
Using the Reform Inference System
for Parallel Prolog

H�akan Millroth

Computing Science Dept., Uppsala University
Box 520, S-751 20 Uppsala, Sweden
Electronic mail: hakanm@csd.uu.se

Abstract. We show how a new method for parallel logic programming, based on com-
pilation of T�arnlund's inference system Reform, can be applied to the logic program-
ming language Prolog. We retain the sequential left-to-right depth-�rst backtracking
scheme with one exception: the recursion levels of a recursive program, including the
head uni�cations at each level, are computed in parallel. We discuss criteria for when
a program is amenable to this kind of parallel processing and describe parallel Reform
Prolog solutions of some programming problems.

1. INTRODUCTION

Previous attempts at developing parallel Prolog systems have focused on exploiting
AND-parallelism, or OR-parallelism, or both. In this work we parallelize Prolog by
exploiting parallelism in its fundamental control structure: recursion.

Our basic idea is that parallelization takes place across recursion levels: the re-
cursion levels of a program, including the head uni�cations at each level, are computed
in parallel. The sequential left-to-right depth-�rst backtracking scheme of Prolog is
retained within each recursion level.

We compile structural recursion to bounded iteration (Millroth, 1990). The it-
erative programs are parallelized by standard methods developed for imperative pro-
grams. The technique is based on an analysis of the uni�cation patterns of recursive
programs.

This approach has a number of appealing consequences:

1. It gives the parallel program a natural and easy-to-understand parallel reading.
The programmer can write e�cient parallel programs by obeying some simple
rules of programming.

2. It gives a natural partitioning of the computation and its data, since nondeter-
minism and producer-consumer relationships are often local to each recursion
level. Nondeterminism and data dependencies within each recursion level does
not impede parallelization, since we run the each level sequentially.

3. There is a simple mapping of the program onto a parallel machine whose pro-
cessors are organized in, e.g., a ring: adjacent recursion levels are mapped to
adjacent processors. The inter-processor communication on such a machine will
mostly be between neighboring processors, since it is unusual that data is passed
between nonadjacent recursion levels in a logic program. We thus achieve pre-
dominantly local communication, which is crucial on a distributed memory ma-
chine.

4. The workload will automatically be spread evenly among the parallel proces-
sors, assuming that each recursion level of the program requires approximately

1

the same amount of work. This assumption seems reasonable for most Prolog
programs.

2. COMPILED REFORM COMPUTATIONS

In this section we briey describe our method for compiling a program, using struc-
tural recursion, to a program that uses bounded iteration. The compilation technique
makes use of T�arnlund's (1991) inference system Reform.

2.1. Reform

We shall de�ne Reform for the special case of linear recursion. Let R = (H
	 ^ T ^�) be a clause. We enumerate its variants as:

Ri = (Hi 	i ^ Ti ^�i); i � 1:

The nth reforment (n > 1) is de�ned as:

Rn = (H1 	1 ^ � � � ^	n ^ Tn ^�n ^ � � � ^�1)(�1 � � � � � �n�1);

where
�i = mgu(Hi+1; Ti) and �i � �j = mgu(�i; �j):

Let G0 be an (initial) goal. Resolving Rn with G0 gives

Gn = (1 ^ � � � ^	n ^ Tn ^�n ^ � � � ^�1)�;

where
� = mgu(G0;H1(�1 � � � � � �n�1)):

It can be shown that Gn can be derived from the clause R and the initial goal G0

in dlogne+ 1 steps. Note that Gn is the resolvent derived in n SLD-resolution steps
from R and G0. The derivation is thus signi�cantly shorter with Reform.

Example. Consider the program for scaling each element of a list by a factor Y:

scale([], Y, []).

scale([X|Xs], Y, [Z|Zs]) :-

Z is X*Y,

scale(Xs, Y, Zs).

Assume that we have the following goal, where n = 4.

scale([1,2,3,4], 10, W)

We may derive the 4th reforment of the program in two steps as follows. First, we
unfold the recursive call, obtaining:

scale([X1,X2|Xs], Y, [Z1,Z2|Zs]) :-

Z1 is X1*Y,

Z2 is X2*Y,

scale(Xs, Y, Zs).

2

Unfolding the recursive call of this clause (using the clause itself) now yeilds the 4th
reforment:

scale([X1,X2,X3,X4|Xs], Y, [Z1,Z2,Z3,Z4|Zs]) :-

Z1 is X1*Y,

Z2 is X2*Y,

Z3 is X3*Y,

Z4 is X4*Y,

scale(Xs, Y, Zs).

We can now resolve the goal with this clause in a single, direct step. This step opens
up for parallelism: the �rst two list can be matched in parallel, the third list can be
constructed in parallel, and the multiplications can be performed in parallel.

2.2. Compiling Reform

Carrying out the Reform transformation at run-time might impose considerable over-
head. The question is thus: How do we obtain the parallel algorithm, represented by
the nth reforment, at compile-time?

Let �n = �1�� � ���n�1, where �i (1 � i � n) are de�ned in Section 2.1. Consider
a variable x and its variant variables x1; : : : ; xn (these correspond to the new variables
created in each recursive invocation of the program in SLD-resolution). The Reform

series of x is then the sequence

x1�n; : : : ; xn�n:

We have shown that the Reform series of a variable can be inferred from informa-
tion available in the �rst uni�er �1. Closed-form expressions for the Reform series can
be inferred for di�erent classes of variables. Hence explicit Reform transformation is
not needed for determining the variable bindings obtained by Reform (Millroth, 1990;
1991a).

Let us see how this can be useful in compilation of linear recursion. Consider
a recursive clause H 	 ^ T ^ � and a goal G. Let H(i), 	(i), T (i), and �(i)
denote H, 	, T , and �, respectively, with all variables replaced by the ith elements
of the corresponding Reform series. The compiled program can then schematically
be described, in a parametric form, as:

unify H(1) with G
for i=1 to n do call 	(i)
call T (n)
for i=n to 1 do call �(i)

(In some cases, the recursive call T (n) can be unfolded against the base clause. In
the general case, however, this call can match both the base clause and the recursive
clause.)

Example (continued). The code for the recursive scale clause is:

n := length(arg1);

xs[1] := arg1;

3

y[1] := arg2;

for i = 1 to n+1

zs[i] := new_variable();

endfor

bind arg3 to zs[1];

for i = 1 to n

xs[i+1] := tail(xs[i]);

y[i+1] := arg2;

endfor

for i = 1 to n

x[i] := head(xs[i]);

z[i] := x[i]*y[i];

zs[i] := cons(z[i],zs[i+1]);

endfor

call scale(xs[n+1],y[n+1],zs[n+1]);

The �rst and third loop are parallel whereas the second loop is sequential. (In the
actual implementation the second loop distributes data to the third.)

2.3. Scope of the method

Our compilation method is applicable to structural recursion: The `step' function
(how the recursion argument is decomposed or composed) of the recursion must be
derivable from the program text and not be dependent on input data. Moreover, this
step function must be the same in all recursive clauses of the predicate.

For other data structures than lists and integers (of which we assume the compiler
to be aware) the compiler must have type information available.

Compilation of nonlinear structural recursion follows the same principles as in
the linear case. This is possible since a temporary linear representation of the re-
cursion tree is obtained in the single large head uni�cation that replaces the smaller
uni�cations of a traditional system (Millroth, 1990).

We shall limit the discussion in this paper to linear recursion.

3. REFORM PROGRAMMING IN PROLOG

We now apply Reform to the logic programming language Prolog. The idea is to
retain the usual left-to-right depth-�rst backtracking scheme with one exception: the
recursion levels of a recursive program, including the uni�cations at each level, are
computed in parallel.

An attractive consequence of this idea is that the nondeterminism of the language
does not impede e�cient parallelization in most cases, assuming that nondeterminism
most often occurs locally within recursion levels. This assumption seems reasonable
for most Prolog programs.

3.1. Criteria for running in parallel

Let us refer to variables shared between recursion levels as global variables. (Which
variables are shared between recursion levels is easily seen by doing one or a few
Reform transformation steps: they are the ones that get bound in the transformation.)

4

We shall now give two conditions for running the di�erent recursion levels e�-
ciently in parallel.

1. Each recursion level is deterministic with respect to the bindings made to the

global variables.

We say that the recursion levels are binding deterministic (Naish, 1988) with re-
spect to the global variables, if this condition is ful�lled. Note that the concept of
binding determinism is di�erent from the concept of data dependency in program-
ming languages lacking logical variables. As an example, in the context of traditional
AND-parallelism, consider appending three lists x, y and z to form a new list w.
Given the logic program

append([], Y, Y).

append([E|X] ,Y, [E|Z]) :- append(X, Y, Z).

we can do this with the query

?- append(Y, Z, YZ), append(X, YZ, W).

The two calls in this query can be computed in parallel, since uni�cation allows us to
use the result of a computation (the variable YZ in our example) before it is actually
computed.

In order to achieve binding determinism with respect to global variables, it must
be assured that such variables are bound only after it has been determined which
clause of the recursive program to use. Hence one must be careful not to bind any
global variables before tests or before cut in a clause. Consequently, one must some-
times defer output uni�cation to the clause body. We observe that it would be
convenient to do this program transformation automatically. The declarations used
in Parallel NU-Prolog (Naish, 1988) seems to be adequate for this purpose.

What happens if we try to run the recursion levels in parallel when the condition
of binding determinism is violated? The computation will toggle back and forth
between recursion levels by means of backtracking until appropriate bindings of the
global variables are found. This is clearly a very ine�cient method of control.

2. There is no cross-level dereferencing.

(Dereferencing is the process of following variable-to-variable bindings until a non-
variable term, or an unbound variable, is found. In e�ect, it amounts to retreiving
the value of the variable.) Cross-level dereferencing amounts to dereferencing a global
variable bound to a variable or term on another recursion level; we will see in Section 4
how the programmer easily can detect this situation.

Consider, as an example, the following program which computes the sum of the
elements of a list using an accumulating parameter (initialized to zero).

sum_list([], Y, Y).

sum_list([X|Xs], Y, Z) :-

W is X+Y,

sum_list(Xs, W, Z).

5

Here Y is a global variable, and binding W requires dereferencing Y. Hence the re-
cursion levels must be computed in sequence, although they are deterministic. Let us
now contrast this program with a slightly contrived variant of the usual list reversal
program using an accumulating parameter:

rev([], Y, Y).

rev([X|Xs], Y, Z) :-

W = [X|Y],

rev(Xs, W, Z).

This program is very similar in structure to the sum_list program. The di�erence is
that instead of bindingW to the evaluated value of X+Y, we bind W to the list [X jY].
We may put it like this: sum_list uses Y whereas rev mentions it (the distinction
between use and mention is a nice feature of logical variables). Mentioning Y does
not enforce dereferencing and all recursion levels of rev can run in parallel.

Assume now that a recursion level that performs a cross-level dereferencing sus-
pends execution until the dereferenced value is obtained. Then, if we try to run
recursion levels in parallel and the condition of no cross-level dereferencing is vio-
lated, the e�ect is that the recursions level are synchronized. Of course, this does
not mean that such programs always lack potential for parallel speed-up. Although
the recursion levels are synchronized, they may overlap in time to smaller or larger
extent.

Let us summarize. If condition 1 (binding determinism) is violated, then the par-
allel computation may be very ine�cient. If condition 2 (no cross-level dereferencing)
is violated, then the computation is more or less sequentialized due to synchronization.

4. EXECUTION MODEL

In this section we describe an execution model for parallel Prolog, suitable for a
large-scale distributed memory multiprocessor. The idea is to increase performance
of a restricted, yet interesting, class of predicates with parallelism, running other
predicates sequentially.

The sequential and parallel parts of a Prolog program interact as follows. The se-
quential predicates of the program run on a root processor. When a parallel predicate
is called, control is transferred to a network of parallel node processors. Upon termi-
nation, the parallel predicate returns control to the root which continues sequential
execution or invokes another parallel predicate.

A parallel computation is thus initiated by calling a parallel predicate on the
root processor. The parallel computation can then conceptually be divided into three
phases (in reality, they may overlap in time):

1. Supplying the input data to the node processors.

2. Computing one instance of the body of the recursive clause on each node proces-
sor.

3. Returning control to the root processor.

The parallel abstract machine used in the Reform project at Uppsala University
(T�arnlund et al., 1991) has an inter-processor topology incorporating both a ring and

6

a binary tree. The ring is used for communication between adjacent recursion levels
of a parallel predicate whereas the tree is used for transmitting data between the
sequential and the parallel parts of the computation.

Example. Consider the following program for partitioning a list X of numbers with
respect to a particular pivot number P. Those elements of X that are less than or
equal to P are collected in a list Y, and those elements that are greater than P in a
list Z.

split([], _, [], []).

split([U|X], P, Y, Z) :-

(U =< P ->

Y = [U|S], Z = T

; Y = S, Z = [U|T]

),

split(X, P, S, T).

A few steps of Reform transformation yield the following clause:

split([U1,U2,U3|X], P, Y1, Z1) :-

(U1 =< P ->

Y1 = [U1|Y2], Z1 = Z2

; Y1 = Y2, Z1 = [U1|Z2]

),

(U2 =< P ->

Y2 = [U2|Y3], Z2 = Z3

; Y2 = Y3, Z2 = [U2|Z3]

),

(U3 =< P ->

Y3 = [U3|Y3], Z3 = T

; Y3 = S, Z3 = [U3|T]

),

split(X, P, S, T).

By studying the transformed clause we can get an accurate view of what will happen
when we run the program in parallel. Although explicit Reform transformation is not
used in the system, this can be a convenient method for the programmer to understand
the parallel program. The clause obtained after one or a few Reform transformation
steps can tell us if bindings to global variables are deterministic, if there is any cross-
level dereferencing, if backtracking across recursion levels may occur, etc.

So what happens more exactly at the node processors when we we run the split
program? Once the ith node processor has received its input data (one element Ui
of the input list and the pivot number P), it can start computing the ith instance of
split's body. Assuming we have an input list of length n and n node processors, the
processors run the following code (each processor employs the sequential computation
rule of standard Prolog):

7

Node 1:

(U1 =< P ->

Y1 = [U1|Y2],

Z1 = Z2

; Y1 = Y2

Z1 = [U1|Z2]

)

Node 2:

(U2 =< P ->

Y2 = [U2|Y3],

Z2 = Z3

; Y2 = Y3

Z2 = [U2|Z3]

)

: : :

Node n:

(Un =< P ->

Yn = [Un|S],

Zn = T

; Yn = S

Zn = [Un|T]

)

If we bind Y1 [U1 jY2] on processor 1, we can simultaneously bind Y2 [U2 jY3]
on processor 2, since the action taken on processor 1 does not require Y2 to be
dereferenced. The situation is analogous on the other processors. Hence the second
condition of Section 3.1 is ful�lled: no cross-level dereferencing takes place.

The �rst condition is also ful�lled, since the bindings are deterministic. Hence
we can run the recursion levels e�ciently in parallel.

5. PROGRAM EXAMPLES

In this section we describe parallel Reform Prolog solutions of some programming
problems.

In the �rst example all work is done by head uni�cation. Such programs can ex-
ploit parallel uni�cation (Barklund, 1990) with our method, but are hard to parallelize
e�ciently in other parallel models.

Since mutual recursion cannot be handled directly with our compilation technique
it must be, automatically or manually, transformed to straight recursion. Our second
example illustrates this.

In the third example we discuss a program which allows parallelism in head
uni�cation and execution of the left-body, but has a sequential right-body.

5.1. Parentheses matching

We shall �rst consider an example proposed by Shapiro (1983). We are given a list
of left and right parentheses of two kinds. The task is to check that the parentheses
are balanced.

balanced(L) :-

balanced(L, Ss),

stack(Ss, []).

balanced([], []).

balanced(['('|Ins], [push('(')|Outs]) :-

balanced(Ins, Outs).

balanced(['{'|Ins], [push('{')|Outs]) :-

balanced(Ins, Outs).

balanced([')'|Ins], [pop('(')|Outs]) :-

balanced(Ins,Outs).

8

balanced(['}'|Ins], [pop('{')|Outs]) :-

balanced(Ins, Outs).

stack([], []).

stack([push(X)|Ss], S) :-

stack(Ss, [X|S]).

stack([pop(X)|Ss], [X|S]) :-

stack(Ss, S).

Let us consider running this program with Reform parallelism. In balanced/1, we
run the calls to balanced/2 and stack/2 in sequence. However, both balanced/2

and stack/2 can exploit Reform parallelism. That is, all recursion levels of each of
these predicates are computed simultaneously. Since neither predicate has any goals
in the residual body, this amounts to two large parallel head uni�cations.

It is interesting to compare Reform with other paradigms of parallel logic pro-
gramming with respect to this program:

1. The program cannot bene�t from traditional AND-parallelism: running bal-

anced/2 in parallel with stack/2 is not possible unless some notion of communi-
cating processes is adapted. Neither balanced/2 nor stack/2 are, by themselves,
amenable for traditional AND-parallelism since each clause contains at most one
literal.

2. In a concurrent logic programming language, like Parlog (Clark & Gregory, 1983)
or GHC (Ueda, 1986), the balanced/2 and stack/2 calls can run as concurrent
processes. The variable Ss acts as a communication channel on which balanced/2
writes messages to be consumed by stack/2. However, it is unlikely that this
program will be accelerated by concurrent execution in this manner when run
on parallel machine. The reason is simple, yet quite typical: the concurrent
processes are too small to make the overhead associated with spawning parallel
processes worthwhile.

When considering this example, the reader may wonder how programs which
have more than one recursive clause are handled by the compiler. The answer is
that in a preprocessing step such programs are transformed into equivalent programs
having only one recursive clause (this is called clause fusing). For example, the stack
program is transformed to:

stack([], []).

stack([Y|Ss], U) :-

s(Y, U, W),

stack(Ss, W).

s(push(X), S, [X|S]).

s(pop(X), [X|S], S).

5.2. Dutch national ag

We shall now consider the following program, adapted fromO'Keefe (1990), for solving
Dijkstra's Dutch national ag problem. The problem reads: \Given a list of elements
coloured red, white, and blue, reorder the list so that all the red elements appear �rst,

9

then all the white elements, followed by the blue elements. This reordering should
preserve the original relative order of elements of the same colour." For clarity, we
modify O'Keefe's program to represent each d-list explicitly rather than as a pair of
lists.

dutch_national_flag(Input, Output) :-

dnf(Input, Output-X, X-Y, Y-[]).

dnf([], R-R, W-W, B-B).

dnf([Item|Items], R0-R, W0-W, B0-B) :-

colour(Item, Colour),

dnf(Colour, R0-R, W0-W, B0-B, Item, Items).

dnf(red, [Item|R1]-R, W0-W, B0-B, Item, Items) :-

dnf(Items, R1-R, W0-W, B0-B).

dnf(white, R0-R, [Item|W1]-W, B0-B,Item, Items) :-

dnf(Items, R0-R, W1-W, B0-B).

dnf(blue, R0-R, W0-W, [Item|B1]-B, Item, Items) :-

dnf(Items, R0-R, W0-W, B1-B).

We transform the program to use straight recursion. First we merge the three clauses
of dnf/6 to one clause by introducing an auxiliary predicate dnf_branch/5:

dnf(Colour, R0-R, W0-W, B0-B, Item, Items) :-

dnf_branch(Colour, R0-R1, W0-W1, B0-B1, Item),

dnf(Items, R1-R, W1-W, B1-B).

dnf_branch(red, [Item|R1]-R1, W0-W0, B0-B0, Item).

dnf_branch(white, R0-R0, [Item|W1]-W1, B0-B0, Item).

dnf_branch(blue, R0-R0, W0-W0, [Item|B1]-B1, Item).

Now we can unfold the call to dnf/6 in dnf/4, thereby obtaining a program using
straight recursion. The resulting procedure for dnf/4 is:

dnf([], R-R, W-W, B-B).

dnf([Item|Items], R0-R, W0-W, B0-B) :-

colour(Item, Colour),

dnf_branch(Colour, R0-R1, W0-W1, B0-B1, Item),

dnf(Items, R1-R, W1-W, B1-B).

This program is amenable to Reform parallel execution: Traversal of the input list,
construction of the output lists, and all calls to colour/2 and dnf_branch/5 can be
computed in parallel. That gives a very high degree of parallelism to this seemingly
sequential program.

5.3. Linear regression

The presentation of our next example is adopted from Press et al. (1989). The
problem is to �t a set of n data points (xi; yi) to a straight line y = a + bx. We
assume that the uncertainty �i associated with each data yi is known, and that the
x0is (values of the dependent variable) are known exactly.

10

Let us �rst de�ne the following sums.

S =
nX

i=1

1=�2i Sx =
nX

i=1

xi=�
2
i Sy =

nX

i=1

yi=�
2
i

Sxx =
nX

i=1

x2i =�
2
i Sxy =

nX

i=1

xiyi=�
2
i

The coe�cients a and b of the straight-line equation can now be computed as:

� = SSxx � (Sx)
2

a =
SxxSy � SxSxy

�

b =
SSxy � SxSy

�

The following is a Prolog program for computing the �ve sums needed in the calcu-
lation of a and b.

lin_regr_sums([], [], [], 0, 0, 0, 0, 0).

lin_regr_sums([X|Xs], [Y|Ys], [E|Es], S, Sx, Sy, Sxx, Sxy) :-

E1 is 1/(E*E), X1 is X*E1, Y1 is Y*E1,

XX is X*X1, XY is X*Y1,

lin_regr_sums(Xs, Ys, Es, S1, Sx1, Sy1, Sxx1, Sxy1),

S is S1+E1, Sx is Sx1+X1, Sy is Sy1+Y1,

Sxx is Sxx1+XX, Sxy is Sxy1+XY.

We have broken up the arithmetic calculations in the body in two parts: The
parallel operations are done in the left-body, and all calculations which are dependent
on earlier recursion levels are done in the right-body.

Notice that we could, of course, have used accumulating parameters for the �ve
sum-arguments, and thus obtained a tail-recursive version of the program. This would
have been a good idea if we intended the program to run sequentially. However, we
would then have missed most opportunities for parallelism.

6. RELATED WORK ON PARALLELIZATION OF RECURSION

The idea of running the goals of a conjunction concurrently was described by Kowalski
(1974) in his seminal paper on predicate logic as a programming language. This kind
of parallel processing was later coined AND-parallelism.

Let us consider running a recursive logic program in AND-parallel mode. Assume
that, at each recursion level, the recursive call and the other body calls are made in
parallel. Then the di�erent recursion levels are initiated one after the other but their
work may overlap in time. Clearly, this kind of parallel processing can only speed up
the computation of recursive programs with a constant factor: it takes O(n) time to
spawn all n recursion levels.

In our model, the time complexity for getting all recursion levels into work is
bounded only by the time it takes to distribute the input data of the program. This

11

may take logarithmic time on, for example, a machine with tree topology. On a
shared-memory machine (or on a distributed-memory machine where the input data
is already distributed) work on all recursion levels can be initiated simultaneously.

Now, let us look outside the logic programmingworld. A parallelization technique
for recursion in Lisp, which gives essentially the same degree of parallelism as with
AND-parallelism, is described by Larus (1991).

Parcel (Harrison, 1989) is a compiler, for the Lisp-dialect Scheme, that paral-
lelizes recursion for execution on shared-memorymultiprocessors. This work addresses
the same problem as we do: compiling recursion to parallel iteration. Let us point
out some notable di�erences in the solutions.

In the �rst place, Parcel does not parallelize programs that use other data
structures than lists (a nonstandard, vector-like, representation of lists is employed).
Our compilation method is neither restricted to any particular data structure, nor to
linear recursion. The only restriction is that the `step' function of the recursion must
be independent of input data.

Secondly, Parcel does not parallelize programs that destructively modify list
structures. The Prolog counterparts of such programs use di�erence lists which allow
constant-time concatenation. The use of di�erence lists does not impede paralleliza-
tion with our method. On the contrary, di�erence lists o�er a very e�cient way of
constructing lists in parallel, as is shown in Section 5.2.

Thirdly, Parcel depends on solving (at run-time) recurrences which gives ex-
pressions corresponding to our Reform series. Our classi�cation of variables and
derived expressions for Reform series allow us to determine the bindings of the vari-
ables involved in the recursion at compile-time (modulo the particular input data of
the call).

7. CONCLUSIONS

The important issues in parallel computation on large-scale distributed memory ma-
chines are programming simplicity, locality of reference, and workload balance. We
have described a method which successfully addresses these questions for a class of
recursive Prolog programs.

Locality of reference is assured by the natural mapping of parallel programs
to a ring of parallel processors. Adjacent recursion levels are mapped to adjacent
processors on such a machine. Thus, inter-processor communication is local for the
majority of Prolog programs which do not pass data between nonadjacent recursion
levels.

Even workload among processors is assured (without dynamic load balancing) if
the recursion levels of the parallel program contain approximately the same amount
of work. This is the case for many Prolog programs.

Reform o�ers a conceptually simple model of parallelism for the Prolog program-
mer: the operational behaviour of a parallel program is no more complex than the
corresponding sequential program. Here it is interesting to draw an analogy between
our parallelization of recursion and parallelization (or vectorization) of iteration in
Fortran. In both cases one starts from a sequential program and parallelizes it by
exploiting parallelism in the language construct for repetition. In the Fortran case,

12

this is often a very complicated procedure which requires expertise (Fox, 1990). In
our case, a few simple rules of programming is su�cient for writing e�cient parallel
programs.

ACKNOWLEDGEMENT

Jonas Barklund, Johan Bevemyr, Thomas Lindgren and Margus Veanes gave valuable
comments on earlier drafts of this paper.

REFERENCES

Barklund, J. (1990) Parallel Uni�cation, Ph.D. Thesis, Computing Science Dept.,
Uppsala University.

Clark, K. L. & S. Gregory (1983) PARLOG: a parallel logic programming lan-
guage. Research report DOC 83/5, Dept. of Computing, Imperial College, Lon-
don.

Fox, G. (1990) Talk given at a workshop on Massively Parallel Reasoning Systems,
Syracuse, New York, December 1990.

Harrison III, W. L. (1989) The interprocedural analysis and automatic paralleliza-
tion of Scheme programs. Lisp and Symbolic Computation 2, No. 3/4, 179{396.

Kowalski, R. A. (1974) Predicate logic as a computer language. In Information
Processing 74, pp. 569{574. North-Holland, Amsterdam.

Larus, J. R. (1991) Compiling Lisp programs for parallel execution. Lisp and Sym-
bolic Computation 4, No. 1, 29{99.

Millroth, H. (1990)Reforming Compilation of Logic Programs, Ph.D. Thesis, Com-
puting Science Dept., Uppsala University. (Summary to appear at Int. Logic
Programming Symp., San Diego, CA., October 1991)

Millroth, H. (1991) CompilingReform, (to appear in)Massively Parallel Reasoning
Systems (eds. J. A. Robinson & E. E. Siebert), MIT Press.

Mycroft, A. & R. A. O'Keefe (1984) A Polymorphic Type System for Prolog.
Arti�cial Intelligence 23, No. 3, 295{307.

Naish, L. (1988) Parallelizing NU-Prolog. Proc. 5th Int. Conf./Symp. Logic Pro-
gramming (eds. K. A. Bowen & R. A. Kowalski), Seattle, Washington.

O'Keefe, R. A. (1990) The Craft of Prolog. MIT Press, Cambridge, Mass.

Press, W. H. et al. (1989) Numerical Recepies. The Art of Scienti�c Computing.
Cambridge U. P., Cambridge.

Shapiro, E. Y. (1983) A Subset of Concurrent Prolog and its Interpreter. Technical
report TR-003, ICOT, Tokyo.

T�arnlund, S.-�A. (1991) Reform, (to appear in) Massively Parallel Reasoning Sys-
tems (eds. J. A. Robinson & E. E. Siebert), MIT Press.

T�arnlund, S.-�A, H. Millroth, J. Bevemyr, T. Lindgren & M. Veanes (1991)
Perform: a Parallel Reform Machine, submitted for publication.

Ueda, K. (1986) Guarded Horn Clauses, Eng.D. Thesis, University of Tokyo.

13

