-operator,where we MUST �nd a way to make the algorithm progress, and then we are forced to tryout di�erent uni�cations in order to try to �nd a sequent alternative that can be dissolvedfurther.13.8 Fixpoint rules�! A : �X:�Where � 2 f�; �g. The �xpoint rules are often considered the ones most di�cult to imple-ment and prove correct. For DISCHARGE, we simply state that: Having visited a �xpointcon�guration of the form � ! A : �X:� and turned this into � ! A : Ui for a fresh Ui,we know when the con�guration �0 ! A0 : Ui comes up, that this is a previously visitedpoint of a recursive formula. However, in order to discharge the new con�guration, moreconditions are needed: A �� A0 and �0 � �, i.e. the new con�guration has to be at least asstrong as the old one, in order for it to be a true revisited �xpoint (and to be dischargedas a success). If not so, ( i.e. if �0 6� �), there exists information in the old name equationthat is not included in the new one, and the new con�guration is more general than the oldone, and thus is the maximum �xpoint not re-visited, and the unfolding can then continuewithout discharging.For minimum �xpoint con�gurations, the same arguments can be applied as above, notehowever that we fail a minimum �xpoint con�guration if it is revisited instead of terminat-ing it succesfully. A minimum �xpoint con�guration must thus only be visited once andthen nevermore. (Also see the argumentation for LOOPCHECK in section 14 concerningtermination).
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14 TerminationIn order for the algorithm to terminate on every possible input, there has to be a numberof features that have to be addressed:1.Every agent must have a �nite behaviour.Every agent, being of type �nite-control (as described in section 9.4.2), does indeed havethis property. A recursive agent is guaranteed to come back to a previous state, since theavoidance of free names in recursive agents is at hand. This guarantees a �nite-expressibleappearance, and thus an agent expression cannot evolve forever.2.Every formula must eventually be reduced to an atomic formula.This is trivially true for every formula except �xpoint formulas. For those, we substitute thepropositional variable of the formula into a representing unique constant, Ui, which triviallyis bound to be unfolded. Thus, a �xed-point formula must eventually be returned to, andthen the decision of discharge/loopcheck can take place.3.The algorithm must detect any kind of looping and act properly upon it.Looping can take place in two cases:1) The contraction of an 9-formula2) In the search of a revisitation of a �xpoint formula.In case 1) we have described the Bar-mechanism that ensures that a contracted 9-formulacannot be repeatingly used in the search of a proof; it is only used again in the case ofadditional information being added to the name-equations and thus new possibilities ofunifying the variable that is created at every use of 9-formulae. Else, a Bar-formula justfails the current sequent. In case 2) We note that for maximum �xpoint, a loop can onlyoccur in the case of the re-visited con�guration being more and more general each time it isrevisited. Otherwise, we will have a maximum �xpoint-hit and the algorithm succedes thesequent. In the case of minimum �xpoints, this is not enough.Example 16 Consider the case when we start with the sequentfx6=y ^ x6=ug ! A : Ui. (And Ui stands for a Minh::::i-point.) We later arrive in the prooftree at the point fx6=y ^ x6= u ^ x6=z ^ y=zg ! A0 : Ui.And z 62 n(A) [ n(Ui).In this case, the later �0 is merely virtually stronger than � and since z is not a name thatis included in the sequent, we will not yield a proof by applying a virtually stronger name-equation. Therefore, we use the LOOPCHECK test rather than just plain implicationin the minimum-�xpoint case; a loopcheck discovers that the later name-equation is notstronger than ther previous one, with respect to the names that can be of any interest tothe sequent (and z cannot). Therefore, we do have a minimum �xpoint hit and can thusterminate the sequent failingly here. The loopcheck predicate guarantees that no "false"stronger implications force the minimum �xpoint search to a looping state.64



4. Every tableau rule that creates new sequents, be it alternatives, suspended sequents orconjunctives, must only create an in�nite number of those.This applies foremost to the modal operators; Since they create only as many new sequentsthat the commitment relation stipulates, and the commitment relation calculates those fromthe agent expression, and the agent expression is of �nite control-type, only a �nite numberof new sequents can be created at every usage of a modal operator.
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15 ImplementationA suggestion for an implementation, made in Standard ML [24], [31] is available in theMobility Workbench from FTP-server ftp.docs.uu.se, directory pub/mwb.See also the MWB web page at http://www.docs.uu.se/~victor/mwb.html Files con-cerning the Model Prover are in the /mc/-directory: SubSequents.sml, Nameequation.sml,Prover.sml and and PFormula.sml and, of course, their respective .sig �les, in the sourcecode distribution. The implementation is done in Standard ML of New Jersey , version 0.93and compiled under Sun OS version 4.15.1 de Bruijn-Indexing[10]A special feature of the implementation of the Mobility Workbench and thus the ModelProver is de Bruijn-indexing. The idea is that of a universal way of denoting bound namesin expressions, as described in section 3.13. A bound name is then replaced by an integernumber, indicating the depth of the nestling at which the bound variable occurs. (The freenames have to be treated in a rather di�erent way; they are replaced by an index number,serving as a pointer to an entry of a "universal" table of free names. Every �-calculusagent or �-calculus formula expression can be expressed as a de Bruijn-indexed expression.Two �-convertible agents (formulas) look syntactically the same when indexed by de Bruijn-indexing. The usage of integers instead of names (that have to be represented as stringssomewhere in the system) clearly has another advantage; the comparison between namesis now a simple integer test. Implementations have shown that de Bruijn-indexing indeedspeeds program execution up enormously.15.2 Back-Tracking[21],[22]The original prover was implemented in PROLOG, so the back-tracking technique had tobe solved another way. The construction of the main loop as a series of IF-statements, eachone either terminating or recursing, was a way to solve this; a context of variable bindingswas created for every new recursive call, and the whole mechanism would roll back if noproof was at hand, re-installing an older context. A pseudo-code presentation of the Proveralgorithm follows the formprove(agent, formula)=id (axiomatic truth) then successif <rule1, formula> then{ new_agent, new_formula := apply_rule<1, agent, formula> ;prove(new_agent, new_formula);} 66



if <rule2, formula ..... >else failwhere the if-statement, if the recursive call fails, rolls back all contexts and assignments andthe algorithm continues another way.
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16 The Mobility Workbench with Model ProverThe MobilityWorkbench (MWB) is a tool for manipulating and analyzing mobile concurrentsystems described in the �-calculus. It features commands for searching for deadlocks,stepwise simulation, determining strong and weak bisimulation equivalences. It also featuresboth the old "checker" and the Model Prover, as described in this thesis.16.1 Where?The Mobility Workbench [12] is available as a gzipped tar-archive via anonymous FTP fromftp.docs.uu.se, directory pub/mwb/. Also see the web page with pointers to a on-linemanual at: http://www.docs.uu.se/~victor/mwb.html16.2 How?The MWB is started by the commandmwb.sun4uat the UNIX-prompt. The prover is invoked by the statementprove agent formulawhere agent, formula are valid expressions therefore as de�ned by:16.2.1 MWB Prover SyntaxFor agents: The syntax of agents is given by the following grammar:Syntax Meaning0 j The null process�:P j Action pre�xpfx : P j pre�x[a = b] P j MatchP1jP2 j ParallelP1 + P2 j SummationId<nlist> j Application(^nlist) P j Restriction(nnlist) P j Abstraction[nlist] P j Concretion(P) Parenthesis (216)where nlist is a (non-empty) comma-separated list of names;� is an action: � (silent) or a name (input) or a co-name (output);68



pfx is an abbreviated pre�x (see below); and Id is a name starting with an upper-case let-ter. Names must start with a lowercase letter but can after that include special characters,letters and digits. The following translations and shorthands are used:Input Translation Meaning^ � Restrictionn � Abstraction0 0 Null process0� � Output actiont � Internal actiona(nlist) a:(nnlist) Input pre�x0a <nlist> 0a:[nlist] Output pre�x (217)For formulas: Syntax meaningTT j TruthFF j Falsityname=name j Equality between namesname#name j Inequality between namesformula & formula j Conjunctionformula j formula j Disjunction<action> formula j Possibility modality[action ] formula j Necessity modalitySigma name : formula j Sigma� expressionBsigma name : formula j Bound sigmaPi name : formula j Universal quanti�cationexists name : formula j Existential quanti�cationop id:formula j Fixpoint expression(formula) Parenthesis (218)op: mu j min j Least �xpoint operatornu j max Greatest �xpoint operator (219)69



action: name j Name0name j Co� namet Tau (220)id:IdeNtiFieR BegiNning WitH UpPEercaSE LetTEr : Fixpoint identi�er nameiDentTIFIEr bEGInNING wITh lOWeRCASE lETteR : Pi-calculus nameRemarks:1) The restriction needs not be immediately adjacent to the box.E.g. (�y)(�z) [y] [z]A j= Bsigma x:P, (�z)[z] Afa=yg j= Pfa=xg, where a is a new name.2) Fixpoint formulae must be closed. E.g. nu D.<x>(x=b&D) is invalid, but the equivalentformula (nu D(b).<x>(x=b&D(b)))(b) is ok.The prover will answer "YES" if agent is a model for formula, "NO" otherwhise.16.3 ExamplesThese are tests for the original model-checker, conducted by prof. Joachim Parrow in 1994.16.3.1 Agent examplesExample 17 Bufn (Bagn) is a bu�er (bag) of capacity n. Post�x "p" means constructedas a parallel composition, "e" means explicit, "l" means lossy. FBuf is a �nite bu�er. Whatfollows can be sent directly to MWB for testing.agent Buf1(i,o) = i(x).'o<x>.Buf1<i,o>agent Buf2e(i,o) = i(x).Bufa<i,o,x>agent Bufa(i,o,x) = i(y).Bufb<i,o,x,y> + 'o<x>. Buf2e<i,o>agent Bufb(i,o,x,y) = 'o<x>.Bufa<i,o,y>agent Buf2p(i,o) = (^m)(Buf1<i,m>|Buf1<m,o>)70



agent Buf3pe(i,o) = (^m)(Buf2e<i,m>|Buf1<m,o>)agent Buf3pp(i,o) = (^m)(Buf2p<i,m>|Buf1<m,o>)agent Buf4pee(i,o) = (^m)(Buf2e<i,m>|Buf2e<m,o>)agent Buf4ppe(i,o) = (^m)(Buf2p<i,m>|Buf2e<m,o>)agent Buf4ppp(i,o) = (^m)(Buf2p<i,m>|Buf2p<m,o>)agent Bag2e(i,o) = i(x).Baga<i,o,x>agent Baga(i,o,x) = i(y).Bagb<i,o,x,y> + 'o<x>. Bag2e<i,o>agent Bagb(i,o,x,y) = 'o<x>.Baga<i,o,y> + 'o<y>.Baga<i,o,x>agent Bag2p(i,o) = Buf1<i,o>|Buf1<i,o>agent Bag3pe(i,o) = Bag2e<i,o> | Buf1<i,o>agent Bag3pp(i,o) = Bag2p<i,o> | Buf1<i,o>agent Bag4pee(i,o) = Bag2e<i,o> | Bag2e<i,o>agent Bag4ppe(i,o) = Bag2p<i,o> | Bag2e<i,o>agent Bag4ppp(i,o) = Bag2p<i,o> | Bag2p<i,o>agent Mixed3(i,o) = (^m)(Bag2p<i,m>|Buf1<m,o>)agent Mixed3b(i,o) = (^m)(Buf1<i,m<|Bag2p<m,o>)agent Buf1l(i,o) = i(x).('o<x>.Buf1l<i,o>+Buf1l<i,o>)agent Buf2lp(i,o) = (^m)(Buf1l<i,m>|Buf1<m,o>)agent Buf3lpp(i,o) = (^m)(Buf2lp<i,m>|Buf1<m,o>)agent FBuf(i,o) = i(x).i(y).i(z).'o<x>.'o<y>.'o<z>.0Example 18 The following is a collection of �nite recursion-free agents, good for purposesof testing the behaviour of the model prover.agent T0(i,o) = 0agent T1(i,o) = i(x).0agent T2(i,o) = 'o<o>.0agent T3(i,o) = i(x).t.'o<x>.0agent T4(i,o) = i(x).'o<o>.0agent T5(i,o) = i(x).(t.0+'o<x>.0)agent T6(i,o) = t.i(x).0agent T7(i,o) = i(x).i(y).'o<x>.'o<y>.0agent T8(i,o) = i(x).i(y).'o<y>.'o<x>.0agent T9(i,o) = i(x).i(y).'o<x>.'o<x>.0agent T10(i,o) = i(x).i(y).'o<x>.[x=y]'o<y>.0agent T11(i,o) = i(x).i(y).i(z).'o<x>.'o<z>.'o<y>.071



agent T12(i,o) = i(x).('o<x>.0 | i(y).'o<y>.0)agent T13(i,o) = T7<i,o>|T7<i,o>agent T14(i,o) = T11<i,o>|T11<i,o>16.3.2 Formulae examplesExample 19 OP Order-preserving of �rst data:nu L.(([t]L) & (['o] Sigma u.L) & ([i]Pi u.(nu I(u).(([t]I(u))& ([i]Pi z.I(u)) &(['o] Sigma z.z=u)))(u)))L ("nothing has been input yet") must hold after all transitions, except after an input i(u)when I(u) holds. I(u) ("u has been input but not output") holds after all transitions, exceptafter an output ohui (then nothing more is required) or after an output ohzi with z 6= u (thenit is false). So I(u) means nothing can be emitted before u, and L means that nothing canbe emitted before the �rst received item.Example 20 NO No spurious output:(Pi p .(nu NO(x). ([t] NO(x))& ([i] Pi w . (w=x | NO(x)))& (['o] Sigma w . (w#x & NO(x))))(p))NO(p) must hold invariantly after � :s, after non-p inputs and any outputs, thus, it musthold whenever p has not been input. Nothing is required of the states following an input of p.But an output of something di�erent from p falsi�es it. So, it holds unless p can be emittedbefore it is received. all p. NO(p) thus says that any value must be recived before it can beemitted. To check it on an agent A, do the check command on (nz)A where z 62 fn(A).Example 21 NL No lost input(nu L .( (['o] Sigma z . L)& [t] L& [i] Pi z .(L &(mu O(x). ((<i>TT | <'o>TT | <t>TT) &([i] Pi w . O(x)) &(['o] Sigma w . (w=x | O(x))) &[t] O(x))) 72



(z))))L implies that it holds invariantly, and that after an input i(z) in addition O(z) must hold.O(x) says that there must be at least one transition, and that O(x) must continue to holduntil after an output ohxi. Since it is a least �xpoint this must eventually happen for O(x)to hold.Example 22 ND No duplicated output(Pi p.(nu L(p).(([t] L(p)) &(['o] Sigma z.L(p))&([i] all z . (((z#p)&L(p)) |((z=p)&(nu Once(p).(([t] Once(p)) &([i] Pi z. ((z=p) | ((z#p) & Once(p)))) &(['o] Sigma z. (((z#p) & Once(p)) |((z=p) &(nu Twice(p).(([t] Once(p)) &([i] Pi z. ((z=p) | ((z#p) & Twice(p)))) &(['o] Sigma z. ((z#p) & Twice(p)))))(p)) ))))(p)) ))))(p))Consider a datum p. L must hold after any transition; when p is input then Once(p) insteadmust hold. This again must hold invariantly, but after a second input of p it is ful�lled, and73



after an output of p instead Twice(p) must hold. Again this is an invariant, falsi�ed by anoutput of p, and satis�ed by an input of p. So the only way to falsify L is to emit p twicealthough it has been received only once. An agent needs a dummy abstraction to be checkedwith this.Example 23 OP2 Order-preserving (second version)(Pi p. Pi q.(p=q |(nu L(p,q).(([t] L(p,q)) &(['o] Sigma u. L(p,q)) &([i] Pi u. ((u=q) | (u#p & u#q & L(p,q)) |((u=p) &(nu I(p,q).(([t] I(p,q)) &(['o] Sigma u. ((u#p & I(p,q))|u=p)) &([i] Pi u. ((u#q & I(p,q)) |((u=q) &(nu O(p,q).(([t] O(p,q)) &([i] Pi u. O(p,q)) &(['o] Sigma u. ((u#p & u#q & O(p,q)) | u=p))))(p,q)) ))))(p,q)) ))))(p,q)))We express that if p is input before q, then q cannot be output before p. Consider two datap,q. The invariant L(p; q) must hold for all di�erent p,q. If q is input there is nothing moreto check. If p is input then I(p; q), meaning "p has been input", must hold. I(p; q) holdsinvariantly, but if p is output there is nothing more to check, and if q is input then O(p; q)holds, meaning "p has been input before q". O(p; q) must hold invariantly, but an output ofp satis�es it and an output of q falsi�es it. An agent needs a double dummy abstraction tobe checked with this. 74



Example 24 NLW No lost input: Weak version(nu L .( (['o] Sigma z . L)& ([t] L )& ([i] Pi z .(L &(nu O(x).((mu M(x).((<'o> Sigma w. (w=x | M(x))) |(<t> M(x)) |(<i> exists w. (w#x & M(x)))))(x) &([i] Pi w . O(x)) &(['o] Sigma w . (w=x | O(x))) &([t] O(x))))(z)))))M (x) holds if it is possible to reach a state where x can be emitted. O(x) means that M (x)holds invariantly until after x has been emitted. So L says that when a datum z is inputO(z) must hold aftyerwards, i.e. , the possibility to emit z can never be removed until z isemitted. This is weaker than requiring that z is eventually emitted!Example 25 DE Deadlock freedom(nu D.(((<t>TT) | (<i> exists w.TT) | (<'o> Sigma w.TT))&(([t] D) & ([i] Pi w.D) & (['o] Sigma w.D))))There must be at least one transition, and that should be an invariant.Example 26 TI Trivial invariance(nu D. (([t] D) & ([i] Pi w.D) & (['o] Sigma w.D)))Invariants don't get any simpler. But this is only to test the e�ciency of the modelchecker- it will have to visit each state. 75



Example 27 NB No blocking of pending messages(nu L.(([t] L) &(['o] Sigma w.L) &([i] Pi w.(L &(mu I(w).((<t> I(w)) |(<'o> Sigma u.u=w)))(w)))))L holds invariantly, and after an input i(x) additionally I(x) holds. This is a minimal�xedpoint and can only be satis�ed if it is possible to reach, through a sequence of zero ormore taus, a state where this w can be emitted. So all inputs must be available immediatelyfor output (discounting taus) throughout the execution of the agent.
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16.4 Some Model Prover run-through examplesThe usage of structural rules, as bringing the next alternative out of the alternative list, andtesting conjuntives, are made implicit. Also, the presented structures are sometimes short-ened, when the information in i.e. the paramter index is not interesting for the particularexample. The examples should, of course, be read bottom-up (since we go from conclusionto premise).Example 28 An example featuring suspension, variables:V alidTrue;S = fh; ! A : a 6= W0 ig; ! A : V0 = a (Unify, V0 := a)S = fh; ! A : V0 6=W0 ig;� = fh; ! A : V0 = aig (Suspend); ! A : V0 6= W0; � = fh; ! A : V0 = aig; ! A : V0 6= W0 ^ V0 = a; ! A : 9y:(V0 6= y ^ V0 = a); ! A : 9x:9y:(x 6= y ^ x = a)where A 4= a:b:0.Example 29 Another example, including possibility modality and a maximum �xpoint:V alida 6= b! A : True;�a 6= b! A : U1;� DISCHARGEa 6= b! b:A : False;�4 = fAlthA;U1;�iga 6= b! b:A : hbiU1;�a 6= b! b:A : False;�3;�a 6= b! b:AhaiU1;�3 = fAlthb:A; hbiU1;�iga 6= b! b:A : haiU1 _ hbiU2;� FOLD since b:A 6�� Aa 6= b! b:A : U1;�a 6= b! A : False;�;�00a 6= b! A : hbiU1;�;�00 = fAlthb:A; U1;�iga 6= b! A : False;�0 = fAlthA; hbiU1;�i; Althb:A; U1;�iga 6= b! A : haiU1;�; � = fAlthA; hbiU1;�iga 6= b! A : haiU1 _ hbiU1;�a 6= b! A : �X:(haiX _ hbiX)where A 4= a:b:P , A � b:A, b:A � A, and U1 4= haiX _ hbiX, and� = fMaxha 6= b; A; �X(haiX _ hbiX); Uiig.77



17 Summary & discussionWe have described a model checking algorithm { "the Model Prover".Assumed correct, is this algorithm really e�cient compared to, say, the previousModel Checker?Yes, it has some e�ciency properties;First, the suspension mechanism, that, proved to be sound, "cuts o�" some branches in aperhaps very large proof tree. Second, the usage of annotated parameters and variablesclearly has some e�ciency bene�ts over elder techniques; for a 8-formula, one had to provethat the formula really was valid for all activated names, which of course could be thousandsor millions at worst. The same reasoning for the usage of variables; instead of looking forthat particular name that would make the 9-formula valid, we simply "postpone" the de-cision of selecting that name by the introduction of a variable as a placeholder for it. Theuni�cation process is then an attempt to �nd that name, but only under certain conditions.This is a more time/e�ort-saving approach than simply traversing the whole list of namesagain, trying to �nd a name that would make the formula valid. The whole approach of themodel prover can be addressed as "postponing", i.e. trying to delay as much of the proofsearch execution as possible, hoping that the search will have been completed before we everwill have to conduct the extended search. The symbolic way of treating names indeed hascomputational bene�ts.Does the modal �-calculus o�er enough expressive power to be of interest?As we have seen, it is expressive enough to let us reason about liveness, deadlock freedom,no lost input in bu�ers, no blocking, order preserving, etc. It cannot express real-timeproperties, like maximum allowed execution time and similar.Can further improvements be made to the model prover?Yes, the caching of commitments, would be a speed improvement. The fact that the commit-ment relation has to be re-calculated every time a modal rule is to be used by the calculus isobvioulsy an ine�cient solution. Letting the commitment calculator cache its most previouswork instead of re-calculating every time would save e�orts. Another, more radical way wassuggested by Torkel Franz�en - A System of agents:Theorem 5 The idea here is to eliminate all syntax in �-calculus agents and transform thewhole "agent space" to these new system of symbols. This way, the whole graph of agentswould be fully developed at �rst, before any model checking can take place. This eliminates allcalculation of commitment relations, but can perhaps demand a lot of memory usage whemfully developed for a large system of agents. We have an in�nite set of names, a; b; : : :, anda set of agent symbols, F;G; : : :. The silent action symbol � is NOT among these names.Each agent symbol has an arity and belongs to one of three disjoint classes: Process Symbols,Emitter Symbols and Absorber Symbols.An agent is an expression of the form F (a1 : : : ; an), where F is an n-ary agent symbol anda1 : : : ; an are names. An agent is a process if F is a process symbol.78



A schematic agent is an expression of the form F (x); : : : ; xn where x1; : : : ; xn are di�erentvariables. We write schematic agents as f(X ) where X stands for such a sequence. We saythat x occurs in X ;U if it is one of the variables in the sequence, and it occurs in X ;U ifit is u or occurs in X . Similarly for "Y is included in X" and "Y is included in X ;U". ASystem Of Agents is given by a set of process symbols and a set of rules for the symbols offollowing form: F ( uX )! G(Y) (221)where G is a symbol in the system, u occurs in X and Y is included in X .F ( �X )! G(Y) (222)where Y is included in X . F ( �Xfu=vg)! G(Y) (223)where Y is included in X and u; v occur in X .An emitter symbol F has exactly one rule, of the formF ( uX ) ��! G(Y) (224)where Y is included in X ;U and u may or may not occur in X . Here G is a process symbolor an emitter symbol.An Absorber symbol, �nally, has exactly one rule, of the formF ( uX ) �� G(Y) (225)where u does not occur in X , and Y is included in X ;U . here G is a process symbol or anabsorber symbol.An instance of a rule is obtained by substituting names for the variables in a rule. Thissubstitution is subject to one restriction: if the u in the emitter symbol does not occur in X(this is called a new emission, the name substituted for u must not be substituted for anyvariable in X . A �nite system of agents is one that has �nitely many agent symbols.Another e�ciency aspect is the avoidance of duplication in the molecular components ofthe model prover. There is no logical di�erence if the Alternatives, suspended sequents andconjunctive sequents sets at every point of updating are removed from duplicates, but itsaves some memory and future calculation.As proof trees grow large, they perhaps re-visit a con�guration that has been developedbefore. A caching technique for whole branches of a search tree would render the executionmore e�ective, the need for re-calculation is then reduced further. Of course, all e�ectivenessimproving methods will have to be taken into account from a cost/bene�t point of view {large caches may take long time to look through, longer than the actual re-calculation would79



have taken...The development of sequent calculus based model checkers for newer calculi; for examplethe Update or the Fusion Calculus with their notion of variable scope are still un-exploredtopics, as well an logic for the open bisimulation equivalence.
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Part IVAppendixA Implementation resultsThe implementation of The Model Prover was done as a totally integrated part of the MWBcommand set, i e, the original model checker was NOT omitted from MWB, but co-existswith the Model Prover. As a consequence, the user is free to select any algorithm for per-forming model checking, simply change check to the word prove instead. To measure thee�ciency of both of the algorithms, we use the notion of inference, i.e. the number of timesa recursive call is made to the algorithm. If each recursive call takes approximately the sameamount of time in both algorithms, (and a simple average caclulation suggests they are alikein the same order of magnitude), we simply can compare the answers and inference numberfor both algorithms to decide which one does the faster job!Table 1 The agents and formulas are the same as described in chapter 17. "P" and "C"stands for "The Model Prover" and "checker", respectively. A "Yxxx" or "Nyyy" entrymeans that the respecive algorithm answered "YES" after xxx inferences, or "No" after yyyinferences, respectively. A "*" means that the entry was not tested, or required too long time(> 6 min) to be completed.Formula! TI OP NB DEAgent # P C P C P C P CBuf1 Y22 Y27 Y22 Y27 Y32 Y45 Y44 Y54Buf2p Y41 Y6739 Y44 Y115 N67 N48 Y84 Y14110Buf2e Y32 Y5784 Y35 Y100 N52 N42 Y65 Y12200Buf3pe Y51 * Y76 Y776 Y76 * Y104 *Buf3pp Y60 * Y97 Y931 N94 N111 Y122 *Buf4pee Y51 * Y136 Y6348 N79 N251 Y103 *Buf4ppe Y60 * Y156 Y7539 Y156 * Y122 *Buf4ppp Y88 * Y212 Y22888 N121 N212 Y180 *Buf2lp Y51 * N96 N778 N93 N51 * *Buf3lpp Y89 * N89 * N26 * Y181 *FBuf Y69 Y820 Y42 Y308 N26 N49 N136 N84Bag2p Y42 Y12003 N35 N20 Y52 * Y86 Y22732Bag2e Y32 Y7502 N35 N18 Y32 * Y86 Y13468Bag4pee Y62 * N134 * N134 N30 Y128 *Bag4ppe Y82 * N207 * N207 N30 Y170 *Bag4ppp Y82 * N207 * Y92 * Y170 *Mixed3 Y81 * N188 N337 N160 N122 Y165 *T13 Y1349 Y164769 N174 N30 N26 N60 N2761 N11081



Formula! NLW NLAgent # P C P CBuf1 Y50 Y75 Y46 Y72Buf2p Y119 Y58538 Y98 *Buf2e Y78 Y48675 Y70 *Buf3pe Y718 * Y386 *Buf3pp Y1106 * Y521 *Buf4pee Y1345 * Y713 *Buf4ppe Y1908 * Y936 *Buf4ppp Y7817 * Y2048 *Buf2lp * * * *Buf3lpp * *FBuf * * * *Bag2p Y159 Y98177 N130 N56Bag2e Y93 Y61365 N72 N79Bag4pee Y266 * N186 N231Bag4ppe Y380 * N284 N74Bag4ppp Y588 * N438 N74Mixed3 Y1258 * N552 N154T13 * * * *Some conclusions: We see that symbolic name-manipulation as in the model prover indeedhas advantages over the explicit approach. However, on smaller testings, such as T13 andOP, we see that the checker �nds the answer out quicker than the prover! This can propablybe explained by the prover needing a bit of computational "overhead", which cannot berecaptured on smaller tests. On larger tests, although, this overhead pays o� well. (Comparefor instance, Buf2p:NB, an agent with 8 states, where the checker beats the prover by 48to 67 inferences, but when the same test is conducted for Buf4ppp, a size 213 agent, theopposite holds with 121 to 212 inferences.
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Table 2 By using the MWB time command, we can get the real-time results for the di�erentcalculations. In no case does the real-time result contradict the result as indicated by thereference number of table 1, i.e. we can regard the time needed for a computation as linearyrelated to the reference number. Below, the number entry means the computational time inseconds required for deciding the entry.The tests were performed on a Sun Ultra-1 station with 128 MB of RAM memory and a167 MHz UltraSparc processor running Solaris 2.5.1. A "xxx min"-entry means that thechecking was not completed after xxx minutes.Formula! TI OP NB DEAgent # P C P C P C P CBuf1 0.007 0.006 0.004 0.006 0.007 0.011Buf2p 0.025 9.39 0.028 0.094 0.046 17.4Buf2e 0.007 4.91 0.028 0.094 0.015 8.19Buf3pe 2.4 60min 0.07 1.05 0.4 10minBuf4pee 0.147 12.32Buf4ppe 0.21 23.1 0.17Buf4ppp 0.39 64.7 0.2 0.5Buf2lp 0.16 1.09 0.07 30minBuf3lpp 0.14 0.18 0.25FBuf 0.008 0.18 0.026 0.012 0.028 20.74Bag2p 0.007 11.52 0.009 0.007 0.013 8.04Mixed3 0.339 0.55T13 8.63 34.3 0.12 0.02 0.01 0.02 19.6 0.03Formula! NLW NLAgent # P C P CBuf1 0.011 0.017Buf2p 0.08 67.3Buf2e 0.023 28.2FBuf 0.05 0.34Bag2p 0.087 91.93 0.062 0.029Bag2e 0.026 36.44 0.017 0.03Bag4pee 0.3 0.83 0.07Bag4ppp 9.6 3.7 0.07Mixed3 2.11 0.2
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