Reforming Compilation of Logic Programs

Hakan Millroth

Computing Science Dept., Uppsala University
Box 520, S-751 20 Uppsala, Sweden

Electronic mail: hakanm@csd.uu.se

Abstract. We present a new method for parallel logic programming
which is based on compilation of Tarnlund’s inference system Reform.
The idea is to compile recursively defined programs to parallel iter-
ative code. Beside earlier parallel concepts, such as OR-parallelism
and AND-parallelism, we have new forms of Reform parallelism: uni-
fication parallelism and recursion parallelism. These are implemented
in our method by applying standard loop parallelization techniques
to the iterative code obtained by compilation.

1. INTRODUCTION

Almost any logic program using a significant amount of computer
time spends most of that time executing one or more recursive pro-
cedures. It is therefore unfortunate that parallel systems based on
SLD-resolution cannot fully exploit the parallelism inherent in recur-
sive programs. As an example, consider the program for checking
whether a number z is smaller than each element of a list:

LessAll((, z) .
LessAll(x.y, z) « z<x A LessAll(y, z).

Suppose we invoke this program with a goal containing a list of n
elements. An AND-parallel system based on SLD-resolution will take
n steps to do the n comparisons, since the n recursive calls to the
program must be made in sequence. Yet this problem is parallel in
nature. It should, in principle, be possible to make all comparisons
simultaneously since they are not interdependent. The sequentiality is
imposed by the way recursion is handled in the top-down computation
schemes derived from Kowalski’s (1974) procedural interpretation of
logic programs.

Téarnlund (1991) has proposed a solution to this problem: the
Reform inference system. The idea is to specialize the program at run-
time with respect to a particular goal. For example, specialization of
the recursive clause of the LessAll program with respect to the goal

+— LessAl1(1.2...n.0,0)

adds the following clause (called the nth reforment) to the program:
LessAl11(%y...X,.7,2) «—z<x3 A---Az<x, ALessAll(y, z).

The program now represents a parallel algorithm and the n compar-
isons can be made simultaneously. Furthermore, there is an additional
source of parallelism in the specialized program: unification of the list
1.2...n.0 in the goal with the list x;...x,.y in the clause head
reduces to n independent subunifications that can proceed in parallel.

We shall take up this idea and consider the question: how do we
uncover the parallel algorithm at compile-time? Our solution is to
obtain a parameterized (by n, the recursion depth) representation of
the specialized program. The head of a recursive clause is compiled to
iterative code (WHILE- and FOR-loops) for a single large unification
that replaces the n smaller head unifications of an SLD-resolution
system. The body of the clause is compiled to iterative code that runs
the left-body (the calls to the left of the recursive call) and right-body
in separate FOR-loops.

The significance of compiling recursion to FOR-loops in this way
is that the compiled code can be parallelized by standard techniques
developed for parallelizing Fortran loops. This is a form of parallel
processing that is very efficient, since the computation can be directly
mapped to an array of parallel processors without overheads for run-
time scheduling and load balancing.

Our compilation technique apply also to nonlinear recursion on,
for example, binary trees (Millroth, 1990). However, we only discuss
the linear case in this paper.

2. REFORM

Reform (Téarnlund, 1991) is a new inference system for logic program-
ming that employs program transformation as computation. The idea
is to specialize recursive programs at runtime with respect to a par-
ticular size of the input data. Reform can be formulated as a Resolu-
tion (Robinson, 1965) proof procedure. Due to space limitations we
present Reform here by means of an example. Suppose that we invoke
the LessAll program with a call:

+— LessA11(1.2.3.4.0,0) (1)

The Reform computation amounts to construction of the 4th refor-
ment of the recursive clause with which the call is then resolved. In

the first step, two variants (2) and (3) of the recursive clause are re-
solved (we adapt the convention to underline the literals selected for
unification):

LessAl1(xy.y1,21) < 21 <x; ALessAll(yy,z). (2)
LessAll(Xs.y2, Z2) < 22 <x9 A LessAll(ys, z2) . (3)

The reforment derived is (4). In the second step, (4) and a new variant
(5) of the recursive program clause are resolved:

LessAll(xy.X2.Y2, 22) ¢ 23 <x1 A 22 < x2 A LessAll(yz, z2) .(4)
LessAl1(x3.y3, 23) < 23 <x3 A LessAll(y3, z3). (5)

The reforment derived is (6). In the third step, we resolve (6) and a
new variant clause (7):

LessAl11(x;.X2.X3.Y3, 2Z3) (6)
z3 <x1 A 23 <%y Az3<x3 ALessAll(ys, z3).
LessAl1(Xy.V4,24) — 24 <x4 A LessAll(yy, z4) . (7)

In this step the 4th reforment (8) is obtained:

LessA11(Xy .X2.X3.X4.Y4, Z4) (8)

Zz4 <X N2y <x3 ANzy<x3A2z4y<x4 ALessAll(yy,2zy).

Finally, the call (1) is resolved with (8). The new goal obtained is:

«— 0<1AO0<K2A0<3A0<4ALessAll(0,0) (9)

Téarnlund (1991) gives a more efficient algorithm for Reform compu-
tation that requires only [logn] steps to compute the nth reforment.
The merit of the linear algorithm used in our example is simplicity
and uniformity—this is helpful in the analysis of Reform transforma-
tions from which we derive a parameterized representation of the nth
reforment that can be obtained at compile-time.

3. REFORM PARALLELISM

Beside earlier parallel concepts, such as OR-parallelism and AND-
parallelism, we have new forms of Reform parallelism: unification
parallelism and recursion parallelism.

Recursion parallelism. Let us consider a recursive clause with head
H and k goals By,..., By, in addition to the recursive call T, in the
body:

H«— By AN---ANBpNT.

The nth reforment of this clause is on the form:
H— BN ABpgg AN+~ ABy, N---ANBp, NT.

It is instructive to depict the body of this reforment as a matrix of n
rows and k columns:

Bll Bkl

Bin ... DBy

How can the calls in this matrix be computed in parallel? First,
the k calls within each row may be computed in parallel. This is
traditional AND-parallelism. Second, the n rows may be computed
in parallel. This generalization of AND-parallelism may be called
recursion parallelism since it corresponds to computing all recursion
levels in parallel.

It should be noticed that typically & < n. This suggests that
the potential for parallel speedup is greater with recursion parallelism
than with traditional AND-parallelism. Note that recursion paral-
lelism cannot be exploited in an AND-parallel system based on SLD-
resolution since the recursion levels must be computed in sequence
with such a system. A restricted form, where the recursion levels
overlap to some extent, can sometimes be exploited however; this
may be called recursion pipelining.

Example. Consider the recursive clause of the Lessall program:
Lessall(x.y, z) « z<x A Lessall(y, z).

The matrix has only one column, since there is only one call in the

residual body:
z <Xy

z <Xy

z <Xy

There are, of course, no opportunities for parallelism within each row
of this matrix. The n rows, however, can be computed in parallel.

Unification parallelism. A feature of logic programming is that
composition and decomposition of data structures is done by unifica-
tion. Hence a large share of the execution time of a clause is typically
spent in head unification. Consider, for example, the Append program:

Append (8, y,y).
Append(u.x,y,u.z) « Append(x,y, z).

There are no opportunities for AND-parallelism in this program since
all productive work is done by head unifications. Let us now con-
sider the unification parallelism of a Reform computation with this
program. The nth reforment obtained by Reform is:

Append(uy...u,.X,y,uy...u,.2) < Append(x,y, z).

Suppose that the transformed Append program is invoked with a call
containing a list of n elements in the first argument position:

+— Append(Cy...C,.0,D.0, w)

Unification of the lists C;...C, .0 and uy...u,.x reduces to n sub-
unifications that might be computed in parallel. Furthermore, there
is an additional source of parallelism in the construction of the output
list uy...u,.2.

Unification parallelism, in the context of Reform computations,
is a special case of recursion parallelism since it amounts to computing
recursion levels in parallel. It might seem that the problem of unifying,
say, two lists of n elements exhibits very little parallelism when lists
are implemented as linked structures. This is not the case, however.
There are algorithms that carry out such problems in logn steps for

typical lists (Barklund, 1990).

4. REFORM SERIES

Program variables and variant variables (terms). A new vari-
ant of the recursive program clause is created for each step in a Reform
transformation. Each variant contains a new set of variables. We shall
need to make a distinction between the variables that occur in the orig-
inal program clause, and the corresponding variables occurring in the

variant clauses used in the transformation. A variable occurring in a
program clause C'is called a program wvariable. A variable occurring in
a variant C' of C is called a wvariant variable. The notions of program
term and variant term are straight-forward extensions.

It is evident that n variants of a recursive clause are needed in the
derivation of the nth reforment of that clause. We number these vari-
ant clauses from 1 to n according to the order in which they are used
in the Reform transformation. We adapt the convention to rename a
program variable v to v; of the ¢th variant clause.

The n-solution of a Reform transformation. Consider a recur-
sive clause S of the form:

P(g,...,7r) — U AP(s,....t)\ND

The substitutions resulting from a derivation of the nth reforment of
this clause are identical to the solution of the following system FE,, of
equations (E; = 0):

S1 ZQQ,...,tl =T,
59 :q;;,...,tz =T3,
E, =

Spe1 = Qny--.,tn_1 =7y
The solution of E,, is a system of equations u, = {x = u,...,y = w}
where z, ...,y are distinct variables not occurring in any of the terms
u,...,w. We shall refer to u, as the n-solution of the clause 5.

We can associate a substitution o, = {u/x, ..., w/y} with the n-

solution p, = {x = u,...,y = w} (we also include in 0, a substitution

z/z for each variable z that does not occur on the left-hand side of
any equation in gy). We can therefore use tj,, where ¢t is any term,
as a convenient notation for to,,.

Reform series. Consider a recursive clause S. A program variable
x of S is represented by n variant variables z1,z2,...,2, in the nth
reforment of S. Let p, be the n-solution of S. The Reform series x
of x is then the sequence

T = (X1 fny -, Tnlin)-

We shall often write & as (#1,...,%,). The notion of Reform series is
easily extended to compound terms. The Reform series of a compound
term t is the sequence

t= (tifin, - tnfin).

Classification of variables. The main objective of the analysis
below is to characterize the relationship between program variables
and their associated Reform series for different classes of program
variables. The classification of a variable depends on the substitutions
in the first step of the Reform transformation (corresponding to the
2-solution p3). Since this step can be performed by the compiler, the
variables in a clause can be classified at compile-time. Proofs of the
theorems in this section can be found elsewhere (Millroth 1991).

NONE-variables. A variable z is a NONE-variable if it is not bound
in the first Reform step. That is,

Tipe =21 and zaug = To.
Examples where x is a NONE-variable:
P(F(42,x)) « P(y) and P(y) «Q(y,x) AR(x,2z) AP(2).
The Reform series (#1,...,%,) of a NONE-variable x is given by:

Theorem 4.1. Let x be program variable in a clause S and i, the
n-solution of S. If vy = x1 and xopy = x4 then,

Tp = Tifly = T4, for 1< <n.
For example, if n =4 then 2= (x1, X2, X3, X4).
Remark: When py contains an equation ¢ = y, where both = and y

are variables, we arbitrarily consider one of the variables, but not the
other, bound by p,.

POS-variables. A variable x is a POS-variable if it occurs in the
recursive call and there is a term ¢ in the corresponding position of
the clause head. That is,

Tpe = topo.
Examples where x is a POS-variable:
P(F(y)) « P(x) and P(F(F(x))) « P(F(x)).
The Reform series (Z1,...,%T,) of a POS-variable x is given by:

Theorem 4.2. Let x and t be program variable and term, respec-
tively, in a clause S and p,, the n-solution of S. If x1py = topy then,

U t=n;
0= Liln = tid1fn, 1<y <n.

For example, % = (F(y2), F(y3), F(y4), x4) if o = {x; =F(y2)} and
n = 4.

Example. Consider the recursive clause
P(F(y),2z) «P(x,y).

The 2-solution of this clause is o = {x; =F(y2), y1 =22}. We have
the following classification and Reform series (n = 4) of the variables.

Variable Type Reform series

z NONE (z1,22, 23, z4)
y POS (22, 23, 24, y4)
x POS (F(z3), F(z4), F(ys), =x4)

NEG-variables. A variable x is a NEG-variable if it occurs in the
clause head and there is a non-variable term ¢ in the corresponding
position of the recursive call. That is,

XTopo = Ty p2.
Examples where z is a NEG-variable:
P(x) «P(F(y)) and P(F(x)) «PFF®&))).

The Reform series (Z1,...,%,) of a NEG-variable x is given by:

Theorem 4.3. Let x and t be program variable and non-variable
term, respectively, in a clause S and 1, the n-solution of S. If xo s =
t1 o then,

N A 1 =1;

Ti = Lilln = ti1fln, l<i<n.
For example, x = (x1, F(y1), F(y2) ,F(y3)) if 2 ={x2 =F(y1)} and
n=4.

Example. Consider the recursive clause
P(x,z) « P(F(2),G(y)).

The 2-solution of the clause is: s ={x2=F(z1), 22=G(y;)}. We have
the following classification and Reform series (n = 4) of the variables.

Variable Type Reform series

y NONE (y1, y2, ¥3, ya)
z NEG (z1, G(y1), G(y2), G(ys))
x NEG (x1, F(z1), F(G(y1)), FG(y2)))

Special cases. We can identify certain special cases of POS and
NEG when more direct and efficient expressions can be found for
the Reform series. These special cases involve a recurrence in that
a variable occurs in the term that we substitute for (a renaming of)
the same variable. Let us, for example, consider the case of a POS-
variable where the recursion has a ‘step’ function v:

P(t) « P(x), where (t)=ux

We can identify a special case for each sufficiently uncomplicated func-
tion t. We shall only discuss two particulary simple, but common,
cases here: when ¢ is the ‘tail’ function and when it is the identity
function.

INV-variables. A POS-variable x is an INV-variable if it occurs in
corresponding positions in the head and recursive call of the clause.
That is,

T = T2 or IoUz = 1.

Examples where x is an INV-variable:
P(x) « P(x) and P(F(42,x)) « P(F(y,x)).

The Reform series (Z1,...,%,) of an INV-variable x is given by:

Theorem 4.4. Let x and t be program variable and term, respec-
tively, in a clause S and pu, the n-solution of S. If x1us = x4 or
xo ity = x1 then,

Tj = Tifln = Ty, for 1< <n.

For example, if g2 ={x1 =x2} and n =4 then X = (x4, x4, X4, X4).

POS-LIST-variables. Let u be any term. A POS-variable z is a
POS-LIST-variable if it occurs in the recursive call and there is a list
u.z in the corresponding position of the clause head. That is,

T2 = (UQ.J}Q)MQ.
Examples where x i1s a POS-LIST-variable:
P(u.x) « P(x) and P(v.u.x) « P(w.x).

The Reform series (z1,...,%,) of a POS-LIST-variable « is given by:

Theorem 4.5. Let © and u be program variable and term, respec-
tively, in a clause S and i, the n-solution of S. If &1y = (uz.x2)u2

then,
_ L, @ =n,
Ti=Tilly = .
! iftn (Ui 1o U)o 1<i<n.

For example, 2= (uz.u3.us.X4, U3.Ug.Xg4, Ug.Xg, Xq)if n =4 and
M2={X1=UQ.X2}.

Remarks. We conclude this section with a few remarks concerning
the classification of variables.

1. A consequence of Theorems 4.1-5 is that we can compute the
Reform series of any variable directly, without Reform transfor-
mation of the clause. Hence we need not carry out the Reform
transformation explicitly in order to construct the transformed
program. This observation forms the basis of our compilation
method.

2. A variable may belong to more than one class. Suppose, for
example, that a variable = belongs to both POS and NEG. We
have then two expressions for the Reforms series x of x: 4 and
z_, say. The fact that = belongs to both POS and NEG implies
that neither x4 nor x_ gives a complete description of z. The
complete description is obtained by unifying 4 and z_.

3. The classification procedure can readily be extended to linear
integer recursion. We may then consider the case ¢¥(y) =y & k,
for some integer function ¢ (addition, multiplication, etc.) and
integer k:

P(y) =z =y @ kA P(x);
Plz)—ax=yd kA P(y).

5. COMPILATION

The computation of a recursive program is made up of two kinds
of activities: head unification and body call computation. Let H
denote an activity of the former kind and B an activity of the latter
kind. We can then describe, in an informal way, the structure of the
computation using SLD-resolution as:

HBHBHDBEB...

That is, head unification and body call computation proceed alter-
natingly. We shall, in contrast, let the program compute according to
the following structure:

H* B*

where H* and B* indicate iteration of the activities H and B.

H* corresponds to the unification resulting from invoking the nth
reforment. (This is equivalent to iteration of the unification work H
performed at each recursion level in an SLD-resolution system.) We
divide H* into two phases. In the first phase we take in all input
data from the invoking call. This is done by a modified version of
Warren’s (1977, 1983) compilation schemes for head unification. In
the second phase we compute the variable bindings made in Reform
transformation. This is done by code for computing Reform series
according to Theorems 4.1-5.

B* corresponds to computation of the body of the nth reforment.
(This is equivalent to iteration of the clause body computation B
performed at each recursion level in an SLD-resolution system.) B*
is divided into three phases: iteration of the left-body calls, a single
recursive call to the program, and iteration of the right-body calls.

We arrive at H* and B* by compiling the recursive clause of a
program to a parameterized encoding of its nth reforment. We can
describe the computation of a recursive clause H «+ U AT A ® and an
invoking call G as follows.

1. Unify the head H with the call GG, using the 1st element of the
Reform series of each variable in H.

2. Compute ¥ n times, using the th element of the Reform series
of each variable in ¥ in the ith computation of ¥ (1 < < n).

3. Compute the recursive call T', using the nth element of the Re-
form series of each variable in T.

4. Compute ® n times, using the th element of the Reform series
of each variable in ® in the ith computation of ® (1 < < n).

Let H(7), ¥(¢), T(2), and ®(¢) denote H, ¥, T, and ®, respec-
tively, with all variables replaced by the i:th elements of the corre-
sponding Reform series. We can then, finally, give the parameterized
encoding of the nth reforment schematically as:

unify H(1l) with G

for i=1 to n do call V(i)
call T(n)

for i=n to 1 do call ®(¢)

We turn now to the question of how to represent variables in
the compiled program. The idea is that a variable is represented at
run-time by its Reform series implemented as a vector. On a parallel

machine we assume that the ith element of the Reform series of a
variable is stored on processor ¢, for 1 < < n. However, we need not
always represent all elements of a variable’s Reform series explicitly.
Suppose, for example, that the Reform series of a POS-variable z is
(ta,...,tn,Tn), where t; is the ith element of the Reform series of some
term t. We need not explicitly represent the first n — 1 elements of
the Reform series of x. References to these elements can be replaced
by references to ta,...,%,.

Now let us consider a simple example, the recursive clause of the
LessAll program:

LessAll(x.y, z) < z<x A LessAll(y, z).

The variable classification and representation is:

Variable Variable class Representation
X NONE vector
y POS-LIST scalar
zZ INV scalar

The compiled clause is:

<n,x,y> := traverse(argl);
z := arg2;

for i=1 to n do z<x[i];
call lessall(y,z);

A few remarks might help the reader understand this code. The
operation traverse traverses the input list while collecting (in x) and
counting (in n) the list elements. The last tail of the input list is
assigned to y. In the FOR-loop, all comparisons can be made si-
multaneously. The single recursive call to the base case is needed to
ensure correct behaviour if the input list ends with an unbound vari-
able, rather than the empty list; in this case both the base clause and
the recursive clause of Lessall applies. In Prolog, this call would
then match the base clause and create a choice point. For integer pro-
grams, where this situation does not occur since integers are ground,
we can unfold the recursive call.

Note that this compilation technique is not restricted to tail-
recursive programs. The correspondance between tail-recursion and
unbounded iteration (that is, WHILE-loops) is trivial. The correspon-
dance between structural recursion and bounded iteration, which we

exploit here, is less direct. Our next example program, which is not
tail-recursive, uses list concatenation to reverse a list.

Nrev(u.x,y) « Nrev(x, z) A Append(z,u.0,y).

The variable classification and representation is:

Variable Variable class Representation
u NONE vector
X POS-LIST scalar
y NONE vector
zZ POS scalar

The compiled code for this clause is:

<n,u,x> := traverse(argl);

y = argl;

for i=2 to n do y[i] := undef;
Z := undef;

call nrev(x,z);
call append(z,cons(uln],nil),y[n]);
for i=n-1 to 1 do
call append(yl[i+1],cons(uli],nil),y[i]);

Our compilation method is applicable for structural recursion:
the ‘step’” function (how the recursion argument is decomposed or
composed) of the recursion must be derivable from the program text
and not dependent on input data. Moreover, this step function must
be the same in all recursive clauses of the predicate.

6. LOOP PARALLELIZATION

A consequence of compiling structural recursion to FOR-loops as dis-
cussed above is that standard techniques developed for parallelizing
Fortran loops can be applied to recursive logic programs. In this sec-
tion we briefly review these techniques.

A loop of n iterations can be computed in parallel on n proces-
sors by letting each processor perform one iteration of the loop. The
loop can then get a n-fold speedup if the different iterations are inde-
pendent (the loop program is assumed available on each processor).
This technique, which has been successful for running Fortran-like
programs in parallel, is known as loop parallelization (Kuck et al.,

1972).

Loop parallelization works only for bounded iteration (that is,
FOR-loops) since the number of iterations to be performed must be
known when the loop is entered. Hence unbounded iteration (WHILE-
loops) cannot be parallelized in this way.

Consider a loop of n iterations computed in parallel on k proces-
sors. If n = k then each processor is assigned one iteration of the loop.
If n > k then every kth iteration is assigned to the same processor.
For example, the loop

for i=1 to 5 do
alil := bl[il/]j
dli] := blil*2
end

can be computed as follows on three processors:

Time Processor 1: Processor 2: Processor 3:
al1] := b[11/j al2] := v[2]/]j
df1] := b[11*2 d[2] := b[2]*2 al3] := b[3]/j
al4] := bl[4]/j al5] := b[51/j d[3] := b[3]*2
d[4] := b[4]*2 d[5] := b[5]*2

Other scheduling schemes are certainly conceivable.

7. CONCLUSION

We have described a parallelizing compilation method, based on the
Reform inference system, for recursive logic programs. The idea is to
compile structural recursion to parallel iteration. This approach has
two important advantages:

1. There is a natural mapping of the program onto a parallel ma-
chine whose processors are organized in a linear array or in a ring.
The inter-processor communication on such a machine will mostly
be between neighboring processors, since it is unusual that data
is passed between nonadjacent recursion levels in a logic program.
Furthermore, the compiler, rather than the run-time system, can
perform task scheduling and load balancing.

2. It gives a natural partitioning of the computation and its data.
In many logic programs, only a fraction of the data used on each
recursion level is accessible from other levels. Moreover, nonde-
terminism and data dependencies are often local to the individual
recursion levels.

ACKNOWLEDGEMENT
Thanks to Sten-Ake Tarnlund, Jonas Barklund and Ake Hansson for

valuable help and advice, and to Thomas Lindgren, Margus Veanes
and Johan Bevemyr for interesting discussions.

REFERENCES

BARKLUND, J. (1990) Parallel Unification, Ph.D. Thesis, Computing
Science Dept., Uppsala University.

Kuck, D. J., Y. MURAOKA & S. CHEN. (1972) On the number
of operations simultaneously executable in Fortran-like programs

and their resulting speedup. IEEE Trans. Computers C-21, no.
12, 1293-1310.

KOwWALSKI, R. A. (1974) Predicate logic as a computer language. In
Information Processing 74, pp. 569-574. North-Holland, Amster-
dam.

MiLLroTH, H. (1990) Reforming Compilation of Logic Programs,
Ph.D. Thesis, Computing Science Dept., Uppsala University.

MiLLroTH, H. (1991) Compiling Reform, (to appear in) Massively
Paralle]l Reasoning Systems (eds. J. A. Robinson & E. E. Sibert),
MIT Press.

ROBINSON, J. A. (1965) A machine-oriented logic based on the reso-
lution principle. Journal of the ACM 12, 23-41.

TARNLUND, S.-A. (1991) Reform, (to appear in) Massively Parallel
Reasoning Systems (eds. J. A. Robinson & E. Sibert), MIT Press.

WARREN, D. H. D. (1977) Implementing Prolog—compiling predi-

cate logic programs. Research Reports 39 and 40, Dept. of Al
Univ. of Edinburgh, Edinburgh

WARREN, D. H. D. (1983) An abstract Prolog instruction set. Report
309, SRI International, Menlo Park, Calif.

