
Reasoning about mobility
in theorem provers

Daniel Hirschkoff - ENS Lyon

1

Subject of this talk

→ describe formalisations of the π-calculus in a general-purpose

theorem prover (Isabelle/HOL or Coq)

• proofs about the π-calculus

(not proofs about systems specified in the π-calculus)

• no long-term effort yet

Motivations

• Provide a framework for formal reasoning on mobility
. validate complex proofs
. help in writing them
. experiment with proof techniques

NB: the proof should preexist on paper

• Feedback from the tool
. better insight on the theory
. evidenciate difficult/questionable points

• Hopefully: from formalised mathematics to tools

Outline

• Syntax: the manipulation of binders many
difficulties

• Studying the behaviour of processes

• Lessons learned

Implementing the syntax

Specifying the calculus

Questions to address:

• what are names?

• treatment of the two binders
. α-conversion
. different properties

input a(x).P | a〈v〉.Q → P{x:=v} | Q
restriction (νx) (P |Q) ≡ P |(νx)Q x /∈ fn(P)

• issues
. be able to reason on the syntax of terms (induction)
. have a syntax that looks like on paper
. consistency (!)

First-order approaches

Consider the term a(x).(νy)x〈y〉
first solution: have variables ↔ first-order encoding

• McKinna/Pollack variables and variables [HG98]

. substitution without α-conversion

. an extra mechanism

• De Bruijn indices aλ.ν 1〈0〉 [Hir97]

. work on α-equivalences classes

. technical (2 binders, 600 lemmas) – hard to read

FO approaches – comments

• “the rules are respected”

• adequacy of the encoding: obvious

• Coq and Isabelle/HOL automatically provide induction

principles to reason over processes

• proofs about substitutions are carried along

“Higher-order” approach [HMS99] [Des00] [RHB01]

Inductive pi := . . . | Out : name->name->pi->pi a〈b〉.P
| Inp : name->(name->pi)->pi a(b).P

| Res : (name->pi)->pi. (νa)P

• one uses the underlying binding mechanism of the prover
(“shallow embedding”)

• α-conversion and substitution come for free

But having put our hands within the prover, difficulties arise

• reason on the syntax
• ensuring adequacy
• preserving consistence

Shallow embedding: difficulties Res : (name->pi)->pi

• usual induction principle over the structure of terms is lost

• reasoning on the syntax

. free names(Res(λn.P))?

. no bound variable at object level

• adequacy of the encoding

. less easy than in a deep embedding

. exotic terms

Shallow embedding: exotic terms Res : (name->pi)->pi

Suppose name = nat; what is the π-calculus term associated to

E
def
= Res(λn.if n = 51 then P else Q) ?

Res should not take a “true” function, the λ is just there to bind

(cf. D. Miller: “Abstract syntax for variable binders: a perspective”)

• in Isabelle/HOL, we are in a classical setting

. one can always decide equality on names to define E

. restrict the class of functions used for Res

Shallow embedding: exotic terms Res : (name->pi)->pi

Suppose name = nat; what is the π-calculus term associated to

E
def
= Res(λn.if n = 51 then P else Q) ?

Res should not take a function, the λ is just there to bind.

• Coq’s logics is intuitionnistic [HMS00]

. as long as you don’t take name = nat, things are safe

. but one needs to compare names to reason over processes:

∀n, n′ : name. (n = n′) ∨ (n 6= n′) in Prop (no computational content)

The theory of contexts [HMS00]

• monotonicity: if a is fresh in f(b), then a is fresh in f

• extensionality of contexts: two contexts (functions from

names to processes) f and g are equal if for some fresh name a,

f(a) = g(a)

• β-expansion: given a process P , one can construct a context

fP by abstracting over some free variable a of P

. in Coq: axioms [HMS01]

meta-level justification [Hof99]

Theory of contexts in Isabelle/HOL

(EXT) two contexts (functions from names to processes) f and g are equal
if for some fresh name a, f(a) = g(a)

(EXP) given a process P , one can construct a context fP by abstracting

over some free variable a of P

• equality is extensional: (EXT) can be derived

BUT exotic terms lead to inconsistencies

• adapt an idea from [DH94]: well-formedness predicates

• then, you have induction principles to derive (EXP)
and (inernal) adequacy w.r.t. a deep embedding of π

Gordon and Melham approach [Gay00] [Gil01]

• Two layers:

. an implementation of the λ-calculus,

including formalisation of α-conversion and substitution

. use HOAS on top of it to represent your language

combining deep embedding and Higher-Order

• technical work brought by a deep embedding is still needed

• but the treatment of binding is done once for all

. generality (cf Isabelle’s architecture)

. no problem with negative occurrences in types

Other approaches

• Gabbay-Pitts’ operator

Isabelle/FM; the “fresh” operator captures α-conversion (and

fits to the modelling of restriction)

[Roe01]: π-calculus with permutations of names (cf. fusions)

 what about substitutions?

• “Smaller” frameworks

Twelf [Pfenning Schürmann], FOλ∆IN [McDowell Miller]

A few words more about the syntax

• recursive definitions

A = rec X.P (X)

Yet another binder: if possible, use replication.

• polyadicity

a〈~v〉.P and a(~v).P

interaction between restriction and emission: (νx̃) a〈~v〉, x̃ ⊆ ~v

moreover, the polyadic π-calculus is typed

Reasoning about the behaviour of processes

Transitions

All works except one define a Labelled Transition System (LTS)

(mostly in early style):

P
a(b)−−−→ P ′ P

a〈b〉−−→ P ′ P
a(b)−−−→ P ′ P

τ−→ P ′

• automatically get an induction principle

• smoothly define bisimulation on top of it (see later)

• some works quadruplicate rules (ease automation)

• [Des00]: original approach using “higher-order actions”

Reductions [Gay 00]

Operational semantics:

→ modulo ≡

. two nested inductions

. theorem provers are not well designed to reason modulo

Reductions, continued [Gay 00]

• you cannot plug ≡ in the equality of the prover,

and use rewriting tactics

(putting ≡ in the equality leads to inconsistencies)

• a bisimulation relation becomes infinite

• work in a systematical way:

. normal forms for ≡ [EG96], [Hir99], [DZ00]

. enhance your prover with AC rewriting

. refine the definition of → (F. Pottier’s 〈π〉)

Bisimilarity and bisimulation

• [Hir97]: check bisimilarity laws
. bisimulation
. up-to proof techniques [San95]
. structural congruence laws
. theorems about private replications

• [HMS00]: idem
. coinduction
. congruence results play the role of up-to techniques
. structural congruence laws

Establishing bisimilarity laws – comments

• “induction vs coinduction” does not seem to be an issue in

these works

• smooth integration of equational reasoning within

bisimulation proofs

• no formalisation uses quantification over all contexts

to introduce behavioural equivalence

Type systems [HG98] [Des00] [Gay00] [Gil01]

• definition of typing judgments of the form

Γ ` P
meaning that the usage of channels obeys a type discipline (I/O
types)

• subject reduction: if P is well typed, then any evolution of
P is

• it is a property of the type system

• several subject reduction proofs have a common structure
[Gay00]: linear and non linear types

• typed bisimulation?

Lessons learned

Lessons learned

• reasoning on the π-calculus in a theorem prover is not an

easy task, especially regarding specification

• knowing how to deal with e.g. binders and Associative-

Commutative rewriting is necessary for proofs about mobility

• no algorithms have been mechanised in a theorem prover

(type inference, bisimulation verification, model checking)

Extensions

• can we handle other languages?

e.g. Spi (E. Tuosto), Join, Mobile Ambients

Fusion, explicit substitution calculi

• can we enrich the language?

e.g. PICT

• can we explore other methods?

e.g. tools for equational reasoning,

Modal Logics, Spatial Logics

Comparing Coq and Isabelle/HOL

• differences in the logics:
Isabelle/HOL Coq
classical intuitionnistic
extensional equality C. Paulin’s equality

• the practice of proofs: more automation in Isabelle, more

powerful tactics

• Coq has proof objects:
. extraction of programs from proofs
. reflection to build new tactics

→ not used yet in this context

• a higher-order encoding fits better to Isabelle/HOL

Using the prover to reason on concrete processes

• some reasonable systems cannot be handled purely automat-

ically: need for interaction

• adopt a different point of view – axioms

. proof techniques

. equational laws

. subject reduction

. but, still, be careful about consistency!

• interaction with verification tools: two approaches

. run the tool, and extract some proof traces

. “PVS approach”: black boxes

