UPMAIL Technical Report No. 39

Efficient Interpretation of Prolog Programs

Jonas Barklund

Uppsala Programming Methodology and Artificial Intelligence Laboratory
Computing Science Dept., Uppsala University
P. O. Box 520, S-751 20 UPPSALA, Sweden
+46-18-18 25 00

Abstract The paper focuses on three ideas for solving problems with writing interpreters for the logic
programming language Prolog in Prolog and how to combine these ideas to an interpreter for Prolog which
is both simple and efficient. The resulting interpreter system can be incorporated into a Prolog based on
Warren’s Abstract Machine and built mostly from existing parts of it. The interpreter has been implemented
and is used in a Prolog system developed at Uppsala University.

An earlier version of this paper was presented at the ACM SIGPLAN ’87 Symposium on Interpreters
and Interpretive Techniques.

The research reported herein was supported by the National Swedish Board for Technical Development (STU).



1. INTRODUCTION

The subject of this paper is a description of the interpreter used in Tricia, the Prolog implementation for the
DEC-2060 computer developed at UPMAIL [Barklund et al. 86; Barklund & Millroth A]. For an introduction
to Prolog, see [Sterling & Shapiro 86; Clocksin & Mellish 81]. Tricia is based on a revised version of David
H. D. Warren’s abstract Prolog machine (WAM) [Warren 83] and is mainly compiler-based [Carlsson 86].
Still an interpreter is useful for debugging and fast prototyping.

The paper contains three main ideas:

1. To translate the program to be interpreted into a subset of the language for the abstract machine.
2. To implement Prolog’s cut for interpreted programs in a simple and efficient way.

3. To implement an interface between compiled and interpreted parts of the program such that compiled
and interpreted predicates can call each other freely.

We combine these three points into an efficient Prolog interpreter system for WAM which can be easily
built from moderately revised existing parts of the system. This interpreter is probably the smallest existing
interpreter for Prolog in Prolog which really implements all control structures including cut.

The paper assumes some basic knowledge about Prolog.

2. PROLOG INTERPRETERS

The language Prolog is based on SLD-resolution with unification of (Horn) clauses [Robinson 65; Kowalski 79;
Lloyd 84] which gives it a more sound theoretical basis than most languages. However, theoretically appealing
languages have gained a reputation of being difficult to implement efficiently. In Prolog this is manifested in
the fact that resolution requires the ability to create an instance of a clause from the database. The variables
in this formula must be different from the variables of any other instance of this (or another) clause created
before. There are two main approaches to creating such instances.

The first approach is called structure sharing [Bruynooghe 82]. This means that the clause instance is
represented by a molecule containing a skeleton which is a copy of the clause with “holes” for the variables
and a sequence of variables. The skeleton can be shared between all generated instances of a clause. If the
clause contains n variables we create a sequence of n uninstantiated variables and put this together with the
skeleton of the clause into a molecule. A molecule has certain similarities to the concept of closure commonly
used in functional programming to get lexical variable scoping.

The second approach is called structure copying [Mellish 82]. In this approach we actually create a copy
of the clause in the database but replace each of the variables in the clause by new uninstantiated variables.
Of course we can share ground parts of the clause. In compiler-based machines such as WAM a variant of
this is used where we only copy the arguments of subgoals and sometimes head arguments.

Creating instances of whole clauses is usually cheaper when using the former approach, which is a good
argument for applying it on Prolog interpreters. However, since WAM falls into the latter category it seems
natural to base the interpreter also on the same concept (although this is not necessary, as was shown in
LM-Prolog [Carlsson 84; Kahn 83]). For this reason we choose structure copying for the interpreter, and
thus have to make the creation of clause instances as efficient as possible.

To make the interpreter easy to write, debug, understand and maintain we chose to write most of it
in Prolog itself. This i1s not a new idea, it is easy to write a toy interpreter for a large subset of Prolog in
Prolog (for a very simple example, see [Bowen 81]). In fact, the only part of the interpreter not written in
Prolog is the part that creates new instances of clauses. The usual Prolog predicate interfacing to this is
clause(Head,Body) which unifies Head with the head of an instance of a database clause and Body with its
body. It is usually assumed that at least the name and arity of the head is known when calling clause/2.

3. CREATING INSTANCES OF CLAUSES

The simplest way to create instances of clauses would be to store one actual instance of a clause in the
database. When a new instance is required this clause instance is traversed and a copy of it 1s built. When
a variable is encountered in the database clause a new variable is put into the copy. This has the advantage
that putting a new clause into the database becomes a very fast operation and if writing new information
into the database is more frequent than reading information then certainly this would be efficient. However,
in most applications reading information is more frequent than writing, so this idea must be discarded.
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A more sophisticated idea is not to store an instance of the clause itself in the database, but rather a
recipe saying how to create such an instance. This recipe would be a program in an intermediate language.
We find that there is a language very well suited for the task: WAM instructions.

The WAM instruction set has five distinct parts: control, put, get, unify and index instructions. Ob-
serving that the predicate clause/2 behaves as if it were defined by a number of compiled facts (clauses
with trivial bodies)

clause(Head_1,Body_1).

clause(Head_n,Body_n).

we find that the intermediate code for each of these clauses could consist of a sequence of get and unify
instructions, since this is what clause heads are compiled into.

When a clause is asserted we thus compile it as if it were a clause for clause/2 above. It was easy to
extract a part of Mats Carlsson’s compiler and remove time consuming optimisations. It is probably easy
to do this for any Prolog-to-WAM compiler. The generated WAM code is then represented as byte codes
and clause/2 calls a small byte code emulator to create instances of a clause. This emulator would be quite
similar to a corresponding emulator for full compiled code but considerably simpler since it would only have
to emulate get and unify instructions and only temporary variables appear.

Here we have ignored the question how clause/2 finds a clause to match a goal. This can be solved
in several ways. In Tricia it uses a hash table indexed on functors to find a list of clauses having a certain
principal functor. It then tries these clauses one by one. This can be improved in several ways, e.g., by
discriminating on the type of the first argument.

In Tricia this technique is also used for storing items in the “internal database”, which is in Edinburgh
Prolog compatible implementations manipulated by the predicates record/3, recorded/3, erase/1 etc.

Below we will give a neat solution to the problem of implementing cut (or slash) in Prolog interpreters,
examples of the intermediate code generated for some clauses, a representation of the intermediate code as
byte codes and an emulator for the intermediate code.

4. HANDLING CUT

One of the few devices for controlling the execution of Prolog programs is cut. Its effect is to purge any
alternative solutions to the current goal, and thus make the computation so far of the current goal become
deterministic. If the computation so far actually is deterministic, the cut doesn’t have any effect but serves
as a declaration (e.g., to the compiler) that some optimisations can be done, based on the fact that the
computation will be deterministic. For a more thorough examination of different usages of cut see [Sterling
& Shapiro 86].

Remembering possible alternative ways to find a solution is usually implemented (e.g., in WAM) with
a stack of choice points. Each choice point contains a copy of the state of the machine at some point. If the
current attempt to find a solution fails the most recent choice point is reinstated (the machine backtracks),
the next possible way to reach a solution for that choice point is tried and the choice point is modified so
next time backtracking is done another way 1s tried. When the most recent choice point has no more possible
ways to reach a solution it is popped from the stack and the next choice point becomes visible.

The most natural way to implement cut is therefore to save a pointer to the choice point which was
the most recent when the attempt to prove the current goal began, and when a cut in the current goal is
reached, to pop all choice point more recent than the saved one. This will have the desired effect. Also some
of the other data areas should be trimmed.

In [Barklund & Millroth 86] the full algorithm for cut in compiled WAM code is given. The compiler
will issue a choice(Vn) instruction at the beginning of the code for each predicate containing a cut. This
will save a pointer to the most recent choice point in the variable Vn. Each occurrence of cut in the predicate
is then compiled to either a cute(Vn) or cutne(Vn) instruction depending on whether there is an active
environment or not.

Thus, an interpreter has to remember somehow the current choice point when the proof of a new goal
is attempted and when it reaches cut execute a cutne instruction. This can be done by creating Prolog
predicates $choice’/1 and ’$cut’/1 interfacing to the choice and cutne instructions respectively. The
interpreter program would then look something like

interpret_goal(Head) :-



>$choice’ (C), clause(Head,Body), interpret_body(Body,C).

interpret_body(true,C).
interpret_body((Goal_1,Goal_2),C) :-
interpret_body(Goal_1,C), interpret_body(Goal_2,C).
interpret_body((Goal_1;Goal_2),C) :-
interpret_body(Goal_1,C); interpret_body(Goal_2,C).
interpret_body((Goal_1->Goal_2),C) :-
interpret_body(Goal_1,C) -> interpret_body(Goal_2,C).
interpret_body(_"Goal,C) :-
interpret_body(Goal,C).
interpret_body(!,C) :-
*$cut’ (C).

This works but having to propagate the extra choice point argument is not so elegant.

The only reason to have the predicate interpret_body/2 at all is to propagate the choice point argu-
ment. If this could be eliminated the predicate would be superfluous (but see below on meta-calls).

We make the observation that the propagated choice point is particular to each instance of a clause.
This means that if we have to create a new instance of a clause anyway, we may just as well save the choice
point in the clause instance itself. Doing this means we should pay attention to where the saved choice point
is actually needed, namely at each occurrence of cut.

Our solution can now be sketched as the following: when a clause is asserted into the database we
inspect the clause to find all top-level occurrences of cut. Instead of compiling them into get_constant
or unify_constant instructions we compile them into get_cut and unify_cut instructions. The predicate
clause/3 is the same as clause/2 with an extra argument which is a choice point. When the emulator
encounters a get_cut or unify_cut instruction it generates a constant structure ’$cut’(C) where C is
the choice point given to clause/3. We will illustrate this by an example and explain the solution more
thoroughly below.

Suppose we have asserted a clause

foo(X) :- bar(X,Y), !, baz(Y).

into the database and try to prove a goal foo(42). The interpreter calls >$choice’ (C) where C gets unified
with something like $666$ if that is what a pointer to a choice point looks like. Then the interpreter
calls clause(foo(42),Body,$666$) which returns with Body = (bar(42,Y), ’$cut’($666%), baz(Y¥)).
Interpreting this code will call bar/2 and if that is successful remove any choice points created by it (or by
the call to foo/1 itself if there were other clauses for it) and finally call baz/1.

4.1. Cut and Meta-calls

When inspecting clauses for cuts we are careful to distinguish between occurrences of ! used only as atoms
in terms and occurrences of ! used as cuts. Term occurrences of ! which later turn out to be used as cuts
by meta-predicates such as call/1 or bagof/3 are a problem and have to be handled differently, but they
are relatively few.

We can handle cuts like the one 1n
., bagof (Y, (bar(X,Y), !, baz(¥)),L),...

by making call/1 and its friends call *$choice’ /1 themselves and then call interpret_goal/2 above with
their goal and the returned choice point as arguments.

An alternative solution is to let call/1 inspect the goal to be executed and replace all top-level cuts
by ground calls to >$cut’ (C) where C is a pointer to the most recent choice point. We can then use the
ordinary mechanism for interpreting such a goal.

5. INTERFACE TO PREDICATES

We have chosen a scheme for calling predicates that makes it completely invisible to the caller whether the
called predicate is interpreted or compiled. The problem is that compiled predicates in WAM expect their
arguments in a set of argument registers but interpreted predicates expect their arguments as the arguments
of a structure whose functor is the principal functor of the called predicate.

3



5.1. Calling predicates from compiled code

From compiled code we want to be able to call a predicate just by jumping to some address, perhaps storing
the return address somewhere (usually in the L register). It does not matter much if calls from compiled to
interpreted code cost a little extra since they can be expected to be infrequent.

The key thing is to make every jump to a predicate from compiled code indirect through a word particular
to the predicate. This word (which is a part of the principal functor of the predicate) will contain an address.
If the predicate 1s compiled this is just the address of the compiled code of the predicate. If the predicate is
interpreted the address will be to a short piece of code which loads the functor of the called predicate (which
is otherwise implicit in the address jumped to) into a register (T1) and then jumps to a common subroutine
$CALLI.

So $CALLI expects the functor of the called predicate in register T1 and the arguments in a set of
argument registers. From these it builds a structure whose functor i1s the one in T1 and whose arguments
are those in the argument registers. Finally 1t puts this structure in the first argument register and jumps
to the (compiled) predicate interpret_goal/1 above.

5.2. Calling predicates from interpreted code

From interpreted code we can expect calls to interpreted (user) predicates as well as to compiled (built-in
and user) predicates to occur frequently.

We need only one predicate which makes such calls and we name it xcall/1. We can then define the
predicates available to users for making meta-calls, such as call/1 in terms of xcall/1. (This is so they
can play the tricks with cut as described above without introducing the overhead to do this for subgoals.)

xcall/1 expects a structure (or an atom if there are no arguments) in the first argument register. If the
call is to an interpreted predicate it can immediately jump to the code for interpret_goal/1. Otherwise
it will load the argument registers from the arguments of the structure and jump indirectly through the
address mentioned above in the functor.

6. THE INTERPRETER PROGRAM
By removing the handling of cut from the meta-interpreter and using the schema outlined above for calling

predicates, the whole interpreter gets reduced to the following very comprehensive program:

interpret_goal(Head) :-
’$choice(C), clause(Head,Body,C), xcall(Body).

true.

X,Y :—- xcall(X), xcall(Y).

X;Y :—- xcall(X); xcall(Y).

X->Y :- xcall(X) -> xcall(Y).

_"X - xcall(X).

call(X) :- gobble_cuts(X,Y), xcall(Y).

This is at the same time a very simple and efficient interpreter.

7. THE INTERMEDIATE LANGUAGE

The instructions of the intermediate language consists of the get-instructions, unify-instructions and proceed
from WAM. For a description of their exact operational semantics see, e.g., [Carlsson 86] or [Warren 83].

Cuts are compiled to one of two new instructions, get_cut Xi or unify_cut depending on where it
occurs (a cut is compiled to a unify_cut instruction only if it occurs as the last argument of a structure). Tt
is desirable for backwards compatibility that clause/2 (which is not used by the interpreter) represents cuts
in clauses by the atom ! although clause/3 (which is not visible to users) represents them by structures
*$cut’ (...). Therefore cuts must be compiled in much the same way as structures although they look like
atoms 1n the source code.

The instructions for cut can be executed in two modes, depending on whether the clause is created by
clause/2 or clause/3.



get_cut Xi If the clause is created by clause/2 this is equivalent to get_constant !,Xi. Otherwise it
is equivalent to get_structure ’$cut’/1,Xi followed by unify_constant CUT where CUT
is the choice point given as argument to clause/3.

unify_cut If the clause is created by clause/2 this is equivalent to unify_constant !. Otherwise it
is equivalent to unify_structure ’$cut’/1 followed by unify_constant Cut where Cut
is the (constant) choice point given as argument to clause/3. (unify_structure is not
present in the original WAM but is described in [Carlsson 86]).

8. GENERATING INTERMEDIATE CODE

Clauses are translated to the intermediate code by a compiler. To avoid confusion with the compiler which
compiles clauses to the full WAM instruction set we will refer below to this compiler as the kompiler. The
rompiler is actually a simplified subset of the compiler.

The kompiler first traverses the control structure of the clause replacing variables X by call(X), con-
junctions nested the “wrong way” (X,Y),Z by X,(Y,Z) and cuts ! by ’*CUT’(_). Since goals are not
traversed, occurrences of ! in arguments to predicates will remain untouched when the clause is regenerated
by clause/3. Since cuts are represented by structures the latter phases of the kompiler automagically knows
that they may generate structures when a copy of the clause is created.

The next kompiler pass makes a pre-order traversal [Knuth 73] of the head and the body of the clause,
generating a sequence of abstract instructions, temporary variables are allocated and finally the abstract
instructions are translated to WAM instructions. It would be possible to perform various optimisations in
the generated code but we think fast kompilation to intermediate code is probably more important than the
optimizations; if users want very fast execution they should not use an interpreter.

Our kompiler consists of 55 Prolog clauses occupying 110 lines of code including documentation.

9. CREATING CLAUSE INSTANCES FROM THE INTERMEDIATE CODE

When the intermediate code for a clause has been generated it should be stored in the machine. We can
either compile the intermediate code further to machine code (which is executed to create a copy of a clause)
or we can store the intermediate language instructions byte-wise (and emulate them to copy clauses).

Tricia has a machine code generator for generating PDP-10 machine code from WAM instructions. It
could easily be applied to the intermediate language but we have not done this. Generation of copies of
clauses would become even faster but the representation of clauses would use more storage. We have instead
designed a representation of intermediate language instructions as bytes and written an emulator for this
representation.

Instructions are stored as nine-bit bytes (PDP-10 has a word length of 36) with argument(s) in the
following byte(s). Since there are only 25 different instructions (including all variants) we have assigned
special codes for many common combinations of instruction and argument. E.g., there are 64 special codes
for the instruction get_variable Xi,Xj where i and j are between 0 and 7, 8 special codes for get_list
Xi for i between 0 and 7, etc.

The emulator is driven by two large tables (one for read mode and one for write mode), dispatching on
the byte code. In a system in which compiled code is emulated, the usual WAM emulator could probably be
used with minor modifications, such as adding the get_cut and unify_cut instructions.

10. DEBUGGING

An interpreter for debugging should probably be more conventionally built to be able to step or trace
executions of programs. Since such an interpreter will probably be slower than the one presented here it
is desirable to have two modes of execution: normal mode (this interpreter) and a debug mode (a debug-
interpreter). When a goal is to be interpreted a jump is made to one of these interpreters.

This can be accomplished by having an memory word INTVEC containing the address of the predicate
interpret_goal/1 when in normal mode and the address of the corresponding predicate in the debug
interpreter when in debug mode. The procedure of calling predicates from compiled code, described in section
5.1, should be changed correspondingly; instead of jumping directly to the predicate interpret_goal/1 an
indirect jump should be made via INTVEC.

It is possible to have several modes of interpretation, e.g., normal mode, step mode and trace mode, if
this makes interpretation more efficient.



One problem remains: if debug mode is on, call/1, bagof/3 & Co. should give their argument to the
debug interpreter, so it can be traced/stepped. One solution is to let these predicates check explicitly if
debug mode is turned on and in this case jump to some suitable part of the debugger. Another solution is
to let the debug interpreter know all predicates which do meta-calls and make a normal recursive call in the
debug interpreter.

Debug interpreters will be more thoroughly examined in [Barklund & Ahs].

11. RELATED WORK

W. F. Clocksin uses an idea similar to ours for storing clauses, but for a somewhat different purpose: allowing
users to perform database operations on compiled predicates [Clocksin 85].

The handling of cut is often a kludge in Prolog interpreters, so the algorithms for it are not always
presented, but [Nilsson 83] does present an alternative solution.

12. RESULTS

We have designed an interpreter for Prolog which probably can be included in most WAM-based Prolog
implementations with little difficulty. We have not tried to run extensive benchmarks to compare it with
other interpreters but it runs the traditional 30-element naive-reverse program at around 4K LIPS which is
approximately twice as fast as the interpreter of DEC-10 Prolog. We experienced a speed-up of approximately
30% when we incorporated the new scheme for cut.
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