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I. Introduction

Figure 1 proposes a classification of the various expressions of parallelism in programming languages. Such a
framework is required for the analysis of existing languages and the development of a new one. We propose to mimic
the Flynn classification of parallel architectures and to compare parallel languages constructs following of two
criteria: the way they let the programmer express the control and the way they let him manipulate the data.

Sequential
Languages

Concurent
Languages

Scalar
Languages

Collection
Based

Languages

Sisal, Id, Lau
Actors
FP

81/2

(APL, Gamma)

Fortran, C
Pascal

Ada, Occam

CMFortran
multi-threads

*LISP, HPF,
CMFortran

D
at

a

Control

Declarative
Languages

0 instruction counter 1 instruction counter n instructions counters

 

Figure 1: A classification of languages from the parallel construct point of view

The programmer has three choices to express the flow of computation:
• Not to express the control: this is the declarative approach. The compiler (static extraction of the parallelism)

or the runtime environment (dynamic extraction by an interpreter or a hardware architecture) has to build a
computation order compatible with the data dependency exhibited in the programme.

• To express what has to be done sequentially: this is the classical sequential imperative execution model,
where control structures build only one thread of computation.

• To express what can be done in parallel: this is the concurrent languages approach. Such languages offer
explicit control structures like PAR, ALT, FORK, JOIN, etc.
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For the data handling, we will consider two major classes of languages:
• Collection based languages  allow the programmer to handle sets of data as a whole. Such a set is called a

collection [SIP 91]. Examples of languages of that kind are: APL, SETL, SQL, *Lisp, C*,…
• Scalar languages allow also the programmer to manipulate a set of data but only through references to one

element. For example, in standard Pascal, the only valid operation performed on an array is accessing one of
its element.

Historically, the data-parallelism has been developed from the possibility of introducing parallelism in sequential
languages (this is the “starization” of languages: from C to C*, from Lisp to *Lisp, …). However figure 1 shows that
the concept of collection can be freely mixed with other expressions of control. As a consequence, collection based
languages can be mixed with concurrent languages (MSIMD model) and declarative languages (Gamma [BAN 88] or
81/2 [GIA 91]).

This paper describes the language 81/2 , an embedding of data-parallelism in a declarative framework.

II. The declarative data-parallel language 81/2

81/2 has a single data structure called a web . A web is the combination of the concept of stream  and collection . This
section describes those three notions.

II.a. The concept of collection

A collection  is a data structure that represents a set of elements as a whole [BLE 90a]. Several kinds of aggregation
structure exist: set  in the SETL [SDB 86], list in LISP, tuple  in SQL, pvar in *LISP [TMC 86] or even finite discrete
space in Cellular Automata [TOF 87]. Data-parallelism  is naturally expressed in terms of collections [HIL 86], [SIP
91]. From the point of view of the parallel implementation, the elements of a collection are distributed over the
processing elements (PEs).

We consider here collections that are ordered sets of elements. Four kinds of function application can be defined on
such data:

apply  : (collectionp → X) × collectionp → X           : f(c1, …, cp)

alpha ^: (scalarp → scalar) × collectionp →  collection: f^(c1, …, cp)

beta  \: (scalar2 → scalar) × collection →  scalar     : f\c

scan \\: (scalar2 → scalar) × collection →  collection : f\\c

X means both scalar or collection; p is the arity of the functional parameter f

The first function application mechanism is the standard one: collections are considered as a whole and function
application acts as usual. The second type of function application produces a collection whose elements are the
“pointwise” application of the function to the elements of the arguments. Then, using a scalar addition, we obtain an
addition between collections. The process of promoting a scalar to a collection function is known as an alpha-
denotation in APL. The third type of function application is the beta-reduction . Beta-reduction of a collection using
the binary scalar addition, results in the summation of all the elements of the collection. Any associative binary
operation can be used e.g. a beta-reduction with the min function gives the minimal element of a collection. The scan
application mode is similar to the beta-reduction but returns the collection of all partial results. See [BLE 89] for a
programming style based on scan. Beta-reduction and scan can be performed in O(log2(n)) steps on SIMD
architecture, where n is the number of elements in the collection, if there is enough PEs.

Some additional operators are defined. An element of a collection, also called a point in 81/2 , is accessed through an
index. The expression T.n where n is an integer, is a collection with one point; the value of this point is the value of
the nth point of T (point numbering begins with 0). The if operator extends the conditional construct to collection:

Q = if B then T else F fi
must be taken pointwise in space, that is, for each point n: Q.n = if B.n then T.n else F.n fi .

Geometric operators change the geometry of a collection, i.e. its structure. The geometry of a scalar collection is
reduced to its cardinal  (the number of its points). A collection can also be nested : the value of a point is a collection.
Collection nesting allows multiple levels of parallelism and exists for example in ParalationLisp [SAB 88] and NESL
[BLE 93a]. The geometry of the collection is the hierarchical structure of point values. The first geometric operation
consists in packing some webs together. The result is a system :

T = {a, b}
In the previous definition, a and b are collections resulting in a nested collection T. Elements of a system may also be
named, achieving the idea of environment (a binding between names and values). Assuming

car = { velocity = 5, consumption = 10 }
The points of this collection can be reached through the dot construct using uniformly their label, e.g.
car.velocity, or their index: car.0. The composition operator concatenates the values and merges environment.
The following example concatenates the two collections A and B:
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A = {a, b};  B = {c, d};  A # B ⇒  {a, b, c, d}

ferarri = car # {color = red} ⇒  {velocity = 5, consumption = 10, color = red}
The last geometric operator we will present here is the selection : it allows to select some point values to build another
collection. For example:

Source = {a, b, c, d, e}
target = {1, 3, {0, 4}}
Source(target) ⇒  {b, c, {a, e}}

The notation Source(target) must be understood in the following way: a collection can be viewed as a function
from [0..n] to some co-domain. Therefore, the dot operation corresponds to function application. If the co-domain is
set of natural numbers, collections can be composed and the following property holds: Source(target).i =
Source(target.i), mimicking the function composition definition. From the parallel implementation point of
view, selection corresponds to a gather operation and is implemented using communication primitives on a
distributed memory architecture.

II.b. The concept of stream

LUCID [WAD 76] is one of the first programming languages defining equations between infinite sequences of
values. This approach has the advantage of representing iterations in a “mathematically respectable way” [WAD 85]
and to quote [WAT 91]: “… series expressions are to loops as structured control constructs are to gotos”.

Streams can be manipulated as a whole, using filters, transducers… [ARV 83], and so can be visualised as
collections. Nevertheless we carefully make a distinction between stream and collection: accessing elements of a
stream is done in a sequential way and there is possibly an infinite number of stream elements. These characteristics
make a clear distinction between stream's and collection's management. Moreover, unlike LUCID, we add two
constraints that restrict the basic algebra over streams:

• causality assumption : stream elements have to be computed in the strict increasing order;
• finite memory assumption: a stream element has to be computed as a function of only a finite number of

previous element.

These assumptions are also used in two real-time programming languages derived from LUCID: LUSTRE [CPH 87]
and SIGNAL [LGB 86]. The purpose of these restrictions is to enable a static execution model. As a consequence, we
consider only three classes of operations over streams: arithmetic, delay and sampling.

Arithmetic operations act on stream in an elementwise fashion, similarly to the alpha-denotation  on collection (Cf.
table 1). The delay operator, $, shifts the entire stream to give access, at the current time, to the previous stream
value. This operator is the only operator that does not act in a pointwise fashion. However it maintains the two
constraints: only past values are used to compute a new stream value and references to past values are relative to each
element. So only the last w values of a stream are stored where w is a constant computable at compile time.

T 1 2 3 3 4 5 5 6 9

U 0 2 7 9 3 6 4 4 1

T + U 1 4 10 12 7 11 9 10 10

$U 0 2 7 9 3 6 4 4

Table 1: Examples of the addition of two streams and of a delayed stream;.

The last kind of stream operators is the sampling operator. The most general one is the trigger, which is very close to
the T-gate in data-flow languages [DEN 74]. It corresponds to the temporal version of the conditional. The values of
T when B are those of T sampled at the tocks where B takes a true value (Cf. table 2).

A 1 2 3 3 4 5 5 6 9

B false false false true false true true false true

A when B 3 5 5 9

Table 2: Example of a sampling expression.

Streams have to be thought as a temporal succession of values. Consequently, element of the same order in the
stream may occur at different date, if the streams do not share the same “rhythm”. In addition, the delay operator
postpones the beginning of a stream and the sampling may induce “holes” in the stream succession. This makes the
behaviour of streams very different of the behaviour of lists: they are not a linear storage of data and stream values
vanish and leave room to the next values. To reason out the progression of streams, it is convenient to introduce an
abstract global clock that measures the progression of time in the programme. The instants of this clock are called a
tick. An instant where a stream value occurs, is called a tock  (a clock is thought to make « tick-tock »). A tick is a
column in the table 1 and 2; a tock is a non empty column. The tocks of the expression « T+U » are the ticks where
the value of the expression may change, that is, a tick t is a tock if t is a tock of T or a tock of U as soon as both T
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and U are defined. A tick t is a tock of « A when B  » if A and B are both defined and  t is a tock of B and the current
value of B is true. The value of a stream at some tick is the value of the stream if the tick is also a tock, or the value
computed at the previous tock if it exists, else the special value nil. So, we can imagine a stream as the successive
values appearing at some memory address, a tock corresponding to a write, and the memory address being able to be
read at each tick.

II.c. Combining streams and collections into webs

A web  is a stream of collections or in an equivalent manner, a collection of streams. This data structure is a multi -
dimensional object that represents the successive values of a structured set of variables. More precisely, a web is
made of an ordered, constant and finite set of points. The number of points is constant over the time. Each point
carries its own value. Point values evolve synchronously; the rhythm of the changes is given by the clock of the web.
The tocks of a web can be visualised as a sub-clock  of a global clock. This global clock gives all events of interest for
the simulated system.

Collection operations easily extend to operate on webs: the collection operation applies on the successive values of
the web along the stream axis. In a same manner, stream operations apply on each value attached to the web points.

81/2 is a declarative language: a programme is a system representing a set of web definitions. A web definition takes a
form similar to:

T = A + B (1)
is a 8 1/2  expression that defines the web T from the web A and B (A and B are the parameters of T). This expression
can be read as a definition  (the naming of the expression « A+B » by “T”) as well as a relationship, satisfied at each
moment and for each point of T, A and B. Equation (1) holds only when A and B are valid, or in other words, T is
defined only when A and B are defined. When T is defined, the values of T change as often as necessary to maintain
the relationship, that is, when the values of A or the values of B change but no more. In addition, equation (1) implies
that webs T, A and B have the same number of points. Figure 2 gives a three-dimensional representation of the
equation (1) for webs with only one point. Running a 81/2  programme results in “weaving” the webs, that is, in
enumerating the successive webs' values.
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Figure 2: Webs draw in a <time, value, point> space. Webs A  and B  have only one point. Consequently the web T defined by
T = A+B  has only one point. The tock of T  are the A and B  ones.

A definition is recursive when the identifier in the left hand side appears also directly or indirectly in the right hand
side. Two kinds of recursive definitions are possible. Temporal recursion  allows the definition of the current value of
a web using past values of it. For example, the definitions

T@0 = 1, T = $T + 1 when Clock
specify a counter which starts at 1 and counts at the speed of the tocks of Clock. The « @0 » is a temporal predicate
that quantifies the first equation and means “for the first tock only”.

Spatial recursion  is used to define the current value of a point using current values of other points of the same web.
For example,

iota = 0 # (1 + iota:[9])
is a web with 10 elements such that iota.i is equal to i. The operator :[n] truncates a collection to n elements.
The 81/2  compiler infers the correct size of iota and determines a correct execution order to compute the point
values.

III.a. A more comprehensive example

Let H(x, t) represents the height at time t of a propagating wave along at the x axis. An explicit method of solution
uses finite-difference approximation of the partial differential equations modelling the propagation on a mesh (Xi =
ih, Tj = jk) which discretizes the space of variables. The value of the unknown height Hi,j+2 at the (i, j+2)th
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mesh point can be computed using the known heights along the (j+1)th and jth time row (Cf. figure 3). Hence we
can calculate the unknown pivotal values of U along the second time-row, in terms of known boundaries and initial
values along T=0 and T=1, then the unknown pivotal values along the third time-row in terms of the calculated
values, and so on.

The corresponding 81/2   programme is very easy to derives and corresponds simply to the description of initial
values, boundary conditions and the specification of the computation. The stream aspect of a web coincides to the
time axis while the collection point of view represents the discretization along the x axis.

PropagatingWawe = {

start = sin('50 * (2*pi/49)), /* or any other initial condition */
begin = 0, end = 0, /* or any others boundary conditions */

H@0 = start,

H@1 = (0 # (start(left)+start(right) - 2*start(middle)) # 0) when Clock,

H   = begin # inside # end,

inside = …

}
The operator « ' » is similar to the iota operator in APL, e.g. « '50 » generates the web {0, 1, …, 49}. begin
and end represent boundaries and « @0 » and « @1 » are initial conditions. The web inside is the interior of the
space×time discretization domain. It is defined by:

inside = -0.5*($v(left) + $v(right)) + 0.55*$v(middle) + 0.45*$$v(middle)
left(), middle() and right() are functions enabling the shifting and the segmentation of a collection: they are not
basic operations but build upon the selection primitive. We have only presented some of the primitive operators; a
complete presentation can be found in [MIC 94b].
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Figure 3: example of an equation defining a propagating wave

III. Webs and massive parallelism

III.b. The parallelism in 81/2

There is no explicit construct for parallelism in 81/2 . Automatic extraction of parallel activities is simple because:
• The declarative form of the language makes easy to perform the dependence analysis between tasks and the

subsequent exploitation of control parallelism.
• Web corrects some of the drawbacks sustained against the data-flow model [GAJ 82], mainly by adding some

specific handling of arrays with a consistent concept of time.
• Web is a natural support of the data-parallelism and collection operations between webs naturally lead to a

data-parallel implementation.
• Web introduces a natural support for the distribution of data.
• Transparential references allow a formal treatment of programmes and programmes optimisation by

programme transformations are possible (Cf. for example [WAT 91], [LEI 83]).
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So, the 81/2  approach combines the advantage of the SIMD and MIMD execution model through the embedding of
collections in a synchronous and static data-flow framework resulting in an hybrid SPMD or MSIMD execution
model.

Embedding collection in a synchronous data-flow model combines the advantages of the synchronous and
asynchronous parallel style. Consider for example the actor model: it proposes a minimal kernel to deal with control
parallelism but handling of homogeneous set of data (like arrays) is definitively inefficient [GGF 91]. From another
point of view, the handling of communications in a sequential data-parallel oriented languages, like *LISP, forbid
overlapping communications and computations because there is only one thread of control.

Theses two examples show the interest of combining data and control parallelism. Using data- and implicit  control-
parallelism enables:

• the maximal expression of the parallelism inherent to an application ;
• the effective use of the parallelism which implies the less implementation overhead (with respect to the target

architecture) ;
• the hiding of communication costs by the computation of (parallel) independent activities.

Nowadays new architectures appear [PAS 81] [CMO 87] [KB 88] [CBD 93] supporting a SPMD or a MSIMD
execution model. This motivates the development of new programming paradigms able to express more than one
kind of parallelism. Thus, to quote [STE 90]: “simplicity and efficiency of the SIMD approach” must be preserved
while acquiring the “processor utilisation and the flexibility of control structure afforded by the MIMD approach”.
81/2 does not support all styles of parallel programming, but we argue that it combines advantages of the two
approaches for a large class of interesting algorithms. A stream is a direct representation of a variable trajectory, a
collection corresponds to multidimensional variable or to the discretization of a continuous parameter, and the
declarative form of the language fits well with the functional description of a dynamical system. Thus we advocate
the use of 8 1/2  for the parallel simulation of dynamical system (e.g. deterministic discrete event systems [MIC 94]).

IV. Implementation of the 81/2  compiler

8,5 source code
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Figure 4: Block diagram of the compiler. Ellipses indicate code and rectangles, processing modules.

IV.a. The structure of the compiler

A high-level block diagram of the compiler is shown in Figure 4. The output can either be sequential C code or code
for a virtual SIMD machine (in the line of CVL [BLE 93b]).

 We describe briefly the various phases of the compiler written in a dialect of ML [LER 93]:
1 Data-flow graph generation : parses the input file and creates the programme graph representation used in

the remaining modules of the compiler. This is a conventional two-pass parser implemented using ML
version of lex and yacc.

2 Binding : the compilers binds lexically all variables. This phase is also responsible of expansion of functions,
removal of unused definitions and the detection of undefined variables.

3 Geometry inference: the geometry of a web is inferred at compile time by the “geometric type system” (see
[GIA 92]). Some incorrect programmes are detected by the geometry inference and rejected. For example, the
following programme: « T@0 = 0; T = ($T # $T) when Clock » defines a web T with a number of elements
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growing exponentially in time: « T ⇒  <{0}; {0, 0}; {0, 0, 0, 0}; …> », every collection of the stream
has two times more elements than the previous stream. This kind of programme implies dynamic memory
allocation and dynamic load balancing and is rejected in the current version of the language.

4 Scheduling inference: to solve the 81/2  equations between webs, we have to extract the sequencing of the
computations of the various right hand-sides, from the data flow graph. Once the scheduling of the
instructions done, the compiler computes the memory storage required by a programme execution.

5 Code generation : the compiler generates standalone sequential C code running on work-stations or code to
be executed by the SIMD virtual machine. However, all the compiler phases assume a full MIMD execution
model and we are working on the MIMD code generation. The sequential C code is stackless and does not
use malloc or some other dynamic runtime features.

IV.b. The clock calculus

The computation of a web value in a 81/2  programme corresponds to the computation of every successive collections
that are solution. The value of a stream at a given time is a collection (of scalar values) named instantaneous value  of
the web.

The clock  of a web X is a boolean stream holding the value true if tic is a tock for the web X, else holding a false
value. Each tick is a tock for a clock. The clock calculus of a web is needed to decide whether the computation of an
instantaneous value has to take place at some tic or not. Let x denotes the instantaneous value of X, and clock(X)
the instantaneous value of the clock associated to X. Every definition

X = f(Y)
in the initial programme, is translated in:

x = if clock(X) then f(y) (2)
This expression is synthetised by induction on the structure of the definition of X. For example:

clock (A when B) = b ∧  clock(B)
This transformation produces a normal form from the original web definition. Roughly, the compiler will generate for
any expression of the programme, a task executing the process shown in (2). It is still necessary to compute the
dependency between the tasks to determine their relative order of activation.

IV.c. The scheduling inference

The data-flow graph associated to a 81/2  programme is directly extracted from the programme in normal form.
Unfortunately, this graph cannot be directly used to generate the task scheduling. Although the data-flow graph is the
same as the dependency graph in the case of scalar data flow programme, this is no longer true with collections. For
example, in the following programme:

A = B
every point of A (i.e. every element of the collection of the web A) depends from the corresponding point of B. On the
other hand, the following programme that sums all elements of B:

A = +\ B
produces a web A of only one point, depending from all points of B. Nevertheless, both programmes are giving the
same data flow graph where the nodes of A and B are connected.

The data flow graph can be viewed as an approximation of the real dependency graph. This approximation is too
rough; for example we cannot, on this basis, compile spatial recursive programmes. The work of the compiler is to
annotate the data-flow graph to get a finer approximation of the dependency graph. The true graph of the
dependencies cannot be explicitly build because it has as many nodes as points in the web of the programme (for
example, in numerical computation matrix of size 1000×1000 are usual and would give dependency graphs of over
106 nodes).

We call task sequencing graph  the approximation of the dependency graph annotated in the following way (Cf. figure
5):

• An expression e depends from the web X if x appears syntactically in e. However, we remove the
dependency of variables appearing in the scope of a delay: those dependencies correspond to a value in the
past and not to an instantaneous value of a web.

• the (instantaneous) dependency between an expression and a variable is labelled p if the value of point i of e
depends only of the value of point i of X (point to point dependency).

• The dependency is labelled t if a point i from e depends of the value of all points of X (total dependency).
• The dependency is labelled + if the value of point i depends of the values of point j of X with j<i.

In the sequencing graph, the cycle with an edge of type t or no edges of type + are dead cycles. The webs defined in
those cycles have always undefined values. The remaining cycles (with edges + and no edge t) correspond to spatial
recursive expression requiring a sequential implementation. An expression not appearing in a cycle is a data-parallel
expression. It can be computed as soon as its ancestors have been computed. Here we deal with recursive definitions
of collections but see for a similar approache [WAD 81] which handles recursive streams and [SIJ 89] which handles
recursive lists.
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Dependency graph corresponding to the annotations
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Figure 5: Representation of the three possible annotations used to build the sequencing graph. Two examples are given. i  is a
vector such that the j th element of i has value j. A and B corresponds to empty streams which can be interpreted as a fatal
deadlock.

In fact, the complete processing of the sequencing graph is a bit more complicated. We made the assumption that the
calculus of the instantaneous value of $X does not depend from the instantaneous value of X, but the clock of $X
depends from the clock of X (it is the same one, but the first tock). So, the sequencing graph might have instantaneous
cycles between boolean expression representing clock expressions. The computation of this value is based on a finite
fixed point computation in the lattice of clocks. One of the benefits of this approach, besides being fully static, is that
it allows us to detect expression that will remain constant (we can therefore optimise the generated code), or that will
never produce any computation and generates tasks in dead-lock (that might be a programming error).

The sequencing graph of the tasks being an approximation of the true dependency graph, we might detect as incorrect
some programmes with an effective value. It is possible, with some refinementsof the method, to handle additional
programmes. Anyway, the sequencing graph method effectively schedules any collections defined as the first n
values of a primitive recursive function, which represents a large class of arrays.

IV.d. The data-flow distribution and scheduling

After the scheduling inference, the compiler is able to distribute the tasks onto the PEs of a target architecture and to
choose on every PE a scheduling compatible with the sequencing graph. To solve this problem, we limit ourselves to
cyclic scheduling. In our case, such a scheduling is the repetition by the PE of some code named pattern . The pattern
corresponds to the computation of the values of a web for one tick. The last operation of the compiler is therefore to
generate such a pattern from the scheduling constraints.

To generate a pattern, the compiler associates to every task a rectangular area in a Gantt chart (a time×PE space). The
width of the rectangle corresponds to the execution time of the task and its height to the number of the PE ideally
required for a fully parallel execution of the task (Cf. Figure 6). For example, if the task corresponds to the data-
parallel addition of two 100 elements array, the height of the associated rectangle will be 100.

With this representation, the problem of the optimal distribution and the minimal scheduling of the tasks is to find a
distribution of the rectangles that will minimize the makespan and that is bound in height by the number of PEs in the
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architecture. Some efficient heuristics exist for this problem known under the name “bin-packing” in two dimensions
(which is NP-complete in the general case [GAR 78]).

At the moment we are testing a greedy strategy [MAH 92] consisting in placing as soon as possible the largest ready
task on the critical path. A task becomes ready at the time when all the tasks from which it depends are done, time
plus the communication time needed to transfer the data between PE. If more than one task is available at the same
time an additional criterion is given to choose which one to take first (for example, a task being on the critical path).
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Figure 6: scheduling and distribution of a sequencing graph using a two dimensional bin-packing method

If the width of the chosen task is bigger than the number of available PE, we “split” the task in two pieces, the first
one being scheduled and the other one being put back in the pool of available tasks (to be scheduled and distributed
later). We only admit the split in the horizontal direction (Cf. Figure 6). In fact, it is possible because a data-parallel
task requiring n PEs corresponds to n independent scalar tasks. Vertical split corresponds to pre-emptive scheduling.

A well-known result in [HAW 89] can be used to give a low boundary the performance of this strategy. This result
bounds the worst case and guarantees the good quality of the heuristic used here.

V. Conclusions

The current compiler is written in C and in a ML dialect. It generates a code for a virtual SIMD machine
implemented on a UNIX workstation. However, all the compiler phases assume a full MIMD execution model and
we are working on the MIMD code generation.

We are also working on the implementation of dynamic geometry to allow the definition of non constant-size webs in
time and space. Such features are needed to model growing systems (e.g. L-system), Penrose tiling, etc.
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