Mathematical Modeling of Neural and Behavioral Response in Deep Brain Stimulation

Alexander Medvedev

Information Technology, Uppsala University, Sweden

alexander.medvedev@it.uu.se
Promise

...a complete bench-to-bedside approach in the Deep Brain Stimulation (DBS) treatment of Parkinsons disease
Promise

...a complete bench-to-bedside approach in the Deep Brain Stimulation (DBS) treatment of Parkinson's disease

Result

...far from a complete one, but definitely bench-to-bedside approach in the DBS treatment of Parkinson's disease
Contributors outside IT

PI: Åsa Mackenzie, Organismal Biology, UU

Biomedical Center:
- Hanna Pettersson, Organismal Biology
- Emma Arvidsson, Neuroscience

Uppsala University Hospital:
- Dag Nyholm, Neurology
- Elena Jiltsova, Neurosurgery
- Markus Fahlström, Radiology

Medtronic Bakken Research Center:
- Mattias Åström
Contributors from IT

PI: Alexander Medvedev, IT UU

Image Analysis:
- Robin Strand, UU and Uppsala University Hospital

Systems and Control:
- Olov Rosén, now at Öhlins Racing
- Kristiaan Pelckmans
- Rubén Cubo
- Helena Andersson, Master student

Scientific Computing:
- Stefan Engblom
- Pavol Bauer
Contents

• What is Deep Brain Stimulation?
• What does IT in DBS?
• What does Neuroscience in DBS?
• What does the University Hospital in DBS?
• The SPARC DBS Project: Results
• Ongoing activities
• Plans for the future
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases.
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy

DBS makes use of implanted electrodes. Electrical stimuli are delivered to a target in the brain. The mechanism of DBS is unknown. Only alleviates symptoms. Produces side effects.
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
What is Deep Brain Stimulation?

- DBS is an **established** treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others
- Only alleviates symptoms
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others
- Only alleviates symptoms
- Produces side effects

DBS is used in the treatment of various neurological diseases. It only alleviates symptoms and produces side effects.
What is Deep Brain Stimulation?

- DBS is an *established* treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others
- Only alleviates symptoms
- Produces *side effects*
- Makes use of *implanted electrodes*
What is Deep Brain Stimulation?

- DBS is an established treatment in various neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others

- Only alleviates symptoms
- Produces side effects
- Makes use of implanted electrodes
- Electrical stimuli are delivered to a target in the brain
What is Deep Brain Stimulation?

- **DBS** is an **established** treatment in **various** neurological diseases
 - Parkinsons Disease
 - epilepsy
 - dystonia
 - others
- **Only alleviates** symptoms
-Produces **side effects**
-Makes use of **implanted electrodes**
-Electrical stimuli are delivered to a **target** in the brain
-The mechanism of DBS is **unknown**
Play
What does IT in DBS?
Stimuli optimization in DBS

Simulation of electric field distribution in the brain

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)
What does IT in DBS?
Stimuli optimization in DBS

- Simulation of electric field distribution in the brain
- Geometry of electrodes

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)
What does IT in DBS?
Stimuli optimization in DBS

Simulation of electric field distribution in the brain
- Geometry of electrodes
- Properties of brain tissue: encapsulation and anisotropy

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)
What does IT in DBS?
Stimuli optimization in DBS

Figure: Electric field distribution surrounding a target area.

- Simulation of electric field distribution in the brain
 - Geometry of electrodes
 - Properties of brain tissue: encapsulation and anisotropy

- Stimuli optimization

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)
What does IT in DBS?
Stimuli optimization in DBS

- Simulation of electric field distribution in the brain
- Geometry of electrodes
- Properties of brain tissue: encapsulation and anisotropy

- Stimuli optimization
 - Maximize the target coverage

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)

Simulation of electric field distribution in the brain
- Geometry of electrodes
- Properties of brain tissue: encapsulation and anisotropy

- Stimuli optimization
 - Maximize the target coverage
What does IT in DBS?
Stimuli optimization in DBS

Simulation of electric field distribution in the brain
- Geometry of electrodes
- Properties of brain tissue: encapsulation and anisotropy

Stimuli optimization
- Maximize the target coverage
- Minimize the spill beyond the target

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)

Department of Information Technology
What does IT in DBS?
Stimuli optimization in DBS

Figure: Electric field distribution surrounding a target area.

- Simulation of electric field distribution in the brain
 - Geometry of electrodes
 - Properties of brain tissue: encapsulation and anisotropy

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)

- Stimuli optimization
 - Maximize the target coverage
 - Minimize the spill beyond the target
 - Compensate for offline contacts
What does IT in DBS?
Stimuli optimization in DBS

Figure: Electric field distribution surrounding a target area.

Figure: Non-convex field distributions for compensation of an offline contact (left) and heavy anisotropy (right)

- Simulation of electric field distribution in the brain
 - Geometry of electrodes
 - Properties of brain tissue: encapsulation and anisotropy

- Stimuli optimization
 - Maximize the target coverage
 - Minimize the spill beyond the target
 - Compensate for offline contacts

- No direct connection to neurons of the brain. See ongoing activities.
What does Neuro in DBS? Connecting DBS stimuli to behavior

- Optogenetics

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response
What does Neuro in DBS?
Connecting DBS stimuli to behavior

- Optogenetics
 - Neurons genetically sensitized to light

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response

Department of Information Technology
What does Neuro in DBS?
Connecting DBS stimuli to behavior

- Optogenetics
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response
What does Neuro in DBS?
Connecting DBS stimuli to behavior

Optogenetics

- Neurons genetically sensitized to light
- Optical stimulation of specific types of neurons
- Living tissue in freely-moving animals

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response
What does Neuro in DBS?
Connecting DBS stimuli to behavior

- Optogenetics
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons
 - Living tissue in freely-moving animals

Behavior monitoring

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response
Mathematical Modeling of Neural and Behavioral Response in Deep Brain Stimulation

Alexander Medvedev

What does Neuro in DBS?
Connecting DBS stimuli to behavior

Figure: Optical brain stimulation (left) and animal installation (right)

- Optogenetics
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons
 - Living tissue in freely-moving animals

- Behavior monitoring
 - Video tracking system: EthoVision
What does Neuro in DBS?
Connecting DBS stimuli to behavior

Figure: Optical brain stimulation (left) and animal installation (right)

- **Optogenetics**
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons
 - Living tissue in freely-moving animals

- **Behavior monitoring**
 - Video tracking system: EthoVision
 - Movement trajectories

Figure: Behavioral response
What does Neuro in DBS?
Connecting DBS stimuli to behavior

- Optogenetics
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons
 - Living tissue in freely-moving animals

- Behavior monitoring
 - Video tracking system: EthoVision
 - Movement trajectories
 - Heat maps of the time spent in an area

Figure: Optical brain stimulation (left) and animal installation (right)

Figure: Behavioral response

Department of Information Technology
What does Neuro in DBS?
Connecting DBS stimuli to behavior

Figure: Optical brain stimulation (left) and animal installation (right)

- **Optogenetics**
 - Neurons genetically sensitized to light
 - Optical stimulation of specific types of neurons
 - Living tissue in freely-moving animals

- **Behavior monitoring**
 - Video tracking system: EthoVision
 - Movement trajectories
 - Heat maps of the time spent in an area

- **Control** of behavior through stimuli

Figure: Behavioral response
Behavioral modeling

Aim: To understand how DBS influences motor behavior

Goal: Quantify behavioral output in response to neural stimulation

- Animal experiments:
Behavioral modeling

Aim: To understand how DBS influences motor behavior

Goal: Quantify behavioral output in response to neural stimulation

- **Animal experiments:**
 - Dopamine and glutamate stimulation
Behavioral modeling

Aim: To understand how DBS influences motor behavior

Goal: Quantify behavioral output in response to neural stimulation

- **Animal experiments:**
 - Dopamine and glutamate stimulation
 - Parkinsonian mouse model
Behavioral modeling

Aim: To understand how DBS influences motor behavior
Goal: Quantify behavioral output in response to neural stimulation

- Animal experiments:
 - Dopamine and glutamate stimulation
 - Parkinsonian mouse model

- Mathematical modeling:
Behavioral modeling

Aim: To understand how DBS influences motor behavior

Goal: Quantify behavioral output in response to neural stimulation

- **Animal experiments:**
 - Dopamine and glutamate stimulation
 - Parkinsonian mouse model

- **Mathematical modeling:**
 - Behavior classification from video data
Behavioral modeling

Aim: To understand how DBS influences motor behavior

Goal: Quantify behavioral output in response to neural stimulation

- **Animal experiments:**
 - Dopamine and glutamate stimulation
 - Parkinsonian mouse model

- **Mathematical modeling:**
 - Behavior classification from video data
 - Behavior quantification
Behavioral modeling
Mouse Behaviors

- Standing still in a corner
- Moving in a corner
- Standing still along a wall
- Moving along a wall
- Crossing in the middle

Figure: Behavioral patterns in position data
Optogenetical stimulation of

- **Dopamine** – pleasure system of the brain
- **Glutamate** – the precursor for GABA, the brain’s main inhibitory neurotransmitter
Figure: Input and output data of the DBS model predicting therapeutical effect
Individualization of the DBS model

Aim: To make the DBS model *patient-specific*

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
Individualization of the DBS model

Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- Neurosurgery:
 - Manual segmentation of STN
 - Surgery planning information
Individualization of the DBS model

Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
Individualization of the DBS model

Aim: To make the DBS model *patient-specific*

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
 - Brain tissue segmentation in MRI
Individualization of the DBS model

Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
 - Brain tissue segmentation in MRI
 - White matter
Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
 - Brain tissue segmentation in MRI
 - White matter
 - Gray matter
Individualization of the DBS model

Aim: To make the DBS model *patient-specific*

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of **STN**
 - *Surgery planning* information

- **Mathematical modeling:**
 - **Brain tissue segmentation** in MRI
 - White matter
 - Gray matter
 - Cerebrospinal fluid
Individualization of the DBS model

Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
 - Brain tissue segmentation in MRI
 - White matter
 - Gray matter
 - Cerebrospinal fluid
 - DBS lead position calculation
Aim: To make the DBS model patient-specific

Goal: Use the information pre-operative and post-operative MRI

- **Neurosurgery:**
 - Manual segmentation of STN
 - Surgery planning information

- **Mathematical modeling:**
 - Brain tissue segmentation in MRI
 - White matter
 - Gray matter
 - Cerebrospinal fluid
 - DBS lead position calculation
 - Electrical field calculation in non-homogeneous media
Figure: Patient case: An isolevel of electrical field produced by the lead covering the target area of STN
Clinical evaluation the DBS model
Infinity DBS platform from St Jude

- iPod/iPad programming
- Bluetooth communication
- Upgradable software
- Impedance monitoring
- Stabilized stimulation current
Clinical evaluation the DBS model
Segmented electrode from St Jude

Figure: Infinity lead from St Jude

- Eight contacts
- Asymmetric (directional) stimulation
- First ET patient in Uppsala in May 2016
- One more ET patient and a PD patient in May 2016
Clinical evaluation the DBS model
Segmented electrode from St Jude

- Eight contacts
- Asymmetric (directional) stimulation
- First ET patient in Uppsala in May 2016
- One more ET patient and a PD patient in May 2016
- the stimulated volume
- the Zona Incerta
- the Ruber (the Red Nucleus)
- STN

Figure: Infinity lead from St Jude

Figure: Patient case: Essential tremor, isolevel of 150 V/m
Mathematical Modeling of Neural and Behavioral Response in Deep Brain Stimulation

Based on a neural model by from firing to electrical field (Engblom and Bauer)

Figure: DBS pulse in time
Modeling DBS stimulation of STN neuron
Space- and time-dependent PDE

- Based on a neural model by from firing to electrical field (Engblom and Bauer)
- From electrical field to firing

Figure: DBS pulse in time

Figure: The neuron anatomy
Modeling DBS stimulation of STN neuron
Space- and time-dependent PDE

- Based on a neural model by from firing to electrical field (Engblom and Bauer)
- From electrical field to firing
- Single neuron with certain
 - anatomy
 - position
 - orientation

Figure: DBS pulse in time

Figure: The neuron anatomy
Modeling DBS stimulation of STN neuron
Space- and time-dependent PDE

- Based on a neural model by from firing to electrical field (Engblom and Bauer)
- From electrical field to firing
- Single neuron with certain
 - anatomy
 - position
 - orientation
- Characterization of neural activation in the DBS target

Figure: DBS pulse in time

Figure: The neuron anatomy
Modeling DBS stimulation of STN neuron
Space- and time-dependent PDE

- Based on a neural model by from firing to electrical field (Engblom and Bauer)
- From electrical field to firing
- Single neuron with certain
 - anatomy
 - position
 - orientation
- Characterization of neural activation in the DBS target
- Master thesis of Helena Andersson
A short list

- Two journal papers, 2015-2016
A short list

- Two journal papers, 2015-2016
- Best Paper Award from International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems, Brussels, Belgium, 2015.
A short list

- Two journal papers, 2015-2016
- Best Paper Award from International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems, Brussels, Belgium, 2015.
A short list

- Two journal papers, 2015-2016
- Best Paper Award from International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems, Brussels, Belgium, 2015.
- Proposal to VR Medical Engineering with Strand and Nyholm
Plans for the future

- A paper on DBS model individualization
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
- Work on Parkinson mouse model: experiments and modeling
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
- Work on Parkinson mouse model: experiments and modeling
- Quantification of motor PD symptoms with eye tracking
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
- Work on Parkinson mouse model: experiments and modeling
- Quantification of motor PD symptoms with eye tracking
- Quantification of ET tremor with mobile phone
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
- Work on Parkinson mouse model: experiments and modeling
- Quantification of motor PD symptoms with eye tracking
- Quantification of ET tremor with mobile phone
- Proposal to the Parkinson Foundation with Nyholm
Plans for the future

- A paper on DBS model individualization
- A paper on DBS energy optimization
- Work on Parkinson mouse model: experiments and modeling
- Quantification of motor PD symptoms with eye tracking
- Quantification of ET tremor with mobile phone
- Proposal to the Parkinson Foundation with Nyholm
- Proposal to KWA together with Mackenzie and Nyholm