
Exploiting Recursion-Parallelism in Prolog �

Johan Bevemyr Thomas Lindgren H�akan Millroth

Computing Science Dept., Uppsala University

Box 311, S-75105 Uppsala, Sweden
Email: fbevemyr,thomasl,hakanmg@csd.uu.se

Abstract

We exploit parallelism across recursion levels in a deterministic sub-

set of Prolog. The implementation extends a convential Prolog machine

with support for data sharing and process managment. Extensive global

data
ow analysis is employed to facilitate parallelization. Promising per-

formance �gures, showing high parallel e�ciency and low overhead for

parallelization, have been obtained on a 24 processor shared-memory mul-

tiprocessor.

1 INTRODUCTION

The Single Program Multiple Data (SPMD) model of parallel computation has
recently received a lot of attention (see e.g. the article by Bell [1]). The model
is characterized by each parallel process running the same program but with
di�erent data.1 The attraction of this model is that it does not require a dynamic
network of parallel processes: this facilitates e�cient implementation and makes
the parallel control-
ow comprehensible for the programmer.

We are concerned here with the SPMDmodel in the context of logic program-
ming. For recursive programs, the di�erent recursive invocations of a predicate
are all executed in parallel, while all other calls are executed sequentially. We
refer to this variant of (dependent) AND-parallelism as recursion-parallelism. A
recursive invocation minus the head uni�cation and the (next) recursive call is
referred to as a recursion level. Each recursion level constitutes a process, which
gives the programmer an easy way of estimating the process granularity of a
given program or call.

We implement recursion-parallelism by Reform compilation [6] (this can be
viewed as an implementation technique for the Reform inference system [11]).

�To appear in: Proc. PARLE'93, Springer LNCS, 1993.
1This should not be confused with the Single Instruction Multiple Data or SIMD model,

where processes are synchronized instruction by instruction.

1

Ln RnHn

re
cu

rs
io

n
de

pt
h

L1 R1H1

R2L2H2

...

Standard AND-parallelism

time

L2 R2

RnLn

... ...

R1L1Hn

re
cu

rs
io

n
de

pt
h

H1 ...

time

Recursion-parallelism

Figure 1: Executing a clause H L;H0; R with standard AND-parallelism and
recursion-parallelism.

This is a control-structure transformation that changes the control-
ow of a
recursive program quite dramatically. When invoking a recursive program with
a call of size n (corresponding to a recursion depth n) a four-phase computation
is initiated:

1. A big head uni�cation, corresponding to the n small head uni�cations with
normal control-
ow, is performed.

2. All n instances of the calls to the left of the recursive call are computed in
parallel.

3. The program is called recursively. This call is known to match the base
clause. Hence, in practice, this call is often trivially cheap.

4. All n instances of the calls to the right of the recursive call are computed
in parallel.

The di�erence between standard AND-parallelism and recursion-parallelism
is illustrated in Figure 1. The �gure shows execution of a recursive clause H
L;H 0; R, where H is the head, H0 is the recursive call and L, R are (possibly
empty) conjunctions. Note that the �gure shows a situation where there are no
data dependencies between recursion levels, and no uni�cation parallelism.

This paper is organized as follows. In Section 2 we de�ne Reform Prolog. We
discuss some programming techniques and concepts in Section 3. An overview
of the parallel abstract machine is presented in Section 4. Section 5 provides an
overview of the compile-time analyses employed for parallelization. Extensions to
the sequential instruction set are presented by means of an example in Section 6.
Experimental results obtained when running benchmark programs on a parallel
machine are presented and discussed in Section 7.

2

2 REFORM PROLOG

Reform Prolog parallelizes a deterministic subset of Prolog. This is similar to
the approach taken in Parallel NU-Prolog [7]. However, Reform Prolog exploits
recursion-parallelism when parallelizing this subset, whereas Parallel NU-Prolog
exploits AND-parallelism.

With ReformProlog, as with Parallel NU-Prolog, it is straight-forward to call
parallel subprograms from a nondeterministic program. Thus, there is a natural
embedding of parallel code in ordinary sequential Prolog programs. Since the
entire call tree below a parallel call is not parallelized, some non-deterministic
computations can be supported in a parallel context as shown below. This is
not done in Parallel NU-Prolog.

Below we de�ne the condition for when a recursive Prolog predicate can be
parallelized, and how this condition can be enforced by the implementation. We
need to de�ne two auxiliary concepts:

� A variable is shared if it is visible from more than one recursion level. Note
that a variable can be shared at one point of time and unshared (local) at
another.

� A variable binding is unconditional if it cannot be undone by backtracking.

We say that a call in a parallel computation is safe if all bindings made to its
shared variables are unconditional when the call is executed. The condition for
when a predicate can be parallelized is then:

A recursive predicate can be parallelized only if all calls

made in the parallel computation are safe.

Hence, limited non-determinism is allowed: when conditional bindings are
made only to variables local to a recursion level, the computation is safe.

Safeness of a call is de�ned w.r.t. to the instantiation of the call (i.e., what
parts of the arguments are instantiated). We can distinguish between the parallel
instantiation and the sequential instantiation of a call. These might di�er as a
parallel call can `run ahead' of the sequential instantiation: recursion levels that
would execute after the current one sequentially, may already have bound shared
variables.

We say that a call is par-safe when it is safe w.r.t. the parallel instantiation,
and that it is seq-safe when it is safe w.r.t. the sequential instantiation.

The compiler is responsible for checking that programs declared parallel by
the programmer are safe. For calls that can be proven par-safe at compile-time,
there is no need for extra safeness checking at runtime. For calls that can be
proven seq-safe at compile-time, but not par-safe, it is necessary to check safeness
at runtime. If the call is not safe, then it is delayed until it becomes safe. This
is done by suspending the call until:

1. The unsafe argument has become su�ciently instantiated by another re-
cursion level; or

2. The current call becomes leftmost.

3

If neither par-safeness nor seq-safeness can be proven at compile-time, then
parallelization fails.

3 RECURSION PARALLEL PROGRAMMING

Before describing the execution machinery, we brie
y consider some program-
ming techniques and concepts.

3.1 Machine utilization

The parallel programmer is concerned with utilizing the available parallel ma-
chine as e�ciently as possible. In Reform Prolog, this means creating su�cient
work and avoiding synchronization due to data dependences. A parallel machine
where most of the workers are inactive due to lack of work is underutilized; a
parallel machine where most workers are waiting for data is ine�ciently used.

The number of processes available to the workers is precisely the number of
recursion levels of the parallel call. To keep a large machine busy, there should
consequently be many recursion levels { far more than the number of workers,
ideally.

3.2 Safeness

To illustrate the concept of safeness, consider the following two programs:

split([],_,[],[]).

split([X|Xs],N,[X|Ys],Zs) :- X =< N, split(Xs,N,Ys,Zs).

split([X|Xs],N,Ys,[X|Zs]) :- X > N, split(Xs,N,Ys,Zs).

split*([],_,[],[]).

split*([X|Xs],N,Ys,Zs) :- X =< N, !, Ys = [X|Ys0], split*(Xs,N,Ys0,Zs).

split*([X|Xs],N,Ys,[X|Zs]) :- split*(Xs,N,Ys,Zs).

Assume that the third arguments of both predicates are shared, as might be
the case if they were called from a parallel predicate. The predicate split/4 is
then unsafe, since the third argument might be conditionally bound in the second
clause, and then unbound again if the comparison X � N fails. In contrast, the
third argument of split�/4 is only bound in a determinate state and so split�/4 is
safe for parallel execution (the binding of the fourth argument in the last clause
does not a�ect safeness, since clauses are tried in textual order).

3.3 Suspension

The programmer would like to avoid suspension as far as possible. However, in
the implementation described in this paper, cheap suspension and simple, e�-
cient scheduling combine to lessen synchronization penalties considerably. Con-
sider the following program:

nrev([],[]).

nrev([X|Xs],Zs) :- nrev(Xs,Ys), append(Ys,[X],Zs).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

4

The compiler detects that the �rst argument of append/3 is shared. Hence,
indexing must suspend until the �rst argument Ys is instantiated by the previous
recursion level. The third argument Zs is also found to be shared, but the
situation is reversed: the next recursion level will wait for Zs to be bound.

The inner loop of append/3 is then: wait for the input to be instantiated;
when this occurs, write an element on the output list and go back to the be-
ginning again. Thus, there is considerable scope for overlapping computations.
As can be seen in the benchmark section, speedups are almost linear on 24
processors.

We also ran a second version of nrev/2, where the data dependence of ap-
pend/3 was removed by a simple transformation: the length of the �rst argument
is known at call-time by an extra parameter. Every call to append/3 can then
construct the list Ys asynchronously (the elements of the list will be �lled in
later) and there is no suspension under execution.

nrev*(0,[],[]).

nrev*(N+1,[X|Xs],Zs) :- nrev*(N,Xs,Ys), append*(N,Ys,[X],Zs).

append*(0,[],Ys,Ys).

append*(N+1,[X|Xs],Ys,[X|Zs]) :- append*(N,Xs,Ys,Zs).

Surprisingly, the nrev�/3 program is slower than the suspending nrev/2 pro-
gram. Measurements show that this is because recursion levels of nrev/2 usually
suspend very brie
y, due to simple, fast suspension and straightforward schedul-
ing of processes. For 16 processors, no processor was suspended more than 0.6%
of the total execution time on the nrev/2 program; when run on 8 processors,
the program suspended each worker less than 0.1% of the execution time.

On the other hand, the asynchronous nature of constructing the answer lists
in nrev�/3 led to an increase in the number of general uni�cations, due to later
recursion levels overtaking earlier ones. The cost is time and memory. (Note
that nrev�/3 still exhibited a speedup of approximately 13 on 16 processors;
nrev/2, however, was clocked at a speedup of over 15 on 16 processors.)

4 THE PARALLEL ABSTRACT MACHINE: OVERVIEW

The Reform engine consists of a set of workers, at least one per processor. Each
worker is a separate process running a WAM-based [12] Prolog engine with
extensions to support parallel execution. The Prolog engine is comparable in
speed with SICStus Prolog (slightly faster on some programs, slightly slower on
others).

The Reform engine alternates between two modes: sequential execution and
parallel execution. One dedicated worker (the sequential worker) is responsible
for the sequential execution phase. During this phase all other workers (the
parallel workers) are idle. The sequential worker initiates parallel execution and
resumes sequential execution when all parallel workers have terminated.

A common code area is used and all workers have restricted access to each
others heaps. All other data areas are private to each worker. The shared heaps
are used to communicate data created during sequential and parallel execution
(an atomic exchange operation is employed when binding possibly shared heap

5

variables). When there are several shared heaps it is no longer possible to use a
simple pointer comparison for determining whether a binding should be trailed
or not. We solve this problem by extending the representation of each variable
with a timestamp.

The sequential worker's temporary registers can be read by the parallel work-
ers. These registers are employed for passing arguments to the parallel computa-
tion (one such register contains the precomputed recursion depth, i.e., the total
number of parallel processes).

Synchronization is implemented by busy-waiting, i.e., suspended processes
actively check if they can be resumed. The drawback of this method is that
a suspended process tie up a processor. The advantage is that non-suspended
processes are not slowed down. In particular, very simplisitic and e�cient ap-
proaches to process scheduling are possible. The Reform Prolog implementation
currently supports static scheduling and dynamic self-scheduling [10]. With both
approaches, the actual task switching amounts to a simple jump operation.

5 COMPILING RECURSION PARALLEL PROGRAMS

The compiler ensures the safeness of the computation, guarantees that time-
dependent operations are performed correctly and employs suspending and lock-
ing uni�cation when necessary.

These tasks depend on compile-time program analyses that uncover type, lo-
cality and determinacy information. The compiler then emits instructions based
on this information, possibly falling back to more conservative code generation
schemes when high-precision analysis results cannot be obtained.

5.1 Type analysis

The type inference phase employs an abstract domain based on the standard
mode-analysis domain [5], augmented with support for lists and di�erence lists
as well as handling of certain aliases.

The compiler distinguishes the parallel and sequential types of a predicate.
The sequential type is the type that must hold when the current recursion level
is leftmost, while the parallel type holds for any recursion level. The parallel
type is the most frequently used for compilation.

5.2 Locality analysis

Locality analysis tries to �nd what terms are local to a process (recursion level),
what terms are shared between processes and what terms contain variables sub-
ject to time-dependent tests. Consider the following program:

rp([],[]).

rp([X|Xs],[Y|Ys]) :- p(X,Y), rp(Xs).

p(a,X) :- q(X). p(b,c).

q(X) :- var(X),!,X = b. q(c).

6

Given the call rp([a,b],[Y,Y]), we get two processes, p(a,Y) and p(b,Y). Both
are safe and can thus proceed in parallel. Now assume p(b,Y) precedes p(a,Y),
and binds Y to c. Then p(a,c) will reduce to q(c) which succeeds.

Sequential Prolog would have a quite di�erent behaviour: �rst, p(a,Y) re-
duces to q(Y) and in turn to Y = b. Then p(b,b) fails. Hence, for this example,
the parallel execution model is unsound w.r.t. sequential Prolog execution. This
is due to the time-dependent behaviour of the primitive var/1.

Our solution to this problem is to mark, at compile-time, certain variables
as being time-sensitive, or fragile. In the example, the argument of q/1 is fragile
and the compiler must take this into account.

Furthermore, knowledge that a variable is not fragile, or not shared is ex-
tremely useful to the code generator. Using such information, operations with a
very complex general case, such as uni�cation, can in some cases be reduced to
the same code as would be executed by a sequential WAM.

5.3 Safeness analysis

Safeness analysis aims to ensure that no conditional bindings are made to shared
variables. In this respect, it is quite di�erent from determinacy analysis: while
determinacy analysis attempts to prove that a given call yields at most a single
solution, safeness analysis instead proves no uni�cations with shared terms are
made in a non-determinate, parallel state. Safeness analysis thus employs the
results of type inference (to see whether the call is determinate or not) and
locality analysis (only shared terms can be unsafe).

6 INSTRUCTION SET

The sequential WAM instruction set is extended with new instructions for sup-
porting recursion-parallelism. Due to space limitations, we can only describe
these by means of a simple example and refer to other sources for a full discus-
sion [3, 2, 4]. Consider the program:

map([],[]).

map([A|As],[B|Bs]) :- foo(A,B), map(As,Bs).

The program is compiled into the following extended WAM code.

map/2: switch_on_term Lv La L1 fail

Lv: try La

trust L1

La: get_nil X0

get_nil X1

proceed

L1: build_rec_poslist X0 X2 X3 X0 % first list

build_poslist X1 X2 X4 X1 % second list

start_left_body L2 % execute L2 in parallel

7

execute map/2 % call base case

L2: initialize_left 1 % I := initial recursion level

L3: spawn_left 1 X2 G2 % X2 := I++; while(I < N) do

put_nth_head G3 X2 0 X0 % X0 := G3[I]

put_nth_head G4 X2 0 X1 % X1 := G4[I]

call foo/2 0 % call foo(G3[I],G4[I])

jump L3 % next iteration

The instructions build rec poslist and build poslist employs a data struc-
ture called a vector-list. This is a list where the cells are allocated in consequtive
memory locations, to allow constant-time indexing into the list. The instructions
work as follows:

� build rec poslist X0 X2 X3 X0 traverses the list in X0 and builds a vector-
list of its elements, storing a pointer to it in X3, and storing the vector
length in X2. The last tail of the list is stored in X0.

� build poslist X1 X2 X4 X1 traverses the list X1 to its X2'th element, and
builds a vector-list of its elements in X4. If the list has fewer than X2
elements and ends with an unbound variable, then it is �lled out to length
X2. The X2'th tail of the vector-list is uni�ed with the X2'th tail of the
list in X1, and �nally X1 is set to the X2'th tail of the vector-list.

The sequential worker's registers X2, X3 and X4 are referred to as G2, G3 and
G4 in the parallel code.

The instruction initialize left calculates the initial recursion level in static
scheduling mode. In dynamic scheduling mode, this instruction is ignored.

7 EXPERIMENTAL RESULTS

In this section we present the results obtained when running some benchmark
programs in Reform Prolog on a parallel machine.

7.1 Experimental methodology

Parallelmachine. ReformProlog has been implemented on the Sequent Sym-
metry multiprocessor. This is a bus-based, cache-coherent shared-memory ma-
chine using Intel 80386 processors. The experiments described here were con-
ducted on a machine with 26 processors, where we used 24 processors (leaving
two processors for operating systems activitites).

Evaluation metrics. The metric we use for evaluating parallelization is the
speedup it yields. We present relative and normalized speedups.

Relative speedup expresses the ratio of execution time of the program (com-
piled with parallelization) on a single processor to the time using p processors.

Normalized speedup expresses the ratio of execution time of the original
sequential program (compiled without parallelization) on a single processor to
the time using p processors on the program compiled with parallelization.

8

7.2 Benchmarks.

Programs and input data. We have parallelized four benchmark programs.
Two programs (Match and Tsp) are considerably larger than the other two. One
program (Map) exploits independent AND-parallelism, whereas the other three
exploits dependent AND-parallelism.

Map. This program applies a function to each element of a list producing a
new list. The function merely decrements a counter 100 times. A list of 10,000
elements was used.

Nrev. This program reverses a list using list concatenation (`naive reverse').
A list of 900 elements was used.

Match. This program employs a dynamic programming algorithm for com-
paring, e.g., DNA-sequences. One sequence of length 32 was compared with 24
other sequences. The resulting similarity-values are collected in an sorted binary
tree.

Tsp. This program implements an approximation algorithm for the Travel-
ling Salesman Problem. A tour of 45 cities was computed.

Load balance. One way of estimating the load balance of a computation is
to measure the �nishing time of the workers. We measured the execution time
for each worker when executing our benchmarks. Static scheduling was used in
all experiments.

Map. This program displayed a very uniform load balance (less than 0.3%
di�erence between workers). This is hardly surprising since the number of re-
cursion levels executed by each worker is large, and there is no di�erence in
execution time between recursion levels.

Nrev. The execution time of each worker only varied about 3% when exe-
cuting this program. There is a slight di�erence in the execution time of each
recursion level but the large number of recursion levels executed by each worker
evens out the di�erences.

Match. When 16 workers were used, 8 workers executed 2 recursion levels
each, while 8 workers executed a single recursion level. This explains the rela-
tively poor speedup on 16 workers. When 24 workers were used the execution
time varied less than 0.3% between workers. This is explained by the fact that
each worker executed one recursion level, and that all recursion levels executed
in the same time.

Match and Tsp. These program displayed an uniform load balance on all
but three workers. This is explained by the fact that 45 recursion levels were
executed in all; 21 workers executed 2 recursion levels each while 3 workers
executed 1 recursion level each. Despite this the program displays good speedup
(21.85). Using dynamic scheduling would not have improved the results in this
case.

Sequential fraction of runtime. Each parallelized benchmark program has
an initial part which is not parallelized. This includes setting up the arguments
for the parallel call. It also includes head uni�cation, and spawning of parallel
processes.

9

According to Amdahl's law, the ratio of time spent in this sequential part
of the program to that spent in the part which is parallelized (measured on
a sequential machine) determines the theoretically best possible speedup from
parallelization.

The following table shows for each benchmark program how large fraction of
the execution time on a sequential machine is not subject to parallelization.

Map Nrev String Tsp
0.3% 0.04% 0.003% 0.005%

We conclude from this data that the unparallelized parts represent negligible
fractions of the total execution times. Another conclusion is that there is no point
in parallelizing the head uni�cation of parallelized predicates, since it represents
such a tiny fraction of the computation.

7.3 Results

The results of the experiments are summarized in the tables below. In the ta-
bles P stands for number of workers, T for runtime (in seconds), SR for relative
speedup, and SN for normalized speedup. The sequential runtime for each pro-
gram is given below each table.

P T SR SN T SR SN
1 40.40 1.00 0.98 30.80 1.00 0.88
4 10.12 3.99 3.89 8.08 3.81 3.43
8 5.07 7.96 7.76 3.96 7.77 6.99
16 2.54 15.91 15.50 2.01 15.32 13.78
24 1.70 23.76 23.15 1.36 22.65 20.36

Map. (39.59 sec.) Nrev. (27.70 sec.)

P T SR SN T SR SN
1 68.88 1.00 0.95 258.22 1.00 0.90
4 17.22 3.99 3.80 68.85 3.75 3.37
8 8.61 7.99 7.60 34.55 7.47 6.73
16 5.76 11.95 11.35 17.25 14.96 13.47
24 2.91 23.70 22.52 11.82 21.85 19.67

Match. (65.44 sec.) Tsp. (232.40 sec.)

7.4 Discussion

From the above results we calculate parallel overhead and e�ciency of paral-
lelization and make a comparison with other systems.

We compare Reform Prolog with the only other Prolog systems, which sup-
ports deterministic dependent AND-parallelism, that we are aware of, Andorra-I
[9] and NUA-Prolog [8]. The Andorra-I system is an interpreter written in C.
NUA-Prolog is a compiled system using a WAM-based abstract machine.

10

It should be noted that these systems to some extent exploit di�erent forms
of parallelism. Reform Prolog and NUA-Prolog exploit deterministic dependent
AND-parallelism (recursion parallelism in the case of Reform Prolog). Andorra-I
exploits deterministic dependent AND-parallelism and OR-parallelism (here we
are only interested in the AND-parallel component of the system).

Unfortunately, we can only make a very limited comparison with NUA-
Prolog, since the published benchmark programs stress the constraint-solving
capabilites of the system, rather than it potential for raw AND-parallel speedup.
However, we have compared their result on the nrev benchmarks with ours.

Let us de�ne

parallel e�ciency = (speedup on N processors)=N

The table below displays the parallel e�ciency of Reform Prolog on 24 pro-
cessors. It also indicates the parallelization overhead on a single processor as
compared to the sequential Prolog implementation.

Relative Normalized Parallelization
Program e�ciency e�ciency overhead
Map 99 % 96 % 2 %
Nrev 95 % 83 % 12 %
Match 99 % 94 % 5 %
Tsp 91 % 82 % 10 %

The Andorra-I system shows relative e�ciency in the range of 47{83 % and
normalized e�ciency in the range of 35{61 % (assuming parallelization overhead
of 35 %). We have excluded benchmarks that mainly exhibits OR-parallelism
from this comparison. The �gures are obtained on a Sequent Symmetry with
10 processors. NUA-Prolog shows a relative e�ciency of 71 % and a normalized
e�ciency of 36 % on the nrev benchmark on an 11 processor Sequent Symmetry.
(Note that the Reform Prolog �gures were obtained using more than twice the
number of processors the other systems used|using less processors improves the
result.)

The Andorra-I system shows parallelization overheads in the range of 35{40
% on a set of benchmarks [9]. NUA-Prolog shows a parallelization overhead of
50 % on the nrev benchmark.

8 CONCLUSIONS

The developments and results discussed in this paper suggests that recursion-
parallelism is an e�cient method for executing Prolog programs on shared-
memory multiprocessors. Our implementation exhibits very low overhead for
parallelization (2{12 % on the programs tested).

We believe that the high parallel e�ciency of Reform Prolog is due to e�cient
process management and scheduling. An important factor is that all parallel
processes can be initiated simultaneously. These properties of the system are
due to the static recursion-parallel execution model made possible by Reform
compilation.

11

Acknowledgments

We thank the Swedish Institute of Computer Science (SICS) for making their
26 processor Sequent Symmetry available to us.

REFERENCES

[1] G. Bell, Ultracomputers: a Tera
op before its time, Comm. ACM, Vol.
35, No. 8, 1992.

[2] J. Bevemyr, A Recursion-Parallel Prolog Engine, PhL Thesis, Computing
Science Department, Uppsala University, 1993.

[3] J. Bevemyr, T. Lindgren & H. Millroth, Reform Prolog: The Language
and its Implementation, to appear in: Proc. 10th Int. Conf. Logic Pro-

gramming, MIT Press, 1993.

[4] T. Lindgren, The Compilation and Execution of Recursion-Parallel Pro-

log on Shared Memory Multiprocessors, PhL Thesis, Computing Science
Department, Uppsala University, May, 1993 (expected).

[5] S.K. Debray & D.S. Warren, Automatic Mode Inference for Logic pro-
grams, J. Logic Programming, Vol. 5, No. 3, 1988.

[6] H. Millroth, Reforming Compilation of Logic Programs, Proc. Int. Symp.

Logic Programming, San Diego, Calif., MIT Press, 1991.

[7] L. Naish, Parallelizing NU-Prolog, Proc. 5th Int. Conf. Symp. Logic Pro-

gramming, MIT Press, 1988.

[8] D. Palmer and L. Naish, NUA-Prolog: An Extension to the WAM for
Parallel Andorra, Proc. 8th Int. Conf. Logic Programming, Paris, MIT
Press, 1991.

[9] V. Santos Costa, D.H.D. Warren and R. Yang, The Andorra-I Engine: A
Parallel Implementation of the Basic Andorra Model, Proc. 8th Int. Conf.

Logic Programming, Paris, MIT Press, 1991.

[10] P. Tang and P.-C. Yew, Processor Self-Scheduling for Multiple Nested
Parallel Loops, Proc. 1986 Int. Conf. Parallel Processing , 1986.

[11] S.-�A. T�arnlund, Reform, report, Computing Science Dept., Uppsala Uni-
versity, 1991.

[12] D.H.D. Warren, An Abstract Prolog Instruction Set, SRI Tech. Note 309,
SRI International, Menlo Park, Calif., 1983.

12

