The Model Prover
— a sequent-calculus based
modal p-calculus model checker tool
for
finite control m-calculus agents

Fredrick B. Beste fredrikb@sics.se

January 9, 1998

Abstract

The m-calculus offers some very good properites for describing dynamic, distributed
communicating systems. The modal p-calculus offers ways of describing properties for
infinite processes and their behaviour. The Mobility Workbench (MWB) is equipped
with methods of deciding bisimulation equivalences for w-calculus agents. We present
a sequent-calculus based model checker tool for the MWB. We also introduce the basic
theory therefore, the A-calculus and CCS for algebraic description of processes, and
modal and temporal logics for expressing properties of process behaviour, and also the
classic sequent-calculus originating from the 1930’s. Model checkers and bisimulation
checkers are fundamental tools for the research area of Formal Methods, a branch of
Computer Science that deals with verification of computer software by mathematical
and automated reasoning as a way for designing and verifying software.

Contents
1 Acknowledgements

2 Introduction

2.1 Background
2.2 Formal Methods
2.3 Previous Work
2.4 Outline
2.5 Notation

I Functions & Processes

3 The A-calculus

3.1 Functional programming Lo
3.2 Freeand Bound nameso
3.3 Substitutiono
3.4 Abstraction Lo
3.5 BNF Syntax for A-calculus
3.6 Rules for manipulation of A-terms
3.6.1 a-conversion .. o. ...
3.6.2 P-reduction
3.7 Currying
3.8 Combinators L
3.8.1 Identity Combinator
3.8.2 The Boolean Combinators
3.8.3 7If” Combinator Lo
3.8.4 The Divergent Combinator
3.8.5 Fixed-point Combinator L.
3.9 A Acalculusexample
3.10 Normal Forms o o

3.11 The Reduction Strategies 10

3.11.1 Normal Order 10
3.11.2 Lazy Reduction 10
3.11.3 Applicative Reductiono 10
3.12 De Bruijn-indices 10
The m-calculus 12
4.1 Actions and names L. 12
411 @-CONVeTrsiON 12
4.1.2 Substitution L 13
4.2 Labeled Transitions. 13
4.3 Definition 13
4.3.1 Summation 13
432 Prefix 14
4.3.3 Composition 14
4.3.4 Replication 15
4.3.5 Restriction L 15
4.3.6 Match 15
4.3.7 Definition 16
4.4 Binding of names L L L 16
4.5 Abstraction & Concretion L 16
4.6 Monadic / Polyadic. L 16
47 Examples 17
4.8 Agents, Structural Congruence L oo 17
4.8.1 Agents as a special case of processes 17
4.8.2 Structural congruence for agents oL 0oL 17
4.9 Normal form 18
4.10 Application 18
4.10.1 Pseudo-application 18
411 Commitments 18

i

4.12 Distinction e e 19

4.13 Equivalence relations for processes 19
4.14 Strong Bisimulation Equivalences oo 20
4141 Late 20

4.14.2 Early 20

4.14.3 Open oL 21

4.14.4 Difference between bisimulation equivalences. 21

4.14.5 Strong bisimulation equivalence and congruence 21

4.15 Weak Bisimulation Equivalences 22
4.15.1 Late 22

4.15.2 Early 23

4153 Open 23

4.15.4 Difference between bisimulation equivalences. 23

4.16 Properties for Weak Bisimulation Equivalences 23

IT Logic for processes 25
5 Sequent Calculus 25
5.1 Proof System 25
5.2 Proofs in the sequent calculus. 27

6 Modal Logic 28
6.1 Modal Operators 28
6.2 Reduction Laws for modal operators 29
6.3 Hennessy-Milner Logic Lo 29
6.3.1 Definition of HML [17] o 29

6.4 Modal Equivalence L 30
6.5 Limitation 30

7 Temporal Logic 31
7.1 Liveness, Safety 31

11

7.2
7.3
7.4
7.5
7.6

7.7

Fixed points e
The modal g-calculus
Meaning
Liveness and Safety properties L.
Tableau Proof System
7.6.1 The tableau of ruleso oo
Fold, Unfold, Discharge
7.7.10 Unfoldo
T.7.2 Fold . . . oo
7.7.3 Discharge, failo

II1 Presentation

8 Model Checking

8.1
8.2
8.3

The Problem
Checker vs. Prover: Differences.

A Sequent calculus model checker o000

9 Components

9.1

9.2

AtOms
9.1.1 Names & Parameters
9.1.2 Variables
9.1.3 Actions L
9.1.4 Propositional Variables 0000
9.1, U-formulaindexing L o
9.1.6 1I- Denotation parameter index
Molecular Structures
9.2.1 Name-Equations
9.2.2 Afinite-control Agents oL oL Lo
9.23 Formulas

v

36

36
36
36
37

9.2.4 Structure e e 40

9.2.5 Alternatives 41
9.2.6 Suspended Sequents 41
9.2.7 Visited Fixpointso 42
9.2.8 Conjunctive Sequents 43

10 Model Prover BNF Description 44
11 The Tableau System of Rules 46
11.1 Set and list denotations oL oL o 46
11.2 Operators, predicates and functions 47
11.2.1 Suspended Variable 0L 47
11.2.2 Quietness, Implication 47
11.2.3 Consistence L L 48
11.3 AXioms oo e 48
11.3.1 STERMo e 48
11.3.2 FTERM oo 48
11.4 Structural Rules0 oo 48
11.4.1 T-LIT oo e 49
11.4.2 F-LIT 000 49
11.5 Equivalence Rules 49
11.5.1 EQL . o o o o e 49
11.5.2 EQ2 o e 49
11.5.3 EQ3 .« . o o 49
11.5.4 EQ4 . . . o o 50
11.5.5 INEQL . . o o oo 50
11.5.6 INEQ2 o e 50
11.6 Logical Connectives o 51
11.6.1 V (OR)-intro 51
11.6.2 A (AND)-intro Lo 51

11.7 Predicate Logic Quantifiers oo oo 51

11.7.1 V-intro 51

11.7.2 F-ntro . . o o oL Lo 51
11.8 Agent Rules 0 o 52
11.8.1 CONDIo 52
11.8.2 COND2 52
11.8.3 CONDS3o e 52
11.8.4 X-intro . . . o oL oo 52
11.8.5 New-Rule00 o o 53
11.9 Modal Ruleso o 53
11.9.1 DIAMONDIo o 53
11.9.2 DIAMOND2 e 53
11.9.3 DIAMONDS o 53
11.9.4 Boxl oL 54
11.9.5 BOX2 o 54
11.9.6 BOX3 54
11.10Temporal Rules 54
11.10.1ILOOPCHECK o o e 54
11.102DISCHARGE o .o o o 55
11.10.3Fold . . o o o 55
11.104Unfold« .o oo 55
1111 Implicit Ruleso 55
111 IBar .« . oo o 55
11.11.2Equivalence oo o 56
1111 3Names 0L 56
11.12 Suspension 56
11.13 Contractiono 57
12 Semantics 58
12.1 Definitions L 58
12.2 Tableau Rules Semantic definitions 0L 58

vi

13 Soundness
13.1 The axioms & structural rules
13.2 Equivalence rules
13.3 Logical ruleso
13.4 Quantifiers L
13.5 Agent rules oL
13.6 Summation & New rules
13.7 Modal rules
13.8 Fixpoint rules

14 Termination

15 Implementation
15.1 de Bruijn-Indexing Lo
15.2 Back-Tracking oL

16 The Mobility Workbench with Model Prover
16.1 Where?

16.2.1 MWB Prover Syntax
16.3 Examples
16.3.1 Agent examples oL oL o
16.3.2 Formulae examples

16.4 Some Model Prover run-through examples

17 Summary & discussion

IV Appendix

A Implementation results

B References

vil

60
60
61
61
61
62
62
62
63

64

66
66
66

68
68
68
68
70
70
72
77

78

81

81

84

1 Acknowledgements

This is a Thesis submitted for the Degree of Master of Science in Computer Science at the
Department of Computer Science at Uppsala Unwversity, Sweden, january 1998. The work
has been carried out in the Formal Description Techniques Group at the Swedish Institute
Of Computer Science, SICS, Kista, Stockholm. The text was written in WTEX 2.[28].

I would like to thank Bjorn Victor, Mads Dam, Lars-ake Fredlund and Torkel Franzén
for their lectures, support, help, suggestions and incredible patience. I would also like to
express gratitudes to Dilian Gurov for great company. The time at SICS was indeed an

interesting and educational period in my life.

Fredrick Beste, Uppsala, January 1998.

Dedicated to Lisa

2 Introduction

2.1 Background

The m-calculus 1s a process algebra - a mathematical way of expressing computer programs
(processes). It has some expressful ”built-in” features, good for describing distributed, com-
municating and dynamic computer systems (systems where processes can change over time).
A good example is the GSM digital telephone network, where the processes (telephones) can
be turned on and off, and the telephone can move within the network. This is often referred
to as mobility. A temporal logic is a language that can express properties for processes and
their actions (possibly infinitely many — they may run forever). The temporal logic can de-
scribe properties like ”it must always be possible to move the process to another state”, (i.e.
the process must never deadlock), or ”it must react upon every possible input”, and such
specific behaviours. To combine a process, that we wish to control for a certain property,
and a formula, that expresses the property, and calculate whether the formula holds for the
process or not (if the process is a model for the formula) is known as model checking. In this
paper, we will present an algorithm for a model checker, The Model Prover, for checking a
specific class of m-calculus-processes ("finite control agents”) against a formula, as expressed
in the temporal logic known as the modal p-calculus.

2.2 Formal Methods

Model checkers are part of a growing sub-area of Computer Science: Formal Methods [1],
an area that uses mathematical methods (mostly algebras and logic) for formal mathemat-
ical proofs of computer software. The demand for those methods increases as computer
systems grow more complex; exhaustive testing and ”trial-and-error” methods of debugging
become obsolete, expensive and even impossible; due to the fact that computer programs
may be infinite, or so huge (have so many program states) that a thorough testing would
take extremely long time or go on forever. Formal methods approaches use well-known
mathematical facts to reduce the time and effort it takes to fully check a program. The
mathematical verification of a program can be done on a computer, the model checking is
then a computer program.

2.3 Previous Work

The Mobility Workbench (MWB) is a tool for verifying if two processes are similar (bisimu-
lation equivalences). Tt was written mainly by Bjorn Victor of the Department of Computer
Systems at Uppsala University, as a licentiate thesis [12] 1994, and implemented in a Stan-
dard ML environment. It was later extended with a model checking tool, developed by Mads
Dam of the Swedish Institute of Computer Science (SICS), Kista, Stockholm, in [14]. Later,
another member of SICS, Torkel Franzén, developed another algorithm for the same model

checker, but this algorithm was based on the classical, logical work known as the sequent
calculus, developed as early as in the 1930’s for predicate logic. This alternative algorithm
was presented briefly as an extended abstract in [11], and, developed in Prolog, was thus
not an integrated part of the MWB.

2.4 Outline

This thesis augments the work from [11], with a brief presentation of the theoretical back-
ground for process algebras, mainly the m-calculus, and its ancestors, A-calculus, (the clos-
est ancestor, Calculus For Communicating Systems (CCS), is mentioned in the m-calculus
chapter); for logic, we present modal logic as an extension of predicate logic, we mention
HML-logic and temporal logic, especially the modal p-calculus. We also introduce the se-
quent calculus for predicate logic.

In part three, a full algorithm description for the Model Prover is presented, along with its
semantics and we reason about its soundness and behaviour with respect to termination.
We end with some conclusions, examples and implementation results.

Another part of this thesis work was to implement the prover as an integrated Standard
ML-program in the MWB.

This work is available from the FTP-source! along with the rest of the MWB. The work was
carried out at SICS in Kista during the summer, autumn and winter of 1997. The thesis is
written with the intention of being an introduction to formal methods for anyone with an
interest therefore and some theoretical background in logic and algebra.

2.5 Notation

Definition 1 We will write 2 when meaning "assignment”. In [8], this is written ©r This
is an operator, while different kinds of equivalences (e.g. =, =, ~, and &) are relations.

Definition 2 A congruence is an equivalence relation that is preserved by all introduced
operators and in all possible contexts.

ISee chapter 16 for details.

Part I

Functions & Processes

3 The M-calculus

We will firstly present an overview of the classical A-calculus [29]. Tt can be descrived as one
of the first attempts to ”catch” computable functions in an algebraic way. It was developed
mainly by Alonzo Church during the 1930s, but H.B. Curry also participated 2. Alongside
Turing’s machine and Kleene’s recursive functions, A-calculus is one of several attempts
to formalize "the algorithmic”. A-calculus can be described as a formal system: it has a
symbolic language, and rules for manipulating those ”terms” of the language. It can also be
regarded as the "mother” of several later process algebras/calculi, even though A-calculus
itself is not a process algebra (a function is not the same as a process® - especially when
dealing with communication, concurrency, the difference is obvious). But A-calculus has
nevertheless interesting properties and notations, some inherited by subsequent calculi, that
motivates a brief presentation here. A common proof method when developing new process
algebras, one might want to show that the new calculus is ”functionally complete”. This is
often done by showing that all the expressive power of A-calculus is included in the new-born
calculus.*

3.1 Functional programming

A-calculus can be viewed as the theoretical fundament for functional programming languages
such as LISP, Scheme and ML. Some differences between functional and most imperative
languages (Algol, Pascal, C, Java...), is that they only consist of functions, that always
have return values, where imperative languages differ between functions and procedures®
that can alter a memory location explicit without returning anything, e.g. the ”void”-
procedure of C. So imperative languages regard the memory as static, consisting of cells
that can be manipulated during execution. In functional programming, the memory is
regarded as dynamic in size, but the contents are the same. Imperative languages have a
more machine-oriented way of treating the memory®, whilst functional languages use a much
more mathematical approach.

2 Although he later concentrated on ”Combinatory Logic”
3But a function can be viewed as a special case of a process
4That A-calculus is a "sub-calculus” of the new calculus.
5sometimes even "methods”

6although there are imperative languages that have a more non-direct access to memory, like automatic

garbage collection.

3.2 Free and Bound names

Just as the quantifiers 3 and V in predicate logic binds variables in a logic expression [26],
A binds them in a function expression. We will write fv(X) as a denotation of the set
of all free names in expression X. Analoguously, bn(X) will refer to the bound names.
n(X) = fo(X) Ubn(X), i.e. the set of all names in the expression X.

3.3 Substitution

Substitution i1s a very common operation in most formal systems. It is often denoted by
o. We will write X{a/b} when we mean "the expression X with all free occurences of b
replaced by @”. This notation is used throughout this thesis.

3.4 Abstraction

An idea of A-calculus is to establish a universal way of denoting a function [5]. Some
notations, like f(x), could be regarded as ambiguous or not explicit enough (they may hide
several functions in one operator, etc).

Example 1 Consider:

fla) =2 (1)
fle+) =2 +2x+1 (2)

Are these two above expressing the same function? Does the right hand side of (2) denote
the function z — 22 or perhaps the function « — z? + 22z + 1 ? Not only is this ambiguous,
it also gets very clumsy when the notation is applied to higher-order functions (functions
taking functions as parameters). Church suggested the following” :

f=Ae.z? (3)

Az E (4)

Definition 3 The function Az.E is created by abstracting out the dependent variable x from
the expression F.

7 Although different ways of writing a function exist, this notation is adopted in all functional languages,
for example
fn x => x*x (in Standard ML)
lambda(x) (* x x) (in LISP)

The A-notation® removes ambiguity [4] and clearly signals what are the dependent variables
of a function definition. The A binds the name « in the expression E, just as [does in
integral calculus, or 3, ¥ do in predicate logic.

3.5 BNF Syntax for \-calculus

The Backus-Naur Form [29] for the syntax of the A-calculus is

(A—term) == (variable) (5)
| (Mvariable) {(\—term))
| ((A=term) (A—term))

(variable) == x|ylz]..

3.6 Rules for manipulation of A-terms

A A-calculus expression can be altered in two ways:

3.6.1 «-conversion

This is the same as “renaming bound variables”:

Definition 4

e B =Xy E{y/z}, y & fu(E) (6)

If the lambda-expression I can be altered to the lambda-expression F', by only applying zero
or more a-conversions, we say they are a-convertible, written ' =, F.

This is a strong type of equality between A-expressions (it is a congruence).

3.6.2 f-reduction

Let ' = Az.f(z) denote an abstraction of the process E = f. Then f(a) or f a denotes the
application of f on a value a, and f a = E{a/x},i.e. the expression F with every occurrence

» 0

of ?&” replaced by ”a”. Formally [2],

8The original idea was to be #.f(x) or u.f(x), but typographical reasons changed this into the greek
letter "lambda”, A.

where E and F are expressions. This is also known as S-reduction. The subexpression
(A x.E)F is called a redex (reducible expression).

Definition 5 Two expressions E and F' are §-convertible, £ =g F, if:
1) they are a-convertible, £ =, F

2) E can be B-reduced to F or F' [-reduced to E

3) E can be B-reduced to G and F S-reduced to G

[J-conversion can be regarded as an equivalence relation between function expressions.

3.7 Currying

Two functions can be combinated. If M and N are A-functions, so is M N. We say that
M N is a curried function, since it consists of two joint functions, that take their arguments
one at a time.”

3.8 Combinators

A combinator is a A-term without free variables. An alternative way of using A-calculus
would be using only combinators (i.e. no usage of free variables at all).'® Combinators
can be used for building more complex A-terms. Also, they are ”constant” with respect to
B-reduction, the only way to use them with "effect” is currying them. (Since S-reduction
only substitutes free occurences of variables). They are recognized by their abbreviations.
Some of the more well-known combinators are:

3.8.1 Identity Combinator

I=)Xz.x (8)

The combinator 7, when applied to any other A-term X, returns X (which is the identity of
X).

3.8.2 The Boolean Combinators

Data types can be modelled in A-calculus. Two of the basic ones are the boolean constants,
that can be modelled by:

True = M.Af4 (9)
False = Xt Af.f (10)

9named after Curry, although suggested by the matematician Schénfinkel!

10This is the main idea of Cominatory logic, developed by H.B. Curry.

3.8.3 ”If” Combinator

If = Ax.Ay. dz.xyz (11)
The ”If”-combinator has the property that the expression If UV W reduces to V if U = True
and W else.

3.8.4 The Divergent Combinator

Q= (Aexz) (Aeax) (12)

which, when the reduction rules are used, always reduces to itself. (It cannot be reduced to
anything less complex than itself.)

3.8.5 Fixed-point Combinator

The combinator Y can be used for the definition of recursive functions. Let F' stand for an
arbitrary A-function.

Y = M((Ae-f(2) (e 2)) (13)
Y creates the fixed-point for any given term F'. This can be expressed as:
VF:YF =3 F(YF) (14)
If X is the fixed point of F' and A is the class of all lambda-terms,
VFeANIXeA FX =X (15)

This follows from the Fized-Point Theorem' The fixed-points play an important role in
computer science. They are fundamental in the semantic definition of recursion. An ordinary
(non-recursive) function can have any number of fixed points (especially none at all), but,
according to the fixed-point theorem, every recursive function must have a fixed point.
Intuitively, the fixed-point is where a recursion ”stops” or ”saturates”. For the function
f = Ax.x? a fixed point is 1, since this is a point where the function does not increase or
decrease. '? The identity function I has (naturally) a fixed-point for all possible values.

HFormally: the Knaster-Tarski Fixed Point Theorem.
2and the other possibility is co

3.9 A A-calculus example

Example 2 We wish to express the Factorial function in A-calculus:
Factorial(z)= if (#=0) then 1 else x - Factorial(x — 1).

Factorial = Az If (x=0) 1 z - Factorial(z — 1) (16)

where (x=0) is a predicate evolving to True or False respectively. Factorial(3) can now be
calculated as:

Factorial 3

AeIf (z=0) 1| z- Factorial(z — 1) 3
=5 If (3=0) 1 3 - Factorial(3 — 1)
=5 If False 1 3 Factorial 2

=3 3 Factorial 2

=5 3-(AzlIf (z=0) [z- Factorial(z — 1) 2)

=5 3-(If (2=0) 1 2 Factorial(2 — 1))

=5 3.(If False [2- Factorial 1)

=5 3-(2- Factorial 1)

=5 3-(2-(A¢If (z=0) ! =z- Factorial(z — 1)) 1)
=5 3-(2-(If ({1=0) ! [-Factorial(l — 1)))

=5 3-(2-(If False 1 1-Factorial 0))

=5 3-(2-(Factorial 0))

=5 3-(2-(A¢If (z=0) ! =z- Factorial(z — 1)) 0)
=5 3-(2-(If (0=0) ! 0-Factorial(0 — 1)

=5 3-(2-(If True 1 0-Factorial(0 — 1)))

=5 3-(2-(1))

=5 6 (17)

3.10 Normal Forms

A-terms can be written on a Normal Form, which is a redex-free form. ' The normal form
1s unique for every different function; if two A-expressions, L and M can be reduced to the
same normal form N, they are B-convertible.

Definition 6 A A-term, that is G-reduced until no further redexes exist, is said to be in
normal form.

13The divergent operator lacks normal form, since it can always be reduced, but will never reach a redex-
free form.

The normal form can be regarded as the ”original” or ”basic” form of an A-term. One may
view it as the fundamental ”meaning” (in a semantic way) of a term.

3.11 The Reduction Strategies

When a A-term contains several redexes, we can choose which order to reduce them. There
are three major strategies when reducing a A-term:

3.11.1 Normal Order

Reduces the redex whose A appears furthest to the left.

3.11.2 Lazy Reduction

Reduce the leftmost redex if this is not itself in the body of another abstraction.

3.11.3 Applicative Reduction

Always choose leftmost redex (Az.E)F where F is NOT a redex itself.

Example 3 In the expression

Az (Ay.y) ((Az.z) (s (At.1))) (18)

the normal-order evaluation would reduce the term (Ay.y) ((Az.z) (s(At.t))) first, the applica-
tive order would reduce the term ((Az.z) (s (At.t))) first, while lazy evaluation wouldn’t reduce
it at all.

Normal and lazy-order reduction evaluation order corresponds to the ”call-by-name” ar-
gument passing of programming languages such as Algol-60 (since they do not calculate
the values of the expression(s) that are used as arguments before calling another function),
whereas applicative order corresponds to ”call-by-value” as in ML and Scheme (where no
function call is done before all arguments are developed to values).

3.12 De Bruijn-indices

A difficulty when doing calculations in the A-calculus is the problem of not mixing up free
and bound occurences of a variable. In (Az.z) 2, @ occurs both bound and free. Therefore,
we reason about bound/free occurences of a name, rather than bound/free names. As seen
in the section regarding a-conversion, the bound occurence of a name can always be altered

10

to any other name, not already occuring in the expression, without the meaning of the
expression being changed. It is obvious that the choice of a bound variable is unimportant.
This led the dutch matematician De Bruijn [35] to suggest that bound names should be
represented as integers rather than names; the number index would show how far the bound
name is from its binder (the ”A”). The bound name with its binder closest to it is thus
given the "name” 0, the second closest is called 1, etc. Intuitively, the index tells how many
binding A:s one has to pass from name to binder.

Example 4 let =pp stand for the debruyn-indexed equivalence between A-expressions:
Aw.(Az.(Ay.y)z)w)z)z =pp A(MA.102)0)0 (19)

Not only does this remove some ambiguity between free and bound name occurences, (free

occurences are not replaced by an index), it turns out that a-equivalent expressions always

will look the same, syntactically. This means that no a-conversion is necessary between
DB-indexed expressions.

11

4 The m-calculus

If every expression in A-calculus denoted a function, every expression in m-calculus denotes
a process [7]. A system of functions simply cannot model concurrent computing. We need
another notion — the process. A process is a much more independent object than a function
- 1t may have its own memory, variables and context, it may run independently, in parallel
with other processes, and it may interact with other processes through communication. In
m-calculus, the fundamental entity i1s a process, and the communication is represented as
processes exchanging names over channels. Since a channel is named, the name of it can be
passed from one process to another. The receiving process can then itself use the channel
for passing names. This is the mechanism for changing the structure of a system - processes
may be spawned off from other processes, channels may be set up (and destroyed) between
them, and the whole system can change all of its processes and channels, (i.e. its entire
structure) over time. This alongside ”ordinary” communication of data.

4.1 Actions and names

There are three types of actions:

1) Input actions, denoted by their names: a, b, c...

2) Output actions, denoted by @, b, @...

3) The silent or ”perfect” or ”internal” or "non-observable” action, denoted

Definition 7 If £ is the set of names for a system, the set of actions, A is LUL The entire
set of actions for any system is then AU {7}.

When using value passing, we write a(x) for meaning ”input a value for the name x on port
a”, a(e) or @e meaning "output value e on port a” where a € A, and z,e € L.

4.1.1 a-conversion

If the processes P and @ only differs in their naming of bound variables, we say they are
alpha-convertible, i.e. if P can be transformed to @ merely by acts of substitution on its
bound variable names, we write P =,) as before. The m-calculus does not distinguish these
processes. fn(P) (bn(P)) denotes the set of free (bound) names in P. All names occuring
in P is written n(P) = fn(P)Ubn(P). Similarily, actions can be free or bound, depending
on whether they contain a free or a bound name.™

14This reasoning is not applicable for the silent action, 7, since it does not contain a name at all, and thus
cannot be neither free nor bound.

12

4.1.2 Substitution

A substitution is written as {y/x} and means ”replacing all free occurrences of x with y”,
as before. o usually denotes a substitution.

4.2 Labeled Transitions

The semantics of the w-calculus can be described as a labeled transition system,” LTS” | just
as CCS [8] 1. A simple example of a LTS is:

P5Q (20)

meaning " process P can perform « and then behave as process Q7, where « is an action.
We will always use capital letters like P, @), R, S... to denote processes, a, b, c... to stand
for names, and «, 3, 7... to stand for actions. t € AU {7} means the action sequence t with
all occurrences of 7 removed. Thus, 77 = ¢ , the empty sequence, for any avalue of n.

o

— 1s an totally specified action, the action «a can also be 7.

= is an action sequence that at least specifies the a-actions contained within.

= is an action sequence that says nothing about any r-actions that might be inside. Thus,
& a

2= (D) ifa=71 and (B)(S)(S) ifa # 7.
A non-labelled arrow like = means (l>)*

4.3 Definition

The syntax of the m-calculus can be described by a a BNF-equation: [20]

P.= ZPZ' |a.P | PIQ|IP | (va)P|[x=y|P | Aly1, -, Yn) (21)

4.3.1 Summation

Zie] P; (where Tis a finite indexing set): Behaves as one of the agents P;. If i=0 we typically
have the empty summation, inaction, also denoted 0.

PS5 P

SUM _
Pi+Pj+...+Pn—>P/

(22)

If P; can perform « and become P/, then P; + P; +...P, can perform « and become P.
Summation typically stands for alternative ways of execution.

15CCS can be regarded as a static sub-calculus of the #-calculus.

13

4.3.2 Prefix

a. P performs the action o and then behaves as agent P, where « is one of the following
actions:
(I) The silent action T, polarity: 0

TAU — ACT ———— (23)
TP—= P

(I1) The free output action, Ty , ”transmit the name y on channel #”, polarity: minus.
(I11) The bound output action, Z(y), which is short for (vy)Ty.

OUTPUT — ACT ————— (24)
Ty P 2L P

(IV) The input action, x(y), "receive a name on channel z, for the location y”, polarity:
plus.

INPUT — ACT —_ w ¢ fn((vz)P) (25)
2(2).P ™™ Plw/z)

In (I1) — (IV) above, x is said to be the subject and y is the object (parameter).

4.3.3 Composition

The agent P|@ behaves as the agents P and @) run in parallel. They may act independently,
or communicate between each other.
P3P
———— ()N fr(Q) =10 (26)
PIQ = P'|Q

P¥p Q'Y o

COMM k 27)
PlQ = P'|Q'{y/=}
p WY prog) oy
CLOSE g (28)
PlQ = (vw)(P'|Q")

The CLOSE-rule shows scope intrusion, a bound output is run parallel to an input. The
result is that the restriction on w is extended to incorporate the whole parallel agent P|Q).
There are of course rules for the symmetrical cases of PAR, COMM, CLOSE.

14

4.3.4 Replication

REP 'P= P|IP (29)

A parallel instance of process P can be ”spawned” or ”forked” from another process. The

po— b}

relation =", the structural congruence for processes, as defined as :

Definition 8 Let P and Q be two w-calculus processes. The structural congruence between
them is written P =) and s a commutative and associative relation defined as:

PlQ=Q|P
(PlQ)IR=P(Q|R)
(ve)P)|Q = (va)(P| Q) if x ¢ (Q)
\P=P|!P

The structural congruence will be extended to m-calculus agents (a special case of processes)
wn section 4.8.

4.3.5 Restriction

PS5 p
RES ———— & nla 34
(vaP) 5 (va)P #n(a) (34)

The restriction'® (vz) P denotes that the name x is private in process P. ("new x in P”) It
1s its own instance, other names x can exist outside of P, they then do not refer to the same
name. The ports x and ¥ are prohibited as subjects in actions.

OPEN];j P ke, we fay)P) (35)

()P ™S Prw/y}

If process P emits the private name w on channel z, it thereafter must continue as an agent
without the restriction for w. Since it has transmitted that name, it is now not private.
This is a scope extrusion.

4.3.6 Match

0‘ !
marcy —E2 =8 (36)
[« = 2]P = P’

[¢ = y] P behaves as P if # and y are identical names, as 0 otherwise.

16Note that the Greek letter ”nu” (v) should not be confused with the maximum-fixpoint denotation or
the v-calculus!

15

4.3.7 Definition

P{g/z} S5 P’

DEF _
A(G) S P

A@F)EP (37)

(We write & as shorthand for a whole vectore of names, z1,...,2,.) A defined agent A, of

arity n is defined as A(zq, ..., zp) £ P. This definition of agent equations allows recursive
agents. Any identifier A can occur in the defining equation of A. The names z, ..., z, are
the only names allowed to occur free in P. A(y1,...,yn) behaves like P({y1/21}..{yn/2n}).

4.4 Binding of names

Two operators bind names; the input prefix z(y). P binds the name y in P, and the restriction
operator, (vx)P binds the name x in P. Names that are not bound by one of those operators

are considered free. Note that sometimes (vy)Ty is abbreviated "Z(y)” as an action!”.

4.5 Abstraction & Concretion
An abstraction is another way of writing the input prefix:
A
z(y).P =x.(Ay)P (38)

where x is considered the location of the value-to-be input, and (Ay) the abstraction of
the value y from P. A major difference to the A-calculus abstraction is that in w-calculus,
only names can be abstracted.!® When communication is involved, we may say that z has
to synchronize with its co-name of another agent before any value-passing can take place.
Also note that in abstraction, we regard = as prefixing the abstraction. A concretion is
analogously a way of re-writing the output operation:

TY1 ... Y. P 2 Z.[y1..-yn] P (39)

where T is the co-location and [y ...y,] is the concretion of agent P, where each y; is a datum
(name) of the concretion, and the arity of the concretion is n. Communication can only take
place when the arities of the abstraction agent and concretion agent are the same.

4.6 Monadic / Polyadic

If the input and output operators only are capable of receiving ezactly one name at a time,
the calculus is said to be monadic. Likewise, if they instead are capable of interchanging a

17Not in the agent prefix form.
18Tn A-calculus, we saw that arbitrary expressions could be the object of abstraction.

16

whole vector of zero names or more at a time (this is considered an atomic® transaction),

x(gj’).P|E£’.Q;P{zl/yl,...,zn/yn}|Q (40)
where each z; /y; denotes a substitution of every occurrence of y; with z;, the calculus is said

to be polyadic .

4.7 Examples
Example 5 A very illuminating example of a simple w-calculus process is the memory cell:

MEM (z) £ oule MEM () + in(y).MEM(y) (41)

The memory cell MEM can either output its contents, x and then continue as M EM (x)
(i.e. as itself), or input another value, y, and then continue as M EM (y), as itself but with
another content.

4.8 Agents, Structural Congruence
4.8.1 Agents as a special case of processes

Introducing abstractions and concretions (the polyadic m-caclulus), we now distinguish be-
tween agents and processes. An agent is thus defined as either an abstraction or a concretion:
Let N stand for ”normal process”, P for any process, F for abstraction and C' for concretion,
and A for agent. The difference between these notion is explained by:

N == aA|0O|N+N

P = N|P|IP|'P|(va)P

F o= Pl(Ao)F | (vae)F

C == Pllz]C]| (ve)C

A = FI|C (42)

4.8.2 Structural congruence for agents
If we wish to reason algebraically about agents, we need some rules for simplifying/re-writing

agent expressions. Let A, F, C' denote agents as above.

Definition 9 1) If A and B are a-congruent, A =, B, then they are structurally congruent,
written A = B.

19 Atomic means that all substitutions are regarded as taking place simultaneously.

17

3) (vz)0=0

£ (ve)) A = (vy)(ve) A

5) Ifx & fn(P), then (va)(P|Q) = P|(vx)Q
6) (vy)(Ae) F = (Ae)(vy) I, (x # y)

7) (re)[elC = [2wn)C, (& # 1)

8) (ve)(ve)A = (va)A

4.9 Normal form

The structural congruence rules can be used for re-writing an agent expression into a normal
form. For abstractions, this is done by ”pushing restriction inwards”, and, for restrictions
that is a part of a concretion, these are pushed outwards. So, the normal forms for the
abstraction ' = (AZ)P, and for the concretion C' = (v#)[g]P, # < g, and, if the concretion

lacks any private names, C' = [£] P, For aspects of normal forms, the same as for A-calculus
function expressions is applicable here.

4.10 Application

Application on w-calculus agents look very much like that for the A-calculus:
A
(Az)F)y = F{y/x} (43)

4.10.1 Pseudo-application

Let Z, 1y denote vectors of names. The pseudo-application A ¢ B of an abstraction and a
concretion, both on normal form, is defined as:
Let A = (AZ)P and B = (vZ)[y]Q where £N 7 =0 and |Z| = |7]. Then:

Ao BE (v2)(P{7/T}|Q) (44)

The pseudo-application is useful in the rule COM M of the commitments (below).

4.11 Commitments

If P can perform the action a (and then behave as A), we say that this is a commitment for
P to act upon a.

P>a.A (45)

is interpreted as 7P can commit to a.A”. The rules for the commitment relation are:

18

Definition 10

SUM ﬁ - oA (46)

COMM T3y ey "

PAR % (48)

RES (M)Ilz i Zéxm if a ¢ {x,5) (49)
STRUCTQEP P>aA A=B (50)

Q> a.B

The commitment relation will be of much use later. The way m-calculus agents are rep-
resented in the model chcking algorithm is as a set of commitments. Note the usage of
pseudo-application in the COMM-rule. This is needed since parallel composition is not de-
fined for commitments. The value-passing that can take place in parallel composition is not
a part of the commitment relation, which only deals with the subjects of agents (actions
including 7). The pseudo-application, ”e” deals with this; value-passing can only take place
when the arities of the abstraction and the concretion are the same. But any two agents
can be parallel-composed, and, if the arities are not equal, no value-passing takes place.

4.12 Distinction

Definition 11 A distinction is a symmetric, irreflexive binary relation between names.

It is irreflexive since a name cannot be distinct from itself. Let D range over Distinctions.
Any substitution ¢ preserves a distinction if

Ve,y € D: xo # yo (51)

Distinctions will be of use when we reason about bisimulation equivalences later on; for
some equivalences to hold, certain names must be kept apart. This is then done by using
a distinction. We will write =p, meaning an equivalence relation that holds under the
distinction D, e.g ~y,) for a strong bisimulation equivalence when x # y, as seen in the
next section.

4.13 Equivalence relations for processes
We have seen that a-congruence and structural congruence are two equivalence relations

between m-calculus processes. Another type of equivalence relation, that also existed in
CCS, is the notion of bistmulation equivalence. Tt 1s roughly divided into strong and weak

19

types. Intuitively, if process P can do everything?’ that process @ can, P is similar to Q.
If the opposite also holds, P and @) are bi-similar. Here we first introduce three different
strong?! bisimulation equivalences:

4.14 Strong Bisimulation Equivalences

4.14.1 Late

Strong Late Bisimulation Equivalence ~. is defined as:

Definition 12 Lgs is a late simulation if (P,Q) € Ls implies that (a= free action)

If P25 P/ then 3Q'.Q 3 Q and (P, Q') € Ls (52)
1f P XY P then 3Q : QW @ and vw : (P {w/y}, Q'{w/y} € Ls (53)
1t P "5 P and y ¢ n(P, Q) then 3Q".Q 25 @ and (P, Q) € L (54)

If both £s and its inverse are simulations, then Lg is a bisimulation. We write P ~, @ if
P and @ are strong late bisimular, i.e. related by a strong late bisimulation.

4.14.2 Early

Strong Farly bisimulation Equivalence, ~¢ is defined as:

Definition 13 &g is an early simulation if (P, Q) € Es implies that (for the free action «):

If P =5 P/ then 3Q".Q 3 Q and (P', Q') € &s (55)
1f P XY P’ then vw - 3Q7 - QW @ and (P {w/y}, Q'{w/y} € &5 (56)
it P Y P and y ¢ n(P, Q) then 3Q°.Q Y5 @ and (P, Q') € &5 (57)

If both £s and its inverse are simulations, then £s is a bisimulation. We write P ~¢ @ if P
and () are related by a strong early bisimulation. This variant (commuting the quantifiers
in step 2) is weaker?? than strong late bisimulation, since the rule only requires that for each
instance of the object, there exists an simulating transition, while, in the late bisimulation,
an simulating input transition must be able to simulate all possible instances.

20Perform all actions
21The notion of weak bisimulation equivalence is investigated in the next section.
227 weaker” here means that the relation is larger, i.e. the conditions for being in the relation are relaxed

20

4.14.3 Open

Let o stand for a substitution of names. x and y can be vectors of names. D is a distinction.
The strong open bisimulation equivalence is a symmetric binary relation and is defined as:

Definition 14 A symmetric binary relation Ogy, is an indexed open bisimulation if (P, Q) €
Osy, tmplies that for all substitutions o, and the free action a:

Po 5 P 3Q".Qo 5 Q' and (P, Q) € Os, (58)
Po a(_x>) P'.3Q Qo a(_f)) Q', and (P/,Q/) € 0s, (59)
(va)

po YY) P 3Q Qo (ve)afe) @', and (P, Q') € Os_,, where D' = Do U (x x fn(Pa, Qo)) (60)

If both Os, and its inverse are simulations, then Og,, is a bisimulation. We write P ~p, @
if P and @) are strong open bisimular, i.e. related by a strong open bisimulation.

4.14.4 Difference between bisimulation equivalences.

The relation between the three different types of bisimulation equivalence can be expressed
as

Os CLs Cé&s (61)

The congruent open bisimulation is the strongest (smallest) relation. Intuitively, the differ-
ence between them can be described as:

The late bisimulation equivalence instantiates a bound name after the synchronization has
taken place 22, the early does this just before the synchronization will take place. Thus,
the early bisimulation equivalence will have more options than the late for selecting actions
in the other agent, in order for the search to go on further into respective agents, to check
whether the relation will still hold. As for the open, it does not instantiate any bound names
at all until necessary.

4.14.5 Strong bisimulation equivalence and congruence

Early and Late bisimulation equivalences are not preserved when substitution of names is
concerned.

Example 6 Let P 24 and Q = y. Is Po|Qo ~ 2 y+7g.x ? Yes, if o does not contain the
substitution {y/x}. Then Po|Qo ~ x. Y+ y.x + 1. We see that keeping names apart (not
applying a substitution) is a way to make the bisimulation equivalence hold.

233ynchronization means here ”the selection of an action”

21

Example 7 As a result of above are these equations:

T|ly~Ty+yF (62)
T|leodeT+Ta (63)
T|leR e Z+Tae+T (64)

The notation ”~” is here either the early or late bisimulation equivalence. Putting a dot

over the relation symbol is a way of denoting a non-congruent relation.
The open bisimulation equivalence, on the other hand, is defined as an equivalence holding
in all contexts, which makes it a congruent relation.

Distinctions, keeping names apart, is another way of strengthening a bisimulation relation:

Example 8

Ty ~oy TY+yT (65)

This holds since the two names x, y must be kept distinct. An internal communication
resulting in a T-action cannot take place. The relation ~y, 1 15 a relation under a distinction,
as before.

4.15 Weak Bisimulation Equivalences

As CCS, the m-calculus has a notion of weak bisimulation equivalence. The difference to
strong is the view upon silent actions, 7. These are ignored in the definition of the relation.
There are weak versions of all three previously presented strong bisimulation equivalences.

Sometimes, one may wish to ignore the internal actions of a system when deciding whether
two processes are equal or not. Then the weak bisimulation equivalence is a useful relation.

4.15.1 Late
Weak Late Bisimulation Equivalence /2, is defined as:

Definition 15 Ly is a late weak simulation if (P, Q) € Lw implies that

If P %5 P’ then 3Q’.Q = Q and (P, Q') € Lw (66)
1f P XY P then 3Q 0 Q =W @ and Ww : (P'{w/y}, Q'{w/y}) € Ly (67)
Ifp (lﬁ)y P’ and y € n(P, Q) then 3Q".Q :>(1L)Y>y Q' and (P, Q") € Lw (68)

If both Ly and its inverse are simulations, then Lyy is a bisimulation. We write P &, @ if
P and @ are weak late bisimulation equivalent.

22

4.15.2 Early

Weak early bisimularity, ~¢,, 1s defined as:

Definition 16 &y is a weak early simulation if (P, Q) € &w implies that

If P -5 P’ then 3Q.Q 2 Q' and (P, Q') € & (69)
1f P XY P! then vw - 3Q7 - QW @ and (P {w/y}, Q'{w/y}) € Ew (70)
1t P % P and y € n(P,Q) then 3Q".Q (@y Q' and (P, Q) € Ew (71)

If both &y and its inverse are simulations, then &y is a bisimulation. We write P ¢ @ if
P and @ are weak early bisimulation equivalent.

4.15.3 Open

Let o stand for a substitution of names. x and y can be vectors of names. The open
bisimulation equivalence is a symmetric binary relation and is defined as:

Definition 17 A symmetric binary relation Owy, is an indexed open bisimulation if (P, Q) €
Owy, tmplies that for all substitutions o, and the free action a:

Po 5 P 3Q.Qo 2 Q' and (P',Q') € Oy, (72)

Po a(_@ P 3Q".Qc aéi) @', and (P', Q") € Ow,, (73)

(ve)

Po x—a(>x) P 3Q Qo (V%x) @', and (P', Q) € Ow,,,, where D' = Do U (x x fn(Po, Qo)) (74)

If both Owy,, and its inverse are stmulations, then Oy, ts a bisimulation. We write P ~p,,
Q if P and @) are weak open bistmular, 1.e. related by a weak open bisimulation.

4.15.4 Difference between bisimulation equivalences.

The exact relation between the three different types of weak bisimulation equivalence is still
unexplored research topics.

4.16 Properties for Weak Bisimulation Equivalences
We see that the difference between strong and weak bisimulation equivalence is the relaxed

condition for the ”simulating” process (@Q); in strong bisimulatiuon equivalence, there must
exist exactly one corresponsing step in @) for every step in P, in the weak version, there can

23

be one or several steps. One result is P &~ 7.P, while P 4 7.P. One the other hand, no
weak bisimulation equivalence is preserved by ungnarded?* SUMMATION:

a+fra+f (75)

This is due to the fact that the right agent, having done a 7, is not able to simulate the left
agent, which can do « as well as 5.

24Guarded=under a prefix

24

Part 11

Logic for processes

5 Sequent Calculus

This is an introduction to the classical sequent calculus for predicate logic, originating
from the 1930’s [25],[26],[34]. The rules of this calculus are based on purely syntactical
manipulation, but they are shaped in a way that semantical reasoning from them can be

deduced.

Definition 18 In sequent calculus, we adopt the idea of a sequent, a structure denoted as
r—-A (76)
where T and A contains formulas, and the arrow s called a sequent arrow?®. T s called the

antecedent and A the succedent of the sequent.

Statement 1 The goal for the sequent calculus is to make all formulas in the antecedent
valid and all formulas in the succedent invalid.

This is done by applying the rules from a tableau system of the calculus and assign names to
all free variables of the formulas. If this succeeds, 1.e. there exists a substitution of names
such that all formulas of I' are valid and all formulas in A are invalid, the whole sequent is
valid.

5.1 Proof System

Definition 19 A proof system for predicate logic sequent calculus [34] (without identity)?®,
and X stands for a failed sequent:

I = A
s L (77)

X
TIoA 1L — (78)

r A r A
A T24AY) (79)

T S oAd,A

25When dealing with logical connectives, the logical implication is written as " D” to avoid confusion.
26Identity would have to deal with formulas such as @ = b, a # b and calculate the truth values for such
formulas. It is a minor extension of the here presented sequent calculus

25

Lo, 0= A

Tong,=a "7
r
ToAsy
= A ¢V
o, - A ¢, I' = A VIR
oV, I = A
o, I' > A
_ 37
I'— A —¢
I-4A¢
-¢,I' = A
Lo =AW
> A¢D9 e
r—=¢,A ¢, - A
DY, I' =5 A
r - A r—A
6= Ad =44 —CD
L= Ay COy
o, 0, T 5> A T oA ¢, ¢
CO—
o COY, I - A
r—- A
#&% — VYV where y 1s a new variable
$ I'—= A
(15(&;6:)?;5)(’?’_)2 ¥ — where ¢ is any term
r—A73 t
?_}’Afgiz)(’;;() — 3 where t is any term
r—- A
mﬁ 3 — where y is a new variable

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

Where L s the universally false statement, D s logical implication, = s logical negation and
CD s logical equivalence, ¢ and i are logical formulae, T' and A are sets of logical formulae,

as described above.

26

5.2 Proofs in the sequent calculus.

The sequent calculus yields a proof tree, in which each node is a sequent. Some of the rules
force the proof tree into branching, i.e. from that point and on, the tree is divided into
several sub-trees. A node is marked X means no proof is available at that particular node.
The rules for the predicate logic connectives are motivated as: (for V — and 3 —):

The formulas to the left of the sequent arrow are to be validated and the formulas to the
right are to be falsified by the calculus. If we wish to prove the formula Va¢(z) true, we will
have to prove ¢(y) true for every possible element y of the structure we are looking for. The
formula has to be true even higher up in the proof tree, therefore it is saved along with an
instantiation of itself in the premise, of the form ¢(¢). The same reasoning is valid for — 3,
to make the formula Jz¢(z) false, we will have to make all possible elements, ¢(¢) false.
For the rules = V and 3 —, we simply state that if the formula Yaz¢(z) is to be falsified,
we find one formula, ¢(y) that is false in order for the whole formula to be false. The same
reasoning can be done for the — 3 rule; to make it false, it suffers to find a new element,

#(y) that is false.

Theorem 1 For each one of the rules, the conclusion (the lower sequent) is valid iff all
sequents above (the premises) are valid.[34]

A disproof structure can be read at a leaf node of the proof tree when:

1) The structure only contains atomic formulas, that cannot be applied the rules of the
calculus further.

2) The V-formulas in the antecedent have been applied the ¥ — rule on all activated terms,
t.

3) The 3-formulas in the succedent have been applied the — 3 rule on all activated terms,
t.

If all branches are closed, i.e. they are all closed by A, a disproof structure could not
be produced by the sequent calculus, and we are allowed to draw the conclusion that the
original sequent in fact was valid.

27The repetition of a formula in the premise is called contraction and will be investigated further in the
proof system of the model prover.

27

6 Modal Logic

Modal?® logic [6] & [19] is an extension of regular predicate logic with modalities. In formal
methods, this gives us the potential to reason about properties for different program states,
not just properties for an entire program (process, agent). Modal properties can be described
as different types of "local” properties.

6.1 Modal Operators

Unlike predicate logic, modal logic distinguishes between different types of true and false
propositions. There are propositions that are necessarily true and others that are merely
true. The same is valid for false statements.

Definition 20 Modal logic contains different modal notions. Its propositions can be:
1) necessarily true (always true, cannot be false)

2) Impossible (never true, no matter the circumstances)

3) Possibly true or false

The key in this reasoning is different worlds. While predicate logic always refers to a single
world when making a statement with its quantifiers (3, V), modal logic refers to several
worlds at the same time. Modal logic extends predicate (or propositional) logic with two
new operators, the necessity operator, and the possibility operator:

Op (93)
Op (94)

(p is a proposition). Meaning: ”p is true in all worlds?® and ”p is true in some world” 3%
respectively. Just like the existential quantifier 1s defined in terms of the universal, the
possibility operator is defined in terms of the necessity operator:

Op=-0-p (95)
Op = =-O—p (96)

Modal operators are not true-functional in the ordinary logic way, i.e. there are no truth
tables. Intuitively, since modal operators reason about different worlds, they can be defined
as:

281t is called modal since in mediaeval logic, necessities etc were thought of as being the modes in which
a proposition could be true or false.
2%read: "box-p”

30read: "diamond-p”

28

Definition 21 Let W be the set of all possible worlds. Let ® denote a formula in ordinary
predicate logic. Then,

Ob=VweW:® (97)
CP=FweW: o (98)

These are attractive features when describing computer programmes or processes; a ” world”
would in that sense mean a program state.

6.2 Reduction Laws for modal operators

Op = ¢0p (99)
Op=00p (100)
Op = 00p (101)
Cp=o0p (102)

6.3 Hennessy-Milner Logic

Hennessy and Milner [18] proposed a simple modal logic for CCS [8], for expressing properties
of concurrent and non-deterministic programs. They first defined observational equivalence:

6.3.1 Definition of HML [17]

let A be the set of all possible actions and « an action such that o« € A. Let ® denote a
formula in HML.

® = B ADy | DLV D, | [a] | (2)D | T |F (103)

That process P satisfies @ is denoted P |= ® and means semantically:

P T (104)
P £ F (105)
PE ®A®; < PE® and P = 0 (106)
PE & Vd, ©PE® orPE® (107)
PE [a]® < {Va.P3 P and P' = ®} (108)
PE {(a)® < {3a.P3 P and P =d} (109)

We can combine the modal operators. Then we are equipped with a powerful tool for
expressing properties of processes.

29

Example 9

P = {(a)T (it is possible for process P to perform «) (110)
P = [s]F (P is deadlocked if « is performed) (111)

(a)T expresses an capability for performing a,

[o]F expresses an inability for doing .

[—] is a way of denoting any observable action in the action set, (anything but 7). If silent
actions also are concerned, the modal operators can be written as

PE [[@]]® < {Ya.P3 P andP' = @} (112)

PE {((a))® < {3aP 3 P and P' = @} (113)
where = means (5)* 3 (5)*, i.e. an action a can be performed, disregarding all possible
following or preceeding T-actions.

6.4 Modal Equivalence

There is another way of describing equivalences between processes: We may say that two
processes P and @ are similar if they have the same modal properties!. In fact, there is
an intimate relationship between having the same modal properties and being bisimulation
equivalent (strong or weak, respectively, according to in which of the modal logics from
above we choose to express the properties).

Definition 22 The input modality for the diamond operator of the late and early strong
bistmulation equivalence of the w-calculus are written as:

PE {(z(y)))Y ¢ < IP' V2 M pr and P{z/y} E ¢ (114)
P E {(z(y))) ¢ < V2.3P M pr and P{z/y} E ¢ (115)

where ¢ is a logic formula, written in HML.

6.5 Limitation

An disadvantage with modal logic for processes is its finite model property, i.e. we can only
build a finite ”chain” of modal operators in a formula, and thus express a finite behaviour
model. If a process, on the other hand, is infinite, its properties may not be ”caught” by
modal logic.

31if they satisfy the same modal formulas

30

7 Temporal Logic

Although powerful, modal logic lacks the ability to express enduring capabilities. Only
”immediate” properties are possible to formulate using the ordinary modal logic. Statements
like ” property P is always possible” or ”action a will eventually happen” are out of its scope,
due to the fact that modal logic formulas are always finite - and a process might not be. For
this, we need a more powerful tool - temporal logic, that can be regarded as "modal logic
with recursion”. And with recursion follows the notion of fixed-points [17].

7.1 Liveness, Safety

Of special interest is the ability to express liveness and safety properties for a process:

Definition 23 Liveness: something good will eventually happen.
Definition 24 Safety: nothing bad will ever happen.

Temporal logic expresses properties of processes by expressing features of some or all of their
runs (while modal logic only concerns processes properties as their behavior change through
transitions). Also, modal logic naturally deals with finite processes, since its only ability in
finite formulas stating properties of finite ”chains” of actions.

7.2 Fixed points

We recapture the definition of fized-points for functions from section 3.9.5. Every recursive
function has a fixed-point. Suppose now that we wish to express an infinite property in
modal logic for a process, e.g. ”process P must always be able to perform the action o”.
Writing P = ()T or P |= {a){a)T solves this for one or two states in P, but for infinity?
The answer is a recursive formula. We could say that a process satisfying the formula

X2 (o) X means a process that can perform (o) and then satisfy X again, i.e. in a ”loop”.
In this fashion, an infinite behaviour of a process can be captured. With recursive formulas
come the notion of fixed points. i.e. a configuration, or state, as described by the formula,
to which the process might return, analogously to the fixed points of an ordinary numeric
function. These fixed points of formulas express interesting properties, as we shall see.

Definition 25 A complete partial order is any set of elements, C' with a relation, usually
written T that 1s a partial order ¢ X ¢ between the elements in C'. Let c,x,y,a,b stand for
elements, all in C'. The relation C is reflexive, anti-symmetric and transitive in the ordinary
meaning:

zCa (116)

31

tCyyCe—oe=y (117)
tCyyCeselz (118)

Let X be a subset of C. 1.e. X C C. An element, y € C, is called the least upper bound
of X if, Ve € X 2 Cy, and -3z € X.y C z or & C z C y Note that y does not have
to be a member of X, but of C'. Analogously, if the same conditions apply, but y C x, and
-3z € Xz CyoryLC zC x, wecall y the greatest lowest bound of X. The least upper
bound of X is also called the supremum of X, and is written lub(X) or MX. The greatest
lower bound is also called the infimum of X, and can also be written glb(x) or UX. C is a
complete partial order, CPO, if all elements ¢ € C are ordered by the relation C. There is
also a "bottom” element, usually written L, that has the property Ye € C': L C ¢. Every
chain of ordered elements of a CPO has a supremum (an empty chain would have L as
supremum).

A function, f from elements in C' to elements in C, 1.e. f : C — C, s monotonic if
Ve,ye C:xCy— f(x) C fly). The element a € C is a fixed-point to f, if f(a) = a.
Also, if ¥b € C, if b also is a fired-point of f, and a C b, and =3¢ € C.c C a and f(c) = ¢,
then a is the least fixed-point of f, written lfp(f) or pf. Andlogously, if b C a, and
—Jc € C.a C cand f(c) = ¢, we say that a is the greatest fixed-point of f, written gfp(f)
orvf. Kleene’s recursion-theorem states that every monotonic function f on a CPO has a
least fired-point.

This notion of least/greatest fixed-points can be used for our recursion-defined modal logic
formulas and the set of agents that satisfy these formulas.

Definition 26 We can regard the set of agents, A satisfying a formula ® as a CPO. The
relation C would be subset, i.e. C. Then the least fired-point of a formula ® (uX.®) is
the set of agents (J{A" C A.||®|| C A}, where ||®|| is the set of agents satisfying the
formula ®. Analogously, the greatest fired-point of a formula, written v X.®, is the set
UIA CA A C o))

The temporal operators can also be defined in terms of each other, a dual property similar
to the relations between 3,V or <, O:

pX.® 2 X ~0{~X'/X} (119)

Adding these fixed-point operators to modal logic results in the modal p-calculus.

7.3 The modal p-calculus

The modal p-calculus is an extension of HML with fixpoint notation and can be written as:

B =By A Dy | By V Dy | [a]®](a)D | 2B | pZ.B| T |F (120)

32

7.4 Meaning

We can think of fixed-points as recursion points of a process, a state (or ”configuration”)
to which the process may return. A maximum fixed-point formula expresses a configuration
to which the process must return. Otherwise, the process does not satisfy the formula. A
minimum fixpoint expresses a configuration, to which the process must NOT return, if it
satisfies the formula. Invariant properties3? can be expressed by using maximum fixpoint
formulas. Intuitively, the maximum fixpoint formula v X.® can be read as ”always ®” and
1 X. P 7eventually ¢”.

Example 10 Let P 2 4b.P be a recursive process, that can perform a, then b and then
behave as P again, t.e. the language of P is a, ab, aba, abab, ababa, ababab, An invariant
for this process 1s "it can always perform a or perform b”. This would be written

P = vX.((a)X V (h)X) (121)

wn the modal p-calculus.

7.5 Liveness and Safety properties

Example 11 A mazimal firpoint formula expresses a safety property. If K contains all
unsafe actions and k € K, then if a system satisfies

vZ.([K)F A[=]2) (122)
then the system is safe, "it is always the case that we cannot perform k and we can perform

any (other) action and this formula holds”.

Example 12 If ® captures all "good” states, then the formula

pZ(®V (=)T A [=]7)) (123)

means that the system is always kept at liveness®® - "we will eventually reach a state where
either ® holds or any action can be performed, either resulting in termination or that this

formula holds again”.

The formulas can express either terms of actions or terms of states.

32Invariant property = A property that holds throughout the entire execution of a process
33Can always change state

33

7.6 Tableau Proof System

The modal p-calculus®* can be used in proof systems by using proof rules to reduce a
formula to axiomoatic level and then decide if 1t is valid. These rules are often presented
as a “tableau”. The tableaus can be read from top to bottom (premiss to conclusion) or
bottom-up. Similar to the sequent calculus, we can develop proof trees, by applying the
apropriate proof rule from the tableau on each new result from the former application of
a rule. This application will stop when we have reached a leaf node, where an axiomatic
formula 7" or F' can be seen. An succesful tableau has no F-leaves at all. In that case, we
conclude the original process was indeed a model for the formula.

7.6.1 The tableau of rules

Let o € {p,v}. Let P be a process and & a formula in the modal p-calculus. Let U range
over propositional constants. Let o be an action in the action set, 4. Then the tableau
proof system for the modal g-calculus can be presented as:

G

e reee

[a]P1 FP;.[%CI: 3 {P"PSP AacA}={P;,.P,} (126)
<k>il_/7l<_a§bPﬁ>P’/\aEA (127)

O'Z%UZU.(I)U 2 7.® and U fresh (128)

U%U 2 6Z.0 (129)

7.7 Fold, Unfold, Discharge

The track-keeping of fixpoints is a difficult task. Several methods have been suggested.
Here we will present and use the suggestion of [16], a solution that uses special constants for
keeping track of fixpoint formulas.

34Since we later will be using both minimum and maximum fixed-point formulas, even nested, the "modal
p-calculus” and "v-calculus” [15] are interchangeable terms here.

34

7.7.1 Unfold

"o Z.®” | where o € {u, v}

In the rules above, the notion of special constants (U) is used as a method of keeping track of
visited fixpoint formulas. Every time a fixpoint configuration is encountered, a new constant
is substituted for it, and the proof rule application can continue. This is known as Unfolding
the fixpoint formula.

7.7.2 Fold

” U77

If we re-encounter a fixed point formula (i.e. a constant), but the process P is not equal
to the process of the original Folding, this new configuration cannot be a re-visited fixpoint
formula, despite the constant. In this case, we will have to substitute the original formula
for the constant, and continue the proof rule applications. This is known as Folding a fixed
point formula.

7.7.3 Discharge, fail

When a constant is found, we now that this is a previously visited point. We now have
to decide whether 1t 1s a success or a failure. A maximum fixpoint must be re-visited, a
minimum fixpoint must not. If the constant represented a maximum fixpoint, we can stop
the application here, and consider the branch True. This is known as Discharging of a
fixed point. Likewise, we can fail a minimum fixed point. Note that these rules are valid
through the nduction hypothesis; encountering a maximum fixed point formula once again,
we assume it is indeed a maximum fixed point of the formula. Since the discharge procedure
stops further proof search, we will not know if repeated search will return to the fixed point
again, but that is validly assumed by the hypothesis.

35

Part 111

Presentation

8 Model Checking

A model checker is a tool for checking whether a process, an agent, A satisfies a certain
logic formula ®. The agent 1 expressed in a suitable process algebra therefore, e.g the
m-calculus. This is usally written as A &= ®.

8.1 The Problem

Model checking has always been associated with huge amounts of computation, and, when
performed by computers, leading to complex programs demanding vast amount of memory
space and other resources. For instance, when trying to prove that an agent satisfies a
formula, the ”brute force” way of doing so would be to let the agent run through all of its
possible states and then check whether each of them satisfied the formula. This becomes
non-efficient on larger agents with perhaps billions of states, and impossible on infinite-
behavourial agents. Other approaches must then be used, that correctly reduces the number
of states that has to be checked. One way is to implement a checker like in [11], based on the
classic logic sequent calculus. An implementation was done in SICStus PROLOG v3. We
will here present a total algorithm of this latter algorithm (hereafter called Model Prover or
just prover to distinguish it from the earlier checker.

8.2 Checker vs. Prover: Differences.

The prover was influenced by earlier works in theorem proving, e.g. the intuitionistic pred-
icate logic theorem prover of [9] . A main difference between the two model checking algo-
rithms of [11] and [14] is the treatment of names; in checker, this is always done explicit, in
prover we use a symbolic approach; Other entities (” parameters” and ”variables”) represent
sets of names. The implementation of checker uses binding modalities® | i.e. a modal logic
operator binds the name of the action in the adjacent formula. The prover uses non-binding
modal formulas; as described in section 6 of this thesis. The treatment of fixpoint formulas
are almost the same in both algorithms, the ”special constant” approach, as described ear-
lier. Another difference between the two algorithms is the prover’s usage of suspension of
certain proof goals as an efficiency improvement mechanism.

35This was a change between the presentation of [14] and the actual implementation.

36

8.3 A Sequent calculus model checker

In the Model Prover, we will write
r—-A:9o (130)

for a sequent, where T is a set of name-equations (as explained later), A an agent (in the
finite control 3% m-calculus), and @ a formula of the modal p-calculus. Intuitively, we can
think of the Model prover as a way of trying to make the stated agent not satisfy the stated
formula under the current nameequation and the current assignment of names to variables.
Indeed, as soon as we have found a deduction of this being the fact, the algorithm terminates
immediately. When looking for a proof of the sequents wvalidity, we will often have to search
longer ways to find this.

365ee section 9.2.2 for details

37

9 Components

The components of the algorithm can be described as divided in two parts: atomic and
molecular items.

9.1 Atoms

9.1.1 Names & Parameters

A name is the most basic unit of the algorithm. They are always written in lower case:
x, y, z, out, in... (131)

It is assumed invariantly that the supply of names to the algorithm is infinite, i.e. that new
names can always be created.

A parameter is a meta-name, i.e. a name created by the algorithm at certain points where
a “new” name, a name that is not already mentioned inside the structure is needed.?” The
difference between names and these (annotated) parameters is the fact that parameters carry
indices, indicating at what stage of the algorithm they were created, a parameter with a
lower index was created before a parameter with a higher index. Parameters will thus be
denoted

P, P2... (132)

9.1.2 Variables

A wvariable is a placeholder for a name. It is always unique throughout the entire structure

and will be denoted by capital letters. Variables always carry indices as well as parameters,
Vi, Xo, Vs (133)

and are always considered uninstantiated. When instantiated, they are substituted for a
name.

9.1.3 Actlons

Actions are either unbarred, barred or the silent action 7 which is distinct from all other
actions and is not barred or unbarred. The barred and unbarred actions can contain a
name/parameter or a variable:

z, Y, za, X1, Yo, Z7 (unbarred) (134)
T, Y, 71, X1, Y2, Z7 (barred) (135)
7 (silent) (136)

37this is called "fresh” in [14] et al

38

9.1.4 Propositional Variables

Propositional variables stand for a point of recurston in a formula and will be written
A, B, .. (137)

(Always without indexing.) They appear in fized-point formulas and when those have been

unfolded.

Example 13 The marimum fired-point formula

&= X)X V (B)X) (138)

expresses the invariant property of a process that satisfies ® to always be able to perform a
or to perform B and then continue from the point X in the formula, i.e. the same property
again, in a loop.

Intuitively, the prop.variables denote the point of recursion for recursive formulas.

9.1.5 U - formula indexing

A formula constant U; will stand for a subformula of a previously visited fixpoint formula
in the algorithm. Whenever we encounter such a formula, it is replaced by a fresh constant
U; and the search continues. When we encounter a formula that only contains a constant,
we know that this 1s a re-visited fixpoint formula, and we can then perform the appropriate
actions according to the rules of the algorithm. This technique is adopted from [16] and
ensures correct treatment also of even nested fixpoint formulas. A key condition is that
every new constant U; is unique throughout the structure.

Example 14 The Formula constant for the mazimum fizpoint formula of the previous ex-
ample would be

Uy = ((e)Uy V {BYUh) (139)

9.1.6 I - Denotation parameter index

The structure of the algorithm will at every point carry a current index of the latest created
paramteter. This will be written as

¢ where 1 € N/ (140)

39

9.2 Molecular Structures
9.2.1 Name-Equations

A Name-equation will be denoted I' and is a set of equalities and in-equalities between
names (and parameters). Note that neither variables nor actions cannot occur in name-
equations. A name-equation is interpreted as a conjunction, i.e. all of its expressions are
valid simultaneously:

F={a=bAbEtcAbEIAN..A.} (141)

9.2.2 finite-control Agents

Agents are expressed in the 7-calculus of section 6, with one major difference: The agents
have to be of finite-control type.

Definition 27 A finite-control agent has the property that no use of the parallel combinator

"7 is allowed in recursively defined agents. Thus, the agent A(x) 2 z.(A(x)|A(z)) is NOT
finite-control.

Thise condition ensures that the agent will have a ”finite” behaviour and that the algorithm
therefore can terminate.®

9.2.3 Formulas

Formulas are of the modal p-calculus and atomic items are name-equalities and name-
inequalities expressions.

9.2.4 Structure

A structure is a 8-tuple of the form
T =5 A:9,0,7,¢ 8) (142)

where

I' is a name-equation as described in 9.4.1,

Ais an agent as described in section 9.4.2,

® is a logic formula as described in section 9.4.3,

O is a set of alternatives as descibed in section 9.4.5,

T is a set of visited fixpoint formulas as described in section 9.4.7,

38Tt does the whole model checking decidable.

40

¢ 1s the current parameterindex as described 1n section 9.3.6,
S is a set of suspended sequents as described 1n section 9.4.6,
= is a set of conjunctive structures as described in section 9.4.8.

The structure is the top-level of the algorithm. At each point of execution, we have a
structure that can be altered according to the tableau rules into another structure until we
reach a structure that allows us to terminate.

9.2.5 Alternatives

An dlternative to the current sequent is a 5-tuple on one of two possible forms

Bar(A, 3x®, T, ¢, S) (143)
Alt{A, &, T, ¢, S) (144)

where

A is an agent as described in section 9.4.2,

z 18 a name or parameter as described in section 9.3.1,

® is a logic formula as described in section 9.4.3,

T is a set of visited fixpoint formulas as described in section 9.4.7,
¢ 1s the current parameter index as described in section 9.3.6,

S is a set of suspended sequents as described 1n section 9.4.6.

An alternative to the current sequent I' — A : @ is invoked when the current sequent fails
to be validated by the rules. If the (possibly empty) list of alternatives of the structure
contains another alternative, this one 1s invoked instead, and execution continues. This way,
at least one of the alternative sequents from the alternative list has to yield a valid sequent
for the algorithm to be able to validate the structure. Some of the rules of the algorithm
add alternative sequents to the current structure. An ”active” alternative is marked Alt...
and can be used without restriction in the search of a proof. Another, ”locked” alternative,
marked Bar... also exists. The Barred alternatives come from contraction of I-formulas,
and cannot be used in the proof search unless they are "unlocked” (i.e. transformed into
an Alt-alternative), and this can only take place at certain points in the algorithm (mostly
when new information has been added to the name-equations).

9.2.6 Suspended Sequents

A suspended sequent is a 6-tuple of the form
(T,A, ©,0,7,2) (145)
where

I' is a name-equation as described in 9.4.1,

41

Ais an agent as described in section 9.4.2,
® is a logic formula of one of the forms

Vi # W (146)
Vi £ (147)
[Vi]® (148)

(The symmetrical cases of (146) and (147) are omitted here.) where
Vi, W; are variables indexed with i, as described in section 9.3.2,

z 18 a name or parameter as described in section 9.3.1,

t,j are indexing paremeters as described in section 9.3.6,

® is a logic formula as described in section 9.4.3,

O is an alternative as descibed in section 9.4.5,

T is a set of visited fixpoint formulas as described in section 9.4.7,
¢ 1s the current parameter index as described in section 9.3.6.

A suspended sequent is one for which the validating efforts have ceased and it is put into a
list of suspended sequents. This is because the formula has a variable in a vital place, as seen
above, and the proof search therefore needs this variable to be unified with a name in order
for the algorithm to be able to continue its search. If no unification is possible, the suspended
sequent is considered proved valid. This is done by pure efficency reasons. By assuming
that there exists a name substitution so that all suspended sequents can be validated, we
simply leave those unvalidated if no key variables of those sequents get instantiated. See
section 12.12 for further reasoning about the suspension mechanism.

9.2.7 Visited Fixpoints

An Visited fizpoint is a b-tuple on one of the forms

Max(U;, T, A, @, 2) (149)
Min(U;, T, A, ®, v) (150)

where

U; is a formula constant as described in section 9.3.5.

I' is a name-equation as described in 9.4.1,

A is an agent as described in section 9.4.2,

® is a logic formula as described in section 9.4.3,

¢ 1s the current parameter index as described in section 9.3.6,

The list of visited fixpoints is keeping track of all previous visited fixpoint configurations.
This information is used whenever another fixpoint configuration is discovered in the algo-
rithm. At that time, we can decide whether to discharge the current configuration (succesful

42

validation of a maximal fixpoint), loopcheck (failing a minimum fixpoint) or to continue un-
folding (the execution continues since the point was not re-visited after all).

9.2.8 Conjunctive Sequents

The conjunctive sequents = of a structure is a set of zero or more structures as described
in section 9.4.4. Some of the rules of the algorithm add sequents to the set of conjunctive
sequents, and these have all to be proved in conjunction to the current sequent in order for
the algorithm to validate the structure.

43

10 Model Prover BNF Description

Definition 28 i,j € N are indices from an indexing set (the natural numbers),

Definition 29 n s a name, « an action, V is a variable, U; a formula constant and X a
prop.variable as defined in previous sections.

Structure ::= (T,A,9,0,7,1,8,E) | 0 (151)
r:= n=nAl|n#ZnAT|0 (152)
Sequent ::= r—-A4:o (153)
0= Alt{A, ®,7,¢,8),0
| Bar(A,In®, 1,1, S),0
| 0 (154)
T:= Max(U;, T, A, ®,20), T
| Min(U;, T, A, ®,0), T
| 0 (155)
S = (T,AV#n,0,1,0),8
| (I AV £X,0,T2),8
| <FaA’ [V]@,@,T,Z>,S
| 0 (156)
SE Structure, = | § (157)
Az= (An)A|[n]A|cond(n=n), A, A| P (158)
P= 0| P+P|P|P|(vn)P|a.A (159)
b= n=n|n#n|True| False|3Ind
| Vn® |(a)® | [o]® | v X.® | pX. D | U; (160)
= n|mw|r (161)

44

(162)
TY, 2, | B Y,

45

11 The Tableau System of Rules

The algorithm can be presented as a set of sequent rules. Each rule will be of the form

RULEN AM E-2IEM5¢

conclusion
(explanation)

The given input to the algorithm, in form of a name-equation, an agent and a formula, is
considered to be the conclusion of a calculus. The task for the prover algotithm is to find a
valid premise on axiomatic level, that would yield the requested conclusion in zero or more
steps. This is a bottom-up approach, used widely in model checking. Each of the sequent
rules should thus be read from bottom and up, and a whole proof consists of a tree, where
the conclusion (the input) is placed at the root and the axiomatic level(s) are at the leaf
nodes. The proof tree will perhaps branch, since some of the rules produce several new
sequents as output. Other rules create different new proof trees that will have to be proved
along the current one. For the whole structure to be valid, at least one of the leaves in each
created proof tree must contain a valid premiss at axiomatic/atomic level.

Also note that some of the rules are not explicit; i.e. they are ”theoretical” in the sense
that they are inplemented quite differently than the stipulated rule expresses (this is true
for FTERM and NAM ES), and that others are ”built-in” into the mechanism (this is true
for THINNING, arule that can be omitted due to de Bruijn-indezing (see section 15.1).

The algorithm applies the appropriate sequent rule to the starting structure and then applies
another rule to the resulting structure of the previous application (if neccessary). This way,
the algorithm is purely deterministic and can be fully described by presenting the rules.

11.1 Set and list denotations

We will also use a denotation of lists similar to what is known in programming languages
such as ML:

Head :: Tail

will denote a list consisting of at least the element Head. Tail may possibly be empty, or
consist of other elements. The sets of the algorithm can be regarded as lists (in fact, that is
how they are implemented!)

Definition 30 We will use the operator "e” for set addition (concatenation), i.e. for adding
an element to a set (where the element is always assumed having the same type as the

set/list).

46

11.2 Operators, predicates and functions

Definition 31 We will use the operator ”:=” when dealing with assignment, for example

of a name to a variable.
Definition 32 The operator ”\” denotes set subtraction.

Definition 33 The functions "n(x)” and "v(x)” return the set of all names (variables) of
their argument, be it an agent, formula or a molecular structure.

Definition 34 A substitution of every free occurence of x in S for y is denoted S{y/«}.
Bound occurences can only be substituted when a-convertion is made.

Commitments (>=)are explained in section 4.12.
Distinctions(>y, 1) are explained in section 4.13.

11.2.1 Suspended Variable

The function suspended Variable, written SV, is defined as:
SV A, Vi#2,0,7,2))=V; and
SV(<F, A, [VZ‘]QS, @, T, Z>) = Vz'~

SV 1s undefined elsewhere.

11.2.2 Quietness, Implication

[9],[23] The relations quiet(<) and implies(D) are defined as:
[quiet T/ (I Q1) iff :
Ve,y eI’ : if(x,y) € [, then
fI"Ex=ythen T fEx=y
T Ex#ythenT Ex#y (163)

[émplies T/ (I D T') iff : V(x,y) € T’ :
fMEx=ythen T =x=y
fI'Ex#£ythen D Ex#y (164)

The relation mplies is stronger than quiet, since it demands that for every occurence of
a name-equation in IV, ' MUST imply the same thing, whereas in the case of quietness,

47

the condition only stipulates that if the name-equation I' contains the names, then it must
imply the same thing as I/, so it is possible for I' to contain less information than I'. This
is sometimes refereed to as

”T is a conservative ertension of I7.”

11.2.3 Consistence
The predicate consistent(x,y,T'), written C(z, y, I') yields true/false whether adding the

singleton name-equation (z = y) to I' would yield a consistent set T’ i.e. that I' does not
already contain the information z # y.

11.3 Axioms

The axioms are the points of the algorithm where termination can be done.

11.3.1 STERM

Succesful Termination:

valid
STERM I' 5 A:True,©,7,1,8,0 (165)

A structure is valid when the current sequent yields ”true” and the conjunctive set of struc-
tures is empty.

11.3.2 FTERM

Failing termination:

fail

FI'ERM
R I' = A: false,0,7,1, 8,2

(166)

A structure is invalid when the current sequent is proven invalid and the list of alternatives
1s empty.

11.4 Structural Rules

The structural rules are applied when:

1) The current sequent is invalid and there is an alternative in the alternative list (0) to be
proved instead.

2) The current sequent is valid and there is a conjunctive structure in the = list to be proved.

48

11.4.1 T-LIT

Literal true-rule, when current sequent is valid and there is a conjunctive structure to be
proven as well. This is essentially the same rule as THINNING of [11].

I"— A .9 e Y1 /8=
= A:True,®,7,2,8,,2
where = = (T', A", 9", 0", Y/, /,8) = &

TLIT

(167)

11.4.2 F-LIT

Literal false-rule; when the current sequent is proven invalid and there is an alternative
sequent to be proven.

r—=A:9,60 7/ 8=
FLIT = A: False,©,1,:,8,2 (168)
where © = (Alt{A", 9" Y/ 8")) = ©
11.5 Equivalence Rules
11.5.1 EQ1
= A: False,©,1,:,8,2
E 1 bl bl bR bl 1
@ Fr-A:2=94,0,7:8,= (169)
frox#y
11.5.2 EQ?2
r—-A:T T =
FQ2 — rue,0,7,1, S, (170)

Fr-A:2=94,0,7:8,=
if ' Da =y orz =y (syntactically).

11.5.3 EQ3

When an equality between a variable and a name (or parameter) is encountered. Note that
we have omitted the symmetrical case, i.e. when the formula of the conclusion has the form

Vi=w.

I'— Ale/Vi}: True,©®{a/Vi}, T{a/Vi}, 1, S'{x/Vi}, E{x/V;i}

E
@3 Fr-A:2=V,0,7:8,=

(171)

49

If i > index(z) then V; := x.

Activateds :={s € S| SV(s) = V;}

S’ := S\ Activateds

= = 2 U Activateds

Where index(xz) = 0 if x is a name, and index(z;) = j if x is a parameter.

(Note that the substitution and altering of everything in the premise but the conjunctive set

= 1s really unnecessary from a logical point of view due to the fact that the whole current
sequent will be abandoned in the next step.)

11.5.4 EQ4

I — A, : False,® 1,1, 8,2
Fr-A:2=94,0,7:8,=

EQ4 (172)
if ' x =y then:

I":=Te{x+#y}

O ={0 0| {AA, ' Y, S8 /Bar(A, ' T o/ S}

(All Bar-marked alternatives of @ changed into Alt-marked alternatives, i.e. the ”locking”
of an alternative that the bar-marking effectuates is removed.)

11.5.5 INEQ1

I — A,: False,®' 1,1, 8,2

INEQ1
@ F—A:2=y,0,1T,:8 =

(173)

if ' Bz # y then:

IM=Te{zx=y)

O ={0 0| {AA, ' Y, S8 /Bar(A, ' T o/ S}

(All Bar-marked alternatives of @ changed into Alt-marked alternatives, i.e. the ”locking”
of an alternative that the bar-marking effectuates is removed.)

11.5.6 INEQ2

Supension of inequality sequent where at least one of the inequals is a variable. Note that
this rule is also applicable when the formula spells Vi # V; and also for the symmetrical
cases.

I' = A, :True,®,7,1, 8,

INEQ2
@ F—-A:V#£2,0,7TS8,

(174)

[11] [1]

where &' =S e (' 52 A:V#x0,7,¢,8E)

50

11.6 Logical Connectives

The rules for logical connectives add alternative sequents and conjunctive structures to the
current structure.

11.6.1 VvV (OR)-intro

' 5 A:9,,0',7,,,8,=

—INT
v ROF—)AZCI)l\/CI)Q,e,T,Z,S,

(175)

[1]

where © := 0O ¢ (A4, P5,7,¢,S)

11.6.2 A (AND)-intro

' 5 A:9,,0,7,,,8,=

VvV —INTRO
F—)Aiq)l/\q)z,@,T,Z,S,

(176)

[1]

where 2/ := Ze (I', A, 5,0, 7,1, S)

11.7 Predicate Logic Quantifiers

The introduction of quantifiers impose introduction of variables and parameters.
11.7.1 V-intro

r—-A4:9,07,58:E
= A:V2®,0,7,:,8,=

Y — INTRO (177)

where j:= 1+ 1

p; € n(A) Un(®) Un(0) Un(T)Un(S)
A= Afp,)

& = d{p,/z)

Note that the new parameter is unique throughout the current sequent.

11.7.2 Z-intro

= A :9,0, 7,8 =

- INTRO > A:329,0,7,:,8,=

(178)

51

where V, € v(A) Uv(®) Uv(O) Uv(Y)Uu(S)Uv(E)
A= A(V)

O = o{V;/x}

© ;= 0O e Bar{A,3zP,Y,1,S)

The new variable is unique throughout the entire structure.

11.8 Agent Rules

The C'ON D-rules have to be tested for before any other test on the structure can take place.
This due to the fact that the rules may divide the structure into several others, each having
the same formula but different agents, depending on whether the condition, that is prefixing
the agent expression, evaluates true or not.

11.8.1 COND1

= A 9,078 E

ND1 1
co I'—cond(e =y, A1,A42) : 9,0,7,:, 8, = (179)
fIro>x=y.
11.8.2 COND2
I' = A4, :®,0,7,1,8,E2
COND2 — 180
I'—cond(e =y, A1,A42) : 9,0,7,:, 8, = (180)
fI'o>x#y.
11.8.3 COND3
I"—s A :®,0,71T,:,8,=
ND bl bl bR bl 1 1
co 3F—)cond(x:y,Al,Az):@,@,T,Z,S,E (181)
if I' does not decide z = y nor = # y:
I":=Te(x=y)
I":=Te(zx#y)
E =2 e(I" A3, ®,0,7,:,S).
11.8.4 X-intro
r—-A4:9,0,7,:,82
X — INT e 182
ROF—)[y]A:Exq),G),T,Z,S,E (182)

52

where @ := ®{y/x}.

11.8.5 New-Rule

r—-A4:9,0,7,;,8E

NEW — RULE 183
I'— (vy)ylA : Zed,0,7,¢, S, 2 (183)
where j:= 1+ 1
p; € n(A) Un(®) Un(0) Un(T)Un(S)
A= Apy/y}
O = ®{p,/x}
11.9 Modal Rules
11.9.1 DIAMOND1
I' > A: False,®' 1,2, 8,,=2
DIAMON D1 — 184
© - A: {a)®,0,7,¢,8,,2 (184)
where «a contains the name or parameter a:
O =0 U{Al{B,®,71,:,S)|T Da=band A > b.B}.
11.9.2 DIAMOND?2
I' > A: False,®' 1,2, 8,,=2
DIAMON D2 — 1
© - A: {a)®,0,7,¢,8,,2 (185)
where o contains the variable V;:
O =0 U{Al(B{b/V;}, ®{b/Vi}, T{b/Vi},+,8{b/Vi})| Vi :=a,T Da=band
A > b.B}.
11.9.3 DIAMONDS3
I' > A: False,®' 1,2, 8,,=2
DIAMOND — 1
OND3 Ir—-A: {(r®,0,7,:8,,2 (186)

where © := QU {Alt{B,®,7,:,S) | A = r.B}.

53

11.9.4 Box1l

=

= A:True,©0,72,8,

BOX1 = 1
© = A:[a]®,0,1T,:,S,E (187)
where «a contains the name or parameter a:
= ==2U{l,B,%$,0,7T,:,S5)]
A>=bBandI':=Te{a=Db)andC(a,b,(I)}
11.9.5 BOX2
We suspend any box-formula containing a boxed variable:
I' > A:True,©,1,1,8 =
BOX2 — 188
= A:[a]®,0,1T,:,S,E (188)
where o contains the variable V;:
S =Se(I'A[a]®,0,7,7)
11.9.6 BOX3
I' > A:True,©,7,2,8,Z
BOX3 2 189
= A:[r]®,0,1T,:,8,E (189)

where &/ .= ZU {{I", B, $,0,7,:,85) |
A>iyy mBand IV :=Te(x=y)and C(z,y,I")}

11.10 Temporal Rules

The temporal rules concern the fixpoints. We use the letter o as shorthand for one of the
fixpoint operators. Thus, o € {v, u}.

11.10.1 LOOPCHECK

= A: False,0,1T,1,8, =

LOOPCHECK r—-+A:0;,0,7:,8,2

(190)

if Min(U;, T, A, (pX)®,2) € T and
A=, A and T <1V,

54

11.10.2 DISCHARGE

= A:True,®,7,2,8 =
DISCHARGE T 5 A. 0, 07102 (191)

if Max(U;, TV, A", (v X)®,:) € T and
A=, A and T D I".

11.10.3 Fold

When the apperance of a fixpoint formula constant indicates that the configuration has been

visited before, but other required conditions do not hold (i.e. we have not returned to a

previously visited fixpoint, so the folding has to continue):
I"—= A :9',0,1T,:,8, =

roLp I"— A :U;,0,1T,.,8, =

where (U;, T, A, (6 X)®,2) € T, and &' := &{U;/X} and A%, A or T pT".

(192)

11.10.4 TUnfold

When the fixpoint formula configuration has not been visited before:
r—-A4:9,0,7:8 %5
NF LD bl bl bR bl 1
UNFO I'-A4:(0X)9,0,7,:,8, 5 (193)

where U; € T, and &' := ®{U;/X} and T/ := T o (U;, T, A, (¢ X)®D,2)

11.11 Implicit Rules

The rule FT ERM is an implicit rule, since the omition of it does not affect soundness of the
system. The inclusion of FT ERM 1s just for proper display of the point where the algorithm
actually fail a sequent. Other rules, implicit to the algorithm are BAR, EQUIVALENCE
and NAMES, where the latter is implemented as several other rules.

11.11.1 Bar

I' > A: False,®' 71,1, 8,
I'— A: False,©,71 1,8,
where © = Bar(A',®' Y/ o/ 8 &,
l.e. alternatives marked with Bar cannot be part of a proof, not until they have been
“unbared” by the rules altering the name-equation I'; i.e. EQ4 or INEQ@1. See the section
13.13 for argumentation on this.

BAR - RULE

|y

(194)

55

11.11.2 Equivalence

r—-A:90,7,,8 %
r-A4:9,0,71.:8 =

EQUIVALENCE (195)

if A=, A’. (A and A’ are syntactically equivalent.) This rule is implicit in the implemen-
tation of the algorithm, since de Bruijn-indering is used (as explained in section 15.1).

11.11.3 Names

NAMES (196)

I' - A:9,0,17,,,8, 5
Fr—-A:9,071T.:8 =

where IV = T U {2z} and Yz € n(T) : z # », and z # n(A4) U n(®) Un(O©) Un(S) U n(=).
This means that we can always choose a new name from our infinite set, and put it in any
name-equation, and it will be different from all previously existing names there. In other
words, since we assume there exists an infinite space of names, I' can always be extended
with another (fresh) name that is not equal to all existing names in T, provided this new
name does not already exist in some other place of the structure. Thus, in trying to prove
the sequent # — A : Ju.(u # v Au# yAP), we can always introduce the fresh z and prove
z#£xNz#y— A:Jz2.®{z/u}. This rule is interesting, since it functions as a ”theoretical
fundament” of the whole suspension mechanism (see below). The rules involved are IN FQ2,
BOX?2 (for suspension of sequents), and EQ3 (for re-activation of suspended sequents).

11.12 Suspension

Suspension is an optimization technique. Instead of trying to prove certain sequents, if their
formulas satisfy certain patterns, we simply put the sequents away, consider them as proved
if nothing else happens. This is due to the fact of:

1) The existence of variables in the formula and

2) The assumption of an infinite name-space

These two aspects make 1t possible to make the suspension of a sequent where the formula
is either

Vix (197)
Vi # W (198)
[Vi]® (199)

where i = j or i # j. Assumption 2) above makes it possible to state that:

56

Theorem 2 Due to the fact that the name-space is infinite, there will always exist an as-
signment of the variable V; such that any of the formulas above can be transformed into

validity.[11]

This becomes clear when we reason intuitively; We can always choose a V; from our name-
space so that the inequality holds. We can always choose any name for the BOX-formula,

and 1t will hold.

11.13 Contraction

Contraction is the repetition of a conclusion in the premise. This must take place at certain
points in the algorithm, where information on the sequent otherwise would be lost. Espe-
cially inportant is this in the case of the 3 — INT RO as seen in section 13.13. Here, the
current alternative I' — A : Jx® is repeated in the premise in the shape of an Bar-marked
alternative in the alternative set ©. The alternative can thus be used again in a proof,
but not before another rule has removed the Bar-status and turned it into a ” Alt”-mark
instead. This is done whenever there is new tnformation at hand, that could help in proving
the 3-formula, i.e. whenever the name-eguation set T' is altered (extended). This technique
guarantees that nfinite looping is avoided, i.e. that the algorithm will terminate. Since the
F-formula always is repeated in the premise above, without the Bar-marking, this repetition
could go on forever, effectively hindering the algorithm from termination:

. dxd...

L dxd....
L dxd...

57

12 Semantics

In order to reason about soundness, completeness and behaviour of the tableau rules, we need
to know their exact meaning. This is usually presented as a set of semantic[33] definitions,
mostly in set algebra. This is a very precise way of describing the exact meaning of different
operators and transition rules.

12.1 Definitions

Definition 35 Let p be a mapping, Names — Names (formal names to actual names).

Definition 36 Let ||I — A : ®||, denote the set of agents, satisfying ® under the name-
equation constrains of I' and with respect to p

Definition 37 let A denote the universe of all possible agents.

Definition 38 - means "commiting under T'”, i.e. if A = a.B, n(a) =a, T Da=1b, and
n(f) = b then A 1 3.B.

12.2 Tableau Rules Semantic definitions

[T — A: Truel|, 2 4 (200)
IT = A: Falsel|, £ 0 (201)
A [T — A: Falsel|, if T D x#y
[T — A:z=y|l, = [T — A: Truel|, if ' D x=y (202)
|ITU{z#y} — A:Truel|, if(x,y)¢T
A [T — A: Falsel|, ifI' D x=y
T — A:zfy|l, = [T — A: Truel|, if I' D x#Ay (203)
[TU{z=y} — A:True||, if(x,y)¢T
N
[T —=A: VP, = [T =A:D,N||IT = A4: 85, (204)
N
[T —=A: 21 AD, = (T =A:D,U[|IT = A: 85|, (205)

T — A: 3D,

[T = AV) :®{V/z}|,N|T — A:3Jx||,,

58

T — A:Va®||,
[T — [y]A: ZzP]|,

IT = (vy)[y]A : Zzd||,

T = A: ()2,
IT = A [a]®]],
[1X1],

[T — A:uX.9|,

[T — A:vX.®|,

[|IT — cond(z=y), A1, Ay : @],

(>

(>

>

>

>

>

(>

(>

>

V& u([)Uuv(A) Uv(d)

(206)

IT = A(y) - ®{y/z}],, y&n(l)Un(A)Un(P)(207)

IT — Afy/z} - @{y/=},

IT = A{z/y} - @{z/x}l,
z&n()Un(A)Un(P)

{L = {P|33,B: A~r
, B 58.B, T =
Be|l 5A:2|,}:®} =

{IT - {P|V3,B: A-r
s : ﬁB,FD =
Be|l 5A:2|,}:®} o=

p(X)
(L[{A CAII — A: 0|, CA}: 0}
T A cAldcIr—A4:9,}: o}

[T — A; - @],
if I' D x=y
[T — Ay @],
if I' D x#£y

(208)

(209)

(210)

(211)

(212)

(213)

(214)

Fuiz= :
17U {a=g} — Ay < |, U |IT U {azty) — Az 2 9,

if (x,y) ¢T

59

(215)

13 Soundness

We have presented the algorithm, its rules and properties, and its semantics. The time has
come to reason about whether the algorithm is sound or not. Soundness is a very important
feature. A sound calculus means that every answer is correct.?® First let us stipulate:

Theorem 3 The rules of the algorithm are sound. Fvery tableau rule turns a sound struc-
ture into another sound structure .

And since the tableau is a complete description of the algorithm, i1t suffers to prove all proof
rules sound to claim:

Theorem 4 If all tableau proof rules are sound, then the whole algorithm is sound.

A key feature here is locality: Fverything we need to know at every point of time during the
performance of the algorithm is stored inside the current structure. Consider the fact that
the sets ©, &, T and = at every point contain the alternatives, suspended sequents, visited
fixpoint configurations and conjunctive structures to be visited by the algorithm, depending
on what happens at the current sequent of the structure. Whenever these sets are modified,
the premise of the rule will keep the altered set along, this ensuring the theorem above.

We will thus have to argue that every rule of the tableau proof system is sound, bringing
back the features of the original sequent calculus, which purpose was to make all formulas
to the left valid and the formulas to the right invalid:

13.1 The axioms & structural rules

I'— A :True

It is clear that having the constant T'rue as a succedent will yield no proof of the algorithm’s
wnwalidity, thus forcing us to search for another disproof in one of the conjunctive structures
(if they exist). Else, we have a proof of the sequent.

I'— A: False

We are at the goal, the sequent is proved invalid. Since the set of alternatives all have to
be proved invalid (i.e. the set must be interpreted as a disjunctive set of alternatives), we
here must test another alternative (if any). Else, we have a disproof of the sequent and can
terminate.

39Completeness, on the other hand, means that ”every correct answer can be output by this calculus”.
Completeness is often a much heavier task to prove than soundness, and the topic will not be further
invesitigated in this thesis.

60

13.2 Equivalence rules

= A z=y,

where x and/or y can be names, parameters or variables. For the case of non-variables,
consider that this 1s the only place in the calculus where a formula can be moved from
the right side of the sequent to the left side. As in classical sequent calculus, this can be
performed by negating the transferred formula, thus yielding the extended name-equation
set for I', containing this new information, in order for the algorithm to progress. However,
if the name-equation set 1s to be inconsistent adding this new tuple, we cannot progress
the algorithm any further from here, and thus have to fail the current sequent. When a
variable is involved, the equality is merely turned into an assignment statement, propagating
throughout the entire structure, and re-awakening possible suspended sequents.

' A:zty

In the case of inequalities, the same reasoning as previous is valid, except for the case of a
variable being inequal to another variable or name/parameter; this is universally true (as
seen in section 13.12), due to the infinite space of names, and we need (nor can) not progress
this sequent any furter, therefore it is suspended.

13.3 Logical rules

' = A:®; @ Py, where ® € {V, A}

It is clearly sound and according to the semantic definitions of the logical connectives to
generate an alternative to the current sequent (to be put in the ”disjunctive” set of alterna-
tives, ©) as a premise for the ”OR”-introduction, as well creating an conjunctive structure
to be put in the set = for the case of ” AND”-introduction in the premise.

13.4 Quantifiers

I' = A:bad, where b € {3,V}

Whenever an 3-formula is encountered at a right side of a sequent, to disprove it, we need to
disprove the formula for all names. Thus the contraction, as described in 13.13, for ensuring
that the formula will be applied to all possible future names. We also need to instantiate
the formula at present level, for the currently activated names, therefore we introduce a
unique variable, denoting the set of all activated names at present point in the calculus.
If this variable in fact can be assigned a name, the 3-formula is valid for that name, and
the succedent containing this formula turns invalid, due to the fact that in the right hand
side of a sequent, for an I-formula to be invalid, no name must exist that makes & valid.
Failing this unification of a name and the variable makes it possible for the algorithm to
progress. The opposite reasoning is performed for the V-formulas: if Yo ® to be invalid, there
must exist an annotated name (a parameter) p; that has the property ® and that is not
7activated” in the current structure. Thus ®{p;/«} must be in the premise.

61

The paramter index, denoted 2 in the proof rules, play a role for soundness: A variable
cannot be unified with a parameter with an index less than its own; to see why this is
sound, consider

Example 15 J2Vy.®(z,y) D VyIe.®(z, y) but VxIy.®(x,y) 2 IyVxd(x,y).

The correct introduction of variables unifying with parameters can be assured by the index-
ing technique; a variable (an 3-formula name) has to be created later than a parameter (a
V-formula name), i e, inside the scope of the parameter in order for the variable to be unified
with the parameter.

13.5 Agent rules

I' = cond(z=y), A1, A3 : D

The conditional agent cond(x=y) A1, Az is simply evolved due to the result of the condition,
(z=y). If this cannot be decided, both sequents containing A; and Az will have to be tested
by the algorithm.

13.6 Summation & New rules

I'—[yA:Zzd

I'—= (vy)ylA : Tad

The difference between those is the fact that the agent in the N EW-case has not only
the abstraction of y, but it is also a private (bound) variable in A. Therefore, in order
for progressing, a entire new parameter has to be created, that does not exist in current
structure, and substituted into the sequent.

13.7 Modal rules

= A4A: (a)®

The alternative set © has to be extended with every sequent that, according to the definition
of the commatment relation, fulfills the conditions. We also have to calculate the conditions
with respect to that the name of the action a can be equal to other names, according to I'.
The commitments for this equivalence class of names must also be calculated for. Putting
the resulting sequents in the alternative set ensures that at least one of them will have to
yield a valid structure, in strong cohersion to the definition of modalities (as seen in section
12.2). If o does not consist of a name but a variable, we will at first try to unify this with
a name, calculate the commitments for this name and A, and create an alternative with
the unification propagated throughout the alternative. In case of the action being the silent
action 7, any communication inside a parallel agent that can result in a 7-action commitment
will have to be calculated and put into the alternatives.

62

I'—= A:[a]®

The same calculation of commitments in done here as for the diamond-rules. However, since
the box rules demand that the property holds for every occuring commitment, we create
(zero or more) conjunctive sequents, that all have to be proved along with each other. This
way, a correct implementation of the box-operator is guaranteed. In the case of a containing
not a name/parameter but a variable, we consider the formula as being true according to the
infinite set of names, and suspend the sequent. This is different from the diamond-operator,
where we MUST find a way to make the algorithm progress, and then we are forced to try
out different unifications in order to try to find a sequent alternative that can be dissolved
further.

13.8 Fixpoint rules

Fr-A:0X.®

Where o € {v, u}. The fixpoint rules are often considered the ones most difficult to imple-
ment and prove correct. For DISCHARGE, we simply state that: Having visited a fixpoint
configuration of the form I' -+ A : v X.® and turned this into I' = A : U; for a fresh U;,
we know when the configuration I — A’ : U; comes up, that this is a previously visited
point of a recursive formula. However, in order to discharge the new configuration, more
conditions are needed: A =, A’ and IV D T, i.e. the new configuration has to be at least as
strong as the old one, in order for it to be a true revisited fixpoint (and to be discharged
as a success). If not so, (i.e. if IV A T'), there exists information in the old name equation
that is not included in the new one, and the new configuration is more general than the old
one, and thus is the maximum fixpoint not re-visited, and the unfolding can then continue
without discharging.

For minimum fixpoint configurations, the same arguments can be applied as above, note
however that we fail a minimum fixpoint configuration if it 1s revisited instead of terminat-
ing it succesfully. A minimum fixpoint configuration must thus only be visited once and
then nevermore. (Also see the argumentation for LOOPCH ECK in section 14 concerning
termination).

63

14 Termination

In order for the algorithm to terminate on every possible input, there has to be a number
of features that have to be addressed:

1. Every agent must have a finite behaviour.

Every agent, being of type finite-control (as described in section 9.4.2), does indeed have
this property. A recursive agent is guaranteed to come back to a previous state, since the
avoidance of free names in recursive agents is at hand. This guarantees a finite-expressible
appearance, and thus an agent expression cannot evolve forever.

2. FBvery formula must eventually be reduced to an atomic formula.

This 1s trivially true for every formula except fixpoint formulas. For those, we substitute the
propositional variable of the formula into a representing unique constant, U;, which trivially
is bound to be unfolded. Thus, a fixed-point formula must eventually be returned to, and
then the decision of discharge/loopcheck can take place.

3.The algorithm must detect any kind of looping and act properly upon it.

Looping can take place in two cases:

1) The contraction of an 3-formula

2) In the search of a revisitation of a fixpoint formula.

In case 1) we have described the Bar-mechanism that ensures that a contracted 3-formula
cannot be repeatingly used in the search of a proof; it is only used again in the case of
additional information being added to the name-equations and thus new possibilities of
unifying the variable that is created at every use of I-formulae. FElse, a Bar-formula just
fails the current sequent. In case 2) We note that for maximum fixpoint, a loop can only
occur in the case of the re-visited configuration being more and more general each time 1t is
revisited. Otherwise, we will have a maximum fixpoint-hit and the algorithm succedes the
sequent. In the case of minimum fizpoints, this is not enough.

Example 16 Consider the case when we start with the sequent

{e#y Nae#u} — AU, (And U; stands for a Min(....)-point.) We later arrive in the proof
tree at the point {afy NaF uhatzANy=z} = A : U;.

And z & n(A)Un(l;).

In this case, the later I'' is merely virtually stronger than I' and since z is not a name that
is included in the sequent, we will not yield a proof by applying a virtually stronger name-
equation. Therefore, we use the LOOPCHFECK test rather than just plain implication
in the minimum-fixpoint case; a loopcheck discovers that the later name-equation is not
stronger than ther previous one, with respect to the names that can be of any interest to
the sequent (and z cannot). Therefore, we do have a minimum fixpoint hit and can thus
terminate the sequent failingly here. The loopcheck predicate guarantees that no ”false”
stronger implications force the minimum fixpoint search to a looping state.

64

4. FEvery tableau rule that creates new sequents, be it alternatives, suspended sequents or
conjunctives, must only create an infinite number of those.

This applies foremost to the modal operators; Since they create only as many new sequents
that the commitment relation stipulates, and the commitment relation calculates those from
the agent expression, and the agent expression is of finite control-type, only a finite number
of new sequents can be created at every usage of a modal operator.

65

15 Implementation

A suggestion for an implementation, made in Standard ML [24], [31] is available in the
Mobility Workbench from FTP-server ftp.docs.uu.se, directory pub/mub.

See also the MWB web page at http://www.docs.uu.se/ victor/mwb.html Files con-
cerning the Model Prover are in the /mc/-directory: SubSequents.sml, Nameequation.sml,
Prover.sml and and PFormula.sml and, of course, their respective .sig files, in the source
code distribution. The implementation is done in Standard ML of New Jersey | version 0.93
and compiled under Sun OS version 4.

15.1 de Bruijn-Indexing

[10]
A special feature of the implementation of the Mobility Workbench and thus the Model
Prover is de Bruign-indering. The idea is that of a universal way of denoting bound names
wn expressions, as described in section 3.13. A bound name is then replaced by an integer
number, indicating the depth of the nestling at which the bound variable occurs. (The free
names have to be treated in a rather different way; they are replaced by an index number,
serving as a pointer to an entry of a ”"universal” table of free names. Every m-calculus
agent or p-calculus formula expression can be expressed as a de Bruijn-indexed expression.
Two a-convertible agents (formulas) look syntactically the same when indexed by de Bruijn-
indexing. The usage of integers instead of names (that have to be represented as strings
somewhere in the system) clearly has another advantage; the comparison between names
is now a simple integer test. Implementations have shown that de Bruijn-indexing indeed
speeds program execution up enormously.

15.2 Back-Tracking

[21,[22]

The original prover was implemented in PROLOG, so the back-tracking technique had to
be solved another way. The construction of the main loop as a series of IF-statements, each
one either terminating or recursing, was a way to solve this; a context of variable bindings
was created for every new recursive call, and the whole mechanism would roll back if no
proof was at hand, re-installing an older context. A pseudo-code presentation of the Prover
algorithm follows the form

prove(agent, formula)=

id (axiomatic truth) then success

if <rulel, formula> then

{ new_agent, new_formula := apply_rule<l, agent, formula> ;
prove(new_agent, new_formula);

}

66

if <rule2, formula >
else fail

where the if-statement, if the recursive call fails, rolls back all contexts and assignments and

the algorithm continues another way.

67

16 The Mobility Workbench with Model Prover

The Mobility Workbench (MWB) is a tool for manipulating and analyzing mobile concurrent
systems described in the m-calculus. It features commands for searching for deadlocks,
stepwise simulation, determining strong and weak bisimulation equivalences. It also features
both the old ”checker” and the Model Prover, as described in this thesis.

16.1 Where?

The Mobility Workbench [12] is available as a gzipped tar-archive via anonymous FTP from
ftp.docs.uu.se, directory pub/mwb/. Also see the web page with pointers to a on-line
manual at: http://www.docs.uu.se/ victor/mwb.html

16.2 How?

The MWB is started by the command

mwb.sun4u

at the UNIX-prompt. The prover is invoked by the statement
prove agent formula

where agent, formula are valid expressions therefore as defined by:

16.2.1 MWB Prover Syntax

For agents: The syntax of agents is given by the following grammar:

Syntax Meaning

0| The null process
a.P| Action prefix

pfx.P | prefix
[a="Db]P | Match
P4|Ps | Parallel
Py + Py | Summation
Id<nlist> | Application
("nlist)P | Restriction
(\nlist)P | Abstraction
[nlist]P| Concretion
(P) Parenthesis (216)

where nlist is a (non-empty) comma-separated list of names;
« is an action: 7 (silent) or a name (input) or a co-name (output);

68

pfx is an abbreviated prefix (see below); and Id is a name starting with an upper-case let-
ter. Names must start with a lowercase letter but can after that include special characters,

letters and digits. The following translations and shorthands are used:

Input Translation Meaning

- v Restriction

\ A Abstraction

0 0 Null process
‘o 22 Output action

t T Internal action

a(nlist) a.(\nlist) Input prefix
'a<nlist> 'a.[nlist] Output prefix

For formulas:

Syntaz meaning
TT | Truth
FF | Falsity
name=name | Equality between names

name#name | Inequality between names

formula & formula | Conjunction
Jormula | formula | Disjunction
<action> formula | Possibility modality
[action] formula | Necessity modality
Sigma name . formula | Sigma — expression
Bsigma name . formula | Bound sigma
Pi name . formula | Universal quantification

exists name . formula | Existential quantification

op id. formula | Fixpoint expression
(formula) Parenthesis
op:
mu |[min | Least fixpoint operator

nu | max Greatest fixpoint operator

69

(217)

(218)

(219)

action:

name | Name
"name | Co — name

t Tau (220)

id:
IdeNtiFieR BegiNning WitH UpPEercaSE LetTEr : Fizpoint identifier name
1Dent TIFIEr bEGInNING wITh 10WeRCASE 1ETteR : Pi-calculus name

Remarks:
1) The restriction needs not be immediately adjacent to the box.
E.g. (vy)(vz)[y][z]A |E Bsigma x.P & (vz)[z] A{a/y} E P{a/x}, where a is a new name.

2) Fixpoint formulae must be closed. E.g. nu D.<x>(x=b&D) is invalid, but the equivalent
formula (nu D(b).<x>(x=b&D(b))) (b) is ok.

The prover will answer " YES” if agent is a model for formula, ”NO” otherwhise.

16.3 Examples

These are tests for the original model-checker, conducted by prof. Joachim Parrow in 1994.

16.3.1 Agent examples

Example 17 Bufn (Bagn) is a buffer (bag) of capacity n. Postfiz "p” means constructed
as a parallel composition, "e” means explicit, "l” means lossy. FBuf s a finite buffer. What

follows can be sent directly to MWB for testing.
agent Bufi1(i,o) = i(x).’o<x>.Bufi<i,o>
i(x).Bufa<i,o,x>

i(y).Bufb<i,o,x,y> + ’o<x>. Buf2e<i,o>
’o<x>.Bufa<i,o,y>

agent Buf2e(i,o)
agent Bufa(i,o,x)
agent Bufb(i,o,x,y)

agent Buf2p(i,o) = ("m)(Bufi<i,m>|Bufi<m,o>)

70

("m) (Buf2e<i,m>|Bufi<m,o>)
("m) (Buf2p<i,m>|Bufi<m,o0>)

agent Buf3pe(i,o)
agent Buf3pp(i,o)

("m) (Buf2e<i,m>|Buf2e<m,0>)
("m) (Buf2p<i,m>|Buf2e<m,0>)
("m) (Buf2p<i,m>|Buf2p<m,o>)

agent Bufépee(i,o)
agent Buféppe(i,o)
agent Buf4ppp(i,o)

agent Bag2e(i,o) = i(x).Baga<i,o,x>
agent Baga(i,o,x) i(y).Bagb<i,o,x,y> + ’0<x>. Bag2e<i,o>
agent Bagb(i,o,x,y) ’o<x>.Baga<i,o,y> + ’o<y>.Baga<i,o,x>

agent Bag2p(i,o) = Bufi<i,o>|Bufi<i,o>

agent Bag3pe(i,o) = Bag2e<i,o> | Bufi<i,o>
agent Bag3pp(i,o) = Bag2p<i,o> | Bufi<i,o>

agent Bagépee(i,o)
agent Bagé4ppe(i,o) = Bag2p<i,o> | Bag2e<i,o>
agent Bag4ppp(i,o) = Bag2p<i,o> | Bag2p<i,o>

Bag2e<i,o> | Bag2e<i,o>

agent Mixed3(i,o) = ("m)(Bag2p<i,m>|Bufi<m,o>)
agent Mixed3b(i,o) = ("m)(Bufi<i,m<|Bag2p<m,o>)

agent Buf1l(i,o) = i(x).(’o<x>.Bufill<i,o>+Buf1l<i,o>)
agent Buf2lp(i,o) = ("m)(Bufi1l<i,m>|Bufi<m,o>)
agent Buf3lpp(i,o) = ("m)(Buf2lp<i,m>|Bufi<m,o>)

agent FBuf(i,o) = i(x).i(y).i(2).’0<x>.’0<y>.0<2>.0

Example 18 The following is a collection of finite recursion-free agents, good for purposes
of testing the behaviour of the model prover.

agent TO(i,0) =0
agent T1(i,o) = i(x).0
agent T2(i,0) = ’0<0>.0

agent T3(i,o0) = i(x).t.’0<x>.0

agent T4(i,o) = i(x).’0<0>.0

agent T6(i,0) = i(x).(t.0+’0<x>.0)

agent T6(i,o) = t.1(x).0

agent T7(i,0) = i(x).1i(y).’0<x>.’0<y>.0

agent T8(i,0) = i(x).i(y).’o<y>.’0<x>.0

agent T9(i,o0) = i(x).i(y).’0<x>.’0<x>.0

agent T10(i,o0) = i(x).i(y).’o<x>.[x=y]’0<y>.0

agent T11(i,o0) = i(x).i(y).i(z2).’0<x>.’0<z>.’0<y>.0

71

agent T12(i,o0)
agent T13(i,o0)
agent T14(i,o)

i(x).(Co<x>.0 | i(y).’0<y>.0)
T7<1i,0>|T7<i,0>
T11<i,0>|T11<i,0o>

16.3.2 Formulae examples

Example 19 OP Order-preserving of first data:

nu L. (([t]L) & ([’0] Sigma u.L) & ([ilPi u.(nu I(u).(([t]1I(u))
& ([ilPi z.I(u)) &([’0] Sigma z.z=u)))(u)))

L ("nothing has been input yet”) must hold after all transitions, except after an input i(u)
when I(u) holds. I(u) ("u has been input but not output”} holds after all transitions, except
after an output o(u) (then nothing more is required) or after an output o(z) with z # u (then
it is false). So I(u) means nothing can be emitted before u, and L means that nothing can
be emitted before the first received item.

Example 20 NO No spurious output:

(Pip .
(nu NO(x). ([t] NO(x))
& ([i] Pi w . (w=x | NO(x)))
& ([’o] Sigma w . (w#x & NO(x)))
)(p))

NO(p) must hold invariantly after T:s, after non-p inputs and any outputs, thus, it must
hold whenever p has not been input. Nothing is required of the states following an input of p.
But an output of something different from p falsifies it. So, it holds unless p can be emitted
before it is received. all p. NO(p) thus says that any value must be recived before it can be
emitted. To check it on an agent A, do the check command on (\z2)A where z & fn(A).

Example 21 N L No lost input

(nu L .(([’0] Sigma z . L)
& [t] L
& [i] Pi z .
(L &
(mu 0(x). ((<i>TT | <’0>TT | <t>TT) &
([il Piw . 0(x)) &
([’0] sigma w . (w=x | 0(x))) &
[t] 0(x))

72

(2)

)

L implies that it holds invariantly, and that after an input i(z) in addition O(z) must hold.
O(z) says that there must be at least one transition, and that O(x) must continue to hold
until after an output o(x). Since it is a least fixpoint this must eventually happen for O(x)
to hold.

Example 22 N D No duplicated output

(Pi p.
(nu L(p).
(([t]1 L(p)) &
([’0] Sigma z.L(p))&
([i] all z . (((z#tp)&L(p))
((z=p)&
(nu Once(p).
(([t] Once(p)) &
([i1 Pi z. ((z=p) | ((z#p) & Once(p)))) &
([’0] sigma z. (((z#p) & Once(p)) |
((z=p) &
(nu Twice(p).
(([t] Once(p)) &
([i]1 Pi z. ((z=p) | ((z#p) & Twice(p)))) &
([’0] sigma z. ((z#p) & Twice(p)))
)
) (p)

)(p)
)

Consider a datum p. L must hold after any transition; when p is input then Once(p) instead
must hold. This again must hold invariantly, but after a second input of p it is fulfilled, and

73

after an output of p instead Twice(p) must hold. Again this is an invariant, falsified by an
output of p, and satisfied by an wnput of p. So the only way to falsify L s to emat p twice
although 1t has been received only once. An agent needs a dummy abstraction to be checked
with this.

Example 23 OP2 Order-preserving (second version)

(Pi p. Pi q.
(p=q |
(nu L(p,q).

(([t] L(p,q)) &
([’0] sigma u. L(p,q)) &
([i] Pi u. ((u=q) | (u#p & u#q & L(p,q)) |
((u=p) &
(nu I(p,q).
((Ct] 1(p,q)) &
([’0] Sigma u. ((u#p & I(p,q))lu=p)) &
([i] Pi u. ((u#tq & I(p,q)) |
((u=q) &
(nu 0(p,q).
(([t] 0(p,q)) &
([i1 Pi u. 0(p,q)) &
([’0] sigma u. ((u#p & u#q & 0(p,q)) | u=p))
)
)(p,q)

)(p,q)
)

We express that if p s input before q, then q cannot be output before p. Consider two data
p,q. The invariant L(p, q) must hold for all different p,q. If q is input there is nothing more
to check. If p is input then I(p,q), meaning "p has been input”, must hold. I(p,q) holds
invariantly, but if p is output there is nothing more to check, and if q is input then O(p,q)
holds, meaning "p has been input before ¢”. O(p,q) must hold invariantly, but an output of
p satisfies it and an output of q falsifies it. An agent needs a double dummy abstraction to

be checked with this.

74

Example 24 N LW No lost input: Weak version

(nu L .(([’0] Sigma z . L)
& ([t1 L)
& ([i] Pi z .
(L &
(nu 0(x).
((mu M(x).
((<’0> Sigma w. (w=x | M(x))) |
(<> M(x)) |
(<i> exists w. (wi#tx & M(x)))
)
)(x) &
([il Pi w . O(x)) &
([’0] sigma w . (w=x | 0(x))) &
([t] 0(x))
))(z)

)
M (z) holds if it is possible to reach a state where x can be emitted. O(x) means that M (x)
holds wnvariantly untid after @ has been emitted. So L says that when a datum z s input

O(z) must hold aftyerwards, i.e. , the possibility to emit z can never be removed until z is
emitted. This is weaker than requiring that z is eventually emitted!

Example 25 DFE Deadlock freedom

(nu D.
(((<t>TT) | (<i> exists w.TT) | (<’0> Sigma w.TT))
&
(([t] D) & ([i] Pi w.D) & ([’0] Sigma w.D))))

There must be at least one transition, and that should be an invariant.

Example 26 T'] Trivial invariance
(nu D. (([t] D) & ([i] Pi w.D) & ([’0] Sigma w.D)))

Invariants don’t get any simpler. But this is only to test the efficiency of the modelchecker
- it will have to visit each state.

75

Example 27 N B No blocking of pending messages

(nu L.
(([t1 L) &
([’0] Sigma w.L) &
([i] Pi w.
(L &
(mu I(w).
(<> I(w)) |
(<’0> Sigma u.u=w)
)
) (w)
)
)
)

L holds invariantly, and after an input i(z) additionally I(z) holds. This is a minimal

fixedpoint and can only be satisfied if it is possible to reach, through a sequence of zero or
more taus, a state where this w can be emitted. So all inputs must be available immediately

for output (discounting taus) throughout the execution of the agent.

76

16.4 Some Model Prover run-through examples

The usage of structural rules, as bringing the next alternative out of the alternative list, and
testing conjuntives, are made implicit. Also, the presented structures are sometimes short-
ened, when the information in i.e. the paramter index is not interesting for the particular
example. The examples should, of course, be read bottom-up (since we go from conclusion
to premise).

Example 28 An example featuring suspension, variables:
Valid

True,S§ ={(0 — A:a# Wy)}

0= A:Vo=a (Unify, Vo :=a)

S={0—->A: Vo £ Wp)},Z={0— A:Vy,=a)} (Suspend)
f—A:VoEW,, 2= {0 = A:Vy=04a)}
@%AZV@#WQ/\VQIG

0—)A3y(V07£y/\V0:a)

= A:JeJy(z#yAv=a)

where A2 a.b.0.

Example 29 Another example, including possibility modality and a mazimum fizpoint:
Valid

aZzb— A:True, T

azb— A:U;, Y DISCHARGE

a#b—bA: False,0* = {Alt(A, Uy, 1)}

a?zb—=bA:(0YU,T

a#b—bA: False,03 T

a#b—b.A(a)U;,0% = {Alt(b.A, (b)U1, 1)}

aZb—=0A: (U VU, T FOLD since b.A %4 A
aZzb—bA U, Y

a#b— A:False, T,0"

a?zb—= A (0YU, Y, 0" ={Al{b.A U, T)}

aZb—= A: False,® = {AIL{A, (&)U, 1), Alt(b. A, U1, 1)}
aZb—= A (U, T, © ={AI{A,)U1, 1)}

aZzb—= A {a)U VU, Y

aZb—=> A vX ((a)XV{(h)X)

where A2 ab.P, A>b.A bAx A, and Uy 2 ()X V (b)X, and
T={Maz{a # b, A, vX({a)X vV {b)X),U;)}.

77

17 Summary & discussion

We have described a model checking algorithm — ”the Model Prover”.

Assumed correct, is this algorithm really efficient compared to, say, the previous
Model Checker?

Yes, it has some efficiency properties;

First, the suspension mechanism, that, proved to be sound, ”cuts off” some branches in a
perhaps very large proof tree. Second, the usage of annotated parameters and variables
clearly has some efficiency benefits over elder techniques; for a V-formula, one had to prove
that the formula really was valid for all activated names, which of course could be thousands
or millions at worst. The same reasoning for the usage of variables; instead of looking for
that particular name that would make the I-formula valid, we simply ”postpone” the de-
cision of selecting that name by the introduction of a variable as a placeholder for it. The
unification process 1s then an attempt to find that name, but only under certain conditions.
This is a more time/effort-saving approach than simply traversing the whole list of names
again, trying to find a name that would make the formula valid. The whole approach of the
model prover can be addressed as ”postponing”, i.e. trying to delay as much of the proof
search execution as possible, hoping that the search will have been completed before we ever
will have to conduct the extended search. The symbolic way of treating names indeed has
computational benefits.

Does the modal p-calculus offer enough expressive power to be of interest?

As we have seen, it is expressive enough to let us reason about liveness, deadlock freedom,
no lost input in buffers, no blocking, order preserving, etc. It cannot express real-time
properties, like maximum allowed execution time and similar.

Can further improvements be made to the model prover?

Yes, the caching of commitments, would be a speed improvement. The fact that the commit-
ment relation has to be re-calculated every time a modal rule is to be used by the calculus is
obvioulsy an inefficient solution. Letting the commitment calculator cache its most previous
work instead of re-calculating every time would save efforts. Another, more radical way was
suggested by Torkel Franzén - A System of agents:

Theorem 5 The idea here is to eliminate all syntaz in w-calculus agents and transform the
whole "agent space” to these new system of symbols. This way, the whole graph of agents
would be fully developed at first, before any model checking can take place. This eliminates all
calculation of commitment relations, but can perhaps demand a lot of memory usage whem
fully developed for a large system of agents. We have an infinite set of names, a,b, ..., and
a set of agent symbols, F\. G, The silent action symbol T is NOT among these names.
Each agent symbol has an arity and belongs to one of three disjoint classes: Process Symbols,
Ematter Symbols and Absorber Symbols.

An agent is an expression of the form F(ay ..., apn), where F is an n-ary agent symbol and
ai...,a, are names. An agent is a process if F' is a process symbol.

78

A schematic agent is an expression of the form F(z), ..., x, where x1,... &, are different
variables. We write schematic agents as f(X) where X stands for such a sequence. We say
that x occurs in X U if it is one of the variables in the sequence, and it occurs in X U if
it 1s u or occurs in X. Similarly for 7Y is included in X7 and ”Y is included in X\ U”. A
System Of Agents is given by a set of process symbols and a set of rules for the symbols of
following form:

F(X) = G() (221)

where G is a symbol in the system, u occurs in X' and Y 1s included in X .

F(X) = G() (222)
where Y s included in X .

F(Xfuz}) = G(V) (223)

where Y is included in X and u, v occur in X.
An emitter symbol F' has exactly one rule, of the form

F(X) 5 G) (224)

where Y is included in XU and u may or may not occur in X. Here (G is a process symbol
or an emitter symbol.
An Absorber symbol, finally, has exactly one rule, of the form

F(Y) ZGY) (225)

where u does not occur in X, and Y s included in X ,U. here G is a process symbol or an
absorber symbol.

An instance of a rule is obtained by substituting names for the variables in a rule. This
substitution is subject to one restriction: if the u in the emitter symbol does not occur in X
(this is called a new emission, the name substituted for u must not be substituted for any
variable in X'. A finite system of agents is one that has finitely many agent symbols.

Another efficiency aspect is the avoidance of duplication in the molecular components of
the model prover. There is no logical difference if the Alternatives, suspended sequents and
conjunctive sequents sets at every point of updating are removed from duplicates, but it
saves some memory and future calculation.

As proof trees grow large, they perhaps re-visit a configuration that has been developed
before. A caching technique for whole branches of a search tree would render the execution
more effective, the need for re-calculation is then reduced further. Of course, all effectiveness
improving methods will have to be taken into account from a cost/benefit point of view —
large caches may take long time to look through, longer than the actual re-calculation would

79

have taken...

The development of sequent calculus based model checkers for newer calculi; for example
the Update or the Fusion Calculus with their notion of variable scope are still un-explored
topics, as well an logic for the open bisimulation equivalence.

80

Part IV

Appendix

A Implementation results

The implementation of The Model Prover was done as a totally integrated part of the MWB
command set, 1 e, the original model checker was NOT omitted from MWB, but co-exists
with the Model Prover. As a consequence, the user is free to select any algorithm for per-
forming model checking, simply change check to the word prove instead. To measure the
efficiency of both of the algorithms, we use the notion of inference, i.e. the number of times
a recursive call is made to the algorithm. If each recursive call takes approximately the same
amount of time in both algorithms, (and a simple average caclulation suggests they are alike
in the same order of magnitude), we simply can compare the answers and inference number
for both algorithms to decide which one does the faster job!

Table 1 The agents and formulas are the same as described in chapter 17. "P” and "C”
stands for "The Model Prover” and "checker”, respectively. A "Yzzz” or "Nyyy” entry
means that the respecive algorithm answered "YES” after zzz inferences, or "No” after yyy
inferences, respectively. A 7*” means that the entry was not tested, or required too long time

> 6 min) to be completed.

Formula— TI or NB DFE

Agent | P C|P C|P c|P C
Bufl Y22 Y27 | Y22 Y27 | Y32 Y45 | Y44 Y54
Buf2p Y41 Y6739 | Yi4 Y115 | N67 NiS | Y84 Y14110
Buf2e Y32 Y5784 | Y35 Y100 | N52 Ni2 | Y65 Y12200
Buf3pe Y51 |1 Y76 Y776 | Y76 *1 Y104 *
Buf3pp Y60 *1 Y97 Y9381 | N94 NI111 | Y122 *
Bufipee Y51 *| Y136 Y6348 | N79 N251 | Y103 *
Bufippe Y60 *| Y156 Y7539 | Y156 *1 Y122 *
Bufippp Y88 *| Y212 Y22888 | N121 N212 | Y180 *
Buf2lp Y51 *| N96 N778 | N93 No1 | * *
Buf3lpp Y89 * |1 N89 *| N26 *1 Y181 *
FBuf Y69 Y820 | Y42 Y308 | N26 NJ9 | N136 N84
Bag2p Y42 Y12003 | N85 N20 | Y52 *1 Y86 Y22732
Bag2e Y32 Y7502 | N35 NI18 | Y32 *1 Y86 Y13468
Bag/pee Y62 *| N134 *| N134 N30 | Y128 *
Bag/{ppe Y82 * | N207 *| N207 N30 | Y170 *
Bagippp Y82 *| N207 *1 Yoz *1 Y170 *
Mized3 Y81 *| N188 N337 | N160 N122 | Y165 *
T13 Y1849 Y164769 | N17/ N30 | N26 N60 | N2761 NI110

81

Formula— NLW NL
Agent | P c|P C
Bufi Y50 Y75 Y46 Y72
Buf2p Y19 V58538 | Y98 *
Buf2e Y78 Y48675 | Y70 *
Buf3pe Y718 *1 Y386 *
Buf3pp Y1106 *1 Y521 *
Bufpee Y1345 *1 Y713 *
Bufppe Y1908 *1 Y936 *
Bufippp Y7817 *1 Y2048 *
Buf2lp * * | *
Buf3lpp * *

FBuf * * | *
Bag2p Y159 Yo5177 | N130 N56
Bag2e Y93 Y61365 | N72 N79
Bag4pee Y266 *| N186 N231
Bag{ppe Y380 * 1 N284 N7/
Bagippp Y588 * 1 N438 N7/
Mized3 Yi258 * | N552 Ni54
T13 * * | *

Some conclusions: We see that symbolic name-manipulation as in the model prover indeed
has advantages over the explicit approach. However, on smaller testings, such as T13 and
OP, we see that the checker finds the answer out quicker than the prover! This can propably
be explained by the prover needing a bit of computational ”overhead”, which cannot be
recaptured on smaller tests. On larger tests, although, this overhead pays off well. (Compare
for instance, Buf2p:NB, an agent with 8 states, where the checker beats the prover by 48
to 67 inferences, but when the same test is conducted for Bufdppp, a size 213 agent, the

opposite holds with 121 to 212 inferences.

82

Table 2 By using the MWB time command, we can get the real-time results for the different
calculations. In no case does the real-time result contradict the result as indicated by the
reference number of table 1, 1.e. we can regard the time needed for a computation as lineary
related to the reference number. Below, the number entry means the computational time in
seconds required for deciding the entry.

The tests were performed on a Sun Ultra-1 station with 128 MB of RAM memory and a
167 MHz UltraSparc processor runnming Solaris 2.5.1. A "zzz min”-entry means that the

checking was not completed after rxx minutes.

83

Formula— TI OP NB DE
Agent | P C|P C|P c| P C
Bufl1 0.007 0.006 | 0.004 0.006 0.007 | 0.011

Buf2p 0.025 9.39 | 0.028 0.094 0.046 17.4
Buf2e 0.007 4.91 | 0.028 0.094 0.015 8.19
Buf3pe 2.4 60main | 0.07 1.05 0.4 10min
Bufjpee 0.147 12.32

Bufippe 0.21 23.1 0.17

Bufippp 0.39 64.7] 0.2 0.5

Buf2lp 0.16 1.09 0.07 30min
Buf3lpp 0.14 0.18 0.25

FBuf 0.008 0.18 | 0.026 0.012 0.028 20.74
Bag2p 0.007 11.52 | 0.009 0.007 0.013 8.04
Mized3 0.339 0.55

T13 8.63 34.3 1 0.12 0.02 | 0.01 0.02 | 19.6 0.03
Formula— NLW NL

Agent | P c|P C

Bufl1 0.011 0.017

Buf2p 0.08 67.3

Buf2e 0.023 28.2

FBuf 0.05 0.34

Bag2p 0.087 91.93 | 0.062 0.029

Bag2e 0.026 36.44 | 0.017 0.03

Bag4pee 0.3 0.83 0.07

Bagppp 9.6 3.7 0.07

Mized3 2.11 0.2

References

Trollkarlen Blir Ingenjor - Formella Metoder: En Oversikt
JoacHIM PARROW

KTH Stockholm, Sweden May 1997
http://www.sics.se/"joachim/hattext.ps.Z

Shorter version also published as ”Programmeraren som Shaman”,
Forskning & Framsteg #2, february 1998
http://www.fof.se/artiklar/98 2 14 .htm

Foundational Calculi For Programming Languages

(To Appear In The CRC Handbook of Computer Science and Engineering)
BENJAMIN C. PIERCE

Computer Laboratory, University of Cambridge, UK, december 1995.

Berakningsbarhet for dataloger: Fran A till P

KENT PETERSSON

Programmeringsmetodikgruppen,

Inst. f. Informationsbehandling, Géteborgs Universitet /Chalmers
Bokférlaget Aquila 1987/1988.

Mathematical Foundations of Programming
FRANK S. BECKMAN

Brooklyn College of the City University of New York
The System Programming Series, Addison-Wesley 1980

Introduction to Combinators and A-calculus

J. RoGER HINDLEY

Dept. of mathematics and Computer Science, University College, Swansea
JONATHAN P. SELLDIN

Dept. of Mathematics, Concordia University, Montreal

London Mathematical Society Student Texts 1

Cambridge University Press 1986

An Introduction to Modal Logic
G. E. HugHEs & M. J. CRESSWELL
Victoria University of Wellington
Methuen & Co, London 1968

The Polyadic w-calculus: a Tutorial

RoBIN MILNER

Dept. of Computer Science, University of Edinburgh
ECS-LFS-91-180 Technical Report

84

October 1991

[8] Communication and Concurrency
RoBIN MILNER
Dept. of Computer Science, University of Edinburgh
Prentice-Hall International Series In Computer Science 1989

[9] An Intuitionistic Predicate Logic Theorem Prover
TORKEL FRANZEN, DAN SAHLIN & SEIF HARIDI
Swedish Institute Of Computer Science
Journal Of Logic Computation Vol 2, #5, pp 619-656, 1992

[10] A de Bruijn notation for the m-calculus
SIMON J. AMBLER
University of London

Queen Mary & Westfield College Technical Report # 569 1991

[11] A theorem-proving approach to deciding properties of finite-control agents
(Extended Abstract)
TORKEL FRANZEN
SICS Technical Report T96:02
Swedish Institute of Computer Science 1996

[12] A Verification Tool for the Polyadic n-calculus
BJORN VICTOR
Department of Computer Science, Uppsala University
DoCS Licentiate Thesis 94/50 May 1994
http://wuw.docs.uu.se/ victor/tr/docs-tr-94-50.ps.gz

[13] Algebraic Theories for Name-Passing Calculi
JoacuiMm PARROW
Swedish Institute of Computer Science
DAVID SANGIORGI
Dept. of Computer Science, University of Edinburgh
Journal of Information & Computation #120(2),pp 174-197
February 1996

[14] Model Checking Mobile Processes
Maps I'. Dam
Swedish Institute of Computer Science
Information and Computation vol. 129, #1, pp 35-51 august 1996
SICS Research Report R94:01

[15] A Note on model checking in the modal v-calculus

85

GLYNN WINSKEL
Dept. of Computer Science, Aarhus University, Denmark
Theoretical Computer Science #83, pp 157-167 1991

[16] Local model checking in the modal mu-calculus
COLIN STIRLING & DAVID WALKER
Dept. of Computer Science, University of Edinburgh
Theoretical Computer Science #89, 1991

[17] Modal and Temporal Logics for Processes
COLIN STIRLING
LFCS, Dept. of Computer Science, University of Edinburgh 1992
Technical Report ECS-LFCS -92-221,

[18] Algebraic Laws for Nondeterminism and Concurrency
MaTTHEW HENNESSY & RoOBIN MILNER
Dept. of Computer Science, University of Edinburgh
Journal of the Association for Computing Machinery (ACM), vol 32, #1, 1985

[19] Modal Logics for Mobile Processes
RoBIN MILNER
Dept. of Computer Science, University of Edinburgh
JoacuiMm PARROW
Swedish Institute of Computer Science
DaviD WALKER
University of Technology, Sydney, Australia
Theoretical Computer Science vol 114, pp 149-171 1993.

[20] A Calculus of Mobile Processes, Part I & 11
RoBIN MILNER
Dept. of Computer Science, University of Edinburgh
JoacuiMm PARROW
Swedish Institute of Computer Science
DaviD WALKER
University of Technology, Sydney, Australia
Journal of Information & Computation, vol 100 pp 1-77, september 1992

[21] The Art Of Prolog - Advanced Programming Techiques
LEON STERLING & EHUD SHAPIRO
2nd Edition, MIT Press,
Massachusetts Institute of Technology (MIT) 1986/1994

[22] SICStus Prolog User’s Manual
The Programming Systems Group,

86

Swedish Institute of Computer Science

Rel. 3#0, June 1995

[23] Logic Programming & The Intuitionistic Sequent Calculus
TORKEL FRANZEN
Swedish Institute Of Computer Science
SICS Research Report R88002, 1988

[24] Elements of ML Programming
JEFFREY D. ULLMAN
Stanford University
Prentice-Hall 1994

[25] Grundliaggande logik
KaJj B. HANSEN
Computer Science Dept, CSD, Uppsala University
3:e upplagan, Studentlitteratur 1994/1997

[26] Logic and Structure
DIRK VAN DALEN
Mathematical Institute, Utrecht University
3:rd Edition, Springer Verlag Berlin, Heidelberg 1994

[27] Algebraic Theory of Processes
MATTHEW HENNESSY
Dept. of Computer Science, University of Edinburgh
MIT Press, Massachusetts Institute of Technology 1988

[28] BTEX - A Document Preparation System
LESLIE LAMPORT
Digital Equipment Corporation
Addison-Wesley Publishing Company 1986

[29] Lambda Calculi - A Guide for Computer Scientists
CHRI1s HANKIN

Dept. of Computing, Imperial College, London
Clarendon Press 1994

[30] Matematiklexikon
JAN THOMPSON (ed.)

Wahlstrom & Widstrand 1991

[31] ML for the Working Programmer
L. C. PAULSON

87

University of Cambridge
2nd edition, Cambridge University Press 1996

[32] Discrete Mathematics
KeENNETH A. Ross & CHARLEs R.B. WRIGHT
Dept. Of Mathematics, University Of Oregon
3rd Edition, Prentice Hall 1992

[33] The Formal Semantics Of Programming Languages - An Introduction
GLYNN WINSKELL
MIT Press
Foundations Of Computing Series, 1993

[34] Fullstandighetssatsen for Predikatlogiken via Sekventkalkyl
INGER SIGSTAM
Dept. of mathematics, Uppsala University
March 1995

[35] Lambda Calculus Notation with Nameless Dummies
A tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem
N.G DE Brunn
Indagationes Mathematicae, Vol 34, Fasciculus 5
Koninklijke Nederlandse Akademie van Wetenschappen 1972

88

